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A Wind that rose
Though not a Leaf
In any Forest stirred
But with itself did cold engage
Beyond the Realm of Bird —
A Wind that woke a lone Delight
Like Separation’s Swell
Restored in Arctic Confidence
To the Invisible —

- Emily Dickinson [74]
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Abstract

In order to study their temporal dynamics, the size, density or abundance of populations are
often monitored over discrete time steps. Many of these populations tend to have internal
structure or interconnections that affect individuals at various spatiotemporal scales, such
as developmental stages, resource preferences, group interactions and movement. In this
thesis we are mainly concerned with modelling the dynamics of such structured populations
in discrete-time, from both deterministic and stochastic perspectives. In Chapter 1 we
motivate the problems we are interested in throughout this thesis. In Chapter 2 we give
some technical background needed in order for this thesis to be reasonably self-contained.
In Chapter 3 we discuss various existing frameworks and results within the literature related
to structured population models, while also demonstrating how matrix stability plays an
important role in understanding such systems. In Chapter 4 we propose a costless, density-
dependent invasion model, where a population moves between two resources. We explore
some of the properties of this model, both theoretically and numerically, in the context of
a species expanding its habitat or range. We then apply this model to an pest case study in
order to further understand how host switching can affect long-term population viability.
In Chapter 5 we propose a model of costly, density-dependent dispersal between a finite
number of regions. We study its stability and persistence properties, and numerically show
how it relates to various source-sink scenarios. In Chapter 6 we focus on deriving sufficient
conditions for the stability of the extinction equilibrium for coupled linear time-invariant
systems, which is robust under diffusive couplings, so-called robust diffusive stability
(RDS). This model corresponds to demographically-structured populations diffusively
dispersing between habitats, such as species migration for example. We discuss the role
of the existence/nonexistence of copositive, quadratic and diagonal Lyapunov functions in
determining RDS. We then discuss the anithesis of RDS, diffusive growth. Throughout,
we apply our results to some commonly used matrix population models. In Chapter
7 we propose a stochastic model that aims to capture the interactions between animal
groups within a social population. We conduct simulation scenarios and fit this model to
real-world data, to show its applicability. We then discuss the findings of this model fit
in the context of ecological theory. We derive an approximation to the marginal group
correlation for a simpler model, which describes their net interactions over an observation
period. We then theoretically discuss its interpretation in multiple predator-prey scenarios.
Finally, in Chapter 8, we conclude by discussing various extensions and open questions
suggested by the results presented throughout this thesis.
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1. Introduction

The natural world has been profoundly shaped by centuries of human activity, which
has unfortunately led to habitat fragmentation, ecological degradation, and the spread of
zoonotic diseases [47, 216, 250]. Although these actions have inadvertently benefitted
certain species, particularly through the introduction and proliferation of invasive popula-
tions, they have also had devastating impacts on vulnerable and endangered populations
[14, 27, 33, 96]. Many of these species, after enduring decades of eradication and decline,
now require reintroduction into their native habitats, as well as additional conservation
efforts to ensure persistence [254]. To effectively conserve indigenous populations, eradi-
cate pests, and keep pandemics at bay, it is crucial to understand the internal processes of
species, including their demographic makeup, movement dynamics, and ecological inter-
actions [240]. By doing so, we can make informed decisions that have the potential to help
promote biodiversity, support ecosystem resilience, and ensure a sustainable coexistence
between humans and wildlife.

1.1. What is a Structured Population?

Within a population, individuals may form clusters, such as herds, packs or colonies.
They can also be distributed across localised regions in space or categorised into different
life stages or demographic groups. To understand how this internal population structure
emerges, we will explore various models of structured population dynamics. Specifically,
we will discuss three key types of population structure: spatial, demographic, and social.

By spatial structure we mean the arrangement of individuals in different geographic areas.
Spatial models can represent movement processes such as dispersal from natal groups
and can also illustrate fragmented landscapes where individuals navigate between distinct
geographic areas. By analysing these spatial dynamics, we can gain insights into how
environmental features affect population viability and connectivity [93]. Understand-
ing these spatial patterns not only helps in predicting how populations will respond to
changes in habitat but also can inform conservation strategies aimed at ensuring long-term
sustainability.

Demographic structure concerns the composition of a population in terms of age, sex,
and other demographic factors. Understanding how these populations develop over time
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1.2. Why Ecological Models?

is essential. For example, variations in birth and death rates across different age groups
can lead to significant shifts in population dynamics, affecting growth rates and ecological
stability [62]. By examining demographic models, we can better predict population
trends and develop effective management plans that account for life cycle changes and
environmental pressures [114, 256]. This understanding can ultimately aid in tailoring
conservation efforts to specific population needs, ensuring that vulnerable groups are
supported and maintained within their ecosystems.

Finally, social structure concerns the relationships and interactions among individuals
within a population. Many social species not only move between subgroups but also
engage with these groups and other populations through cooperation, competition, and
predation [217]. Understanding these dynamics is crucial, as they can significantly influ-
ence individual behaviour and overall population dynamics. By exploring such structure,
we can uncover the complexities of social interactions and their effects on population
resilience. Additionally, recognising the role of social dynamics can inform management
practices, allowing us to develop interventions that enhance cooperation and reduce con-
flict within populations, ultimately contributing to their stability and success in changing
environments [254].

1.2. Why Ecological Models?

In [290] the author explains that an ecosystem can be viewed as a collection of subsystems
and that the dynamics of each subsystem can be meaningfully analysed on its own. A
population may be thought of in this way. However, in reality these subsystems do not
exist in isolation, but involve many complex interconnected processes and structures that
contribute to population fitness and survival. While theoretical models may overlook
some nuances of real-world ecological systems, they provide insights into the potential
mechanisms that drive population changes and qualitative behaviour. In addition to help-
ing understand these population’s dynamics, they also play a crucial role in informing
natural resource management, laboratory experiments, and field studies, which sometimes
face challenges such as negligent practices and ethical concerns, including animal welfare
issues [42, 203, 230]. Thus models can serve as a valuable starting point for under-
standing the dynamics of fragile biological systems. They also provide insights that help
shape conservation policies and offer additional perspectives alongside empirical findings,
deepening our understanding of the many ecological systems that surrounds us [182].
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1.3. Thesis Outline

In Chapter 2 we will introduce notation and discuss some background that is referred to in
the rest of this thesis. In Chapter 3 we will discuss some models and results for modelling
structured populations in discrete time. This is to give some context to the ideas presented
in the rest of this thesis and to highlight some of the theoretical and ecological concepts
encountered. In particular we will review concepts such as diffusively coupled systems,
quiescence, diffusion, stage-structure, stochastic interactions and count time series.

In Chapter 4 we will investigate, both analytically and numerically, the qualitative dynamics
of a discrete-time model of density-dependent, costless dispersal between two regions, in
the context of an invasive species colonising a new area, where the dynamics on each patch
is of the same form. We first explain the model setup, including regional and dispersal
dynamics. We prove some results related to stability and persistence. We then describe
some real-world phenomena that our model can capture, including transience and the
rescue effect. Finally we apply the model, as a first port of call, to an empirical case study,
to investigate the long term viability of an insect pest switching between resource hosts.

In Chapter 5 we will investigate a discrete-time model of density-dependent, costly dis-
persal between multiple patches, where regional dynamics are defined by a general class
of maps and dispersal has a cost across the overall population. In particular, we will give
sufficient conditions for the stability/instability of the extinction equilibrium; the existence
of a positive equilibrium; and finally uniform strong persistence. We will then numeri-
cally explore this model in the context of dispersal between declining and growing patch
population, to show some of the qualitative behaviour that it can capture.

In Chapter 6 we will investigate the stability of the zero equilibrium of a two-patch, discrete-
time population model, where each patch population is partitioned into demographic
classes, and there is arbitrary diffusive dispersal between patch classes. In particular we
will show how the existence of different types of common Lyapunov function relate to
this problem. We will briefly investigate the antithesis of this idea, i.e. when one can
diffusively couple sink regions to induce overall population growth. Throughout this
chapter we also discuss how our results apply to a variety of matrix classes used when
modelling population dynamics.

In Chapter 7 we will take a data-driven perspective on structured population dynam-
ics. In particular, we will investigate a stochastic discrete-time framework for inferring
interactions among animal groups and how an auxiliary population may affect these asso-
ciations. To do so, we will first outline our general methodology. We will then validate
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this framework under various simulation scenarios to evaluate the performance of the
parameter estimation procedure. Then, we will derive, under reasonable assumptions, an
approximation to the marginal correlation between groups, which we call the net group
interaction strength. Lastly, we will interpret this in the context of predator-prey theory to
demonstrate its potential applicability.

In Chapter 8 we will review the work within each chapter and present avenues for future
work.
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2. Preliminaries

In this chapter we will establish some notation and terminology, and state key definitions
and known results related to the material presented throughout this thesis.

2.1. Notation and Definitions

We begin by discussing the notation and definitions used throughout the majority of this
thesis. Denote the nonnegative integers by Z+ := {0, 1, 2, ...}. For 𝑥 ∈ R𝑛 we write 𝑥 ⪰ 0
(≻ 0) to mean that 𝑥𝑖 ≥ 0 (> 0) ∀ 𝑖 ∈ {1, ..., 𝑛}. Denote by

R𝑛+ := {𝑥 ∈ R𝑛 : 𝑥 ⪰ 0}

the standard nonnegative cone in R𝑛. A similar notation is used for matrices in R𝑛×𝑛 and
R𝑛×𝑛+ . For 𝐴, 𝐵 ∈ R𝑛×𝑛 we write 𝐴 ⪰ 𝐵 if 𝐴 − 𝐵 ⪰ 0. Denote by 𝐴𝑇 the transpose of 𝐴.
Denote by Tr(𝐴) :=

∑𝑛
𝑖 𝑎𝑖𝑖 the trace of 𝐴. For 𝐴 ∈ R𝑛×𝑛 we say 𝐴 is symmetric if 𝐴 = 𝐴𝑇 .

A symmetric matrix 𝐴 is said to be positive (negative) semi-definite if, for all nonzero
𝑥 ∈ R𝑛, 𝑥𝐴𝑥𝑇 ≥ 0 (𝑥𝐴𝑥𝑇 ≤ 0) and this is denoted as 𝐴 ≥ 0 (𝐴 ≤ 0). Similarly 𝐴 is said
to be positive (negative) definite if, for all nonzero 𝑥 ∈ R𝑛, 𝑥𝐴𝑥𝑇 > 0 (𝑥𝐴𝑥𝑇 < 0) and this
is denoted as 𝐴 > 0 (𝐴 < 0).

A matrix 𝐴 ∈ R𝑛×𝑛 is said to be irreducible if there exists no permutation matrix 𝑃 such
that 𝑃𝐴𝑃−1 is of the form

𝑄 =

(
𝐵 𝐶

0 𝐷

)
.

𝐴 is reducible if it is not irreducible. 𝐴 ∈ R𝑛×𝑛 is column substochastic if 1𝑇 𝐴 ⪯ 1
𝑇 ,

where 1 := (1, ..., 1)𝑇 . A matrix 𝐴 ∈ R𝑛×𝑛 is said to be primitive if there exists 𝑠 ∈ N such
that 𝐴𝑠 ≻ 0.

Denote by 𝜎(𝐴) the spectrum of 𝐴 ∈ R𝑛×𝑛 (the set of its eigenvalues). Denote by R(𝑧)
the real part of 𝑧 ∈ C. Denote by C− := {𝑧 ∈ C : R(𝑧) < 0} the open left halfplane and
D1 := {𝑧 ∈ C : |𝑧 | < 1} the open unit disc. The spectral radius and the spectral abscissa
of 𝐴 ∈ R𝑛×𝑛 are respectively defined as

𝜌(𝐴) := max{|𝜆 | : 𝜆 ∈ 𝜎(𝐴)},
𝜇(𝐴) := max{R(𝜆) : 𝜆 ∈ 𝜎(𝐴)}.
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2.1. Notation and Definitions

A matrix 𝐴 ∈ R𝑛×𝑛 is Schur if 𝜌(𝐴) < 1, i.e. 𝜎(𝐴) ⊂ D1, and Hurwitz if 𝜇(𝐴) < 0, i.e.
𝜎(𝐴) ⊂ C− (see Fig. 2.1).

𝔗

𝔑

ℂ− 𝔻1

Figure 2.1: A matrix 𝐴 ∈ R𝑛×𝑛 is Hurwitz if 𝜎(𝐴) ⊂ C− and Schur if 𝜎(𝐴) ⊂ D1. Here
R and I respectively denote the real and imaginary axis.

A matrix 𝐴 = (𝑎𝑖 𝑗 ) ∈ R𝑛×𝑛 is Metzler if 𝑎𝑖 𝑗 ≥ 0 for all 𝑖 ≠ 𝑗 . Given that 𝐴 ∈ R𝑛×𝑛 is
Metzler, we can write 𝐴 = 𝑁 − 𝛾𝐼 for 𝑁 ∈ R𝑛×𝑛+ and 𝛾 ≥ 0. If a matrix 𝐵 ∈ R𝑛×𝑛 is a
𝑍-matrix, i.e. 𝑏𝑖 𝑗 ≤ 0 for 𝑖 ≠ 𝑗 , and 𝐵 = 𝑠𝐼 − 𝐶, where 𝐶 is Metzler and 𝑠 ≥ 𝜌(𝐶), then
𝐵 is called an 𝑀-matrix [26]. It is well known that 𝐴 is an 𝑀-matrix if and only if −𝐴 is
Metzler and Hurwitz.

The 𝑙1-norm and 𝑙∞-norm of a vector 𝑥 ∈ R𝑛 are respectively defined as

∥𝑥∥1 :=
𝑛∑︁
𝑖=1

|𝑥𝑖 |,

∥𝑥∥∞ := max
𝑖

{|𝑥𝑖 |}.

Given a norm on R𝑛, the induced/operator/matrix norm of a matrix 𝐴 ∈ R𝑛×𝑛 is defined as

∥𝐴∥ := sup
𝑥≠0

{
∥𝐴𝑥∥
∥𝑥∥

}
.

The induced 𝑙1 and 𝑙∞ norms of a matrix 𝐴 ∈ R𝑛×𝑛 can be shown to respectively be given
by ∥𝐴∥1 := max 𝑗

∑𝑚
𝑖=1 |𝑎𝑖 𝑗 | and ∥𝐴∥∞ := max𝑖

∑𝑛
𝑗=1 |𝑎𝑖 𝑗 | [137].

Denote the 𝑚-fold composition of a map 𝐹 : R𝑛 → R𝑛 with itself by

𝐹𝑚 := 𝐹 ◦ 𝐹 ◦ · · · ◦ 𝐹︸              ︷︷              ︸
𝑚 times

,
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2.2. Discrete-Time Dynamical Systems

for 𝑚 ∈ N. The Jacobian of a smooth vector-valued function 𝐹 : R𝑛 → R𝑛 at a point
𝑎 ∈ R𝑛, for 𝑖, 𝑗 ∈ {1, ..., 𝑛}, is given by the matrix

𝐹′(𝑎) :=
(
𝜕𝐹𝑖 (𝑎)
𝜕𝑥 𝑗

)
.

2.2. Discrete-Time Dynamical Systems

The systems we deal with in the majority of this thesis are discrete-time (potentially
nonlinear) systems of the general form

𝑥(𝑡 + 1) = 𝐹 (𝑥(𝑡)),
𝑥(0) ∈ R𝑛,

(2.2.1)

where 𝐹 : R𝑛 → R𝑛 is smooth and 𝑥0 is called an initial condition. A trajectory or solution
of (2.2.1) at time 𝑡 ≥ 0, with initial condition 𝑥0, is denoted by 𝑥(𝑡, 𝑥0). The state space
and time set of interest are respectively R𝑛 and Z+. In this case the trajectory/solution of
(2.2.1) defines what is known as a semiflow. See [255] for more on dynamical systems
theory.

2.2.1. Equilibria and Lyapunov Stability

An equilibrium of (2.2.1) is a solution of 𝐹 (𝑥) = 𝑥. An equilibrium, 𝑥∗, is (Lyapunov)
stable if for any 𝜖 > 0 there exists a 𝛿 > 0 such that

∥𝑥0 − 𝑥∗∥ < 𝛿 =⇒ ∥𝑥(𝑡, 𝑥0) − 𝑥∗∥ < 𝜖

for all 𝑡 ≥ 0 (see Fig. 2.2). If, in addition, there exists some 𝑅 > 0, such that 𝑥(𝑡, 𝑥0) → 𝑥∗

as 𝑡 → ∞ for any solution with ∥𝑥0∥ < 𝑅, the equilibrium is locally asymptotically stable
(LAS). If this holds for any 𝑅 > 0, it is said to be globally asymptotically stable (GAS).
Note that the specification of a norm, ∥ · ∥ need not matter, as all norms are equivalent on
R𝑛 [137].

2.2.2. Positive Systems

The system (2.2.1) is called positive, if 𝑥(𝑡, 𝑥0) ⪰ 0 for all 𝑡 ≥ 0 when 𝑥0 ⪰ 0. Put another
way, if 𝐹 (R𝑛+) ⊂ R𝑛+, i.e. R𝑛+ is a forward invariant set for (2.2.1), then the system is
positive.
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𝑥0

𝜖

𝛿

𝑥∗

𝑥(𝑡)

Figure 2.2: 𝑥∗ is Lyapunov stable if, for any 𝜖 > 0 we choose there is some 𝛿 > 0 so that
for any 𝑥(0) = 𝑥0 within 𝛿 of 𝑥∗, the trajectory, 𝑥(𝑡), remains within 𝜖 of 𝑥∗ for all 𝑡 ≥ 0.

If the dynamics of our system are linear, we can write (2.2.1) as a linear time-invariant
(LTI) system given by

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡), (2.2.2)

where 𝑥(0) ∈ R𝑛+ and 𝐴 ∈ R𝑛×𝑛 [136]. Note that we could arrive at a system of the form
(2.2.2) if, for example, we linearise (2.2.1) around some equilibrium 𝑥∗. In this case 𝐴
would be given by the Jacobian of 𝐹 at 𝑥∗. The systems we consider throughout this thesis
are positive systems, where the state space is interpreted as population abundances/size/-
densities and the time set is census/sampling/observation times. In general, it is common
for systems of the form (2.2.1), to assume that 𝐹 (0) = 0 and thus 0 is an equilibrium
of (2.2.1). In the context of population dynamics, this trivial equilibrium corresponds to
extinction. In the rest of this chapter, assume (2.2.1) is a positive system. Note that the
system (2.2.2) is positive in discrete-time if 𝐴 ∈ R𝑛×𝑛+ .

Motivated by positive linear systems, the next result is the well-known Perron-Frobenius
theorem for irreducible nonnegative matrices.

Theorem 2.2.1. [137] Let 𝐴 ∈ R𝑛×𝑛+ be irreducible. Then, 𝜌(𝐴) > 0 is an eigenvalue of
𝐴, and there exists a unique (up to scalar multiples) vector 𝑣 ≻ 0 (resp. 𝑤𝑇 ≻ 0) such that
𝐴𝑣 = 𝜌(𝐴)𝑣 (resp. 𝑤𝑇 𝐴 = 𝜌(𝐴)𝑤𝑇 ).

A simple consequence of Theorem 2.2.1 is recalled in the following lemma.

Lemma 2.2.2. Let 𝐴 ∈ R𝑛×𝑛+ be irreducible. Then 𝜌(𝐴) < 1 (resp. 𝜌(𝐴) = 1, 𝜌(𝐴) > 1)
if and only if there exists 𝑣 ≻ 0 such that 𝐴𝑣 ≺ 𝑣 (resp. 𝐴𝑣 = 𝑣, 𝐴𝑣 ≻ 𝑣).
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These two results will be useful when proving results in Chapters 4, 5 and 6. We next look
at how one can prove GAS of an equilibrium using Lyapunov functions.

2.2.3. Lyapunov Functions

In [186] Lyapunov gave a general method to determine GAS of equilibria of (2.2.1), the
so-called Lyapunov’s direct method. It can be used to establish global stability and is
summarised well in the next well-known result. First, let 𝑉 : R𝑛 → R+ be continuous and
∥ · ∥ be any norm on R𝑛. Further let the following hold:

1. 𝑉 (𝑥∗) = 0.

2. 𝑉 (𝑥) → ∞ as ∥𝑥∥ → ∞.

3. 𝑥, 𝐹 (𝑥) ∈ R𝑛 =⇒ Δ𝑉 (𝑥) := 𝑉 (𝐹 (𝑥)) −𝑉 (𝑥) ≤ 0.

4. For 𝑥 ≠ 𝑥∗, 𝑉 (𝑥) > 0 for all 𝑥 ∈ {𝑦 ∈ R𝑛 : ∥𝑦 − 𝑥∗∥ < 𝜖} for some 𝜖 > 0.

Then 𝑉 is called a (radially unbounded) Lyapunov function (RULF).

Theorem 2.2.3. [80, 136] If 𝑉 is a RULF for (2.2.1) with respect to the equilibrium 𝑥∗

and Δ𝑉 (𝑥) < 0 for all 𝑥 ≻ 0, then 𝑥∗ is GAS.

Lyapunov’s indirect method is another widely used method to investigate the stability
properties of an equilibrium 𝑥∗ of (2.2.1) that relies on a local linear approximation to
the dynamics in a neighbourhood of 𝑥∗. The stability properties are then determined by
the eigenvalues of the system Jacobian at 𝑥∗ [136, 255]. The next result is a well known
characterisation of global asymptotic stability of the zero equilibrium of the linear system
(2.2.2).

Theorem 2.2.4. [165] 0 is a GAS of equilibrium (2.2.2) if and only if 𝐴 is Schur.

Therefore 𝐴 ∈ R𝑛×𝑛 being Schur implies that the zero equilibrium of (2.2.2) is GAS. In
this case 𝐴 is said to be (Schur) stable and the stability region of interest is D1. If we
linearised (2.2.1) around some equilibrium, 𝑥∗, then 𝐴 being Schur implies that 𝑥∗ is LAS.
Next we will discuss a specific type of Lyapunov function that is considered in the context
of positive systems.

2.2.3.1. Copositive Lyapunov Functions

When studying positive systems it is natural to consider so-called copositive Lyapunov
functions [114]. Their use can lead to less conservative conditions for positive systems
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than those obtained by requiring a traditional Lyapunov function. The linear function
𝑉 (𝑥) = 𝑣𝑇𝑥, 𝑣 ∈ R𝑛, defines a linear copositive Lyapunov function (LCLF) for (2.2.2) if
and only if 𝑣 ≻ 0 and 𝐴𝑇 𝑣 ≺ 𝑣. The class of linear copositive Lyapunov functions has
attracted considerable attention over the past two decades [76, 91, 114]. The following
characterisation of Schur stability is well known and follows from the Perron-Frobenius
Theorem.

Theorem 2.2.5. Let 𝐴 ∈ R𝑛×𝑛+ . Then the following are equivalent (TFAE):

1. 𝐴 is Schur.

2. There exists a LCLF for (2.2.2).

3. There exists a vector 𝑣 ≻ 0 with 𝐴𝑣 ≺ 𝑣.

A similar result for Hurwitz stability for Metzler matrices can be shown, which charac-
terises stability in the continuous time case, as we state in the next result.

Theorem 2.2.6. [85] Let 𝐴 ∈ R𝑛×𝑛 be Metzler. Then the following are equivalent:

1. 𝐴−1 ⪯ 0.

2. 𝐴 is Hurwitz.

3. There exists a vector 𝑣 ≻ 0 with 𝐴𝑣 ≺ 0.

4. There exists a vector 𝑤𝑇 ≻ 0 with 𝑤𝐴𝑇 ≺ 0.

From Theorems 2.2.5 and 2.2.6 we can see that, for 𝐴 ∈ R𝑛×𝑛+ and some 𝑣 ≻ 0,

𝐴𝑣 ≺ 𝑣 ⇐⇒ (𝐴 − 𝐼)𝑣 ≺ 0.

Therefore 𝐴 is Schur if and only if 𝐴− 𝐼 is Hurwitz. This observation, along with Theorem
2.2.5 and 2.2.6 will be used extensively when proving many of the results and for some
of the numerical examples in Chapters 4, 5 and 6. In the next section we will look at two
other type of Lyapunov function that can be constructed from solutions of linear matrix
inequalities.

2.2.3.2. Quadratic and Diagonal Lyapunov Functions

Let 𝐴 ∈ R𝑛×𝑛. We say 𝑃 > 0 is a solution to the Stein inequality if

𝐴𝑇𝑃𝐴 − 𝑃 < 0. (2.2.3)
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A solution of (2.2.3), 𝑃, determines a quadratic Lyapunov function (QLF), 𝑉 (𝑥) := 𝑥𝑇𝑃𝑥,
for (2.2.2). If 𝑃 is diagonal then 𝑉 is called a diagonal Lyapunov function (DLF) for
(2.2.2). If there exists a diagonal Lyapunov function for 𝐴, then 𝐴 is called diagonally
(Schur) stable. We will explore these concepts more in Chapter 3. We say 𝑃 > 0 is a
solution to the Lyapunov inequality if

𝐴𝑇𝑃 − 𝑃𝐴 < 0.

The Lyapunov inequality determines a QLF in continuous-time. In Chapters 6 we will be
interested in the existence of QLFs/DLFs and their relation to the stability of a coupled
linear population model. Next we state a necessary and sufficient condition for the existence
of a diagonal solution of the Lyapunov inequality.

Theorem 2.2.7. [19] A matrix 𝐴 is diagonally stable if and only if for every nonzero
positive semidefinite matrix 𝐵 ≥ 0 , 𝐵𝐴 has a negative diagonal element.

In Chapter 6 we will explore the Lyapunov and Stein inequalities in more detail. Note that
these two matrix inequalities are related via

𝐶 (𝐴) = (𝐴 − 𝐼) (𝐴 + 𝐼)−1,

called the Cayley transform, where it is assumed that 𝜌(𝐴) < 1 so that 𝐶 (𝐴) is well
defined.

Theorem 2.2.8. [192] Let 𝐴 ∈ R𝑛×𝑛 be Schur, and 𝑃 = 𝑃𝑇 > 0 be a solution of
𝐴𝑇𝑃𝐴 − 𝑃 = −𝑄 < 0. Then 𝑃 is also a solution of

𝐶 (𝐴)𝑇𝑃 + 𝑃𝐶 (𝐴) = 2(𝐴 + 𝐼)−𝑇𝑄(𝐴 + 𝐼)−1 > 0.

Quasidominance is one criterion used to check if a matrix is diagonally Schur stable.
A matrix 𝐴 = (𝑎𝑖 𝑗 ) ∈ R𝑛×𝑛 is quasidominant if there exists a 𝑝 ≻ 0 such that 𝑎𝑖𝑖𝑝𝑖 ≥∑
𝑗≠𝑖 |𝑎𝑖 𝑗 |𝑝 𝑗 for all 𝑖 ∈ {1, ..., 𝑛}. The following result is a characterisation of Schur

diagonal stability for nonnegative matrices.

Lemma 2.2.9. [152] Let 𝐴 ∈ R𝑛×𝑛+ . Then TFAE:

1. There exists a diagonal matrix 𝐷 such that ∥𝐷−1𝐴𝐷∥∞ < 1.

2. There exists a diagonal solution to the Stein inequality.

3. 𝐼 − 𝐴 is quasidominant.

4. 𝐼 − 𝐴 is an 𝑀-matrix.

5. 𝐴 is Schur.

Next we will discuss other types of asymptotic behaviour other than the convergence to or
stability of fixed points of (2.2.1).
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2.2.4. Periodic Solutions and Chaotic-Type Dynamics

In the majority of this thesis our focus is either on the asymptotic stability/instability of
equilibria and other qualitative dynamics of systems of the form (2.2.1). Other types of
asymptotic qualitative behaviour include periodic trajectories. Given the system (2.2.1)
we say that 𝑥𝑝 ∈ R𝑛+ is a periodic point of 𝐹 if, for some 𝑘 ∈ N, 𝐹𝑘 (𝑥𝑝) = 𝑥𝑝 [80]. In
other words 𝑥𝑝 is 𝑘-periodic if it is a fixed point of 𝑥(𝑡 + 1) = 𝐹𝑘 (𝑥(𝑡)), 𝑥(0) = 𝑥0 ∈ R𝑛+.
Clearly an equilibrium is 1-periodic.

In ecological systems the presence or absence of chaos has garnered significant interest
over the years [128, 238, 283]. The term chaos has been used in many different contexts
and its precise definition varies depending on the field of interest. In [258] the author
describes chaos as

"aperiodic long-term behaviour in a deterministic system that exhibits sensi-
tive dependence on initial conditions".

In Chapter 4 and 5, we will encounter systems exhibiting behaviour that is suggestive of
this, informal, characterisation of chaos. Various mathematical definitions of chaos exist,
such as Devaney’s chaos and Li-Yorke chaos [73, 172, 173, 269]. We do not work with
a formal definition of chaos, as this is not our focus. However, we will simply identify
where chaotic type behaviour seems to occur in the specific ecological systems we are
interested in.

2.2.5. Bifurcation Analyses

The qualitative dynamics of solutions of systems of the form (2.2.1) may change depending
on what parameterisations we choose. As one varies certain parameters of a model,
fixed points may appear/disappear and periodic trajectories or chaotic-type dynamics may
emerge. Such transitions between dynamical behaviours take place are called bifurcations
and they can be numerically studied using so-called bifurcation diagrams.

To construct a bifurcation diagram, we simulate some parameterisation of a system of the
form (2.2.1) for some sufficiently long time 𝑇 > 0 and some given initial condition. We
can then take the last 𝐿 ∈ [0, 𝑇) time steps and calculate if any equilibria or periodic
trajectories exists within these 𝑇 − 𝐿 time steps. If none are observed this suggests the
trajectory is aperiodic. To test if this apreodic trajectory is sensitive to initial conditions,
we perturb our initial condition, 𝑥0, by various sufficiently small 𝜖 > 0 and observe if
another aperiodic trajectory is obtained. If this occurs then this suggests that such a system
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exhibits chaotic-type dynamics. Further analysis would have to be carried out to conclude
if a system exhibits chaos, in the sense of [73].

In Chapters 4 and 5 we construct what are known as one- and two-parameter (planar)
bifurcation diagrams. One-parameter bifurcation diagrams show the parameter of interest
on the 𝑥-axis and the value of the trajectory on the 𝑦-axis. Two-parameter bifurcation
diagrams show the first parameter of interest on the 𝑥-axis and second parameter of
interest on the 𝑦-axis. Points are then assigned a colour based on what type of dynamics
are observed over the 𝑇 − 𝐿 time steps. Bifurcation diagrams are particularly useful for
investigating the association of ecological patterns of population oscillations with changing
values of model parameters, allowing one to quantify this contribution to changes in model
outputs [275]. It is possible to also analytically study bifurcations, which we will not
pursue. See [11, 166] for more on bifurcation analyses.

2.2.6. The Logistic Map

To demonstrate some of the above concepts we will briefly look at the (one-dimensional)
logistic map (see Fig. 2.3) as an example, which is a discrete-time analogue of the
continuous-time logistic equation used in demographic modelling [258].

First proposed by Lorenz in [183] for modelling climate dynamics, the logistic difference
equation was given a first in-depth study in [196]. The logistic difference equation is given
by

𝑥(𝑡 + 1) = 𝐹 (𝑥(𝑡)) := 𝑎𝑥(𝑡) (1 − 𝑥(𝑡)),
𝑥(0) ∈ R

(2.2.4)

for 𝑎 > 0 (see Fig. 2.3). For modelling populations, it has been shown that (2.2.4) is
a positive system once 𝑎 ∈ [0, 4] and we restrict the domain of the logistic map, 𝐹, to
be in [0, 1]. The state variable, 𝑥, can then be interpreted, in an ecological context, as
population density (population abundance per unit inhabited area).

For 𝑎 < 1 the extinction equilibrium is GAS. For 1 < 𝑎 < 3 there exists a a GAS positive
equilibrium given by 𝑥∗ = 1 − 1/𝑎. At 𝑎 = 3 a period 2 solution emerges. If we denote by
𝑎𝑛 the value of 𝑎 where a period 2𝑛 trajectory first appears, in [88] Feigenbaum showed
that lim𝑡→∞ 𝑎𝑡 = 𝑎∞ ≈ 3.57. For 𝑎 > 𝑎∞, when one plots a one-parameter bifurcation
diagram, we can observe so-called periodic windows, parameter intervals where periodic
trajectories emerge, between which chaotic type dynamics can be observed (see Fig. 2.4).

13



2.3. Persistence

More precisely at 𝑎 = 1 we observe a so-called transcritical bifurcation, where the origin
goes from being GAS to unstable and a positive fixed point, 𝑥∗ > 0, emerges and is GAS up
until 𝑎 = 3. At 𝑎 = 3 we undergo a so-called flip bifurcation, where periodic trajectories
with increasing periods emerge and period-doubling occurs as 𝑎 increases. We refer the
reader to [258] and references therein for more details on the logistic map.

𝑦 =
𝑎

4

𝟏

𝟐

𝑥 = 1/2 𝑥 = 1

𝑦 = 𝑎𝑥(1 − 𝑥)

Figure 2.3: Illustration of the logistic map 𝑦 = 𝑎𝑥(1 − 𝑥), where 𝑎 > 0 (solid). This map
has a unique maximum at 𝑥 = 1/2 (dotted) which is 𝑦 = 𝑎/4 (dashed).
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Figure 2.4: One-parameter bifurcation diagram for 𝑎 ∈ [0, 4] vs solutions, 𝑥, of (2.2.4).

2.3. Persistence

Given a discrete-time dynamical system (2.2.1) that is positive, we can define what is
known as persistence. Given a persistence function 𝜂 : R𝑛+ → [0,∞), the system (2.2.1)
is uniformly weakly 𝜂-persistent, if there exists some 𝜖 > 0, such that

𝜂(𝑥0) > 0 =⇒ lim sup
𝑡→∞

𝜂 (𝑥(𝑡, 𝑥0)) > 𝜖. (2.3.1)

14



2.3. Persistence

and uniformly strongly 𝜂-persistent, if there exists some 𝜖 > 0, such that

𝜂(𝑥0) > 0 =⇒ lim inf
𝑡→∞

𝜂 (𝑥(𝑡, 𝑥0)) > 𝜖. (2.3.2)

The term uniform in the above definitions is to highlight the fact that 𝜖 is independent
of the initial condition 𝑥0. The interpretation for weak persistence is that however far
forward in time you look, there will be some later time at which 𝜂(𝑥(𝑡, 𝑥0)) exceeds such
a persistence threshold. Strong persistence means that there exists some time point, 𝑇 ,
beyond which 𝜂(𝑥(𝑡, 𝑥0)) exceeds some persistence threshold for all 𝑡 > 𝑇 .

For population vectors 𝑥 ∈ R𝑛+, examples of possible persistence functions include

• the weighted total population size: 𝜂(𝑥) = ∑
𝑖 𝛼𝑖𝑥𝑖, where 𝛼𝑖 ≥ 0;

• the minimum population component: 𝜂(𝑥) = min𝑖 𝑥𝑖;

• the maximum population component: 𝜂(𝑥) = ∥𝑥∥∞; and

• the weighted product of population components: 𝜂(𝑥) = ∏
𝑖 𝑥

𝑝𝑖
𝑖

, where 𝑝𝑖 ≥ 0.

We will now state two results on persistence from [255] that will be useful when proving
some of the persistence results in Chapters 4 and 5. We first state a particular case of
Proposition 3.16 from [255].

Proposition 2.3.1. [255] Consider the system (2.2.1) and let 𝜂 : R𝑛+ → [0,∞). Assume
that 𝜂(𝑥) > 0 implies that 𝜂(𝐹 (𝑥)) > 0. Further assume that there exists 𝛿 > 0 such that

inf
{
𝜂(𝐹 (𝑥))
𝜂(𝑥) : 0 < 𝜂(𝑥) < 𝛿

}
> 1.

Then 𝜂(𝑥0) > 0 implies that

lim sup
𝑡→∞

𝜂(𝑥(𝑡, 𝑥0)) ≥ 𝛿.

We next state a result on uniform strong persistence.

Theorem 2.3.2. [255] Consider the system (2.2.1) and assume the map 𝐹 is 𝐶1. Let
𝜂(𝑥) = ∥𝑥∥, where ∥·∥ is any norm on R𝑛+. Suppose that the following hold:

1. 𝐹
(
R𝑛+\{0}

)
⊂ R𝑛+\{0};

2. there exists 𝑟0 > 1 and 𝑣 ≻ 0 such that 𝐹′ (0)𝑇 𝑣 ≥ 𝑟0𝑣;

3. there exists𝑀 > 0 such that∀ 𝑥(0) ∈ R𝑛+ there exists𝑇 ∈ N such that ∥𝑥(𝑡, 𝑥0)∥ ≤ 𝑀

∀ 𝑡 ≥ 𝑇 .
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Then, 𝐹 is uniformly strongly 𝜂-persistent. Let 𝜂 (𝑥) = min𝑖 𝑥𝑖 and define

𝑋0 := {𝑥0 ∈ R𝑛+ : 𝜂 (𝑥(𝑡, 𝑥0)) = 0, ∀ 𝑡 ≥ 0.}.

In addition, if for all 𝑐 > 0 there exists some 𝑠 > 0 such that 𝐹𝑠 (𝑥) ≻ 0 ∀ 𝑥 ∈ R𝑛+, 0 <
∥𝑥(𝑠)∥ ≤ 𝑐, then there exists some 𝜖 > 0 such that

lim inf
𝑡→∞

𝜂 (𝑥(𝑡, 𝑥0)) ≥ 𝜖

for any 𝑥0 ∈ R𝑛+\𝑋0.

In Chapter 3 we will discuss persistence in more detail for a specific type of population
model. For more background on persistence theory we recommend the monograph of
[255], as well as the papers of [95, 146, 239, 266] and references therein.

2.4. Positive Integer-Valued Time Series

For ease of exposition, in this section and in Chapter 7, we will use subscripts for indexing
time and omit the dependence on initial conditions. That is, instead of writing 𝑥(𝑡, 𝑥0) we
will simply write 𝑥𝑡 , where the dependence on the initial condition is assumed.

Given a random variable 𝑋 , define the expected value of 𝑋 as E[𝑋] :=
∑
𝑥P(𝑋 = 𝑥), the

variance of 𝑋 as Var(𝑋) := E[𝑋2] − E[𝑋] and the covariance of 𝑋 and another random
variable 𝑌 as Cov(𝑋,𝑌 ) := E[𝑋𝑌 ] − E[𝑋]E[𝑌 ]. We define a positive integer-valued,
discrete-time stochastic process as (𝑍𝑡)𝑡∈Z+ := {𝑍𝑡 , 𝑡 ∈ Z+}, where, for a given time
𝑡 ∈ Z+, each 𝑍𝑡 is a discrete random variable, assumed to have finite moments. Each
𝑍𝑡 thus has some corresponding probability mass function. Some common distributions
for modelling positive integer-valued random variables include the Poisson and Negative-
Binomial, and extensions of these such as the so-called zero-inflated and hurdle models
[135, 202]. In this thesis we are concerned with finite-time stochastic processes, that is
stochastic processes of the form

(𝑍𝑡)[0,𝑇] := {𝑍𝑡 , 𝑡 ∈ [0, 𝑇] ⊂ Z+},

where we write [0, 𝑇], in slight abuse of notation, to denote the set of positive integers
between 0 and𝑇 . When modelling time series one can specify that 𝑋0 = 𝑥0 ∈ Z+ or assume
that 𝑋0 has some initial distribution, 𝑝0. We employ the former, as in many ecological
studies initial abundances are usually known, which is indeed the case in experimental or
conservation monitoring programs for example.
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2.4. Positive Integer-Valued Time Series

2.4.1. The Markov Property

If for all 𝑡 ∈ [0, 𝑇] and all 𝑧0, 𝑧1, ..., 𝑧𝑡−1, 𝑧 ∈ Z+, we say (𝑍𝑡)[0,𝑇] is first-order Markovian,
(𝑍𝑡)[0,𝑇] is a first-order Markov chain or (𝑍𝑡)[0,𝑇] satisfies the Markov property, if

P(𝑍𝑡+1 = 𝑧 |𝑍𝑡 = 𝑧𝑡 , 𝑍𝑡−1 = 𝑧𝑡−1, ..., 𝑍0 = 𝑧0) = P(𝑍𝑡+1 = 𝑧 |𝑍𝑡 = 𝑧𝑡).

If we wanted to incorporate additional temporal dependence between states we could con-
dition on earlier observations. Moreover, Markov chains, despite their apparent simplicity,
have proven effective in modelling a wide variety of ecological systems [106, 181].

2.4.2. Bayesian Inference

In a Bayesian setting we are interested in the distribution of 𝜃, a model parameter of
interest. To quote from [102], in Bayesian inference

"the posterior distribution is centered at a point that represents a compromise
between the prior information and the data, and the compromise is controlled
to a greater extent by the data as the sample size increases".

This perspective is especially useful in ecological studies when one has hierarchical
structures such as observation (observed) and latent (unobserved) processes [18]. Letting
the (observed) data 𝑦, which depends on 𝜃, have a probability density or mass function
𝑓 (𝑦 |𝜃), we can then write the joint distribution of 𝜃 and 𝑦 as 𝑝(𝜃, 𝑦) = 𝑞(𝜃) 𝑓 (𝑦 |𝜃)
[102]. The distributions 𝑞(𝜃) and 𝑓 (𝑦 |𝜃) are respectively known as the prior and the
sampling/data distribution. Using Bayes’ rule we can then write the so-called posterior
density of 𝜃 given 𝑦 as

𝑟 (𝜃 |𝑦) = 𝑝(𝜃, 𝑦)
𝑠(𝑦) =

𝑞(𝜃) 𝑓 (𝑦 |𝜃)
𝑠(𝑦) ,

where 𝑠(𝑦) =
∑
𝜃 𝑞(𝜃) 𝑓 (𝑦 |𝜃) in the discrete case and 𝑠(𝑦) =

∫
𝑞(𝜃) 𝑓 (𝑦 |𝜃)𝑑𝜃 in the

continuous case. By treating 𝑠(𝑦) as a constant with respect to the unknown 𝜃, i.e. it
only depends on the known data 𝑦, the so-called unnormalised posterior density is given
by 𝑟 (𝜃 |𝑦) ∝ 𝑞(𝜃) 𝑓 (𝑦 |𝜃), where 𝑓 (𝑦 |𝜃) is a function of 𝜃. In many contexts the posterior
distribution is does not have an analytic expression or is intractable to compute. Thus
when making inferences, after assigning priors to our on parameters of interest, we then
use some sampling algorithm to estimate our posterior distribution. In the next section we
will discuss how one can choose such priors.
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2.4. Positive Integer-Valued Time Series

2.4.2.1. Prior Specification

Before fitting Bayesian models, there are many ways to specify priors for our parameters
of interest. If one has prior knowledge of the system in question they may set what is
known as an informative prior, where one can restrict the majority of the distribution to
specific regions of the parameter space [102]. If one has less knowledge of the system
they may specify a non-informative prior, where there are relatively equal weights given to
every region of the parameter space, thus allowing the data to greatly inform the posterior
distribution. Generally, when deciding on a prior one typically wants to choose proper
priors, which are priors chosen so that the posterior density integrates or sums to one.
This is so these are valid probability distributions. In Chapter 7 our interest is in assigning
non-informative priors to the mean and variance terms of some random effects (as we want
the data to provide more information when predicting the posterior density), a concept we
will discuss later in Chapter 3. We will now briefly discuss how one would choose such
non-informative priors for model parameters representing variances, which are strictly
positive quantities.

Let Inv-Γ(𝛼, 𝛽) be an inverse Gamma distribution, which has probability density function

𝑔(𝑥, 𝛼, 𝛽) = 𝛽𝛼

Γ(𝛼) (1/𝑥)
𝛼+1 exp (−𝛽/𝑥) ,

for 𝛼, 𝛽, 𝑥 > 0 and where Γ(𝑎) denotes the gamma function [102]. According to [100]
if we set an Inv-Γ(𝜖, 𝜖) prior for variance parameters, for 𝜖 sufficiently small, then there
may not exist a proper posterior distribution. The form of this distribution’s probability
density function is also quite sensitive to changes in values of 𝜖 . Let N+(0, 𝜎2) denote a
half-Gaussian distribution, whose probability density function is given by

ℎ(𝑥, 𝜎) =
√

2
𝜎
√
𝜋

exp
(
− 𝑥2

2𝜎2

)
,

for𝜎 > 0 and 𝑥 ≥ 0. In [100] the author recommends usingN+(0, 𝜎2) with large𝜎2 when
choosing non-informative proper priors. This will give more weight to lower values of
the estimated variance parameters, while still allowing larger values to be estimated. Note
that if we wanted to give more weight to the tails, we could use truncated t-distributions
as priors for variance parameters. The inclusion of heavier-tailed distributions as proper
priors may result in our model being robust to outlying observations [281], but as noted
in [213] the utility of heavy-tailed models in complex settings is not so clear.
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2.4. Positive Integer-Valued Time Series

2.4.2.2. Hamiltonian Monte Carlo

To fit a Bayesian model one could implement Metropolis Hastings or Gibbs sampling
algorithms, using many existing packages, such as Nimble [70], JAGS [225] or WinBUGS
[185]. An alternative approach, which has been shown to be more efficient for more com-
plex or high-dimensional models, is Hamiltonian Monte Carlo (HMC) [267]. According
to [267]

"HMC tends to converge to regions of higher posterior density more quickly
in comparison with Metropolis-Hastings".

We implemented our HMC model fitting in R [263] using the R package rstan [44]. We
will next give a short summary of HMC when estimating some posterior distribution of
interest. We will not discuss the HMC algorithm implementation in detail, as this is not
our focus. However, if one is interested in this and for a discussion on topics such as
detailed balance, time-reversibility, the no-U-turn sampler and leapfrog integration, see
[28, 267].

Let 𝜃 ∈ R𝑛 be a parameter vector of interest, which has posterior density 𝑟 (𝜃 |𝑦), where
𝑦 is a vector of observed data. Let 𝑚 be a parameter generated from a 𝑘-dimensional
multivariate normal distribution, i.e. 𝑚 ∼ N 𝑘 (0, 𝑀), where 𝑀 ≥ 0 is a user-specified
covariance matrix. Define the so-called Hamiltonian function

𝐻 (𝜃, 𝑚) := − log(𝑟 (𝜃 |𝑦)) + 1
2
𝑚𝑇𝑀−1𝑚,

assuming that 𝑀−1 exists. Over time, the HMC process travels along trajectories that are
governed by the so-called Hamiltonian equations

𝑑𝑚

𝑑𝑡
=
−𝜕𝐻
𝑑𝜃

=
−𝜕𝑈
𝜕𝜃

= ∇𝜃 log(𝑟 (𝜃 |𝑦)),
𝑑𝜃

𝑑𝑡
=
𝜕𝐻

𝜕𝑚
=
𝜕𝐾

𝜕𝑚
= 𝑀−1𝑚,

where ∇𝜃 log(𝑟 (𝜃 |𝑦)) is the gradient of the log-posterior density. A solution to the Hamil-
tonian equations is a function that defines the path of (𝜃, 𝑚). Within each MCMC iteration,
a value 𝜃 is then sampled from this path. To sample from the posterior distribution, the
HMC process generates trajectories of (𝜃, 𝑚) by starting with a chosen 𝜃 (0) and sampling
𝑚(0) ∼ N (0, 𝑀). Then one integrates the Hamiltonian equations over a time interval,
[0, ℎ], using numerical methods. This then gives a sequence (𝜃 (𝑡), 𝑚(𝑡)). Finally, for
a specified time horizon, the final value of 𝜃 (𝑡) at time ℎ is taken as a sample from the
posterior distribution 𝑟 (𝜃 (ℎ) |𝑦). In Chapter 7 we use the R package rstan, using R, for
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2.5. Summary

carrying out our Bayesian model fitting, which uses HMC by default to make parameter
inferences.

2.4.2.3. Weak Identifiability

Let 𝜃 be a parameter of interest, with prior and posterior distributions respectively given
by 𝑝𝜃 and 𝑝𝜃 |𝑦. Following the estimation of the posterior density, 𝑝𝜃 |𝑦, when making
inferences about 𝜃, an important aspect to investigate is the notion of identifiability. In a
Bayesian setting an analogous concept to near-redundancy in frequentist statistics is weak
identifiability [97, 99]. A parameter 𝜃 is said to be weakly identifiable if 𝑝𝜃 ≈ 𝑝𝜃 |𝑦 [53].
One typically assesses weak identifiability of 𝜃 using its prior-posterior overlap (PPO)
statistic. The PPO for 𝜃 is given by

𝜏𝜃 =

∫
min(𝑝𝜃 , 𝑝𝜃 |𝑦)𝑑𝜃.

Note that 𝜏𝜃 ∈ [0, 1]. The value of 𝜏𝜃 can be estimated using kernel-density estimation or
graphically by plotting the prior and estimated posterior distributions of 𝜃. In ecological
applications an ad-hoc threshold of 𝜏𝑇 = 0.35 was proposed in [97] to assess weak
identifiability. If one has that the prior-posterior overlap for a given parameter is above 𝜏𝑇 ,
then that parameter is weakly identifiable. Weakly identified parameters may suggest that
a model is parameter redundant or non-identifiable [53]. More work would be needed to
mathematically asses if a (potentially nonlinear) model is non-identifiable. This concept
has been used in ecological studies to asses so-called practical identifiability, where we
are interested in knowing if the data provides us with more information than the priors
alone [20, 104, 167]. This is especially important if we are interested in specific parameter
estimates for inferential reasons, as is the case in Chapter 7.

2.5. Summary

In this chapter we have introduced the main notation and terminology used throughout
this thesis, namely in the context of positive systems and integer-valued time series. We
have discussed concepts such as stability, Lyapunov functions, persistence, the Markov
property, Bayesian inference and weak-identifiability We have also recalled the statements
of some key results that will be needed later. These concepts and definitions will resur-
face throughout this thesis in relation to modelling the dynamics of various structured
populations.
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3. Structured Population Models

In this chapter we will survey various existing discrete-time models of structured popula-
tions. We will first look at some deterministic systems to accompany the work in Chapters
4, 5 and 6. We will then look at some stochastic frameworks to accompany the work
in Chapter 7. Many of the known results in this chapter are either applied to specific
ecological examples or are stated due to their application in other chapters in this thesis.

Parts of this chapter appeared in: McGrane-Corrigan, B. and Mason, O., 2023. On
Matrix Stability and Ecological Models. In Modelling Insect Populations in Agricultural
Landscapes (pp. 115-147). Springer, Cham.

3.1. Linear Systems

In practice, populations are not censused continuously: there is typically an interval
between each measurement and the next. Many species have non-overlapping generations
[107]. For such setups, discrete time models are more appropriate. Furthermore, many
species have structured life stages, ages or discrete sub-population structure like male or
female groups, for example. This means that higher dimensional matrix models are more
appropriate as simple 1-dimensional models cannot capture such structure. The qualitative
properties of such models in this context play a vital role when studying the suppression of
pests, maintenance of mutualists and conservation of endangered species [94, 208, 260].

We first consider the simplest class of models for such structured populations, where we
assume the dynamics are linear. In this case, we can use (2.2.2) to model such an ecological
system, where 𝐴 is commonly called a population projection matrix [256]. As previously
discussed, the stability of the extinction equilibrium of (2.2.2) is equivalent to determining
when 𝜌(𝐴) < 1, with 𝐴 being then termed a Schur stable matrix. More general concepts
of matrix stability have also been proposed, some inspired by ecological questions [165,
180]; for instance, stability regions, S𝐷 , other than D1 (or C− in continuous time) can be
considered, where 𝐴 is said to be S𝐷-stable if

𝜎(𝐴) ⊂ S𝐷 ⊂ C.

For more on these and related problems, see [165]. We next discuss another type of matrix
stability, 𝐷-stability, and the so-called net reproduction number in the context of linear
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3.1. Linear Systems

structured population models. The notion of 𝐷-stability is closely related to diagonal
stability, a concept we will explore in the next section, and also in Chapter 6 in relation to
a model of diffusive dispersal between populations with demographic structure.

3.1.1. D-Stability

First introduced in [12] to study market price dynamics, the authors of [190] view 𝐷-
stability as a form of system stability that is

"robust with respect to parametric uncertainties given by diagonal scaling."

The concept of diagonal stability, or what some authors call Volterra-Lyapunov stablity
[57] or Volterra dissipativeness [109], is closely related to 𝐷-stability (see [177]).

A matrix 𝐴 ∈ R𝑛×𝑛 is Schur 𝐷-stable if 𝐷𝐴 is Schur for all diagonal 𝐷 = (𝑑𝑖 𝑗 ) such that
|𝐷 | := ( |𝑑𝑖 𝑗 |) ⪯ 𝐼. Denote by S the set of all Schur stable matrices, D𝐷 the set of all
Schur 𝐷-stable matrices and D𝑑 the set of all diagonally Schur stable matrices. Then the
following holds [29, 180]:

D𝑑 ⊂ D𝐷 ⊂ S.

Many results exist for 𝐷-stability in the continuous-time case. However, we will only
discuss Schur 𝐷-stability as the focus of the of this thesis is in discrete-time models. For
more on 𝐷- and diagonal stability we refer the reader to [19, 66, 147, 152, 165, 192].

We will now state some results for general Schur 𝐷-stability, where 𝐴 ∈ R𝑛×𝑛. We first
recall a result from [89].

Theorem 3.1.1. [89] Let 𝐴 ∈ R𝑛×𝑛. Let 𝐶𝑖𝑖 ⪰ 0 be a square matrix and 𝐶𝑖 𝑗 ⪯ 0 for
𝑖, 𝑗 ∈ {1, 2}, 𝑖 ≠ 𝑗 . Assume there exists a permutation matrix 𝑃 ∈ R𝑛×𝑛 such that

𝑃𝐴𝑃−1 =

(
𝐶11 𝐶12

𝐶21 𝐶22

)
.

Then 𝐴 is Schur 𝐷-stable if and only if 𝐴 is Schur.

Before we state the next result, let us recall the definition of a monotone norm from [137].
An induced operator norm ∥ · ∥ on R𝑛×𝑛 is called monotone if |𝐴| ⪯ |𝐵 | implies that
∥𝐴∥ ≤ ∥𝐵∥. We now state a version of a result of [89] using induced matrix norms on
R𝑛×𝑛.

Proposition 3.1.2. [89] For 𝐴 ∈ R𝑛×𝑛, the following each imply that 𝐴 is Schur 𝐷-stable.
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3.1. Linear Systems

1. There exists a norm ∥ · ∥ such that ∥𝐴∥ < 1 and ∥𝐷∥ ≤ 1, whenever 𝐷 is diagonal
and |𝐷 | ⪯ 𝐼.

2. There exists a monotone norm ∥ · ∥ on R𝑛 such that ∥𝐴∥ < 1.

3. There exists a monotone norm ∥ · ∥ on R𝑛 such that ∥𝐴𝐷∥ < 1 whenever 𝐷 is
diagonal and |𝐷 | = 𝐼.

Given 𝐴 ∈ R𝑛×𝑛, the Frobenius norm, ∥ · ∥𝐹 := Tr(𝐴𝑇 𝐴) 1
2 , and spectral norm, ∥ · ∥𝑆 :=

(𝜌(𝐴𝑇 𝐴)) 1
2 are two examples of monotone norms.

In the previous results we discussed𝐷-stability for general matrices 𝐴 ∈ R𝑛×𝑛. For positive
systems, the definition of Schur 𝐷-stability reduces to: 𝐴 ∈ R𝑛×𝑛+ is Schur 𝐷-stable if 𝐷𝐴
is Schur stable for all nonnegative diagonal matrices 𝐷 ≤ 𝐼. If 𝐴 ∈ R𝑛×𝑛+ is Schur stable
then one has that

𝜌(𝐷𝐴) ≤ 𝜌(𝐴) < 1,

for all 𝐷 ⪯ 𝐼, which follows from, for example, Corollary 3.3 of [26]. Hence Schur
stability implies Schur 𝐷-stability. Also, if we have that 𝐴 ∈ R𝑛×𝑛+ is Schur 𝐷-stable, then
if we let 𝐷 = 𝐼 we have that 𝐴 is Schur stable. Hence we have simply proved the following
result.

Theorem 3.1.3. Let 𝐴 ∈ R𝑛×𝑛+ . Then 𝐴 is Schur stable if and only if 𝐴 is Schur 𝐷-stable.

Next we will briefly explore some Schur stability results related to linear stage structured
populations models.

3.1.2. Stage Structure

The asymptotic dynamics of positive linear time-invariant systems are well known [62,
85, 177]. In Chapter 2 we highlighted some properties of such positive systems. In the
context of population biology, the following result, known as the fundamental theorem of
demography, highlights the appeal of studying stability problems related to nonnegative
matrices in ecology [62]. Recall from [137] that 𝐴 ∈ R𝑛×𝑛 is primitive if there exists
𝑘 ∈ N such that 𝐴𝑘 ≻ 0.

Theorem 3.1.4. [61, 62] Suppose 𝐴 ∈ R𝑛×𝑛+ is primitive, with left and right eigenvectors
corresponding to 𝜌(𝐴), given respectively by 𝑣 and 𝑤 (normalised so 𝑣𝑇𝑤 = 1). Then

lim
𝑡→∞

𝑥(𝑡, 𝑥0)
𝜌(𝐴)𝑡 = (𝑣𝑇𝑥0)𝑤.
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3.1. Linear Systems

Moreover, we have that

lim
𝑡→∞

∥𝑥(𝑡, 𝑥0)∥ =


0, if 𝜌(𝐴) < 1;
∥(𝑣𝑇𝑥0)𝑤∥, if 𝜌(𝐴) = 1;
∞, if 𝜌(𝐴) > 1.

Many population projection matrices used in population ecology are primitive. Thus the
asymptotic dynamics of the corresponding linear models is a trichotomy: either a popu-
lation goes extinct, grows unbounded or approaches a so-called stable stage-distribution
given by (𝑣𝑇𝑥0)𝑤. We will discuss the concepts of primitivity and irreducibility in more
detail later, when we look at Leslie matrices. Another way of characterising stability for
such models is using a so-called potential-growth indicator. As mentioned in [178]:

"the potential-growth indicator (PGI) problem means to find an explicit func-
tion (an indicator) of the parameters whose value can indicate whether the
model population grows, declines, or remains steady."

Let ⋄ denote one of the relations <, = or >. We call a (not necessarily unique) function
𝑃𝐺 : R𝑛×𝑛 → R+ a potential-growth indicator for (2.2.2) if 𝑃𝐺 (𝐴) ⋄ 1 if and only if
𝜌(𝐴) ⋄ 1 [178, 179]. It easy to show when such a function exists, as we will demonstrate
next.

As mentioned in Chapter 2, we can model populations using matrix models. Partition a
population of interest into predefined stage classes, corresponding to fecundity (number
of offspring produced in each class) or transition rates (between the different classes),
𝑥𝑖 ∈ R+, 𝑖 ∈ {1, ..., 𝑛}. Let 𝐹 = ( 𝑓𝑖 𝑗 ) ∈ R𝑛×𝑛 be a fecundity matrix and 𝑇 = (𝑡𝑖 𝑗 ) ∈ R𝑛×𝑛 a
transition matrix, such that

𝑓𝑖 𝑗 ≥ 0, 𝑡𝑖 𝑗 ∈ (0, 1], and
𝑛∑︁
𝑘=1

𝑡𝑘 𝑗 ≤ 1, (3.1.1)

for 𝑖, 𝑗 ∈ {1, ..., 𝑛}. We can then model such a population using (2.2.2) with 𝐴 = 𝐹 + 𝑇 ,
where 𝐹 and 𝑇 satisfy (3.1.1). Therefore 𝐹 takes account of the number of offspring
produced by each stage class and 𝑇 takes account of mortality/survival when one stage
class transitions to another.

One can characterise stability for matrix models of this type by looking at the net repro-
duction number, which is itself a potential growth indicator. Given 𝐴 = 𝐹 +𝑇 such that 𝐹
and 𝑇 satisfy (3.1.1), the net reproduction number is given by

𝑅0(𝐴) := 𝜌
(
𝐹 (𝐼 − 𝑇)−1

)
, (3.1.2)
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3.1. Linear Systems

Assuming that (3.1.1) holds, it was proven in [60] that if 𝐴 has a positive, simple (algebraic
multiplicity of 1), strictly dominant eigenvalue whose associated right-eigenvector is
strictly positive, 1 ∉ 𝜎(𝑇) and

∑
𝑖 𝑡𝑖 𝑗 < 1, then 𝑅0(𝐴) as in (3.1.2) is a potential growth

indicator. Results related to it can also be found in [171]. A sufficient condition for the
so-called resolvent matrix, (𝐼 −𝑇)−1, to exist is that ∥𝑇 ∥∞ < 1, which has been interpreted
as mortality affecting each stage over every time step, as such transitions rates account for
survival and death [61]. We state a similar result to the one in [60]. However, our proof
makes use of Lemma 2.2.2 and shows more clearly the link between the signs of 𝜌(𝐴) and
𝑅0(𝐴).

Theorem 3.1.5. Let 𝐴 = 𝑇 + 𝐹 ∈ R𝑛×𝑛+ be irreducible and satisfy (3.1.1). Further assume
𝜌(𝑇) < 1 and 𝐹 (𝐼 − 𝑇)−1 is irreducible. Let ⋄ denote one of the relations in {<, >,=}.
Then

𝜌(𝐴) ⋄ 1 ⇐⇒ 𝑅0(𝐴) ⋄ 1.

Proof. First note that 𝜌(𝑇) < 1 implies that det(𝐼 −𝑇) ≠ 0. Using the Neumann series of
the resolvent matrix of 𝑇 at 1, we can see that

(𝐼 − 𝑇)−1 =

∞∑︁
𝑘=0

𝑇 𝑘 ⪰ 0 =⇒ (𝐼 − 𝑇)−1𝐹 ⪰ 0.

( =⇒ ) Assume 𝜌(𝐴) ⋄ 1. It follows from Perron-Frobenius that there exists 𝑣𝑇 ≻ 0 such
that

𝑣𝑇 𝐴 = 𝜌(𝐴)𝑣𝑇 ⇐⇒ 𝑣𝑇 (𝑇 + 𝐹) = 𝑣𝑇 − (1 − 𝜌(𝐴))𝑣𝑇

⇐⇒ 𝑣𝑇𝐹 = 𝑣𝑇 (𝐼 − 𝑇) − (1 − 𝜌(𝐴))𝑣𝑇

⇐⇒ 𝑣𝑇𝐹 (𝐼 − 𝑇)−1 = 𝑣𝑇 − 𝑣𝑇 (𝐼 − 𝑇)−1(1 − 𝜌(𝐴)).

Thus we have that
𝑣𝑇𝐹 (𝐼 − 𝑇)−1 ⋄ 𝑣𝑇 ⇐⇒ 𝑅0(𝐴) ⋄ 1.

It then follows from Lemma 2.2.2 that 𝑣𝑇𝐹 (𝐼 − 𝑇)−1 ⋄ 𝑣𝑇 if and only if 𝜌(𝐴) ⋄ 1.

( ⇐= ) Conversely assume 𝑟 := 𝑅0(𝐴) ⋄1. By assumption (𝐼 −𝑇)−1 exists and 𝐹 (𝐼 −𝑇)−1

is irreducible. So by the Perron-Frobenius Theorem, there exists a vector 𝑤𝑇 ≻ 0 such that

𝑤𝑇𝐹 (𝐼 − 𝑇)−1 = 𝑟𝑤𝑇 ⇐⇒ 𝑤𝑇𝐹 = 𝑤𝑇 (𝐼 − 𝑇)𝑟
⇐⇒ 𝑤𝑇𝐹 = 𝑟𝑤𝑇 − 𝑤𝑇𝑇 + 𝑤𝑇 (𝑟 − 1)
⇐⇒ 𝑤𝑇 (𝐹 + 𝑇) = 𝑟𝑤𝑇 + 𝑤𝑇 (𝑟 − 1).

It then follows from Lemma 2.2.2 that 𝑤𝑇 𝐴 ⋄ 𝑤𝑇 if and only if 𝜌(𝐴) ⋄ 1. □
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3.1. Linear Systems

Assume that 𝐹 and 𝑇 satisfy (3.1.1) and 𝜌(𝑇) < 1. In [62] the author interprets
𝐹

(∑∞
𝑘=0 𝑇

𝑘
)
𝑥0 as the distribution of accumulated newborns for which the initial dis-

tribution, 𝑥0, are responsible for. As 𝜌(𝑇) < 1 we have that

𝐹

( ∞∑︁
𝑘=0

𝑇 𝑘

)
= 𝐹 (𝐼 − 𝑇)−1

and therefore the matrix 𝐹 (𝐼 − 𝑇)−1

"maps a generation of newborns to the next generation of newborns".

Note that in the fundamental theorem of demography, one of the assumptions is primitivity.
In Theorem 3.1.5 we assumed that 𝐴 was irreducible. Irreducibility and primitivity are
related via the order of cyclicity. The order of cyclicity of an irreducible matrix 𝐴 ∈ R𝑛×𝑛

is the number of its eigenvalues whose modulus is 𝜌(𝐴). An irreducible matrix 𝐴 ∈ R𝑛×𝑛+
is primitive if and only if its order of cyclicity is 1. The majority of the nonnegative
matrices we encounter in this thesis are either irreducible or primitive.

An example of 𝐹 and 𝑇 that satisfy (3.1.1) are Leslie matrices [170]. 𝐴 ∈ R𝑛×𝑛+ is a Leslie
matrix if

𝐴 = 𝐹 + 𝑇 :=

©«

𝑓11 𝑓12 𝑓13 · · · 𝑓1𝑛

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 0

ª®®®®®®®¬
+

©«

0 0 0 · · · 0
𝑡21 0 0 · · · 0
0 𝑡32 0 · · · 0
...

. . .
. . .

...

0 0 0 𝑡𝑛𝑛−1 0

ª®®®®®®®¬
, (3.1.3)

where 𝑓1𝑖 ≥ 0 and 𝑡 𝑗 𝑗−1 ∈ (0, 1] are respectively the stage-specific fecundity and survival
rates for stage classes 𝑖 ∈ {1, ..., 𝑛} and 𝑗 ∈ {2, ..., 𝑛}. Each 𝑓1𝑖 quantifies the number
of newborns in class 𝑖 and 𝑡 𝑗 𝑗−1 denotes the proportion of individuals in class 𝑗 − 1 that
survives and moves into class 𝑗 . We will investigate Leslie matrices and their generalisation
in more detail in Chapter 6 in the context of stage-structured diffusive dispersal.

It is common to assume that 𝐴 is irreducible and also that 𝐴𝑘 ≠ 0 for some 𝑘 ∈ N, i.e. 𝐴
is not nilpotent. Irreducibility is a reasonable ecological assumption and is interpreted in
[256] as ensuring that

"the associated life cycle graph contains the necessary transition rates to
facilitate pathways from all stages to all other stages."
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3.2. Density Dependence

Out of the 652 different population projection matrices evaluated in [256], which were
used to model 171 different species in the literature, the authors found that only 24.7% of
them were reducible. Nilpotency ensures that we can study the asymptotic dynamics of
such systems, as if 𝐴 is nilpotent then we would have what could be termed finite-time
extinction. For a matrix 𝐴 of the form (3.1.3) we have that 𝐴 is irreducible when 𝑓1𝑛 > 0.
This condition also ensures that 𝐴 is not nilpotent.

The net reproduction number for (3.1.3) can be derived as in [61]

𝑅0(𝐴) =
𝑛∑︁
𝑖=1

𝑓1𝑖

𝑖−1∏
𝑗=1
𝑡 𝑗 𝑗−1.

Although for positive systems Schur stability, Schur diagonal stability and Schur 𝐷-
stability are equivalent, we will demonstrate how the results in the previous section apply
to Leslie matrices.

Let 𝐴 be a Leslie matrix of the form (3.1.3). It follows from Lemma 2.2.9 that 𝐴 is
diagonally Schur stable if and only if 𝐼−𝐴 is quasidominant. Let the 𝑃 = diag(𝑝1, ..., 𝑝𝑛) >
0 denote a diagonal solution to (2.2.3). Thus 𝐴 is diagonally Schur stable if and only if∑
𝑗≠1 𝑓1 𝑗 𝑝 𝑗 ≤ 𝑓11𝑝1 and 𝑡𝑖𝑖−1𝑝𝑖−1 ≤ 𝑝𝑖, 𝑖 ∈ {1, ..., 𝑛}. This is in turn equivalent to 𝐴𝑝 ≺ 𝑝.

Therefore we get that 𝐴 is Schur diagonally stable if and only if 𝐴 is Schur. As 𝐴 ∈ R𝑛×𝑛+
is of the form (3.1.3) then we get that TFAE:

1. 𝐴 is Schur.

2. 𝑅0(𝐴) < 1.

3. 𝐴 is Schur 𝐷-stable.

4. 𝐴 is Schur diagonally stable.

An obvious extension to linear matrix models is introducing state dependence, i.e. re-
placing 𝐴 in (2.2.2) by a nonlinear matrix-valued function. Next we will discuss such
nonlinear models, their stability and persistence properties, and two ecological models in
the literature used for modelling various population structure in plants and insects.

3.2. Density Dependence

When the dynamics of a population are affected by its size, this is known as density-
dependence. One way of modelling this for structured populations is using nonlinear
matrix models, where the linear time-invariant system described in the previous section
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3.2. Density Dependence

is replaced by a nonlinear matrix valued function. We expand on these model classes to
show how they can be used to model real-world population dynamics.

3.2.1. Nonlinear Systems

Many species have discrete life stages, corresponding to morphological and physiological
changes and matrix models provide a way of capturing such structure [62]. Despite the
wide applicability of linear models, they do have some limitations. In many ecological
systems, the dynamics of a population are affected by the size or density of itself or another
population. Density-dependence is widely observed across a wide variety of species
[39]. Examples of density dependent processes include, among others, resource/territory
competition, predation and dispersal. Thus there is also a need to include more realistic,
nonlinear functions of growth and dispersal into modelling population dynamics.

Recall that for linear models we partition the population of interest into predefined classes,
with the density or population size in class 𝑖 given by 𝑥𝑖 ∈ R+, 𝑖 ∈ {1, ..., 𝑛}. These define
a state vector 𝑥 ∈ R𝑛+ and the nonlinear population dynamics are described by a nonlinear
matrix model

𝑥(𝑡 + 1) = 𝐺 (𝑥(𝑡)) := 𝐴(𝑥(𝑡))𝑥(𝑡),
𝑥(0) ∈ R𝑛+,

(3.2.1)

where 𝐴 : R𝑛+ → R𝑛×𝑛+ is a 𝐶1 matrix-valued function [61]. This model accounts for
density-dependent processes like competition and predation, among many others, and
generalises the linear matrix population models discussed in the previous chapter. The
geeral model form (3.2.1) will arise again in Chapters 4 and 5. There has been a lot of
interest in these models from the perspective of uniform persistence, where one aims at
keeping some positive function of a population above a threshold after some sufficiently
long time [95, 146, 239, 266]. Before discussing some persistence properties of nonlinear
matrix models, we will briefly restate some results from [255], which describe how matrix
stability relates to the dynamics of (3.2.1).

We can first see when extinction is inevitable (Proposition 3.12 of [255]). Assume that
𝜌(𝐴(0)) < 1 and 𝐴(𝑥) ≤ 𝐴(0) for all 𝑥 ⪰ 0. It then follows that for 𝑥(0) = 𝑥0 ∈ R𝑛+, a
solution of (3.2.1) satisfies

𝑥(𝑡, 𝑥0) =

𝑡∏
𝑠=1

𝐴(𝑥(𝑡 − 𝑠))𝑥0 ≤ 𝐴(0)𝑡𝑥0 (3.2.2)

for 𝑡 ≥ 1. As 𝜌(𝐴(0)) < 1, it follows that 𝐴(0)𝑡 → 0 as 𝑡 → ∞. Thus, 𝑥(𝑡, 𝑥0) → 0 as
𝑡 → ∞. In this case the extinction equilibrium is GAS. We now state a sufficient condition
for the existence of a positive fixed point of 𝐺.
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3.2. Density Dependence

Theorem 3.2.1. [255] Let 𝐺 : R𝑛+ → R𝑛+ be continuous and assume that there exists
𝑅 > 0, 𝑦 ∈ R𝑛+ and some 𝐷 ∈ R𝑛×𝑛+ such that 𝜌 (𝐷) < 1 and 𝐺 (𝑥) ≤ 𝑦 + 𝐷𝑥, for
𝑥 ∈ R𝑛+ and ∥𝑥∥ ≥ 𝑅. Let 𝐺 be differentiable at 0 and further assume that either 𝐺′ (0)
is irreducible, or 𝐺 (𝑥) = 𝐴 (𝑥) 𝑥 with 𝐴 (𝑥) nonnegative, and 𝜌 (𝐺′ (0)) > 1. Then,
there exists some nonzero 𝑥 ∈ R𝑛+ such that 𝐺 (𝑥) = 𝑥.

In Theorem 3.2.1 one of the assumptions is that 𝜌(𝐺′(0)) > 1. In a lot of cases one can
show that 𝐺′(0) = 𝐴(0) and so this condition implies that the extinction equilibrium is
unstable, as is the case with all of the nonlinear matrix models we study in Chapters 4 and
5. This then motivates us to investigate if there exists a positive equilibrium, as proved in
Theorem 3.2.1. In [255], they did not explore the uniqueness or stability properties of such
a positive fixed point, but instead focused on population persistence. We will now restate
some persistence results, the application of which will be demonstrated in the examples
that follow.

Theorem 3.2.2. [255] Let ∥ · ∥ be any norm on R𝑛 and let 𝜂(𝑥) = ∥𝑥∥. Suppose
𝐺 (R𝑛+) ⊆ R𝑛+, there exists 𝑟0 > 1 and 𝑣 ≻ 0 such that 𝐺′(0)𝑣 ≥ 𝑟0𝑣, and for every 𝜖 > 0
there exists some 𝛿 > 0 such that ∥𝐺 (𝑥)∥ ≥ 𝛿 when ∥𝑥∥ ≥ 𝜖 . Then (3.2.1) is uniformly
strongly 𝜂-persistent.

In Theorem 7.17 of [255] the authors give sufficient conditions for the existence of an 𝜖 > 0
such that lim inf𝑡→∞ min 𝑗 𝑥 𝑗 (𝑡, 𝑥0) ≥ 𝜖 for any 𝑥(0) = 𝑥0. They call this stage-persistence.
Next we will discuss two ecological applications of the persistence results above and of
stage-persistence, taken from [255], which make use of the assumption that 𝜌(𝐴(0)) > 1.

3.2.2. A Biennial Plant Model

Consider a population that reproduces in the second year of its life and then does not
survive to its third year. An example of such a species is a biennial plant [255]. Let 𝑥1

denote the density of the juvenile/seedling class and 𝑥2 denote the density of the adult/plant
class. One possible model for the dynamics of such a population is given by the system

𝑥1(𝑡 + 1) = 𝑎𝑥2(𝑡),

𝑥2(𝑡 + 1) = 𝑥1(𝑡)
𝑏 + 𝑐𝑥1(𝑡)

, (3.2.3)

𝑥(0) ∈ R2
+,

where 𝑎, 𝑏, 𝑐 > 0. The right-hand side (RHS) of the second equation in (3.2.3) is an
example of a Hassell map, which we will encounter again in Chapter 5. We can rewrite
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3.2. Density Dependence

(3.2.3) as a nonlinear matrix model (3.2.1) with

𝐴(𝑥) =
(

0 𝑎

(𝑏 + 𝑐𝑥1)−1 0

)
.

Recall that the Jacobian of a smooth function 𝐻 : R𝑛 → R𝑛 at a point 𝑎 ∈ R𝑛 is written as
𝐻′(𝑎) (see Section 2.1). Let 𝐹 (𝑥) = 𝐴(𝑥)𝑥. We can see from the form of 𝐴(𝑥) that

𝐹′(0) = 𝐴(0) =
(

0 𝑎

𝑏−1 0

)
.

Using the characteristic polynomial of 𝐴(0) we can compute the two eigenvalues of 𝐴(0)
as 𝜆± = ±

√︁
𝑎/𝑏. Therefore 𝜌(𝐴(0)) =

√︁
𝑎/𝑏. We can see that 𝐴(0) is irreducible, and so

by Theorem 2.2.2 there exists 𝑣 ≻ 0 such that 𝐴(0)𝑣 = (
√︁
𝑎/𝑏)𝑣.

Let 𝜖 > 0 and suppose ∥𝑥∥∞ > 𝜖 . Then either 𝑥1 > 𝜖 or 𝑥2 > 𝜖 . In the first case, we have
that 𝑎𝑥2 > 𝑎𝜖 . In the second case, we can see that 𝑥/(𝑏 + 𝑐𝑥) is an increasing function of
𝑥. We then have that 𝑥1 > 𝜖 implies that

𝑥1

𝑏 + 𝑐𝑥1
>

𝜖

𝑏 + 𝑐𝜖 .

Therefore we have that

∥𝐹 (𝑥)∥∞ ≥ 𝛿 := min
{
𝑎𝜖,

𝜖

𝑏 + 𝑐𝜖

}
,

for all 𝑥 ∈ R2
+ with ∥𝑥∥∞ > 𝜖 . Therefore, if 𝑎 > 𝑏, then 𝜌(𝐴(0)) > 1 and so Theorem

3.2.2 holds. The system (3.2.3) is then uniformly strongly persistent with respect to any
norm on R𝑛.

3.2.3. The LPA Model

Arguably, one of the most widely known nonlinear stage-structured models is the Larvae-
Pupae-Adult (LPA) model, first proposed in [55] to explain the population dynamics of
the cannibalistic flour beetle Tribolium castaneum.

If we denote by 𝑥 = (𝑥1 𝑥2 𝑥3)𝑇 ∈ R3
+ the abundance vector of larval, pupal and adult

sub-populations, then the LPA model is given by (3.2.1) with

𝐴(𝑥) :=
©«

0 0 𝑝exp(−𝑎𝑥1 − 𝑏𝑥3)
𝑞 0 0
0 𝑟exp(−𝑐𝑥3) 𝑠

ª®®¬ , (3.2.4)

where 𝑠 ∈ [0, 1] is the adult survival probability, 𝑞 ∈ [0, 1] is the larvae to the pupae
transition probability, and 𝑟 ∈ [0, 1] is the pupae to the adult transition probability. The
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3.3. Quiescence

parameters 𝑎 > 0, 𝑏 > 0, and 𝑐 > 0 are related to cannibalism and 𝑝 > 0 is the adult
fecundity parameter. The stability of this system is partially determined by the spectral
properties of 𝐴(0). The net reproduction number for the LPA model can be computed as
𝑅0(𝐴(0)) := 𝑞𝑟 𝑝(1 − 𝑠)−1. If the dynamics of the LPA model were assumed to be linear,
i.e. 𝐴(𝑥) ≡ 𝐴(0), then 𝑅0(𝐴(0)) defines a potential growth indicator. One can show that
system (3.2.1) with system matrix (3.2.4) is stage-persistent. We omit the details of this
result for brevity, as it involves several technical results (Corollary 7.3 and Example 7.4)
from [255]. In [255], the authors stated the following dichotomous result for the LPA
model.

Theorem 3.2.3. [255] Let system (3.2.1) be such that 𝐴(𝑥) is given by (3.2.4). Then

1. 𝑅0(𝐴(0)) < 1 implies the extinction equilibrium of 𝐹 is GAS; and

2. 𝑅0(𝐴(0)) > 1 implies that (3.2.1) is stage-persistent.

It can be shown that for 𝑠 ∈ [0, 1), for 𝑦 =
(
𝑝𝑎−1 0 0

)𝑇 (with 𝑎, 𝑝 > 0) and 𝐷 = 𝐴(0)
there exists a nontrivial fixed point of (3.2.1) by Theorem 3.2.1. In Chapter 6, we will
revisit the LPA model in the context of dispersal-driven growth for structured population
models. Next, we will discuss another type of matrix model, proposed in [117], to model
species that exhibit dormancy within their life cycle. The model and robust stability type
that we explore in the next section is closely related to the material in Chapter 6.

3.3. Quiescence

Quiescence, as defined in [77], is

"a type of irregular dormancy (non-seasonal) characterised by slowed metabolism
and directly resulting from unfavourable environmental conditions."

Quiescence is not dependent on physiology, but on external stimuli and thus is not inherent
in a species life-cycle [65]. It is a widely observed mechanism of survival found in many
invertebrate, microbial and plant species [63]. It is also a widespread feature of many
cancer cell populations [199]. In this section we will discuss the work of [117] concerning
the population dynamics of a species that enters atypical phases of dormancy. For more
on mathematical models of quiescence see [10, 115, 116, 118, 119, 120, 187].
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3.3. Quiescence

We will now discuss several results related to quiescence for discrete-time models. In
[117] the author starts from a general coupled model of the form

𝑣(𝑡 + 1) = (𝐼 − 𝑃) 𝑓 (𝑣(𝑡)) +𝑄𝑔(𝑤(𝑡))
𝑤(𝑡 + 1) = 𝑃 𝑓 (𝑣(𝑡)) + (𝐼 −𝑄)𝑔(𝑤(𝑡)).

(3.3.1)

with with (𝑣(0) 𝑤(0))𝑇 ∈ R2𝑛
+ . Here 𝑣, 𝑤 ∈ R𝑛+ are abundance vectors and 𝑓 , 𝑔 : R𝑛+ → R𝑛+

are smooth maps that respectively describe two discrete time systems on R𝑛. The diagonal
elements of the matrices 𝑃 = diag(𝑝1, ..., 𝑝𝑛) and 𝑄 = diag(𝑞1, ..., 𝑞𝑛) are assumed to
satisfy 𝑝𝑖, 𝑞𝑖 ∈ [0, 1] for each 𝑖 ∈ {1, ..., 𝑛}. Hadeler calls 𝑣(𝑡 + 1) = 𝑓 (𝑣(𝑡)) the simple
system and defines the quiescent system on R2𝑛

+ to be (3.3.1) with 𝑔(𝑤) = 𝑤 for all 𝑤. Here
𝑣 is the population abundance vector for the active phase and 𝑤 represents the quiescent
phase. The diagonal elements of 𝑃 and 𝑄 describe the transition rates between quiescent
and active phases.

With these simplifying assumptions, we can rewrite (3.3.1) as(
𝑣(𝑡 + 1)
𝑤(𝑡 + 1)

)
=

(
𝐼 − 𝑃 𝑄

𝑃 𝐼 −𝑄

) (
𝑓 (𝑣(𝑡))
𝑤(𝑡)

)
. (3.3.2)

with (𝑣(0) 𝑤(0))𝑇 ∈ R2𝑛
+ . Note that if 𝑣∗ is an equilibrium of the simple system, then

𝑥∗ = (𝑣∗, 𝑄−1𝑃𝑣∗) is an equilibrium of the quiescent system (3.3.1) with 𝑔(𝑤) = 𝑤.
Let 𝐴 denote the Jacobian of 𝑓 at 𝑣∗. We assume that 𝜌(𝐴) < 1, so that 𝑣∗ is locally
asymptotically stable. The Jacobian of (3.3.1) at 𝑣∗ is

𝐽 =

(
(𝐼 − 𝑃)𝐴 𝑄

𝑃𝐴 𝐼 −𝑄

)
(3.3.3)

Assuming 𝑃 ≠ 𝑝𝐼 and 𝑄 ≠ 𝑞𝐼 for any 𝑝, 𝑞 > 0, one calls 𝐴 strongly stable with respect to
quiescent phases or quiescently Schur if (3.3.3) is Schur for all diagonal 0 ⪯ 𝑃,𝑄 ⪯ 𝐼. This
means that, regardless of the choice of feasible transitions rates, our linearised quiescent
system remains stable. Therefore, along with 𝐷-stability, this form of quiescent Schur
stability can be thought of as another form of robust matrix stability.

The next proposition is from [117]. Note that, in that paper, the author uses the term strong
stability for what we are calling, in line with common practice, Schur 𝐷-stability.

Proposition 3.3.1. [117] If 𝐴 ∈ R𝑛×𝑛 is Schur 𝐷-stable then 𝐴 is quiescently Schur.

As noted in [117] it is more difficult to characterise quiescent stability when 𝑛 > 2. This is
why we will now present some low-dimensional results for quiescent systems in discrete
time. Using the Schur-Cohn criterion (see [136, 80]) for stability, in [117] the author
proved the following result when 𝑛 = 2.
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Corollary 3.3.2. [117] Let 𝐴 ∈ R2×2 and assume that

det(𝐴) ± (𝑎11 + 𝑎22) + 1 > 0

− det(𝐴) ± (𝑎11 − 𝑎22) + 1 > 0.
(3.3.4)

Then 𝐴 is quiescently Schur.

It was also shown in [117] that there is an equivalence between Schur 𝐷-stability and
quiescent Schur stability when 𝑛 = 2.

Proposition 3.3.3. [117] Let 𝐴 ∈ R2×2. Then the inequalities in (3.3.4) hold if and only
if 𝐴 is Schur 𝐷-stable.

3.3.1. Host-Parasitoid Dynamics

The Nicholson-Bailey model is frequently used in entomology to study the dynamics of
an insect host and a parasitoid [200, 210]. We will now discuss stability in discrete time
for such a host-parasitoid system with quiescence, as outlined in [117].

Denote by 𝑥 ∈ R+ and 𝑦 ∈ R+ the size of host and parasitoid populations, respectively.
Let 𝑓 : R2

+ → R+ be a smooth function that represents the proportion of hosts that are not
parasitised by 𝑦. The parameter 𝜇 > 0 is interpreted as the host rate of reproduction and
parameter 𝑐 > 0 the average number of viable eggs laid by a parasitoid on a single host
egg. The dynamics of such populations can be modelled as

𝑥(𝑡 + 1) = 𝜇𝑥(𝑡) 𝑓 (𝑥(𝑡), 𝑦(𝑡))
𝑦(𝑡 + 1) = 𝑐𝑥(𝑡) (1 − 𝑓 (𝑥(𝑡), 𝑦(𝑡)),

with with (𝑥(0) 𝑦(0))𝑇 ∈ R2
+. We assume that 𝑎𝑦 is the average number of encounters

over one time interval [80]. Parasitoid escape is modelled by the exponentially decreasing
function 𝑓 (𝑥, 𝑦) := 𝑒−𝑎𝑦. As noted in [80], this model does not take account of prey
saturation (inclusion of resource limitations). Modifying the growth equation for the host
by including a carrying capacity, 𝐾 > 0, we get the well studied host-parasitoid system

𝑥(𝑡 + 1) = 𝑥(𝑡) exp
(
(𝑟

(
1 − 𝑥(𝑡)

𝐾

)
− 𝑎𝑦(𝑡)

)
𝑦(𝑡 + 1) = 𝑐𝑥(𝑡) (1 − exp (−𝑎𝑦(𝑡))) ,

(3.3.5)

with (𝑥(0) 𝑦(0))𝑇 ∈ R2
+. By scaling (3.3.5), one can let 𝐾 = 1 and then see that the

equilibrium given by (𝑥∗1, 𝑦
∗
1) = (1, 0) is stable for 𝑟 < 2 and 𝑎 < 1 [80]. For any 𝑟 > 0

and 𝑎 > 1 there is a unique equilibrium point (𝑥∗2, 𝑦
∗
2).
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3.4. Diffusion

An extended version of system (3.3.5), called a "react first, then go quiescent" model, was
introduced in [117], which can be written as

𝑥(𝑡 + 1) = (1 − 𝑝1)𝑥(𝑡)exp
(
𝑟

(
1 − 𝑥(𝑡)

𝐾

)
− 𝑎𝑦(𝑡)

)
+ 𝑞1𝑤(𝑡)

𝑦(𝑡 + 1) = (1 − 𝑝2)𝑥(𝑡) (1 − exp (−𝑎𝑦(𝑡))) + 𝑞2𝑧(𝑡)

𝑤(𝑡 + 1) = 𝑝1𝑥(𝑡)exp
(
𝑟

(
1 − 𝑥(𝑡)

𝐾

)
− 𝑎𝑦(𝑡)

)
+ (1 − 𝑞1)𝑤(𝑡)

𝑧(𝑡 + 1) = 𝑝2𝑥(𝑡) (1 − exp (−𝑎𝑦(𝑡))) + (1 − 𝑞2)𝑧(𝑡),

(3.3.6)

with (𝑥(0) 𝑦(0) 𝑤(0) 𝑧(0))𝑇 ∈ R4
+. The author proved that if 𝑟 ∈ (0, 2), then there

exists �̄�(𝑟) > 1 such that there exists a positive coexistence equilibrium and the Jacobian
of (3.3.6) at this coexistence equilibrium is Schur for 𝑎 ∈ (1, �̄�(𝑟)) and not Schur for
𝑎 > �̄�(𝑟).

3.4. Diffusion

Population composition and size change over time, but also across a habitat or observation
region of interest. Thus taking account of such spatial structure is important in order to
understand how processes like habitat fragmentation affects such populations. In the next
section we will discuss mathematical models with spatial structure. In particular we will
discuss some common discrete-time models of diffusion and dispersal, and how matrix
theory can be applied to prove some stability/instability results related to these models.
This is to complement the work in Chapter 6, where we will look at a population diffusion
model.

3.4.1. Turing Instability

A concept closely related to quiescent stability, which we discuss later, is Turing instability,
first detailed in [274] in relation to pattern formation in morphogenesis. We will briefly
outline this problem from a matrix theoretic perspective, where one is modelling the
diffusion of populations around some habitat. This problem is of interest when using
partial differential equation models, so called reaction-diffusion systems. However, as our
interest in this study is discrete-time difference equation models, we will not pursue the
PDE formulation. The details of such studies can be found in [243] and references therein.

Consider 𝑛 ≥ 2 species, 𝑥 ∈ R𝑛+, diffusing across some habitat. Given a so-called reaction
function, 𝑓 : R𝑛+ → R𝑛+, which describes how such species grow over time, let 𝐴 ∈ R𝑛×𝑛

be the Jacobian of 𝑓 at 0. Turing instability corresponds to determining the existence of
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3.4. Diffusion

a diagonal 𝑃 ∈ R𝑛×𝑛+ such that 𝐴 − 𝑡𝑃 has a real and positive eigenvalue for some 𝑡 > 0.
In [243] the authors briefly discussed when a Hurwitz matrix 𝐴 exhibits Turing instability
for the case 𝑛 = 4. In [121] the authors proved the following result.

Theorem 3.4.1. [121] Let 𝑆𝑛 be the minimal number of nonzero entries that an irreducible
matrix 𝐴 ∈ R𝑛×𝑛 must have in order for it to exhibit Turing instability. If 𝑛 ≥ 3, then
𝑆𝑛 ≤ 2𝑛 + 1 −

⌊
𝑛
3
⌋
, where ⌊𝑥⌋ is the greatest integer less than or equal to 𝑥 ∈ R. In

particular the equality holds when 𝑛 = 3, with 𝑆3 = 6.

We refer the reader to [121] for more details. If the Jacobian of 𝑓 at 0, namely 𝐴,
corresponds to a linearisation of such a system around the extinction equilibrium, then
Theorem 3.4.1 gives an upper bound for the number of entries in 𝐴 that are nonzero for it
to be unstable following perturbation by some scaled diagonal matrix. In the context of
reaction-diffusion systems, Turing instability means that the previosuly isolated (reaction)
system has a stable extinction equilibrium, but this can be destabilised via diffusion. Other
authors have investigated this problem for particular cases and applications, for example
see [197, 284].

3.4.2. Diffusively Coupled Systems

A related problem to Turing instability and quiescent stability was outlined in [69]. In
this paper the author considered diffusively coupled continuous-time linear time-invariant
systems defined on a proper cone, and determined sufficient conditions for GAS of the
trivial equilibrium following diffusive coupling. We will outline this general framework
for continuous-time systems and pose a analogous problem in discrete-time and when
our state space is the nonnegative orthant. We will also demonstrate its application
when modelling diffusive dispersal between demographically-structured populations. In
Chapter 6 we will discuss the properties of this model in more detail.

A set 𝐶 ⊂ R𝑛 is a closed convex cone if 𝛼𝑥 + 𝛽𝑦 ∈ 𝐶 for all 𝛼, 𝛽 ≥ 0, 𝑥, 𝑦 ∈ 𝐶. Let
𝜕𝐶 be the boundary of 𝐶 and Int(𝐶) the interior of 𝐶. A cone 𝐶 is solid if Int(𝐶) is
non-empty, and pointed if 𝑥 ∈ 𝐶 and − 𝑥 ∈ 𝐶 both imply that 𝑥 = 0. A cone 𝐶 is
proper if it is non-empty, closed, convex, solid and pointed. Given a proper cone 𝐶 in
R𝑛, 𝐶𝑚 is also a proper cone in R𝑛𝑚 for 𝑚 ∈ N. Given a vector space 𝑉 over R, a linear
functional is an element of the dual space, 𝑉∗, i.e. a linear map from 𝑉 to R. The Riesz
Representation Theorem allows one to identify every 𝜆 ∈ (R𝑛)∗ with a unique 𝑣 in R𝑛 such
that 𝜆(𝑥) = ⟨𝑥, 𝑣⟩ for all 𝑥 ∈ R𝑛, where ⟨·, ·⟩ is the usual Euclidean inner product [16].
Using this identification, for a convex cone 𝐶, we can consider its dual cone

𝐶∗ := {𝑣 ∈ R𝑛 : ⟨𝑥, 𝑣⟩ ≥ 0 for all 𝑥 ∈ 𝐶} ,
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3.4. Diffusion

which is always a non-empty closed convex cone. Denote by L(R𝑛) the set of all linear
maps from R𝑛 to R𝑛. For 𝑖, 𝑗 ∈ {1, ..., 𝑚}, 𝑚 ∈ N, we say that the map 𝐷 ∈ L(R𝑛) acts
diffusively on a proper cone 𝐶, if we have that 𝐷 (𝐶) ⊂ 𝐶, (𝑥, 𝑣) ∈ 𝜕𝐶 ×𝐶∗ and ⟨𝑥, 𝑣⟩ = 0
implies that ⟨𝐷𝑥, 𝑣⟩ = 0.

In [69] the author looked at the continuouse-time, diffusively coupled system on R𝑛𝑚

𝑑𝑥𝑖

𝑑𝑡
= 𝐴𝑖𝑥𝑖 +

∑︁
𝑗≠𝑖

𝐷𝑖 𝑗 (𝑥 𝑗 − 𝑥𝑖),

𝑥𝑖 (0) ∈ R𝑛+,
(3.4.1)

where 𝑥𝑖 ∈ 𝐶, each 𝐷𝑖 𝑗 = 𝐷 𝑗𝑖 acts diffusively on 𝐶 and 𝐴𝑖 ∈ L(R𝑛) are quasi-monotone
for C. i.e. ⟨𝑥, 𝑣⟩ = 0 for (𝑥, 𝑣) ∈ 𝜕𝐶 × 𝐶∗ implies that ⟨𝐴𝑖𝑥, 𝑣⟩ ≥ 0, for 𝑖 ∈ {1, ..., 𝑚}. We
briefly discuss the formulation of [69] in continuous time so to show how it relates with
the model and results we obtain in Chapter 6. Quasi-monotonicity implies that 𝐴𝑖 (𝐶) ⊂ 𝐶
[69]. One can rewrite the system (3.4.1) as

𝑑𝑋

𝑑𝑡
= 𝑀1𝑋, 𝑋 (0) ∈ R𝑛𝑚, (3.4.2)

𝑀1 :=

©«
𝐴1 −

∑
𝑗≠1 𝐷1 𝑗 𝐷12 · · · 𝐷1𝑚

𝐷21 𝐴2 −
∑
𝑗≠2 𝐷2 𝑗 · · · 𝐷2𝑚

...
. . .

...

𝐷𝑚1 𝐷𝑚2 · · · 𝐴𝑚 − ∑
𝑗≠𝑚 𝐷𝑚 𝑗

ª®®®®®¬
, (3.4.3)

where 𝑋 = (𝑥𝑇1 𝑥
𝑇
2 · · · 𝑥𝑇𝑚)𝑇 ∈ 𝐶𝑚. If 𝑀 is Hurwitz in continuous-time then (3.4.1) has a

GAS extinction equilibrium for all {𝐷𝑖 𝑗 } that act diffusively on 𝐶. A reasonable question
to ask then is what assumptions do we need on {𝐴1, ..., 𝐴𝑚} so that 𝑀1 is Hurwitz for all
{𝐷𝑖 𝑗 } that act diffusively on 𝐶? An answer to this problem for proper cones was given by
[69]. Note that a Lyapunov function, 𝑉 , is a common Lyapunov function for a finite set of
linear operators A = {𝐴1, ..., 𝐴𝑚} ⊂ L(R𝑛) if 𝑉 is a Lyapunov function for each 𝐴 ∈ A.

Theorem 3.4.2. [69] Given a proper cone 𝐶 in R𝑛, assume that 𝐴1, ..., 𝐴𝑚 ∈ L(R𝑛) are
quasi-monotone for 𝐶. Further assume that {𝐷𝑖 𝑗 } is nonempty and acts diffusively on 𝐶.
If {𝐴1, ...𝐴𝑚} admit a common linear copositive Lyapunov function (CLCLF) on 𝐶, then
𝑀1 is Hurwitz for all {𝐷𝑖 𝑗 } that act diffusively on 𝐶.

One can define a discrete time version of (3.4.2), which, like its continuous-time analogue,
mimics Fick’s first law of diffusion [21], where there is a flow from high to low states,
determined by the coupling matrices. We will now consider a discrete-time, diffusively
coupled system similar to the above case, but when specifically modelling population
densities, meaning we are working with the particular case where the cone, 𝐶, is the
nonnegative orthant, R𝑛+.
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3.5. Patchy Dispersal

Let 𝐶 ≡ R𝑛+. The boundary of R𝑛+ is 𝜕R𝑛+ :=
{
𝑥 ∈ R𝑛+ :

∏
𝑖∈𝑛 𝑥𝑖 = 0

}
and R𝑛+ is self-dual,

i.e. (R𝑛+)∗ = R𝑛+. The only set of linear operators {𝐷𝑖 𝑗 } that act diffusively on R𝑛+ are
diagonal nonnegative matrices [69]. Also note that when 𝐶 ≡ R𝑛+ quasi-monotonicity
implies that the matrices 𝐴1, ..., 𝐴𝑚 are Metzler [69].

For 𝑚 ∈ {2, 3, ..., } patches within some landscape, let 𝑥𝑖 ∈ R𝑛+ denote the density vector
on patch 𝑖 ∈ {1, ..., 𝑚}, where each component of 𝑥𝑖 is a demographic class, such as age,
hierarchy level, stage etc. Let 𝐴𝑖 ⪰ 0 be a population projection matrix that describes how
patch 𝑖 reproduces and recruits individuals from each stage class. For 𝑖, 𝑗 ∈ {1, ..., 𝑚}
with 𝑖 ≠ 𝑗 , let 𝐷𝑖 𝑗 = 𝐷 𝑗𝑖 be a nonnegative diagonal matrix such that 𝐴𝑖 − 𝐷𝑖 𝑗 ⪰ 0. The
matrix 𝐷𝑖 𝑗 = 𝐷 𝑗𝑖 describes the diffusive movement of individuals in and out of each class
between patches 𝑖 and 𝑗 . The model is

𝑋 (𝑡 + 1) = 𝑀1𝑋 (𝑡), 𝑋 (0) ∈ R𝑛𝑚+ , (3.4.4)

where we specify that 𝐶𝑚 = R𝑛𝑚+ . Here 𝑀1 is the same as in (3.4.3), but is nonnegative
because 𝐴𝑖 ⪰ 0 and each 𝐷𝑖 𝑗 = 𝐷 𝑗𝑖 ⪰ 0 satisfies 𝐴𝑖 − 𝐷𝑖 𝑗 ⪰ 0. Assume that 𝜌(𝐴𝑖) < 1
for 𝑖 ∈ {1, ..., 𝑚}, so each patch goes extinct in isolation. Can we find criteria for
{𝐴1, ..., 𝐴𝑚} that ensure stability of 𝑀1 for any set of coupling matrices {𝐷𝑖 𝑗 } ⊂ D? In
Chapter 6 we will investigate this problem further. Next we will discuss metapopulations,
where populations are spread amongst a patchy landscape with asymmetric and potentially
nonlinear movement between patches.

3.5. Patchy Dispersal

When ecological invasions occur it is often in the presence of an interacting resident
community. However, in Chapter 4 we will focus on the situation when a single species
is expanding its range from one patch/region to another. In the past, many authors have
investigated how dispersal affects the overall dynamics of two coupled populations. In the
papers of [93, 113, 279] the authors studied the planar model

𝑥1(𝑡 + 1) = (1 − 𝑑) 𝑓1(𝑥1(𝑡)) + 𝑑𝑓2(𝑥2(𝑡)),
𝑥2(𝑡 + 1) = (1 − 𝑑) 𝑓2(𝑥2(𝑡)) + 𝑑𝑓1(𝑥1(𝑡)),
𝑥(0) ∈ R2

+.

(3.5.1)

In [93] the authors assumed that 𝑓𝑖 (𝑥) = 𝑟𝑖𝑥𝑔𝑖 (𝑥), where 𝑔𝑖 : R+ → (0,∞) was strictly
decreasing, 𝑔𝑖 (0) = 1 and 𝑑 ∈ [0, 1]. They showed that, when the spectral radius of
the Jacobian of system (3.5.1) at 0 is less than 1, any initial population is driven to
extinction. On the other hand, they showed that (3.5.1) is permanent (there is a compact
set 𝐾 ⊂ Int(R2

+) and 𝑡0 > 0 such that any solution 𝑥(𝑡, 𝑥0) remains in 𝐾 for all 𝑡 ≥ 𝑡0) if the
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3.5. Patchy Dispersal

spectral radius of the Jacobian of the system at the extinction equilibrium is greater than
1. The model was investigated numerically for various parameter scenarios when regional
dynamics are given by either a Ricker or Hassell-1 map. In [279] the authors assumed
that 𝑑 ∈ [0, 0.5] and 𝑓1 = 𝑓2 = 𝑓 , where 𝑓 was given by an extension of the Ricker map.
They found that the appearance and disappearance of attractors of their coupled system
is dependent on how strong the level of dispersal is, quantified by 𝑑. They also explored
how transient phenomena emerged within such a simple coupled system. More recently,
in [113] the authors assumed that each 𝑓𝑖 was given by a Hassell-1 map, with each patch
being a so-called source, and 𝑑 ∈ [0, 1]. They investigated how changing the dispersal
rate in various scenarios affected the asymptotic total population size and discussed the
biological interpretations of their results. In Chapter 4 we will extend such models to
include density-dependent dispersal. Chapter 5, we will look at a dispersal model between
arbitrarily finite many regions, where there is heterogeneous dynamics on each patch. The
rest of this section explores similar multi-patch models, where dispersal is assumed to be
passive/constant.

The authors of [288] investigated the system

𝑥𝑖 (𝑡 + 1) = ©«1 −
𝑛∑︁
𝑗=1

𝑑𝑖 𝑗
ª®¬ 𝑓𝑖 (𝑥𝑖 (𝑡)) +

𝑛∑︁
𝑗=1

𝑑 𝑗𝑖 𝑓 𝑗 (𝑥 𝑗 (𝑡)),

𝑥𝑖 (0) ∈ R+,

(3.5.2)

where for each 𝑖 ≠ 𝑗 , 0 < 𝑑𝑖 𝑗 , 𝑑 𝑗𝑖 < 1,
∑𝑛
𝑗=1 𝑑𝑖 𝑗 ∈ (0, 1) and 𝑑𝑖𝑖 = 0. Each 𝑑𝑖 𝑗 is the

proportion of individuals dispersing from region 𝑖 to 𝑗 . They also assumed that each 𝑓𝑖

was given by a so-called 𝛼-concave monotone map, for 𝛼 ∈ (0,∞]. A positive 𝐶2 map, 𝑓 ,
is 𝛼-concave monotone if 𝑓 ′(𝑥) > 0 and 𝑓 ′′(𝑥) < 0 for all 𝑥 ∈ [0, 𝛼]. Examples of such
maps can be generated by choosing appropriate parameterisations of Ricker, Smith-Slatkin
and Beverton-Holt maps [288]. The authors then went to give a sufficient condition for
the existence and global stability of a positive fixed point of (3.5.2).

In [156] the authors proposed the following 𝑛-patch model

𝑥(𝑡 + 1) = 𝑆𝑝Γ(𝑥(𝑡))𝑥(𝑡),
𝑥(0) ∈ R𝑛+

(3.5.3)

where 𝑝 ∈ (0, 1]𝑛 is a vector of such that 𝑝𝑖 is the dispersal probability of an individual
on patch 𝑖, 𝑆 = (𝑠𝑖 𝑗 ) ∈ R𝑛×𝑛+ is a primitive column substochastic matrix such that 𝑠 𝑗𝑖 is the
probability that a dispersing individual from patch 𝑖 survives to patch 𝑗 , Γ : R𝑛+ → R𝑛×𝑛+ is
given by Γ(𝑥) = diag(𝑔1(𝑥1), ..., 𝑔𝑛 (𝑥𝑛)), which contains the regional growth functions of
each patch. Furthermore they defined 𝑆𝑝 := 𝐼 − diag(𝑝) + 𝑆diag(𝑝). Each 𝑔𝑖 : R+ → R+
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3.6. Dispersal-Driven Growth

is a positive, continuous, decreasing map such that lim𝑥𝑖→∞ 𝑔𝑖 (𝑥𝑖) < 1 and 𝑓𝑖 (𝑥) = 𝑔𝑖 (𝑥)𝑥
is increasing. In relation to (3.5.3), the authors stated the following result, the proof of
which relied heavily on the strong monotonicity properties of their system class. A map
𝐹 is strongly monotone if 𝐹 (𝑥) ⪰ 𝐹 (𝑦) (𝐹 (𝑥) ≻ 𝐹 (𝑦)) whenever 𝑥 ⪰ 𝑦(𝑥 ≻ 𝑦).

Theorem 3.5.1. [156] If 𝜌(𝑆𝑝Γ(0)) ≤ 1 then the extinction equilibrium for (3.5.3) is
GAS. If 𝜌(𝑆𝑝Γ(0)) > 1 then there exists a GAS positive equilibrium for (3.5.3).

A variation of the models in [156, 288] were studied in [241, 242]. In these papers, the
model studied is of the form

𝑥𝑖 (𝑡 + 1) =
𝑛∑︁
𝑗=1

𝑑 𝑗𝑖 𝑓 𝑗 (𝑥 𝑗 (𝑡)), (3.5.4)

where 𝑥𝑖 (0) ∈ R𝑛+. In [241] the author assumed that 𝑓1 = 𝑓2 = · · · 𝑓𝑛 = 𝑓 , where
𝑓 (𝑥) = 𝑔(𝑥)𝑥 for 𝑔 : R+ → R+. The author also assumed that

∑
𝑗 𝑑𝑖 𝑗 = 1. Under the

additional assumption that 𝑑𝑖 𝑗 = 𝑑 𝑗𝑖 for all 𝑖, 𝑗 ∈ {1, ..., 𝑛}, they proved that if 𝑥∗ ≥ 0
is GAS for 𝑓 then (𝑥∗, ..., 𝑥∗) ∈ R𝑛+ is GAS for (3.5.4). In [242] the author looked at
(3.5.4), but where 𝑓𝑖 (𝑥) comes from a family of continuous, one-parameter, positive maps.
The author then looked numerically at various scenarios involving different dispersal
mechanisms when restricted to two regions, and where sources were connected to sinks.
An early instance of a model of the form in (3.5.4) can be found in [151], where the local
stability properties of a planar system in the applied context of mathematical genetics
were studied. The above 𝑛-patch systems provide some context to the work we present in
Chapter 5, where we consider nonlinear, asymmetric dispersal between 𝑛 regions.

3.6. Dispersal-Driven Growth

Recently one concept that has garnered considerable interest in relation to dispersal is
dispersal-driven growth (DDG). Roughly speaking, DDG corresponds to the situation
wherein isolated populations are predicted to become extinct, but the act of coupling leads
to population persistence or growth. DDG can be likened to the classical Diffusion-Driven
Instability of Turing from the 1950s [274], and is, to quote from [153],

"[...] an interesting example of an emergent dynamical phenomenon which
arises from the combination of several elementary mechanisms, and which
cannot occur if any of the mechanisms are excluded."

A closely related phenomena to DDG occurs in source-sink dynamics, which trace their
roots back to [229]. A source (sink) is a patch where a population exhibits asymptotic
growth (extinction). We will explore sources and sinks more in Chapter 5.
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3.6. Dispersal-Driven Growth

Much attention has been devoted to the study of DDG and source-sink dynamics, al-
though often for scalar valued population models [22, 153]. However, the life cycles of
numerous species involve transitions through distinct developmental stages, such as instars
in insects. This motivates the use of structured population models, which are popular in
mathematical/theoretical ecology as they allow for consideration of such within-population
demographic variation. Knowledge of how dispersal affects these stage classes is vital in
order to understand the effect of habitat fragmentation and biodiversity loss on vulnerable
and endangered species [94].

In [114] the authors investigated DDG from the perspective of stage-structured population
models. Following reproduction/recruitment, we will assume that the state variable in
patch 𝑖, denoted 𝑥𝑖 (𝑡) ∈ R𝑛+, evolves according to

𝑥𝑖 (𝑡 + 1) = 𝐴𝑖𝑥𝑖 (𝑡) − 𝐷𝑖𝑖𝑥𝑖 (𝑡) +
∑︁
𝑗≠𝑖

𝛾𝑖 𝑗𝐷𝑖 𝑗𝑥 𝑗 (𝑡),

𝑥𝑖 (0) ∈ R𝑛+.
(3.6.1)

Here 𝑖 ∈ 1, ..., 𝑚, and the nonlinear matrix-valued function 𝐴𝑖 : R𝑛+ → R𝑛×𝑛+ models
density-dependent recruitment and survival/growth on patch 𝑖. Here 𝐷𝑖 𝑗 ∈ R𝑛×𝑛+ accounts
for the effect of dispersal of patch 𝑗 on patch 𝑖. The parameters 𝛾𝑖 𝑗 ∈ [0, 1] are such that∑
𝑗=1 𝛾𝑖 𝑗 ∈ [0, 1], and account for mortality or cost of dispersal from patch 𝑗 . In ecological

applications when managing species of conservation concern, researchers frequently use
regional (non)linear matrix models, 𝐴𝑖, of so-called Leslie, Leftkovich or LPA form, as
we discussed for linear models in Chapter 2.

Note that to ensure solutions of system (3.6.1) are nonnegative we assume that 𝐴𝑖 (𝑥)−𝐷𝑖 ⪰
0 for all 𝑥 ⪰ 0. Note that (3.6.1) is closely related to the diffusively coupled model of [69],
and represents a general, heterogeneous patch topology, where dispersal is asymmetric,
there are interactions among dispersing stage classes, and there is a risk attached to
dispersal, such as mortality. In the context of (3.6.1), before connection via dispersal,
the authors of [114] assumed that patch 𝑖 is a sink, i.e. 𝜌(𝐴𝑖 (0)) < 1 and 𝐴(𝑥) ⪰ 𝐴(0)
for all 𝑥 ⪯ 0, so that the extinction equilibrium is GAS. They then proved the following
necessary condition for DDG.

Theorem 3.6.1. [114] If 𝐴1, ..., 𝐴𝑚 ∈ R𝑛×𝑛+ admit a common linear Lyapunov function
(CLLF), then the zero equilibrium of the dispersal model (3.6.1) is globally exponentially
stable, for all feasible dispersal matrices {𝐷𝑖 𝑗 } and for all feasible weightings {𝛾𝑖 𝑗 }.
Consequently, that {𝐴1, ..., 𝐴𝑚} does not admit a CLLF is a necessary condition for
DDG.

In relation to stage structured dispersal, we will investigate DDG in further detail in
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Chapter 6 in relation to stage-structured diffusion, Leslie matrices and the LPA model. In
the next section we finish by investigating some stochastic models of population dynamics
in the context of modelling social interactions, which is a preface to the work presented in
Chapter 7.

3.7. Stochasticity and Interactions

In reality ecological systems are random/stochastic. Deterministic systems have merit in
the fact that they can represent conceptual idealistic situations where one can study the
core aspects of inherently complex ecological systems. Throughout this thesis we have
varying perspectives of within-population structure. The final structure we will investigate
is social structure, albeit from a stochastic perspective. This is to complement the work
in Chapter 7, where we will look at a stochastic model of social group dyanmics. Note
that in this chapter and in Chapter 7 we make a change to the notation we use to denote
time dependence. Instead of indexing time using brackets will use subscripts, to make
expressions easier to read.

When populations are censused/sampled in the field or in ecological experiments they are
typically measured by abundance or population size, which are nonnegative and integer-
valued, i.e. taking values in Z+. These counts are observed over time, thus creating a time
series of such a population’s density or abundance over some finite observation window
or time horizon.

Abundance or counts are typically modelled using discrete probability distributions, such
as the Poisson and Negative-Binomial distributions [135]. We refer the reader to Section
2.4 of Chapter 2 for a more general discussion of positive integer-valued time series
modelling. For example, let 𝑌 , the abundance of a population or group of interest, have
a Poisson distribution, 𝑌 ∼ P(𝜆), with intensity parameter 𝜆 ∈ R+, i.e. P[𝑌 = 𝑦] =

𝑒−𝜆𝜆𝑦/𝑦!. If we observe a population over some time period, i.e. 𝑌 above is is a stochastic
process, we may specify that for a fixed time 𝑡 ≥ 0 we have that 𝑌𝑡 ∼ P(𝜆𝑡), where 𝜆𝑡
is called an inhomogenous intensity process. We may specify particular forms for 𝜆𝑡 that
allows us to take account of demographic/environmental covariates or past observations
of 𝑌𝑡 , for example. Later in this chapter we will discuss this further in the context of
observation-driven models. In Chapter 7 we will also delve into inhomogenous intensities
in more detail. Next, we will discuss population interactions in ecology and how we could
model these in a stochastic setting.
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3.7.1. Community Dynamics

When modelling pairwise interactions between species within a community, in [249] the
author proposed using Poisson Lotka-Volterra (PLV) processes. Let 𝑥𝑡 = (𝑥1,𝑡 , ..., 𝑥𝑛,𝑡)𝑇 ∈
R𝑛+ be a vector of 𝑛 ∈ {2, 3, ...} interacting species at time 𝑡 ≥ 0, where the subscripts
denote the identity of species 𝑖. Let 𝐴 = (𝑎𝑖 𝑗 ) ∈ R𝑛×𝑛+ be the interaction matrix, where 𝑎𝑖 𝑗
is the “per-capita” effect of species 𝑗 on species 𝑖. Let the vector 𝑟 = (𝑟1, ..., 𝑟𝑛)𝑇 ∈ R𝑛+
be a vector of the “intrinsic per-capita growth rates” for all species. The discrete-time
Lotka-Volterra model is given by

𝑥𝑖,𝑡+1 = 𝐿𝑖 (𝑥𝑡) := 𝑥𝑖,𝑡 exp

(
𝑟𝑖 +

∑︁
𝑗

𝑎𝑖 𝑗𝑥 𝑗 ,𝑡

)
,

𝑥𝑖,0 = 𝑥
(0)
𝑖

∈ R+,

where 𝑖 ∈ {1, 2, ..., 𝑛}. In a PLV model we assume that 𝑥𝑖,𝑡 is a count random variable,
where

P[𝑥𝑖,𝑡+1 = 𝑘 |𝑥𝑖,𝑡 = 𝑥] =
𝑒−𝐿𝑖 (𝑥)𝐿𝑖 (𝑥)𝑘

𝑘!
,

i.e. 𝑥𝑖,𝑡+1 is Poisson distributed with intensity given by 𝐿𝑖 (𝑥𝑡). In other words, the deter-
ministic Lotka-Volterra system describes the mean dynamics of the stochastic PLV system.
In [249] the author investigated the asymptotic dynamics of such a stochastic model, de-
riving conditions for persistence and coexistence. We omit the explicit results shown in
[249] as it would require us to define a stochastic version of persistence and asymptotic
stability.

When modelling interactions between a small number of species, such as between predators
and their prey, we could also consider more complex model paramterisations, in order to
elucidate specific mechanisms of species interactions. For example, in [20] the authors
fitted a stochastic model to simulated time series of predator-prey densities and kill rate
data, in order to investigate how the inclusion of interaction data affects model identifiablity.

The stochastic model they considered was given by

𝑋𝑡+1 |𝐺 𝑡 , 𝑋𝑡 , 𝑌𝑡 ∼ N(𝜇1,𝑡 , 𝜎
2
1 ),

𝑌𝑡+1 |𝐺 𝑡 , 𝑋𝑡 , 𝑌𝑡 ∼ N(𝜇2,𝑡 , 𝜎
2
2 ),

𝜇1,𝑡 := 𝑋𝑡 + 𝑟 −
𝐺 𝑡𝑃𝑡

𝑉𝑡
− ln(1 + 𝛾𝑉𝑡)

𝜇2,𝑡 := 𝑌𝑡 + 𝑠 − ln
(
1 + 𝑞𝑃𝑡

𝑉𝑡

)
.

(3.7.1)

for 𝑟, 𝛾, 𝑠, 𝑞 > 0, where 𝑉𝑡 represents the prey density and 𝑃𝑡 the predator density at time
𝑡 ≥ 0, taken to be count random variables, 𝑋𝑡 := ln(𝑉𝑡) and 𝑌𝑡 := ln(𝑃𝑡). We assume
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3.7. Stochasticity and Interactions

𝑉𝑡 , 𝑃𝑡 ≠ 0 for any 𝑡 ≥ 0, so 𝑋𝑡 and 𝑌𝑡 are well defined. The functional response model,
which describes the resource intake rate of 𝑉𝑡 , is given by

𝐺 𝑡 |𝑉𝑡 ∼ N(𝑔(𝑉𝑡), 𝜎2
3 ),

where we define the so-called Holling type II functional response as 𝑔(𝑉𝑡) = 𝑎𝑉𝑡/(𝑏 +𝑉𝑡),
for 𝑎, 𝑏 > 0, i.e. the intake rate of 𝑉𝑡 is an increasing (saturating) function. Assuming
that 𝑉𝑡 and 𝑃𝑡 are now just real numbers for each 𝑡 ≥ 0 (and not random variables), the
corresponding deterministic system to (3.7.1) is given by

𝑉𝑡+1 =
𝑉𝑡𝑒

𝑟

1 + 𝛾𝑉𝑡
exp

(
−𝑔(𝑉𝑡)𝑃𝑡

𝑉𝑡

)
,

𝑃𝑡+1 =
𝑃𝑡𝑒

𝑠

1 + 𝑞𝑃𝑡/𝑉𝑡
,

(3.7.2)

with (𝑉0, 𝑃0)𝑇 = (𝑉, 𝑃)𝑇 ∈ R2
+ [20]. In the stochastic model we are essentially taking the

mean process for 𝑋𝑡 and 𝑌𝑡 to be the natural logarithm of the respective RHS of (3.7.2)
with 𝑉𝑡 and 𝑃𝑡 being count random variables. In [20] the authors found that when the
deterministic component of the model, i.e. (3.7.2), was parametrised so that solutions
either converge to a stable fixed point or a stable limit cycle, adding Gaussian noise to this
system, i.e. (3.7.1), results in more accurate parameter estimation, when they took account
of known kill rate data than without it. They also assessed the practical identifiability of
their stochastic model in a Bayesian setting, using the prior-posterior overlap, as discussed
in Chapter 2, to conclude weak identifiability. In Chapter 7 we will be interested in
predation, inferring interactions and assessing weak parameter identifiability, albeit from
a structured population perspective.

A single definition of interaction, be it between individuals, groups or populations, is not
so easy to state when studying complex ecological systems. The difficulty of measuring
interactions within food webs is that co-occurence of species does not imply that they
interact with one another, with higher-order effects and various abiotic processes also
blurring how explicit or implicit these interactions are [30, 291]. In [25] the authors
give a list of possible interaction metrics that can be used in the context of community
interactions. One that stands out as a simple but useful interaction strength metric, in the
stochastic context, is the standard Pearson’s correlation coefficient

Corr(𝑋,𝑌 ) :=
Cov(𝑋,𝑌 )√︁

Var(𝑋)Var(𝑌 )
, (3.7.3)

where 𝑋 and 𝑌 are count random variables with finite moments, which could represent
the abundance of two populations. The magnitude of the correlation between changes of
one species’ abundance and changes in another is a simple way of measuring a food-web’s
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response to temporal abundance changes, especially when using observational data. As
noted in [25], these metrics can sometimes be difficult to interpret, but they do however
allow for the inclusion of indirect interactions, for example. In Chapter 7 we will investigate
a general stochastic framework, with the aim of being able to quantify interaction strengths
from time series data of groups within a population using (3.7.3) as a measure of interaction
strength. Next, we will outline the general setting for observation-driven count models.

3.7.2. Observation-Driven Models

Many count time series models can be classified into two types, observation-driven and
parameter-driven models [161], which was first introduced in [56]. For the former, the
parameter values are written as deterministic functions of previous dependent variables,
as well as current and past external variables. For the latter, the current parameters change
over time via dynamic processes that incorporate random, unique shocks or disturbances
specific to each time period [161]. Later in Chapter 7, we will be using an observation-
driven approach. See [68] for other formulations of observation- and parameter-driven
models.

Given a positive integer-valued time series (𝑌𝑡)𝑡∈[0,𝑇] , for some finite time horizon [0, 𝑇] ⊂
Z+, we gather all the past observations up to a time 𝑠 ≥ 0, F 𝑠 :={𝑌1, ..., 𝑌𝑠}. At time 𝑡 we
assume that for a specific set of unknown parameters 𝜃𝑡 ∈ R and 𝜙𝑡 ∈ R, and for known
smooth functions 𝜓 : R→ R and 𝑐 : Z+ × R→ R,

P(𝑌𝑡 = 𝑦 |F 𝑡−1, 𝜃𝑡 , 𝜙𝑡) = 𝑝(𝑦, 𝜃𝑡 , 𝜙𝑡) := exp
(
𝑦𝜃𝑡 − 𝜓(𝜃𝑡)

𝜙𝑡
+ 𝑐(𝑦, 𝜙𝑡)

)
, (3.7.4)

i.e. 𝑝 is a discrete exponential family PMF [157, 205, 206]. The parameters 𝜃𝑡 and 𝜙𝑡 are
respectively the natural/canonical parameter and scale parameter, at time 𝑡 ≥ 0. We also
define the state process that describes the evolution of

𝑍𝑡 := E(𝑌𝑡 |F 𝑡−1, 𝜃𝑡 , 𝜙𝑡) = 𝜓′(𝜃𝑡)

over time, which may depend on lagged versions of 𝜃𝑡 and 𝑌𝑡 . 𝑍𝑡 may be partially
observed and describes the system’s dynamics, inducing temporal dependencies in the
data. For count time series one typically uses the so-called canonical log-link ln(𝑍𝑡) =
𝑔(𝑍1, ..., 𝑍𝑡−1, 𝑌1, ..., 𝑌𝑡−1), where 𝑔 is some smooth function. We may also derive
Var(𝑌𝑡 |F 𝑡−1, 𝜃𝑡 , 𝜙𝑡) = 𝜙𝑡𝜓′′(𝜃𝑡) [205].

These models are natural extensions of general linear models that have been classically
used to analyse count data in the past (see [90] for a more theoretical exploration of
observation-driven modelling). In Chapter 7 we will use this general framework in the
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context of modelling groups, where each group count process is of the form (3.7.4), and
where each intensity process is coupled. Examples of discrete distributions (modelling
counts or abundances) that fall into the exponential family include the Poisson, Negative-
Binomial (with fixed failure rate) and categorical (with fixed number of trials) distributions.

We lastly note that in this framework, we can account for overdispersion, i.e. when the
variance is greater than the mean, and also within-population heterogeneity using random
effects. Note that the term overdispersion in this case does not refer to dispersal or diffusion,
but to the fact that the variance of some random variable is greater than its mean. Assume
that a random variable, 𝑌 , is such that 𝑌 |𝜂 ∼ P(𝜂) and 𝜂 is a random variable, termed
random effect, where E(𝜂) = 𝜇 and Var(𝜂) = 𝜎2. Then it follows respectively from the
Law of Total Expectation and Law of Total Variance that

E(𝑌 ) = E[E(𝑌 |𝜂)] = E(𝜂) = 𝜇,
Var(𝑌 ) = E[Var(𝑌 |𝜂)] + Var[E(𝑌 |𝜂)]

= E(𝜂) + Var(𝜂)
= 𝜇 + 𝜎2.

(3.7.5)

More generally, the use of compound distributions such as these induces a variance function
that can be greater than the mean, and therefore capture some degree of overdispersion.
See [205, 206] for more on modelling random effects in various other contexts. The role
of such random effects will become apparent in Chapter 7, in the context of modelling
the stochastic dynamics of groups of animals within a social population. In Chapter 7,
each parameter in our group abundance mean equations will be a random effect with a
corresponding population-level mean and variance, which allows one to easily capture
heterogeneity between groups.

3.8. Summary

In this chapter we have reviewed various deterministic and stochastic models of population
dynamics that account for population structure such as discrete life stages, dormancy,
spatiality, density-dependence and interaction strengths. Many of the concepts and model
components discussed in this section will resurface throughout this thesis in a variety of
contexts. Moreover, several of the results presented later relate directly to the material of
this chapter.
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4. Costless and Density-Dependent
Movement of Invasive Populations

In this chapter, we propose a population model involving sub-populations dynamics in
two spatial regions with density-dependent and asymmetric movement, focusing on an
invasive species. Our approach assumes dispersal is costless to the overall population
and extends existing passive symmetric dispersal models. Our goal is to analyse the
long-term dynamics of the model, establishing conditions for extinction or persistence
in one and/or both patches. We will also explore various numerical simulations, which
capture behaviours observed in conservation or pest management scenarios. Finally, we
will apply our findings to an empirical case study, namely the switching of an invasive
insect species between two resource hosts.

Parts of this chapter appeared in: de Godoy, I.B.S., McGrane-Corrigan, B., Mason, O.,
de Andrade Moral, R. and Godoy, W.A.C., 2023. Plant-host shift, spatial persistence, and
the viability of an invasive insect population. Ecological Modelling, 475, p.110172.

4.1. Motivation

The adaptation of non-native species or spread of a native species to new environments
is essential for biological range expansion, which involve colonization, establishment,
and local or regional dispersal events [134]. In recent years, additional structure has
been implicitly and explicitly incorporated into mathematical and computational models
of species’ dynamics, as an attempt to account for the movement of individuals within a
population, at different spatiotemporal scales and life stages [113, 193]. For example, the
introduction of spatial structure offers a new perspective when investigating the movement
of insects between patches [214, 232], a mechanism that may have significant consequences
for integrated pest management and conservation strategies [209].

Range expansions often encompass processes such as encroachment [9], species redistri-
butions [31] and invasive spread [253]. These can be driven by climate change, resource
shifts and environmental events such as drought. An aspect that has been little studied is
the effect of regional density on movement, as many species are known to disperse from
or remain in a region in response to high/low population densities [5]. Landscapes are
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4.2. The Two-Patch Model

also heterogeneous by nature and so dispersing between two specified regions can have
varying effects [1].

To take account of this asymmetric movement and density dependence, we will consider
a simple nonlinear model of dispersal that aims to capture the dynamics of a population
dispersing between two regions within some landscape. We will derive sufficient con-
ditions for global asymptotic extinction when dispersal is constant. When dispersal is
density dependent we will derive conditions for population persistence and the existence
of a positive fixed point. We will then demonstrate how the modelling framework we
consider can be applied to capture various real-world ecological phenomena. Finally we
will apply this model to an agricultural case study, to assess the long-term viability of an
insect pest switching between hosts.

4.2. The Two-Patch Model

Dispersal can be an asymmetric process and may have significant consequences for pop-
ulation persistence [235], especially when assessing the impacts of climate change and
monitoring species range shifts [293]. Many authors also assume invasive spread or range
expansion to be density-independent. In many cases these ecological processes are largely
density-dependent, with this dependence varying from negative to positive to mixtures of
the two [5, 259, 285].

To accommodate dispersal asymmetry and density-dependence, we will now describe the
modelling framework that we are interested in for the majority of this chapter. Consider a
single-species population that consumes two resource types and inhabits two non-identical
patches. Denote the patch population densities, in generation 𝑡 ∈ Z+, by 𝑥1(𝑡) and 𝑥2(𝑡),
respectively. Following reproduction on a patch we assume both sub-populations disperse
between patches, at a rate which depends continuously on their respective densities. We
also assume that the overall population is spatially closed, i.e. individuals reproduce and
disperse only on the two specified patches. A general mathematical form for such a system
and the model we are interested in throughout this chapter is given by

𝑥1(𝑡 + 1) = [1 − 𝑑1(𝑥1(𝑡))] 𝑓1(𝑥1(𝑡)) + 𝑑2(𝑥2(𝑡)) 𝑓2(𝑥2(𝑡))
𝑥2(𝑡 + 1) = [1 − 𝑑2(𝑥2(𝑡))] 𝑓2(𝑥2(𝑡)) + 𝑑1(𝑥1(𝑡)) 𝑓1(𝑥1(𝑡)),
𝑥(0) = 𝑥0 ∈ R2

+,

(4.2.1)

where 𝑓𝑖 (𝑥𝑖) = 𝑔𝑖 (𝑥𝑖)𝑥𝑖 (see Fig. 4.1). This extends the model in [93] to incorporate
asymmetric and nonlinear dispersal. This formulation considers three 𝐶1 maps, given by
𝑓𝑖 : R+ → R+ and 𝑔𝑖 : R+ → R+\{0}, that respectively describe the regional growth/re-
cruitment and fitness on patch 𝑖, and 𝑑𝑖 : R+ → (0, 1) which describes density-dependent
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4.3. Patch Dynamics

dispersal from patch 𝑖. Note that under this framework one can specify that dispersal from
patch 𝑖 is either constant or density-dependent. Throughout the rest of this chapter, unless
stated otherwise, we assume that both patches exhibit density-dependent dispersal. Note
that in Chapter 5 we will look an extended model form to (4.2.1), where the are more
than two patches. Some of the mathematical results of this chapter can be proved for
such a model, but there is distinctions between the two that will become clear in both the
mathematical and numerical work.

𝒅𝟏 𝒙𝟏

𝒅𝟐 𝒙𝟐

𝟏 − 𝒅𝟏 𝒙𝟏 𝟏 − 𝒅𝟐 𝒙𝟐

𝒇𝟏 𝒙𝟏 𝒇𝟐 𝒙𝟐

Figure 4.1: Conceptual diagram of system (4.2.1), where 𝑓𝑖 (𝑥𝑖) and 𝑑𝑖 (𝑥𝑖) respectively
describe the dynamics on and dispersal from patch 𝑖. The proportion of individuals
remaining on patch 𝑖 is 1 − 𝑑𝑖 (𝑥𝑖).

4.3. Patch Dynamics

We will assume that the regional growth function takes the form of a Ricker map, i.e.

𝑓𝑖 (𝑥𝑖) := 𝛼𝑖𝑥𝑖𝑒−𝛽𝑖𝑥𝑖 (4.3.1)

for 𝑖 = 1, 2. The parameter 𝛼𝑖 is the growth rate of the subpopulation on patch 𝑖, while
𝛽𝑖 > 0 is the influence of intra-specific competition on patch 𝑖. Note that the difference
in each patch is determined by the effects of both the strength of growth and density-
dependence, as determined by 𝛼𝑖 and 𝛽𝑖 respectively. In isolation, each region’s dynamics
is governed by a Ricker map, which is a widely used nonlinear model of population growth
that can describe many real-world population dynamics [126, 159, 234]. It has also been
used to describe the dynamics of many invasive insect and fish species [43, 221].

If the two patches are isolated, the dynamics on patch 𝑖 is given by

𝑥𝑖 (𝑡 + 1) = 𝑓𝑖 (𝑥𝑖 (𝑡)) = 𝑔𝑖 (𝑥𝑖 (𝑡)) 𝑥𝑖 (𝑡), (4.3.2)

where 𝑔𝑖 (𝑥) = 𝛼𝑖 exp(−𝛽𝑖𝑥𝑖) where is known as a recruitment or fitness function [50]. The
map 𝑓𝑖 is unimodal, meaning it attains a unique highest value or global maximum on its
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domain (see Fig. 4.2). This occurs at 𝑥𝑖 = 𝛽−1
𝑖

. The maximum possible population size is
then

𝑓𝑖

(
1
𝛽𝑖

)
=

1
𝛽𝑖
𝑔𝑖

(
1
𝛽𝑖

)
=
𝛼𝑖

𝑒𝛽𝑖

and so the population is bounded from reaching arbitrarily large values. It can also be
seen from (4.3.1) that

𝛼𝑖 < 1 =⇒ 𝑥𝑖 (𝑡) → 0, 𝑡 → ∞.

Note that 𝛼𝑖 < 1 corresponds to patch 𝑖 being a sink, a habitat where a population
asymptotically goes extinct. There exists a unique nontrivial equilibrium for patch 𝑖

𝑥∗𝑖 :=
ln(𝛼𝑖)
𝛽𝑖

> 0 ⇐⇒ 𝛼𝑖 > 1.

Note that 𝛼𝑖 > 1 corresponds to patch 𝑖 being a source, a habitat that can sustain a
population and enable it to grow. As 𝑓𝑖 is continuously differentiable at 𝑥∗

𝑖
, the local

stability properties can be determined by linearisation [80]. Local asymptotic stability is
guaranteed once

| 𝑓𝑖
′ (
𝑥∗𝑖

)
| < 1.

From the form of 𝑓𝑖 we can see that 𝑥∗
𝑖

is locally asymptotically stable if

|1 − ln (𝛼𝑖) | < 1 ⇐⇒ 1 < 𝛼𝑖 < 𝑒2 (4.3.3)

and 𝑥∗
𝑖

is unstable for 𝛼𝑖 > 𝑒2.

𝑥 =
1

𝛽

𝑦 =
𝛼

𝑒𝛽

𝑦 = 𝛼𝑥𝑒−𝛽𝑥

𝒚

𝒙

Figure 4.2: Illustration of a Ricker map 𝑦 = 𝛼𝑥 exp(−𝛽𝑥), where 𝛼, 𝛽 > 0 (solid line).
This map has a unique maximum at 𝑥 = 𝛽−1 (dashed line) which is 𝑦 = 𝛼/(𝑒𝛽) (dotted
line).
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4.4. Movement Dynamics

For the rest of this chapter we assume dispersal is asymmetric, i.e. 𝑑𝑖 (𝑥) ≠ 𝑑 𝑗 (𝑥) for 𝑖 ≠ 𝑗 ,

and bidirectional, i.e. 𝑑𝑖 (𝑥) ∉ {0, 1}, for all 𝑥 ⪰ 0. We can rewrite (4.2.1) as a nonlinear
matrix model of the form (3.2.1), i.e. 𝐹 (𝑥) := 𝐴(𝑥)𝑥, where 𝑥 ∈ R2

+ and 𝐴 : R2
+ → R2𝑥2

+
is the matrix-valued function given by

𝐴(𝑥) =
(
1 − 𝑑1 (𝑥1) 𝑑2 (𝑥2)
𝑑1 (𝑥1) 1 − 𝑑2 (𝑥2)

)
︸                            ︷︷                            ︸

𝐷 (𝑥)

(
𝑔1(𝑥1) 0

0 𝑔2(𝑥2)

)
︸                ︷︷                ︸

𝐺 (𝑥)

. (4.4.1)

As 𝑔𝑖 and 𝑑𝑖 are 𝐶1 it follows that 𝐴 is 𝐶1. As 𝐹 (𝑥) = 𝐴(𝑥)𝑥, we can see that 𝐹 is also 𝐶1

and so we can compute the Jacobian of 𝐹 as

𝐹′(0) =
(
[1 − 𝑑1(0)] 𝑓 ′1 (0) + 𝑑

′
1(0) 𝑓1(0) 𝑑2 (𝑥2) 𝑓 ′2 (0) + 𝑑

′
2 (𝑥2) 𝑓2(0)

𝑑1(0) 𝑓 ′1 (0) + 𝑑
′
1(0) 𝑓1(0) [1 − 𝑑2(0)] 𝑓 ′2 (0) + 𝑑

′
2(0) 𝑓2(0)

)
. (4.4.2)

We can observe that

𝑓𝑖 (𝑥) = 𝛼𝑖𝑥𝑒−𝛽𝑖𝑥 =⇒ 𝑓 ′𝑖 (𝑥) = 𝛼𝑖𝑒−𝛽𝑖𝑥 (1 − 𝛽𝑖𝑥).

We can thus conclude that

𝐹′(0) = 𝐴(0) =
(
[1 − 𝑑1(0)] 𝛼1 𝑑2(0)𝛼2

𝑑1(0)𝛼1 [1 − 𝑑2(0)] 𝛼2

)
. (4.4.3)

If we were to linearise our nonlinear dispersal model around 0 we could approximate the
iterated dynamics using a linear system with system matrix given by 𝐹′(0) = 𝐴(0). The
form of the matrix (4.4.3) will be important when we prove some stability and persistence
results later in this chapter.

In many models of species movement, it is assumed that dispersal has no cost to the
population dispersing from a patch [93, 113, 279]. In other words, costless dispersal
is when the proportion of individuals remaining on a patch is exactly the proportion
left following dispersal. Mathematically, in the context of (4.2.1), this means that the
proportion of individuals dispersing from and remaining on a single patch sums to unity.
This is the case with our model, as can be seen from the form of 𝐴(𝑥). For a fixed 𝑥 ∈ R2

+,
it is clear to see that 𝐷 (𝑥) := (𝑑𝑖 𝑗 (𝑥)) is column stochastic, as for a given 𝑗 ∈ {1, 2} we
have that

2∑︁
𝑖=1

𝑑𝑖 𝑗 (𝑥𝑖) = 1 − 𝑑𝑖 (𝑥𝑖) + 𝑑𝑖 (𝑥𝑖) = 1,

which in turn implies that ∥𝐷 (𝑥)∥1 = 1. Although we assume costless dispersal, this does
not exclude the fact there could be mortality due to dispersal, as the proportion dispersing,
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𝑑𝑖 (𝑥𝑖), is state-dependent. In Chapter 5 we will explore a different model where we assume
that there are dispersal costs. We will now look at the simpler case of passive, costless
dispersal.

4.4.1. Passive Invasion

If we assume that we have passive/constant dispersal, i.e. 𝑑𝑖 (𝑥𝑖) ≡ 𝑑𝑖 ∈ (0, 1), for
𝑖 ∈ {1, 2}, then it is clear to see from the form of 𝐴(𝑥) that

𝑒−𝛽𝑖𝑥𝑖 ≤ 1 =⇒ 𝐴(𝑥) ≤ 𝐴(0)

for all 𝑥 ⪰ 0. It now follows that for 𝑥(0) = 𝑥0 ∈ R2
+, our solution satisfies (3.2.2) for

𝑡 ≥ 1. Recall that 𝜌(𝐴(0)) < 1 implies that 𝐴(0)𝑡 → 0 as 𝑡 → ∞. Therefore, we
can conclude that the extinction equilibrium is GAS. This gives a sufficient condition for
ensuring that we have patch extinction for any initial condition, as is shown in [255] for
general nonlinear matrix models.

The model of the form (4.2.1) with passive dispersal is similar in form to (3.5.1), the
model in [93] as seen in Chapter 3, albeit with asymmetric dispersal proportions. The
next result is a generalisation of their main result, in the context of (4.2.1), when we have
passive (asymmetric) dispersal. The proof of this is the same as in [93].

Proposition 4.4.1. Assume 𝑓𝑖 (𝑥) = 𝑔𝑖 (𝑥)𝑥, where 𝑔𝑖 is given by (4.3.1). Further assume
that 𝑑𝑖 (𝑥) = 𝑑𝑖 ∈ (0, 1) for all 𝑥 ≥ 0. Then, system (4.2.1) is persistent if 𝜌(𝐴(0)) > 1,
whereas any initial population is driven to extinction when 𝜌(𝐴(0)) ≤ 1.

For any 𝐴 = (𝑎𝑖 𝑗 ) ∈ R𝑛×𝑛 we have that 𝜌(𝐴) ≤ ∥𝐴∥1 = max 𝑗∈{1,...,𝑛}
{∑𝑛

𝑖=1 |𝑎𝑖 𝑗 |
}
. It then

follows that 𝜌(𝐴(0)) < 1 if all column sums of 𝐴(0) are less than 1. It is clear then that

𝛼𝑖 < 1 =⇒ 𝜌(𝐴(0)) < 1.

Growth rates less than unity could arise in a scenario where each patch population has
high fertility but low survival probability due to high intra-population competition for
resources, which intuitively would lead to the decline of the population in the long run.

As 𝑥 ∈ R2
+, we can derive a simple expression that characterises global stability of the

extinction equilibrium in terms of our model parameters, which is more general than just
assuming that 𝛼𝑖 < 1 as above. To do so, we first restate the following well-known result.

Theorem 4.4.2. [80] Let 𝑎 > 0, 𝑏 > 0. The roots of the polynomial

𝑞(𝑥) = 𝑥2 − 𝑎𝑥 + 𝑏 (4.4.4)

lie in D1 if and only if 𝑎 − 1 < 𝑏 < 1.
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The characteristic polynomial of 𝐴(0) is given by

det(𝐴(0) − 𝜆𝐼) = 𝜆2 − Tr(𝐴(0))𝜆 + det(𝐴(0)). (4.4.5)

By observing that (4.4.4) and the RHS of (4.4.5) have the same form, we can see then that

𝜌(𝐴(0)) < 1 ⇐⇒ Tr(𝐴(0)) < 1 + det(𝐴(0)) < 2.

It then follows that that 𝜌(𝐴(0)) < 1 if and only if

𝛼1(1 − 𝑑1) + 𝛼2(1 − 𝑑2) < 1 + 𝛼1𝛼2(1 − 𝑑1 − 𝑑2) < 2. (4.4.6)

From (4.4.6) we can see that the global stability of the extinction equilibrium for (4.2.1)
is independent to choices of the density-dependent terms 𝛽1 and 𝛽2. From (4.4.6) we
can interpret these inequalities as suggesting that eventual extinction is guaranteed once
the sum of the proportion of individuals remaining on a patch, i.e. the LHS of (4.4.6),
is sufficiently low. For example, if both 𝛼1 and 𝛼2 are sufficiently low, the incentive to
disperse from either patch is lower, thus enabling extinction to occur on both patches. If
resource quality was higher on patch 1 and lower on patch 2, for example, then we would
expect a higher value of 𝛼1 and lower value of 𝛼2. This could promote dispersal from
patch 2 to 1, with (4.4.6) also being violated. Thus the trade off between dispersal rate
and regional growth determines the incentive to disperse from a patch and in turn the
conditions for global extinction and persistence. We next move on to the more complex
case of nonlinear or density-dependent dispersal.

4.4.2. Density-Dependent Invasion

We will now consider (4.2.1), where we assume that dispersal is a bidirectional, asym-
metric and density-dependent process. Therefore instead of 𝑑𝑖 being constant, it is state-
dependent. We will first note that 𝐹 (𝑥) = 𝐴(𝑥)𝑥 is strongly positive.

Lemma 4.4.3. Let 𝐴(𝑥) be given by (4.4.1) and patch dynamics given by (4.3.1), with
𝛼𝑖, 𝛽𝑖 > 0 and 𝑑𝑖 (𝑥) ∈ (0, 1) for all 𝑥 ⪰ 0 and 𝑖 = 1, 2. Then for any 𝑥 ∈ R2

+\{0} we have
that 𝐹 (𝑥) ≻ 0.

Proof. It is clear to observe that for all 𝑥 = (𝑥1 𝑥2)𝑇 ⪰ 0 one has that 𝑓𝑖 (𝑥𝑖) > 0 and
𝑑𝑖 (𝑥𝑖) > 0 implies that 𝐴(𝑥) ≻ 0. Therefore 𝐹 (𝑥) = 𝐴(𝑥)𝑥 ≻ 0 for all nonzero 𝑥 ∈ R2

+. □

In the following lemma, we show that solutions to system (4.2.1) are bounded. This simple
fact is needed for the results on persistence that follow.
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Lemma 4.4.4. Let 𝐴(𝑥) be given by (4.4.1) and patch dynamics given by (4.3.1), with
𝛼𝑖, 𝛽𝑖 > 0 and 𝑑𝑖 (𝑥) ∈ (0, 1) for all 𝑥 ⪰ 0 and 𝑖 = 1, 2. Then there exists some 𝑀 > 0
such that for any 𝑥(0) = 𝑥0 ∈ R2

+, ∥𝑥(𝑡, 𝑥0)∥1 ≤ 𝑀 for all 𝑡 ≥ 1.

Proof. It follows from Lemma 4.4.3 that R2
+\{0} is forward invariant under 𝐹, i.e.

𝑥(0) = 𝑥0 ∈ R2
+\{0} =⇒ 𝐹 (𝑥(𝑡, 𝑥0)) ∈ R2

+\{0}

for all 𝑡 ≥ 0. Thus the 𝑙1-norm of 𝑥(𝑡, 𝑥0) is given by ∥𝑥(𝑡, 𝑥0)∥1 = 1
𝑇𝑥(𝑡, 𝑥0). For any

𝑡 ≥ 1, our solution 𝑥(𝑡, 𝑥0) is of the form 𝐴(𝑥(𝑡 − 1))𝑥(𝑡 − 1) for some 𝑥(𝑡 − 1) ∈ R2
+.

From the form of 𝐴(𝑥), we can see that for 𝑥 = (𝑥1 𝑥2)𝑇 ,

1𝑇 𝐴(𝑥) = (𝛼1 exp(𝛽1𝑥1) 𝛼2 exp(𝛽2𝑥2)) =⇒ ∥𝐴(𝑥)𝑥∥1 =

2∑︁
𝑖=1

𝛼𝑖𝑥𝑖 exp(𝛽𝑖𝑥𝑖).

As (4.4.8) holds for all 𝑥 ⪰ 0, we have that

∥𝐴(𝑥)𝑥∥ =
2∑︁
𝑖=1

𝛼𝑖𝑥𝑖 exp(𝛽𝑖𝑥𝑖) ≤
2∑︁
𝑖=1

𝛼𝑖

𝑒𝛽𝑖
∀ 𝑥 ⪰ 0.

Our solution 𝑥(𝑡) is of the form 𝐴(𝑧)𝑧, for 𝑧 ≥ 0 and 𝑡 ≥ 1. This proves the lemma with
𝑀 := 𝛼1/(𝑒𝛽1) + 𝛼2/(𝑒𝛽2). □

In our next result, we give a sufficient condition for the existence of a positive equilibrium.

Proposition 4.4.5. Let 𝐴(𝑥) be given by (4.4.1) and patch dynamics given by (4.3.1), with
𝛼𝑖, 𝛽𝑖 > 0 and 𝑑𝑖 (𝑥) ∈ (0, 1) for all 𝑥 ⪰ 0 and 𝑖 = 1, 2. Suppose that 𝜌(𝐴(0)) > 1. Then
there exists some 𝑥 ≻ 0 with 𝐹 (𝑥) = 𝑥.

Proof. First note that for 𝑥 ⪰ 0

𝐹 (𝑥) = 𝐴(𝑥)𝑥 =
(
(1 − 𝑑1(𝑥1))𝛼1𝑒

−𝛽𝑥1 + 𝑑2(𝑥2)𝛼2𝑒
−𝛽𝑥2

(1 − 𝑑2(𝑥2))𝛼2𝑒
−𝛽𝑥2 + 𝑑1(𝑥1)𝛼1𝑒

−𝛽𝑥1

)
(4.4.7)

We can see that

𝑥𝑖𝑒
−𝛽𝑖𝑥𝑖 ≤ 1

𝑒𝛽𝑖
(4.4.8)

for 𝑥𝑖 ≥ 0, 𝑖 = 1, 2. We can then see that there exists 𝑦 ≻ 0 such that 𝐹 (𝑦) ≤ 𝑦 for all
𝑥 ∈ R2

+. As 𝐹 (𝑥) is continuous, it follows from Theorem 3.2.1 that there exists a nonzero
𝑧 ∈ R2

+ such that 𝐹 (𝑧) = 𝑧. As 𝐹 (𝑥) ≻ 0 for any non-zero 𝑥, by Lemma 4.4.3, this implies
that 𝑧 ≻ 0. □
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Deriving criteria for the local or global stability of a positive equilibrium in Proposition
4.4.5 is not as tractable as when dispersal is constant, as the interplay between the Ricker
maps, 𝑓1 and 𝑓2, and in the choice of nonlinear maps 𝑑1 and 𝑑2, can alter the expression
of such an equilibrium. Instead of exploring when this equilibrium is unique or when
it is locally/globally stable, we will restrict the problem to when one can guarantee that
the population remains persistent. The next result gives a sufficient condition for weak
persistence with respect to either one of the patches (see Chapter 2 for a definition).

Theorem 4.4.6. Let 𝐴(𝑥) be given by (4.4.1) and patch dynamics given by (4.3.1), with
𝛼𝑖, 𝛽𝑖 > 0 and 𝑑𝑖 (𝑥) ∈ (0, 1) for all 𝑥 ⪰ 0 and 𝑖 = 1, 2. Further let 𝜂1(𝑥) := 𝑥1 and
𝜂2(𝑥) := 𝑥2. Assume that 𝛼𝑖 > 1 and there exists 𝛾𝑖 ∈ (1, 𝛼𝑖) such that

𝑑𝑖 (𝑥𝑖) < 1 − 𝛾𝑖

𝛼𝑖
(4.4.9)

for all 𝑥𝑖 ≥ 0 and some 𝑖 ∈ {1, 2}. Then there exists 𝛿 > 0 such that 𝑥𝑖 < 𝛿 implies that

lim sup
𝑡→∞

𝜂𝑖 (𝑥(𝑡, 𝑥0)) ≥ 𝛿.

Proof. Assume 𝑥 ⪰ 0. From the form of 𝐹 we have that, for 𝑖, 𝑗 ∈ {1, 2} and 𝑖 ≠ 𝑗 ,

𝜂𝑖 (𝑥) = 𝑥𝑖 > 0 =⇒ 𝜂𝑖 (𝐹 (𝑥)) = (1 − 𝑑𝑖 (𝑥𝑖))𝛼𝑖𝑥𝑖𝑒−𝛽𝑥𝑖 + 𝑑 𝑗 (𝑥 𝑗 )𝛼 𝑗𝑥 𝑗𝑒−𝛽𝑥 𝑗 > 0.

We also have that

𝜂𝑖 (𝑥) = 𝑥𝑖 > 0 =⇒ 𝜂𝑖 (𝐹 (𝑥))
𝜂𝑖 (𝑥)

≥ (1 − 𝑑𝑖 (𝑥𝑖)) 𝛼𝑖 exp(−𝛽𝑖𝑥𝑖).

It follows from (4.4.9) that
(1 − 𝑑𝑖 (𝑥𝑖))𝛼𝑖 > 𝛾𝑖 > 1.

Therefore there exists some 𝛿 > 0 such that

𝜂𝑖 (𝐹 (𝑥))
𝜂𝑖 (𝑥)

> 𝛾𝑖 > 1, 0 < 𝑥𝑖 < 𝛿.

The result then follows from Proposition 2.3.1. □

Condition (4.4.9) in Theorem 4.4.6 implies that there is a balance to the dispersal rate
and the growth rate on patch 𝑖. By ensuring that dispersal is sufficiently low relative to
the growth rate, this condition allows for the possibility that the population in patch 𝑖 can
grow and not deplete the patch if growth is not fast enough to compensate for dispersing
individuals leaving. Note that this is only for one patch. There may be sufficient inflow
from patch 𝑗 ≠ 𝑖 that allows the proportion on patch 𝑖 to be higher than this threshold.
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Example 4.4.1. A dispersal function satisfying (4.4.9) is 𝑑𝑖 (𝑥𝑖) = 𝑎𝑖 exp(− (𝑥𝑖 − 𝑟𝑖)2) with
𝑎𝑖 < 1 − (𝛾𝑖/𝛼𝑖), for 𝛼𝑖 > 1, 𝑟𝑖 > 0 and 𝛾𝑖 ∈ (1, 𝛼𝑖), which could describe a population
that has highest dispersal proportions at densities that are neither too low nor too high,
and low dispersal proportions at relatively extreme low/high densities. This may describe
a situation where dispersal peaks at such intermediate population densities where there is
a balance between intraspecific competition and habitat quality [82].

The next result gives gives a sufficient condition for uniform strong persistence with respect
to two different persistence functions.

Theorem 4.4.7. Let 𝐴(𝑥) be given by (4.4.1) and patch dynamics given by (4.3.1), with
𝛼𝑖, 𝛽𝑖 > 0 and 𝑑𝑖 (𝑥) ∈ (0, 1) for all 𝑥 ⪰ 0 and 𝑖 = 1, 2. For 𝑥 ∈ R2

+, let 𝜂1(𝑥) = ∥𝑥∥1 and
𝜂2(𝑥) = min{𝑥1, 𝑥2}. Suppose 𝜌(𝐴(0)) > 1. Then, system (4.2.1) is uniformly strongly
persistent with respect to 𝜂1 and 𝜂2.

Proof. It follows from Lemma 4.4.3 that 𝐹 is strongly positive. Therefore R𝑛+\{0} is
forward invariant under 𝐹. Also 𝜌(𝐴(0)) > 1 =⇒ 𝜌(𝐴(0)𝑇 ) > 1 and so there exists
𝑣 ≻ 0 such that 𝐴(0)𝑇 𝑣 ≻ 𝑣. Therefore we can choose 𝑟0 > 1 with 𝐴(0)𝑇 𝑣 ≥ 𝑟0𝑣.
Finally, Lemma 4.4.4 implies that there exists some 𝑀 > 0 such that for any 𝑥(0) ∈ R2

+,
|𝑥(𝑡) |1 ≤ 𝑀 for all 𝑡 ≥ 1. Then, by Theorem 2.3.2 there exists 𝜖1, 𝜖2 > 0 such that

lim inf
𝑡→∞

𝜂1(𝑥(𝑡, 𝑥0)) > 𝜖1,

lim inf
𝑡→∞

𝜂2(𝑥(𝑡, 𝑥0)) > 𝜖2

for all 𝑥(0) = 𝑥0 ∈ R2
+\{0}. □

Note that even though 𝜌(𝐴(0)) > 1 in Theorem 4.4.7, the value of 𝜖1 and 𝜖2 may be
different, as uniform persistence is dependent on the choice of persistence function. As
well as this, for 𝜖𝑖, the asymptotic time, 𝑇𝑖, where 𝑥(𝑡, 𝑥0) ≥ 𝜖𝑖 for all 𝑡 ≥ 𝑇𝑖 could be
different for 𝑖 ∈ {1, 2}, i.e. we may have that 𝑇1 ≠ 𝑇2.

We will now state a sufficient condition for 𝜌(𝐴(0)) > 1, in terms of the regional growth
rates and initial dispersal proportions. These conditions are in turn sufficient for both the
existence of a positive fixed point and for strong uniform persistence, as per Theorems
4.4.5 and 4.4.7.

Proposition 4.4.8. Let 𝐴(0) ∈ R2×2
+ be given by (4.4.3). Assume that the following hold:

(a) 𝑑1(0) + 𝑑2(0) = 1, and

(b) 𝛼1(1 − 𝑑1(0)) > 1 − 𝛼2(1 − 𝑑2(0)).
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Then 𝜌(𝐴(0)) > 1.

Proof. As 𝐴(0) ∈ R2×2
+ and 𝑑𝑖 (𝑥) ≠ 1 for all 𝑥 ⪰ 0, we have that

Tr(𝐴(0)) = 𝛼1(1 − 𝑑1(0)) + 𝛼2(1 − 𝑑2(0)) > 1.

As 𝐴(0) is nonnegative and is a 2× 2 matrix, it can be shown that the eigenvalues of 𝐴(0)
must be real. From assumption (b) we have that Tr(𝐴(0)) > 1. Assumption (a) directly
implies the

det(𝐴(0)) = 𝛼1𝛼2(1 − 𝑑1(0) − 𝑑2(0)) = 0.

Therefore we have that 𝜌(𝐴(0)) = Tr(𝐴(0)) > 1. □

An interpretation of Proposition 4.4.8 is that if, in the first generation, the total proportion
of individuals dispersing is 1 and the sum of the total number of individuals remaining is
greater than 1, then we have strong uniform persistence with respect to the total population
size.

Example 4.4.2. Assume both patches have identical growth rates, i.e. 𝛼1 = 𝛼2 = 𝛼 > 0,
and the assumptions of Proposition 4.4.8 hold. It follows from (a) and (b) in Proposition
4.4.8 that

𝛼1(1 − 𝑑1(0)) + 𝛼2(1 − 𝑑2(0)) = 𝛼(1 + 1 − 𝑑1(0) − 𝑑2(0))) > 1 ⇐⇒ 𝛼 > 1.

In this case we only get uniform strong persistence with respect to the total population size
when each patch is a source with identical growth rates. Note the difference in the patches
is then determined by 𝛽𝑖. This could be interpreted as each patch being of the same high
quality resource. A real-world example of such a scenario could be a monoculture system,
where the same crop or plantation is grown across multiple areas [244].

To complement the mathematical results in this section we will now move on to numerically
explore system (4.2.1) in several ecologically important scenarios.

4.5. Outbreak and Conservation Examples

In this section we will numerically explore how the model we consider can be used
in the context of modelling a population invading another habitat or expanding its home
range. In this context, we are primarily interested in how the presence/absence of dispersal
influences persistence over time and what drives the population on either patch to extinction
(eradication). All numerical computations and simulations were conducted in R [263].
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For the purpose of simulating model (4.2.1), we must specify a form for 𝑑𝑖 (𝑥𝑖), as this is
an arbitrary function taking values in (0, 1). We therefore assume that density-dependent
dispersal from patch 𝑖 is given by

𝑑𝑖 (𝑥𝑖) = 1 − 𝑟𝑖𝑒−𝜇𝑖𝑥𝑖 , (4.5.1)

where 𝜇𝑖 is the strength of density-dependent dispersal and 𝑟𝑖 ∈ (0, 1) is a scaling factor
that can be interpreted as the minimum amount of dispersal that is permitted. As we
have costless dispersal and assume the dispersal functions are of the form (4.5.1), we
can interpret this scenario as positive density-dependent dispersal, that is movement away
from each patch increases with increasing patch density, with the number of remaining
individuals decreasing with increasing patchy density (see Fig. 4.3). This form of dispersal
could be induced via overcrowding and competitive interactions on the patch where
individuals are dispersing from [195]. We will now investigate how our model can capture
four ecological phenomena typically observed in many empirical studies.

𝑦 = 1
𝑦 = 1 − 𝑟𝑒−𝑢𝑥

𝑦 = 𝑟𝑒−𝑢𝑥

𝒙

𝒚

Figure 4.3: Illustration of a map of the form (4.5.1), where 𝑟 ∈ (0, 1) and 𝑢 > 0. The
solid black curve, 𝑦 = 1 − 𝑟 exp(−𝑢𝑥), represents positive density-dependent dispersal,
with the dashed black curve, 𝑦 = 𝑟 exp(−𝑢𝑥), representing the proportion of individuals
remaining. The grey line represents 𝑦 = 1.

4.5.1. The Rescue Effect

Say one was interested in reversing the decline of one patch population after allowing
movement to and from a more suitable patch. This phenomenon is known as the rescue
effect [83]. This may be of interest in a conservation management scenario where one’s
aim is to conserve a population of natural residents, for example. Let us look at the
scenario when 𝛼1 < 1 and 𝛼2 > 1, so on patch 1 the population tends to extinction and on
patch 2 there is high survival and fertility. From the form of 𝐴(0) we can see that for 𝛼2

sufficiently large, we can ensure that both uniform strong persistence and patch-persistence
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occur. We simulated this scenario for the case where both patches are in isolation and for
the case where they are coupled (see Fig. 4.4). For the chosen parameter values, we find
that 𝜌(𝐴(0)) ≈ 11.7 > 1. By Theorem 4.4.7, this implies that, even though on one patch
extinction may be inevitable, by allowing dispersal one can not only rescue the declining
patch from extinction and help the overall population to recover, but also ensure that each
individual patch population also persists. In Fig. 4.4 we can see that in isolation, patch
1 tends to extinction whereas patch 2 remains persistent, albeit with rapid fluctuations in
population size. Once these patches are coupled via dispersal as in (4.2.1) we can see
that both patches tend toward a positive equilibrium, the existence of which is guaranteed
by Proposition 4.4.5, and thus the total coupled population is persistent. Not only does
dispersal rescue the declining population on patch 1, but it also stabilises the dynamics on
patch 2.
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Figure 4.4: Simulations of (4.3.2) for 𝑖 = 1, 2 (Isolated) and (4.2.1) (Coupled), for 30 time
steps. In both simulations we set 𝑥0 = (13.7, 31.6), 𝛽1 = 0.01, 𝛽2 = 0.044, 𝛼1 = 0.7 and
𝛼2 = 16.5. For the coupled model we also set 𝜇1 = 0.05, 𝜇2 = 0.03, 𝑟1 = 0.5, 𝑟2 = 0.7. In
each plot, the grey and black lines respectively represents trajectories for region 1 and 2.

A region may become a sink in the absence of immigration or source patches, but dispersal
from a source can allow the overall population the opportunity to recover. For fast-growing
species with short life cycles and for those that exhibit boom-bust dynamics (also called
irruptive dynamics), like for example insect species, populations can reach (and exceed)
their carrying capacity very quickly, likely leading to high intraspecific competition and
density-dependent dispersal [111, 226]. Low quality habitat (sinks) can be distributed
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among higher quality habitat (sources), which in turn can limit the movement of organisms
in space. Therefore identifying when extinction or growth occurs for certain habitat types
following connectance via dispersal is important to take account of [133].

4.5.2. Boom-Bust Dynamics

It is well known that dispersal is an important factor in producing boom-bust type dynamics
for pests and founder populations (a small population established by individuals from a
larger population following displacement). This is where the invading population increases
rapidly in an initial outbreak (boom) phase, before rapidly declining to a much lower density
(bust) [111, 257]. As an example, we will look at a scenario where 𝑥1(0) = 0, with 𝛼1 > 1,
and 𝑥2(0) ≫ 0, with 𝛼2 < 1. Thus we want to determine how immigration from a crowded
sink patch to an initially empty source patch affects the overall dynamics of our coupled
system. From Fig. 4.5 we can see that even though patch 1 is initially empty with patch two
destined for extinction, once we couple these through density-dependent dispersal we can
induce (chaotic-type) boom-bust dynamics on both patches. This parametrisation results
in the rescue effect. Even though 𝑥1(0) = 0, we can see that 𝜌(𝐴(0)) ≈ 20.98 > 1 and
∥𝑥(0)∥1 > 0. It then follows from Theorem 4.4.7 that our population is uniformly strongly
persistent with respect to the total population size across two patches, as measured by the
𝑙1-norm.
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Figure 4.5: Simulation of (4.2.1) for 50 time steps. We set 𝑥0 = (0, 60), 𝛽1 = 0.01, 𝜇1 =

0.05, 𝛽2 = 0.04, 𝜇2 = 0.03, 𝛼1 = 41.44, 𝛼2 = 0.86, 𝑟1 = 0.5, and 𝑟2 = 0.7. In each plot,
the grey and black lines respectively represents trajectories for region 1 and 2.

4.5.3. Spatial Synchrony

We will now investigate how varying 𝑟1 and 𝑟2 can affect the dynamics of (4.2.1). This
could, for example, be of interest to agricultural field managers who want to induce
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dispersal from a vulnerable crop to some neighbouring land/matrix, or when one wants to
promote dispersal of natural enemies/predators to enter a region where there is a crop of
interest, in order to predate upon the pests present there [268]. As mentioned previously,
𝑟𝑖 can be interpreted as the minimum proportion of individuals that are allowed to disperse
from patch 𝑖. This could be interpreted in the context of promoting dispersal through
application of pesticide or introduction of natural enemies on patch 𝑖, thus raising the
value of 𝑟𝑖.

We simulated (4.2.1) for three different management scenarios, when 𝑟𝑖 was low, moderate
and high. At values of 𝑟𝑖 close to 0 we get that 𝑑𝑖 (𝑥) slowly increases toward 1. At values
of 𝑟𝑖 closer to 1 we get that 𝑑𝑖 (𝑥) is a near constant function of 𝑥. In Fig. 4.6 we can see
as 𝑟𝑖 is increased from low to high values a dynamical change from smooth convergence
to a positive fixed point, to oscillatory convergence to the same fixed point and finally
the emergence of a periodic trajectory. In each simulation the initial condition was fixed
at (𝑥1(0), 𝑥2(0)) = (94, 56). Therefore we can see that under certain parameterisations,
increasing 𝑟𝑖 can induce synchrony across the two patches, where the peaks and troughs
of one patch matches that of the other. This is in line with some empirical studies that
have shown that rapid dispersal can induce spatial synchrony [278].
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Figure 4.6: Simulations of (4.2.1) for 20 time steps. In all simulations we set 𝑥0 =

(94, 56), 𝛽1 = 0.01, 𝜇1 = 0.01, 𝛽2 = 0.06, 𝜇2 = 0.05, 𝛼1 = 0.6, 𝛼2 = 25. For 𝑟1 = 𝑟2 = 𝑟,
we let 𝑟 = 0.1 (Low), 𝑟 = 0.5 (Moderate) and 𝑟 = 0.9 (High). In each plot, the black and
grey lines respectively represents trajectories for region 1 and 2.

4.5.4. Transience

Finally, we will now show how our model can exhibit short-term transient dynamics.
When one is modelling the dynamics of a species, such as an invasive population, there
are relevant timescales of interest, that can be the scale of days to years depending on how
the population is censused. The term transience refers to dynamics that are on so-called
ecological timescales (finite times that are of interest to the specific case study in question,
like days, months and years, for example) and so depend on the specific system in question.
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For example, one may want to infer when a population undergoes a regime shift or when
outbreaks have ceased during some year of crop production. These type of dynamics
have been observed in many empirical studies, as noted in [130]. A pest species that
has been shown to exhibit transient dynamics is the spruce budworm, for example, where
one observes extended periods of low budworm density followed by large outbreaks or
boom-bust type dynamics.

In Fig. 4.7 (Top) not only do we observe transient dynamics followed by convergence
to a fixed point, but the difference in positive fixed points is quite large. The positive
equilibrium on patch 2 is quite low with respect to patch 1. A major concern in agricultural
management is when, for small periods of time, say between crop rotations, a small
numbers of individuals persist on low-quality habitat and then exhibit rapid growth when
favourable conditions arise [232]. It is also a problem when boom-bust dynamics continue
indefinitely and cease to settle. Thus it is important to know when/if on either patch, both
assumed to differ in resource quality, the subpopulations persist, but also do oscillations
or chaotic-type dynamics continue for long enough timescales.
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Figure 4.7: Simulations of (4.2.1) for 150 time steps. In both simulations we set 𝑥(0) =
(65, 51), 𝛽1 = 0.01, 𝛽2 = 0.06, 𝜇1 = 0.21, 𝜇2 = 0.34, 𝑟1 = 0.5, 𝑟2 = 0.7. In the top plot
we set 𝛼1 = 16.7 and 𝛼2 = 13.5. In the bottom plot we set 𝛼1 = 21.3 and 𝛼2 = 10.7. In
each plot, the grey and black lines respectively represents trajectories for region 1 and 2.

In both figures in Fig. 4.7 we see what is called a regime shift. The chaotic-type dynamics
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observed for approximately the first 50 generations is followed by either positive fixed
point dynamics or the emergence of a periodic trajectory on both patches (of differing
periods). As seen above there are boom-bust type dynamics for dozens of generations
but these flucuations settle somewhat into predictable periodic or positive fixed point
trajectories. The initial outbreak phase in both simulations is a transient phenomenon. If
we stopped our simulation during the chaotic regime, we may conclude that this species
will exhibit chaotic-type dynamics. We may also stop the simulation when abundance
is low/high and conclude that this population is persisting at low values, or we have
observed a population outbreak. However, if we run such a simulation for more time
steps, we can observe that the invader population can establish a more stable, and thus
predictable, long-term coexistence across the two patches, as alluded to by [257], where
initial chaotic-type dynamics are followed by either periodic behaviour or convergence to
a positive equilibrium. We extended the simulations in Fig. 4.7 to longer time steps and
observed similar behaviour. In reality the length of time a simulation is run for depends
on the ecological context, wether it be days, months or years for example. The simulations
in this section were to demonstrate the different type of phenomena that can be captured
by our model. In the next section the length of simulations is considered in the context
of monitoring the daily density observations of an insect pest dispersing between two
agricultural regions.

4.6. Plant Host-Shift: A Case Study

4.6.1. Focal Species

Drosophila suzukii is an example of an invader species that has had a significant negative
economic and environmental impact around the world. It originated in Asia and was first
observed outside its native range in 1980 in Hawai’i, and then later in Europe, the United
States and Mexico [108]. Compared to other fruit flies, it can cause serious damage to
fruit plants, resulting in significant losses in crop production, with its potential to consume
multiple resources making it a harmful and pervasive pest of many agricultural species.

4.6.2. Experimental Setting

In [108] the authors reared a population of D. suzukii on raspberries and conducted an
experimental assay where two generations were produced on either strawberry or raspberry.
The fruits were replaced daily, and the number of eggs and daily mortality of adults were
recorded over the 1st and 2nd generations. They observed the total number of eggs laid
in each replicate, egg-adult viability, total period whereby eggs are laid (in days), and
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survival time of the adults (in days). Since they only observed up to the F2 generation in
their experiment, the model proposed at the beginning of this chapter was used to simulate
the effects of host-shift and the long-term behaviour of D. suzukii, based on estimates
of fecundity and survival obtained from the laboratory experimental data. Quasi-Poisson
models were used to analyse the data on total number of eggs [71]. To study the association
between oviposition behaviour over time and survival times of the insects, a joint model
for longitudinal outcomes (oviposition) and time-until-event outcomes (survival times)
was fitted to the data [236]. We refer the reader to [108] for more details.

4.6.3. The Prout and McChesney Model

In [228] the authors used a difference equation to describe intraspecific competition among
an immature Drosophila melanogaster population, a very ecologically similar species to
D. suzukii, and ultimately how this affected adult fertility and survival. Their model
took the form of a Ricker map. They also assumed egg survival and fertility were
decreasing functions of adult density, and further included a sex ratio of a half. For
our application one can consider subscripts 1 and 2 in (4.2.1) as representing dispersal
from strawberry to raspberry and raspberry to strawberry, respectively. In the context of
modelling host switching, and as in [228], we let 𝛼𝑖 = 𝑅𝑖𝐹𝑖𝑆𝑖, where 𝑅𝑖 ∈ (0, 1) is the
sex-ratio (male:female), 𝐹𝑖 > 0 is the average fecundity and 𝑆𝑖 ∈ (0, 1) is the average
number of individuals surviving on host 𝑖. We keep this growth rate as fixed, as if we
also let 𝐹𝑖 and 𝑆𝑖 be functions of density our model becomes difficult to both analyse
and parameterise. An estimate for 𝛽1 = 𝛽2 = 𝛽 was obtained from [228], who used a
intraspecific competition term of 0.0064, which was the sum of fertility, 𝑓 , and survival,
𝑠, in their demographic model. See [228] for more details. We assumed an a priori sex
ratio of a half, i.e. 𝑅1 = 𝑅2 = 1/2, as this accurately reflects the ratio in the models in
[228] and the biology of the focal species.

4.6.4. Numerical Simulations

In order to model the dynamics of D. suzukii, we will now outline our numerical framework
using empirically estimated growth rates. For simplicity, we let the density-dependent
terms be equal so that each patch population only differs in its growth rate 𝛼𝑖. For the
dispersal function given by (4.5.1) and patch dynamics given by (4.3.1), we simulated
our model for 52 generations for a variety of scenarios, where each sub-population is
censused each week over a one year time-horizon. The empirical parameter values are
given in Table 4.1. 𝐹𝑖 and 𝑆𝑖 were taken from the experiments conducted. All numerical
computations and simulations were done in R [263].
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Parameter 𝑅1 𝐹1 𝑆1 𝑅2 𝐹2 𝑆2 𝛽

Estimate 0.5 9.43 0.335 0.5 21.7 0.216 0.0064

Table 4.1: Empirical parameters estimates.

We will now look at what dynamics occur for various choices of dispersal strengths. Let
𝑟1 = 0.95 and 𝑟2 = 0.1, which corresponds to permitting a minimum of 5% and 90%
dispersal from patch 1 and 2 respectively. We simulated (4.2.1) with empirical parameter
values, as seen in Fig. 4.8 (top). We can observe that both patches are sources, with
1 < 𝑅𝑖𝐹𝑖𝑆𝑖 < 𝑒

2, i.e. both patches also have a LAS positive equilibrium. We can further
notice that 𝜌(𝐴(0)) ≈ 1.62 > 1, which implies that we have the existence of a positive
patch coexistence equilibrium. We also can ensure uniform strong persistence with respect
to the minimum of both patches. In Fig. 4.8 (top) we can observe that both trajectories
converge to a positive equilibrium.

Given that simulations under the empirical parameter estimates suggest global convergence
to a unique positive fixed point for a variety of dispersal strengths, we simulated (4.2.1)
for two additional scenarios, where we scale the growth rates, while leaving all other
parameters fixed as above. These scenarios will respectively correspond to perturbing
both patches, by respectively reducing or improving resource quality. Let 𝛼𝑖 = 𝑅𝑖𝐹𝑖𝑆𝑖/2.
In this case patch 1 is a sink and patch 2 a source with stable positive equilibrium. We
can see in Fig. 4.8 (middle) that both patches go extinct in the long run. In this case we
can compute 𝜌(𝐴(0)) ≈ 0.81 < 1 and so extinction is inevitable. Now let 𝛼𝑖 = 10𝑅𝑖𝐹𝑖𝑆𝑖.
In this case both patches are sources with unstable positive equilibrium. We can see in
Fig. 4.8 (bottom) that both patches either tend to a positive equilibrium or enter periodic
regimes. In this case we can compute 𝜌(𝐴(0)) ≈ 16.2 > 1 and so we can ensure strong
uniform persistence for each patch.

4.6.5. Bifurcation Analysis

Different methods have been proposed to analyze the sensitivity of parameters in popu-
lation growth models. Among the approaches used for sensitivity analysis, bifurcation
analysis stands out. Bifurcation analysis aims to study changes in the qualitative behaviour
of a dynamical system under parameter variation, such as the stability of fixed points, emer-
gence of periodic solutions or chaos [258]. This is particularly useful for investigating
the association of ecological patterns of oscillation in populations with changing values
of demographic parameters. This approach allows one to quantify the contribution from
changes in parameter values to changes in model outputs [275].
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Figure 4.8: Simulations of (4.2.1) for 52 (weekly) time steps, for strawberry (right) and
raspberry (left) patches. In all simulations we set 𝑥(0) = (20, 56). We let 𝜇1, 𝜇2 ∈
{0.001, 0.250, 0.500, 0.750, 1.000} for three scenarios: 𝛼𝑖 = 𝑅𝑖𝐹𝑖𝑆𝑖 (top), 𝛼𝑖 = 𝑅𝑖𝐹𝑖𝑆𝑖/2
(middle) and 𝛼𝑖 = 10𝑅𝑖𝐹𝑖𝑆𝑖 (bottom)1.

We conducted a bifurcation analysis to explore the stability our model within the 𝑅𝑖𝐹𝑖𝑆𝑖
and 𝜇𝑖 parameter spaces (see Fig. 4.9 and Fig. 4.11). All numerical computations and
simulations were conducted in R [263]. Bifurcation diagrams emerge from relationships
between parameter values and population sizes [72]. Usually, the parametric space on the
one axis determines significant changes on the other axis, expressing long-term popula-
tion behaviour. As a result of this relationship, it is possible to observe stable trajectories,
periodic cycles with fixed maximum and minimum limiting values and chaotic-type dy-
namics, a regime characterized by total unpredictability, that is, by the apparent absence
of fixed cycles [258]. As mentioned in Chapter 2, chaotic-type dynamics are long term
trajectories that do not exhibit fixed point convergence or periodic behaviour, with such
dynamics being sensitive to the choice of initial conditions. The computational method to
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distinguish between the different dynamical behaviour is outlined in Subsection 2.2.5.
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Figure 4.9: Bifurcation diagram for the (𝑅1𝐹1𝑆1, 𝑅2𝐹2𝑆2)-parameter space, showing the
number of unique population sizes according to the colour gradient (stable fixed point
for values of 1 and periodic orbits for higher values than 1). We considered the last 100
observations after iterating our model for 100, 000 generations. Initial conditions where
𝑥(0) = (76, 42).

We chose to use the product of the demographic parameters, 𝑅𝑖𝐹𝑖𝑆𝑖 in our bifurcation
analysis as they play an important role in determining conditions for strong persistence
and the presence of a positive equilibrium. For the 𝑅𝑖𝐹𝑖𝑆𝑖 bifurcation diagram we set
𝜇1 = 0.2 and 𝜇2 = 0.3, to reflect low-moderate density dependence (see Fig. 4.9). We
then simulated trajectories for 4 different points in the (𝑅1𝐹1𝑆1, 𝑅2𝐹2𝑆2)-parameter space
that correspond to varying periodic trajectory periodicities (see Fig. 4.10). In Fig. 4.9
we see that at low values of 𝑅𝑖𝑆𝑖𝐹𝑖 we have stable equilibria. As we allow demographic
parameters to reach values above 10, trajectories are quite unpredictable, in that the period
of these periodic trajectories begin to increase to values greater than 52. Since 𝑅𝑖 and 𝑆𝑖
can be maximally 1, these larger 𝑅𝑖𝐹𝑖𝑆𝑖 values are driven by the magnitude of 𝐹𝑖 being
large. It would be interesting for further work to further elucidate the different dynamical
behaviour of our model when one varies fecundity on each patch.

Many discrete models exhibit similar complex dynamic behaviour like that seen in Fig. 4.9
[103, 125]. Trajectories may seem predictable for some parameter ranges, either stabilising
or fluctuating after initial increases, but outside these ranges the behaviour we observe
is more suggestive of a form of deterministic chaos. Note that the empirical parameter
estimates, as in Table 4.1 give 𝑅𝑖𝐹𝑖𝑆𝑖 within the stable region of the parameter space.
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Figure 4.10: Simulations of (4.2.1) for 52 (weekly) time steps, for strawberry (black) and
raspberry (grey) patches. We set 𝑥(0) = (76, 42), with all other parameters as in Fig. 4.9
for the following scenarios: 𝛼1 = 5, 𝛼2 = 6 (Coexistence); 𝛼1 = 10.3, 𝛼2 = 12.6 (Period
2); 𝛼1 = 13, 𝛼2 = 7 (Period 4); and 𝛼1 = 30, 𝛼2 = 25 (Chaotic).

The 𝑅𝑖𝐹𝑖𝑆𝑖 product obtained from empirical estimates resulted in stable trajectories for
all chosen values of 𝜇𝑖, for 𝑖 ∈ {1, 2}. For the 𝜇𝑖 bifurcation diagram we therefore set
𝑅1𝐹1𝑆1 = 20 and 𝑅2𝐹2𝑆2 = 24. In this case both patches are sources with unstable
regional positive equilibria. We are thus interested to explore what happens when both
patches exhibit higher survival and fertility. The narrow range within the (𝜇1, 𝜇2)-
parameter space (see Fig. 4.11), where trajectories seem to approach a stable fixed point,
shows how sensitive density-dependent dispersal can be. As we increase both parameter
values, more complex dynamical behaviour occurs, which may allude to increased density
dependent effects on individuals who remain on each patch. This may be because 𝑅𝑖𝐹𝑖𝑆𝑖 is
sufficiently large, for 𝑖 = 1, 2, meaning sub-populations have higher survival probabilities
or increased fertility on their respective patches, which could lead to increased regional
competitive interactions for resources. Each patch also has a nonzero influx/outflow
of individuals to/from it, and this may permit sufficient genetic mixing, with dispersal
being one of the main drivers of genetic variation in insect species [231]. It would
be interesting to investigate further the interplay between regional growth rates and the
dispersal parameters, for example by fixing 𝛼1 = 𝛼2 = 𝛼 and 𝜇1 = 𝜇2 = 𝜇, and conducting
bifurcation analyses on 𝛼 and 𝜇 together.
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Figure 4.11: Bifurcation diagram for the (𝜇1, 𝜇2)-parameter space, showing the number of
unique population sizes according to the colour gradient (stable fixed point for values of 1
and periodic orbits for higher values than 1). We considered the last 100 observations after
iterating our model for 100, 000 generations. Initial conditions where 𝑥(0) = (73, 25).

The demographic parameters considered in Table 2 determine the conditions for the
existence of a patch coexistence equilibrium. For values of 𝜇𝑖 within the narrow band
in Fig. 4.11 one can observe that we always have 𝜌(𝐴(0)) > 1. Proposition 4.4.5 then
implies that we have existence of a positive equilibrium and by Theorem 4.4.7 we have
strong uniform persistence with respect to both patches.

4.7. Summary

In order to understand the dynamics of invasive populations, important factors to con-
sider are spatiality and resource availability. Dispersal has been suggested as a possible
mechanism for supporting survival or persistence for populations that inhabit local sinks.
Our model results further support this hypothesis for spatially-structured populations, by
showing that costless and density-dependent dispersal may rescue a species from extinc-
tion within a two-patch environment, even when fertility and survival proportions are
low on one of the patches. We have also shown clearly the differences between pas-
sive and density-dependent dispersal. In model simulations we found that, including
density-dependent dispersal and intraspecific competition, trajectories exhibit a range of
behaviour and are highly sensitive to changes in parameter values. It must be kept in mind
that these simulations excluded demographic or environmental stochasticity, which may
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4.7. Summary

cause a previously deterministic dynamics to flucuate, and may even allow trajectories to
get arbitrarily close to the basin of attraction of the extinction equilibrium [129]. It is
important to quantify the range of behaviour of complex and nonlinear ecological systems.
In our model we took account of such nonlinearities through allowing both local growth
and dispersal to be density-dependent functions, while also applying our model to various
pest invasion dynamics. Recognising the explicit movement and within population inter-
actions of pest species will prove to be important for both natural and invading species
who inhabit fragmented landscapes.
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5. Costly and Density-Dependent
Movement of Heterogeneous

Metapopulations

In this chapter, we propose a nonlinear dispersal model, where sub-populations move
between a arbitrarily finite number of regions. The model form is an extension of the
two-patch model in Chapter 4 to more than two regions. Each population’s dynamics can
be a different map that comes from a class of bounded population maps, with dispersal
being both density-dependent and costly. We focus on the asymptotic qualitative dynamics
of the model, proving various stability and persistence results. We also perform extensive
numerical simulations for populations moving between regions of decline and growth,
so to highlight the similarities and differences between our model and passive dispersal
models. We finally conduct numerous numerical bifurcation analyses in order to assess
parameter sensitivity in a variety of scenarios.

Parts of this chapter appeared in: McGrane-Corrigan, B., Mason, O. and Moral, R.D.A.,
2024. A density-dependent metapopulation model: Extinction, persistence and source-
sink dynamics. arXiv preprint arXiv:2405.04505.

5.1. Motivation

Habitat destruction, caused by processes such as deforestation, urbanisation and agri-
culture, is a major cause for species to become so-called metapopulations, sub-groups
within a population spread out across many regions in a patchy landscape [47, 216, 250,
262]. A key ecological question is then how dispersal between these regions impacts such
species’ population dynamics and if this can promote coexistence among regions. For
example, given that a subpopulation on one or more of the isolated regions goes extinct
asymptotically, one may be interested in knowing if the coupled system is persistent, if
such a system possesses a positive equilibrium or if there exists a locally/globally stable
positive equilibrium. In population dynamics, coupling regional dynamics via dispersal
has attracted a lot of attention in recent literature, albeit primarily in continuous time.
Recently there has been interest in discrete-time dispersal models [17, 108, 156, 241,
242]. In many models the proportion dispersing is assumed to be constant. However it
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5.2. The Metapopulation Model

has been found that this can also largely depend on the population density of the region
from where such movement is taking place [204, 271].

In this chapter we will consider a model related to that in [241, 242, 288]. In their models,
the authors investigated constant, costless dispersal, where the maps that describe regional
population dynamics where both of Ricker or Hasell-1 form. We however will look at
nonlinear dispersal rates, where each regional map can be a different map from a family
of bounded population maps and where there is an overall cost to dispersal. This was
motivated by the work of Chapter 4, where we considered a planar Ricker model with
density-dependent and cost-free dispersal in the context of invasion dynamics. Here, we
will consider an arbitrary, finite number of regions, where regional dynamics can be non-
identical and come from a more general class of population maps than in Chapter 4. We
will derive conditions that ensure local and global stability, and instability, of the extinction
equilibrium, the existence and global stability of a positive (coexistence) equilibrium, and
finally strong uniform persistence, after regions are connected by dispersal. We will first
give some preliminary results and background. We will then introduce our model and
state our main theoretical and numerical results.

5.2. The Metapopulation Model

Consider a population that inhabits 𝑛 ∈ {2, 3, ...} regions within some patchy landscape
and denote the population density in region 𝑖 ∈ {1, ..., 𝑛}, at time 𝑡 ∈ Z+, by 𝑥𝑖 (𝑡) ∈ R+.
We assume that all regions are accessible by all individuals.

5.2.1. Regional Maps

Let 𝑓𝑖 : R+ → R+ be a map which describes population growth on region 𝑖. Denote M
the set of maps 𝑓 : R+ → R+ such that 𝑓 is a Kolmogorov-type map, i.e. 𝑓 (𝑥) := 𝑔(𝑥)𝑥
where 𝑔 : R+ → (0,∞) is 𝐶1 [160]; and there exists 𝑚 ∈ [0,∞) such that 𝑓 (𝑥) ≤ 𝑚

for all 𝑥 ≥ 0. The last condition is based on the assumption that there is a maximum the
population size can reach at any given time.

Throughout the rest of the chapter we will assume that { 𝑓1, ..., 𝑓𝑛} ⊂ M. The class
M contains many of the commonly used maps for discrete time modeling of ecological
systems. In particular, the following maps all belong to M:

• Generalised Beverton-Holt: 𝑓 (𝑥) = 𝑎𝑥

1 + (𝑥/𝑏)𝑐 [92],

• Hassell: 𝑓 (𝑥) = 𝑎𝑥

(1 + 𝑏𝑥)𝑐 [126],
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5.2. The Metapopulation Model

• Ricker: 𝑓 (𝑥) = 𝑎𝑥 exp(−𝑏𝑥) [234], and

• Ricker with Allee effect: 𝑓 (𝑥) = 𝑥 exp
(
𝑎

(
1 − 𝑥

𝑏

) ( 𝑥
𝑚

− 1
))

[279],

where 𝑎, 𝑏, 𝑠 > 0, 𝑐 ≥ 1 and 0 < 𝑚 < 𝑏. The maps discussed above are single-humped
maps, i.e. either increase to a maximum and decrease after this maximum (unimodal), or
are non-decreasing and saturating as 𝑥 → ∞. The set M also contains the logistic map,
given by 𝑓 (𝑥) = 𝑎𝑥(1−𝑥), where 𝑎 ∈ [0, 4] and the domain of 𝑓 is restricted to 𝑥 ∈ [0, 1],
so that we do not get negative densities [196]. Also note that M contains multi-modal
maps such as 𝑓 (𝑥) = 𝑎𝑥∑𝑚

𝑖=1 exp
(
−𝑏𝑖 (𝑥 − 𝑐𝑖)2

)
, for 𝑎 > 0, 𝑏𝑖, 𝑐𝑖 ≥ 0 and 𝑚 ∈ N.

5.2.2. Dispersal Costs

Following reproduction/recruitment, sub-populations from region 𝑗 move to region 𝑖, with
the proportion given by the 𝐶1 map 𝑑𝑖 𝑗 : R+ → (0, 1), where, for a given 𝑖 ∈ {1, ..., 𝑛},
we assume

𝑛∑︁
𝑗=1

𝑑 𝑗𝑖 (𝑥) < 1 ∀ 𝑥 ≥ 0. (5.2.1)

The map 𝑑𝑖 𝑗 can be different for each 𝑖 and 𝑗 , thus allowing for various dynamics for
dispersing and remaining individuals in each region. Note that if

∑𝑛
𝑗=1 𝑑 𝑗𝑖 (𝑥) = 1 ∀ 𝑥 ≥ 0,

then this could be interpreted as there being no cost to dispersal [17, 241]. However, in
this chapter we assume (5.2.1) holds, so that

𝑑𝑖𝑖 (𝑥) ≠ 1 −
∑︁
𝑗≠𝑖

𝑑 𝑗𝑖 (𝑥), (5.2.2)

which allows one to incorporate dispersal costs, i.e. the sum of the proportions of indi-
viduals remaining and leaving patch 𝑖 is less than unity. This may be, for example, due
to factors such as departure or transfer costs that respectively occur at the inital and final
stages of movement from a region [32]. With appropriate parameterisations so that (5.2.1)
holds, examples of 𝑑𝑖 𝑗 include (see Fig. 5.1):

• Exponential decay: ℎ1(𝑥) = exp(−𝑎 (𝑥 + 𝑏)),

• Unimodal: ℎ2(𝑥) = exp(−
(
(𝑎𝑥 − 𝑏)2 + 𝑐

)
), and

• Generalised logistic: ℎ3(𝑥) =
𝑟

(1 + 𝑏 exp(−𝑐𝑥))
1
𝑝

,

where 𝑎, 𝑏, 𝑐, 𝑝 > 0 and 𝑟 ∈ (0, 1).

72



5.2. The Metapopulation Model

5.2.3. The Coupled System

A general form for the metapopulation model we consider can be written as

𝑥𝑖 (𝑡 + 1) =
𝑛∑︁
𝑗=1

𝑑𝑖 𝑗 (𝑥 𝑗 (𝑡)) 𝑓 𝑗 (𝑥 𝑗 (𝑡)), (5.2.3)

where 𝑥𝑖 (0) ∈ R+, 𝑖 ∈ {1, ..., 𝑛} (see Fig. 5.2). System (5.2.3) is the same form as system
(4.2.1) in Chapter 4. The differences are that we assume that we have 𝑛 ≥ 2 regions,
dispersal is costly, and that each 𝑓𝑖 can be a different map from M. We can rewrite (5.2.3)
as a nonlinear matrix model of the form 𝐹 (𝑥) = 𝐴(𝑥)𝑥, as in Chapter 3, where the matrix
valued function 𝐴 : R𝑛+ → R𝑛×𝑛+ in this chapter is defined as

𝐴(𝑥) := 𝐷 (𝑥)𝐺 (𝑥), (5.2.4)

where 𝐷 (𝑥) := (𝑑𝑖 𝑗 (𝑥 𝑗 )) and 𝐺 (𝑥) := diag(𝑔1(𝑥1), ..., 𝑔𝑛 (𝑥𝑛)). As 𝑔𝑖 and 𝑑𝑖 𝑗 are continu-
ous, 𝐴 is also continuous. Note that for a fixed 𝑥 ∈ R𝑛+, as (5.2.1) holds we have that 𝐷 (𝑥)
is a column substochastic matrix.

𝒚 = 𝟏

𝒉𝟐

ℎ3

𝒉𝟏

𝒚

𝒙

Figure 5.1: Illustration of the functions ℎ1 (dotted), ℎ2 (solid) and ℎ3 (dashed).

Assumption (5.2.1), along with { 𝑓1, ..., 𝑓𝑛} ⊂ M, further highlights the difference between
our coupled model and the models of [156, 241, 242, 288]. Note that the model in Chapter
4 does not consider dispersal costs, as in that case 𝑑𝑖𝑖 = 1 − 𝑑𝑖 𝑗 for 𝑖, 𝑗 ∈ {1, 2}. Further
note that, as is similarly the case in Chapter 4, each 𝑑𝑖 𝑗 being a function of 𝑥 means
that one can incorporate density-dependent effects like competition, mortality and other
ecological processes that may affect individuals both during the process of remaining on
a patch and/or dispersing between patches.

In [156, 288] the authors assumed dispersal was constant. In [156] the authors also had
three additional assumptions on 𝑔𝑖 and 𝑓𝑖, as seen in Chapter 2. In [288] the authors
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5.2. The Metapopulation Model

assumed each region was modelled by an 𝛼-concave monotone map. However, we note
that our regional maps are different.

𝒇𝟏

𝒇𝟐 𝒇𝟑

𝒅𝟏𝟐 𝒅𝟐𝟏

𝒅𝟏𝟑

𝒅𝟑𝟏

𝒅𝟑𝟐

𝒅𝟐𝟑

𝒅𝟏𝟏

𝒅𝟐𝟐 𝒅𝟑𝟑

Figure 5.2: Conceptual diagram of system (5.2.3) when 𝑛 = 3, where 𝑓𝑖 (𝑥𝑖) and 𝑑𝑖 𝑗 (𝑥 𝑗 )
respectively describe the dynamics on and dispersal from patch 𝑗 to 𝑖 for 𝑖 ≠ 𝑗 . When
𝑖 = 𝑗 each 𝑑𝑖𝑖 describes the proportion of individuals remaining on patch 𝑖.

Example 5.2.1. Consider the function 𝑓 (𝑥) = 𝛾𝑥 exp(−(𝑥−1)2), where 𝛾 > 𝑒. Clearly 𝑓 is
𝐶1, 𝑓 (𝑥) > 0 for 𝑥 > 0, 𝑓 (0) = 0, and 𝑓 is of the form 𝑔(𝑥)𝑥 with 𝑔(𝑥) = 𝛾 exp(−(𝑥−1)2).
We can also see that 𝑓 has a unique global maximum at 𝑚 = (1 +

√
3)/2. Therefore we

can conclude that 𝑓 ∈ M. One can verify that

𝑓 ′(𝑥) = 𝛾 exp(−(𝑥 − 1)2) (1 + 2𝑥 − 2𝑥2)
𝑓 ′′(𝑥) = 2𝛾 exp(−(𝑥 − 1)2)

(
2 − 𝑥 − 4𝑥2 + 2𝑥3

)
.

From this we can see that 𝑓 ′(𝑥) > 0 ∀ 𝑥 ∈ (0, 𝑚), but for 𝑚1 ≈ 0.223 we have that
𝑓 ′′(𝑥) > 0 ∀ 𝑥 ∈ (0, 𝑚1). Therefore there does not exist an 𝛼 ∈ (0,∞] such that
𝑓 ′′(𝑥) < 0 for all 𝑥 ∈ (0, 𝛼] and so the definition of 𝛼-concave monotonicity is violated.
Hence we have found 𝑓 ∈ M such that 𝑓 is not 𝛼-concave monotone.

A family of maps closely related to the maps in M are unimodal population maps. Let
𝑓 : R+ → R+ be a𝐶1 map such that 𝑓 (0) = 0 and 𝑓 (𝑥) > 0 for all 𝑥 > 0; 𝑓 has fixed points
{0, 𝐾}, such that 𝐾 ∈ (0,∞), 𝑓 (𝑥) > 𝑥 for 𝑥 ∈ (0, 𝐾) and 𝑓 (𝑥) < 𝑥 for 𝑥 ∈ (𝐾,∞); and 𝑓
has a unique critical point 𝐿 < 𝐾 such that 𝑓 ′(𝑥) > 0 for all 𝑥 ∈ (0, 𝐿), 𝑓 ′(𝑥) < 0 for all
𝑥 ∈ (𝐿,∞), and 𝑓 ′(0) > 0. Such maps are known as unimodal population maps [92]. Let
U be the set of unimodal population maps. It is clear, by definition, that U ⊂ M. Maps
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in U, by assumption, have an unstable extinction equilibrium and a positive equilibrium.
They also have a unique global maximum. The stability of systems with maps in U has
attracted much interest in the past. For examples, see [58, 247, 248, 251].

The maps in U are also closely related to 𝛼-concave monotone maps considered in [288].

Example 5.2.2. Maps in U must possess a positive equilibrium that is greater than
𝐿 > 0. One must also have that they are increasing and concave up to this maximum, and
decreasing and concave down after it. In [288] the authors assumed that the dynamics on
each region was modelled by an 𝛼-concave monotone map of the form 𝑓 (𝑥) := 𝑔(𝑥)𝑥,
where 𝑔 is a strictly decreasing, positive, 𝐶2 map. Clearly if 𝑓 is 𝛼-concave monotone
then it is positive-definite. We also have that 𝑓 ∈ U is unimodal. The authors also assume
𝑓 ′(𝑥) > 0 up to 𝑥 = 𝛼 > 0. This does not require that 𝛼 < 𝐾 and so an 𝛼-concave
monotone map is not necessarily unimodal. If we let 𝛼 = 𝐿 as in the definition of U then
we can see that 𝑓 is concave in [0, 𝛼].

In the next section we will discuss some of the qualitative properties of (5.2.3).

5.3. Stability and Persistence

5.3.1. Extinction

We first state a sufficient condition for local asymptotic stability of the extinction equilib-
rium.

Proposition 5.3.1. Suppose { 𝑓1, ..., 𝑓𝑛} ⊂ M and 𝐹 (𝑥) = 𝐴(𝑥)𝑥, where 𝐴(𝑥) is given by
(5.2.4). Further assume that max𝑖∈{1,...,𝑛} 𝑔𝑖 (0) < 1. Then, 𝑥∗ = 0 is a LAS equilibrium of
system (5.2.3) for all 𝑑𝑖 𝑗 satisfying (5.2.1).

Proof. Assume that max𝑖∈{1,...,𝑛} 𝑔𝑖 (0) < 1. As 𝑓𝑖 is a Kolmogorov-type map, i.e. 𝑓𝑖 (𝑥) =
𝑔𝑖 (𝑥)𝑥, we have that 𝑓𝑖 (0) = 0 for all 𝑖 ∈ {1, ..., 𝑛}. The Jacobian of 𝐹 (𝑥) = 𝐴(𝑥)𝑥 at 0
can be written as

𝐹′(0) :=

©«
𝑑11(0) 𝑓 ′1 (0) 𝑑12 (0) 𝑓 ′2 (0) · · · 𝑑1𝑛 (0) 𝑓 ′𝑛 (0)
𝑑21 (0) 𝑓 ′1 (0) 𝑑22(0) 𝑓 ′2 (0) · · · 𝑑2𝑛 (0) 𝑓 ′𝑛 (0)

...
. . .

...

𝑑𝑛1 (0) 𝑓 ′1 (0) 𝑑𝑛2 (0) 𝑓 ′2 (0) · · · 𝑑𝑛𝑛 (0) 𝑓 ′𝑛 (0)

ª®®®®®¬
. (5.3.1)

As each 𝑓𝑖 is of Kolmogorov type we have that

𝑓 ′𝑖 (𝑥) = 𝑔′𝑖 (𝑥)𝑥 + 𝑔𝑖 (𝑥), 𝑥 ≥ 0 =⇒ 𝑓 ′𝑖 (0) = 𝑔𝑖 (0).
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As 𝑔𝑖 (0) > 0 and 𝑑𝑖 𝑗 (0) ∈ (0, 1), we have that 𝐹′(0) = 𝐴(0) ≻ 0. Recall that 𝜌(𝐵) ≤ ∥𝐵∥1

for 𝐵 ∈ R𝑛×𝑛. Therefore, as (5.2.1) holds, we have that

𝜌(𝐴(0)) ≤ ∥𝐴(0)∥1 = max
𝑖∈{1,...,𝑛}

 𝑓 ′𝑖 (0)
𝑛∑︁
𝑗=1

𝑑 𝑗𝑖 (0)


< max
𝑖∈{1,...,𝑛}

𝑓 ′𝑖 (0)

= max
𝑖∈{1,...,𝑛}

𝑔𝑖 (0).

We thus have that 𝜌(𝐴(0)) < 1 and so 𝑥∗ = 0 is a LAS equilibrium of (5.2.3), which
follows from standard Lyapunov stability results [136]. □

Note that a sufficient condition for 𝑥∗ = 0 to be a LAS equilibrium of the system (2.2.1)
is that | 𝑓 ′(0) | < 1. This then implies that the sufficient condition in Proposition 5.3.1 for
LAS of extinction for each isolated system, with 𝑓𝑖 ∈ M, i.e. max𝑖∈{1,...,𝑛} 𝑔𝑖 (0) < 1, is
also sufficient for LAS of the extinction equilibrium for (5.2.3). Local asymptotic stability
of the extinction equilibrium for each patch means that if there are sufficiently small
abundances on each patch, these patch populations would tend to extinction in isolation.
The result above then can be interpreted as ensuring that, at small population values, these
patches would still tend to extinction when they are all connected by density-dependent
dispersal. This may arise in a situation where habitat quality is poor, or resources are
scarce. In such cases, density-dependent dispersal alone is not enough to sustain the
system, leading to extinction across all the patch populations.

Our next result concerns the global stability of the extinction equilibrium.

Theorem 5.3.2. Suppose { 𝑓1, ..., 𝑓𝑛} ⊂ M, (5.2.1) holds, 𝐹 (𝑥) = 𝐴(𝑥)𝑥, where 𝐴(𝑥) is
given by (5.2.4), and 𝑑𝑖 𝑗 (𝑥) satisfies (5.2.1). Further assume that the following hold:

1. either 𝑑𝑖 𝑗 (𝑥) ≡ 𝑑𝑖 𝑗 ∈ (0, 1) or 𝑑𝑖 𝑗 (𝑥) is decreasing in 𝑥;

2. 𝑔𝑖 (𝑥) is decreasing in 𝑥;

3. 𝜌(𝐴(0)) < 1.

Then, 𝑥∗ = 0 is a GAS equilibrium of (5.2.3).

Proof. Assume 𝜌(𝐴(0)) < 1. In the proof of Proposition 5.3.1 we saw that 𝐹′(0) =

𝐴(0) ≻ 0 and so it follows from Lemma (2.2.5) that there exists 𝑣𝑇 ≻ 0 such that
𝑣𝑇 𝐴(0) ≺ 𝑣𝑇 . Define the function 𝑉 : R𝑛 → R as 𝑉 (𝑥) := 𝑣𝑇𝑥. As 𝑔𝑖 (𝑥) and either 𝑑𝑖 𝑗 (𝑥)
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are decreasing in 𝑥 or 𝑑𝑖 𝑗 (𝑥) ≡ 𝑑𝑖 𝑗 ∈ (0, 1) we have that 𝑣𝑇 𝐴(𝑥) ≪ 𝑣𝑇 𝐴(0) for all 𝑥 ⪰ 0.
As (5.2.3) is a positive system, it follows that for 𝑡 ∈ N

𝑉 (𝑥(𝑡 + 1)) −𝑉 (𝑥(𝑡)) = 𝑉 (𝐹 (𝑥(𝑡))) −𝑉 (𝑥(𝑡))
= 𝑣𝑇 (𝐴(𝑥(𝑡)) − 𝐼) 𝑥(𝑡)
< 𝑣𝑇 (𝐴(0) − 𝐼) 𝑥(𝑡)
< 0.

Hence 𝑉 is decreasing along non-zero trajectories of 𝐹. Clearly 𝑉 is positive-definite,
i.e. 𝑉 (0) = 0 and 𝑉 (𝑥) > 0 for all 𝑥 > 0. For 𝑥 ∈ R𝑛+ we can see that 𝑉 is radially
unbounded, i.e. lim∥𝑥∥→∞𝑉 (𝑥) → ∞. Thus 𝑉 defines a radially unbounded copos-
itive Lyapunov function for 𝐹 with respect to 𝑥∗ = 0 [136]. This then implies that
lim𝑡→∞ 𝑥(𝑡, 𝑥0) = 0. □

Example 5.3.1. If we had that 𝑑𝑖𝑖 (𝑥) ≡ 𝑑𝑖𝑖 ∈ (0, 1) and 𝑑𝑖 𝑗 (𝑥) is decreasing in 𝑥 for
𝑖 ≠ 𝑗 , this can be interpreted as there being a fixed number of remaining individuals over
time on each region, but dispersal from each patch exhibits negative density-dependence.
Positive (negative) density-dependent dispersal is where, for large population densities, the
proportion of individuals dispersing from (remaining on) a region is high. As mentioned
in Chapter 4, positive density-dependent dispersal may be due to factors such as com-
petition/crowding, or dominance hierarchies [195]. On the other hand, negative density
dependence may be due to factors such as aggressive interactions die to territoriality or
mate searching, for example.

We will now investigate when sub-populations may coexist on their respective patches.

5.3.2. Coexistence

We can show that there exists a positive equilibrium of system (5.2.3). Before we do this
we will prove two results. First we will show that 𝐹 is strongly positive.

Lemma 5.3.3. Suppose { 𝑓1, ..., 𝑓𝑛} ⊂ M, (5.2.1) holds and 𝐹 (𝑥) = 𝐴(𝑥)𝑥, where 𝐴(𝑥)
is given by (5.2.4). Then, 𝐹 (𝑥) ≻ 0 for all 𝑥 ∈ R𝑛+\{0} and for all 𝑑𝑖 𝑗 satisfying (5.2.1).

Proof. As each 𝑓𝑖 is a Kolmogorov-type map and (5.2.1) hold, clearly 𝐴(𝑥) ≻ 0 =⇒
𝐹 (𝑥) ≻ 0 for all 𝑥 ⪰ 0. □

Our next result establishes the boundedness of the map 𝐹.
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Proposition 5.3.4. Suppose { 𝑓1, ..., 𝑓𝑛} ⊂ M, (5.2.1) holds, 𝐹 (𝑥) = 𝐴(𝑥)𝑥, where 𝐴(𝑥)
is given by (5.2.4), and 𝑑𝑖 𝑗 (𝑥) satisfies (5.2.1). Then, ∃ 𝑀 > 0 such that ∀ 𝑥 ∈ R𝑛+

∥𝐹 (𝑥)∥1 ≤ 𝑀.

Proof. For 𝑥 ∈ R𝑛+, the 𝑙1 norm of 𝑥 is given by

∥𝑥∥1 =

𝑛∑︁
𝑖=1

𝑥𝑖 = 1𝑇𝑥,

where 1 := (1, ..., 1)𝑇 . It follows from Lemma 5.3.3 that 𝐹 (𝑥) ≻ 0 ∀ 𝑥 ≥ 0. As (5.2.1)
holds we therefore have that

∥𝐹 (𝑥)∥1 = 1𝑇𝐹 (𝑥) ≤
𝑛∑︁
𝑖=1

𝑓𝑖 (𝑥𝑖) ≤
𝑛∑︁
𝑖=1

𝑚𝑖, ∀ 𝑡 > 0.

Thus define the upper bound 0 < 𝑀 :=
∑𝑛
𝑖 𝑚𝑖. □

It follows from Lemma 5.3.3 and Proposition 5.3.4 that 𝐹
(
R𝑛+

)
⊂ R𝑛+ and the sequence

{𝐹 𝑡 (𝑥)}𝑡≥0 has no unbounded trajectory. It is immediate that for any 𝑥0 ∈ R𝑛+, ∥𝑥(𝑡, 𝑥0)∥1 ≤
𝑀 for all 𝑡 ≥ 1.

We now state our first main result of this section, which gives a sufficient condition for the
existence of a positive fixed point of 𝐹.

Theorem 5.3.5. Suppose { 𝑓1, ..., 𝑓𝑛} ⊂ M, (5.2.1) holds, 𝐹 (𝑥) = 𝐴(𝑥)𝑥, where 𝐴(𝑥) is
given by (5.2.4), and 𝑑𝑖 𝑗 (𝑥) satisfies (5.2.1). If 𝜌(𝐴(0)) > 1, then ∃ 𝑥∗ ∈ Int(R𝑛+) such
that 𝐹 (𝑥∗) = 𝑥∗.

Proof. We will prove this by showing that we can find a nonempty, convex and compact
set, Ω1 ⊂ Int(R𝑛+), such that

𝐹 (Ω1) ⊂ Ω1,

which allows us to invoke Brouwers’ Fixed Point Theorem [264].

Step 1: We first construct Ω1 and show it is nonempty and compact. It follows from
Proposition 5.3.4 that there exists a constant 𝑀 > 0, such that ∥𝐹 (𝑥)∥1 ≤ 𝑀 for all
𝑥 ∈ R𝑛+. If 𝜌(𝐴(0)) > 1, it follows from Lemma (2.2.5) that ∃ 𝑣 ≻ 0 such that

𝑣𝑇 𝐴(0) ≻ 𝑣𝑇 .

As 𝐴 : R𝑛+ → R𝑛×𝑛+ is a continuous matrix-valued function there exists a constant 0 < 𝛿 <
𝑀 such that

𝑣𝑇 𝐴(𝑥) ⪰ 𝑣𝑇 , ∥𝑥∥1 ≤ 𝛿.
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For any such 𝑥 ≥ 0 (𝑥 ≠ 0) we then can see that

𝑣𝑇𝐹 (𝑥) = 𝑣𝑇 𝐴(𝑥)𝑥 ⪰ 𝑣𝑇𝑥.

If we define

Ω0 := {𝑥 ∈ R𝑛+ : 𝛿 ≤ ∥𝑥∥1 ≤ 𝑀}

we then have that 𝐹 (𝑥) ≻ 0 for 𝑥 ∈ Ω0 and hence

𝑥 ∈ Ω0 =⇒ 𝑣𝑇𝐹 (𝑥) > 0. (5.3.2)

As 𝐴 is continuous, 𝐹 is also continuous. It then follows from the Extreme Value Theorem
that 𝑣𝑇𝐹 (𝑥) attains its minimum and maximum Ω0. Therefore there exists 𝜅1 > 0 such
that

min
{
𝑣𝑇𝐹 (𝑥), 𝑥 ∈ Ω0

}
= 𝜅1.

Now choose some 𝑥 > 0 with ∥𝑥∥1 ≤ 𝑀 . Set 𝜅2 = 𝑣𝑇𝑥. Then 𝜅2 > 0. Let 𝜅 = min{𝜅1, 𝜅2}
and define

Ω1 := {𝑥 ∈ R𝑛+ : 𝑣𝑇𝑥 ≥ 𝜅, ∥𝑥∥1 ≤ 𝑀}.

By construction Ω1 is non-empty. Clearly Ω1 is closed and bounded, so therefore compact

Step 2: We will now show that Ω1 is convex. Let 𝑥, 𝑦 ∈ Ω1 and let 𝛼 ∈ [0, 1] be arbitrary.
Then, we have that

𝑣𝑇 ((1 − 𝛼)𝑥 + 𝛼𝑦) ≥ (1 − 𝛼)𝜅 + 𝛼𝜅 = 𝜅,

and by the triangle inequality

∥(1 − 𝛼)𝑥 + 𝛼𝑦∥ ≤ (1 − 𝛼)∥𝑥∥ + 𝛼∥𝑦∥
≤ (1 − 𝛼)𝑀 + 𝛼𝑀
= 𝑀.

Therefore
𝑥, 𝑦 ∈ Ω1 =⇒ (1 − 𝛼)𝑥 + 𝛼𝑦 ∈ Ω1

for all 𝛼 ∈ [0, 1], i.e. Ω1 is convex.

Step 3: Finally we will show that 𝐹 maps elements of Ω1 into Ω1. Let 𝑧 ∈ Ω1. There are
two cases to consider for ∥𝑧∥1.

Case 1: Consider 𝛿 ≤ ∥𝑧∥1 ≤ 𝑀 . We saw in (5.3.2) that

𝛿 ≤ ∥𝑧∥1 ≤ 𝑀 =⇒ 𝑣𝑇𝐹 (𝑧) ≥ 𝜅 =⇒ 𝐹 (𝑧) ∈ Ω1.
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Case 2: Consider ∥𝑧∥1 ≤ 𝛿. As 𝛿 ≤ 𝑀 we must then have that

∥𝑧∥1 ≤ 𝛿 =⇒ 𝑣𝑇𝐹 (𝑧) ≥ 𝑣𝑇 𝑧 ≥ 𝜅 =⇒ 𝐹 (𝑧) ∈ Ω1.

In both cases we have that
𝑥 ∈ Ω1 =⇒ 𝐹 (𝑥) ∈ Ω1.

Hence we have found a non-empty, compact, convex set in R𝑛+\{0}, given by Ω1, such that
𝐹 maps Ω1 into itself. Therefore, as 𝐹 is 𝐶1 on Ω1, it follows from Brouwers’ Fixed Point
Theorem [264] that there exists 𝑥∗ ∈ Ω1 such that 𝐹 (𝑥∗) = 𝑥∗. It follows from Lemma
5.3.3 that 𝑥∗ = 𝐹 (𝑥∗) ≻ 0. □

𝛀𝟏

𝜿

𝜿

𝑴

𝑴

𝒙𝟐

𝒙𝟏

Figure 5.3: Illustration of Ω1 in the proof of Theorem 5.3.5 for 𝑛 = 2.

It should be noted that Theorem 7.5 of [255] could be used to give an alternative proof
of the last result, as in the proof of Proposition 4.4.5 in Chapter 4. However, our proof
above directly uses the specific properties of the system (5.2.3) rather than relying on more
general conditions. Moreover, it clarifies that the positive equilibrium is contained in the
region Ω1. An illustration of the region Ω1 is given in Fig. 5.3 for when 𝑛 = 2.

As is the case in Chapter 4, to derive sufficient conditions for either uniqueness or the
local/global stability of a positive equilibrium of (5.2.3) is not as tractable as when dispersal
is constant/passive. In Theorem 3.5.1 [156] the authors used the fact that their system was
strongly monotone, which allowed them to prove both uniqueness and global asymptotic
stability of a positive equilibrium of their coupled system. A map 𝐹 : R𝑛 → R𝑛 is strongly
monotone if 𝐹 (𝑥) ⪰ 𝐹 (𝑦) (resp., 𝐹 (𝑥) ≻ 𝐹 (𝑦)) whenever 𝑥 ⪰ 𝑦 (resp., 𝑥 ≻ 𝑦). As there
are many different choices of regional maps in M and for each dispersal function 𝑑𝑖 𝑗 , in
the current context our model is not in general strongly monotone, as we can demonstrate
with a simple example.
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Example 5.3.2. Let 𝑛 = 2. Consider

𝑓1(𝑥) = 𝑓2(𝑥) = 𝑎𝑥 exp(−𝑏𝑥) (5.3.3)

for 𝑎, 𝑏 > 0. Further let 𝑑𝑖𝑖 (𝑥) ≡ 𝑑𝑖𝑖 ∈ (0, 1) and 𝑑𝑖 𝑗 (𝑥) ≡ 𝑑𝑖 𝑗 ∈ (0, 1), for 𝑖, 𝑗 ∈ {1, 2},
𝑖 ≠ 𝑗 . Each 𝑑𝑖 𝑗 (𝑥) is constant for all 𝑥 ⪰ 0. Recall from Chapter 4 that the Ricker map
of the form (5.3.3) is increasing in 𝑥 up to the point 𝑥 = 1/𝑏 and is decreasing after this
point. Therefore in this simple illustrative example, 𝐹 cannot be strongly monotone.

An alternative perspective to asymptotic stability is that of uniform persistence. Note that
as 𝐹′(0) = 𝐴(0) ≻ 0 we have that 𝐹′(0) is irreducible, as already shown in the proof of
Proposition 5.3.1. It then follows from Corollary 3.18 in [255], that if 𝜌(𝐴(0)) > 1, then
the system (5.2.3) is uniformly weakly ∥ · ∥-persistent for ∥ · ∥ any norm on R𝑛. We will
now show that 𝜌(𝐴(0)) > 1 is also sufficient for (5.2.3) to be uniformly strongly persistent
with respect to two different persistence functions, for arbitrary choices of both 𝑓𝑖 ∈ M
and 𝑑𝑖 𝑗 satisfying (5.2.1).

Theorem 5.3.6. Suppose { 𝑓1, ..., 𝑓𝑛} ⊂ M and 𝐹 (𝑥) = 𝐴(𝑥)𝑥, where 𝐴(𝑥) is given
by (5.2.4) and 𝑑𝑖 𝑗 (𝑥) satisfies (5.2.1). Let ∥ · ∥ be any norm on R𝑛. Define 𝜂1(𝑥) :=
min𝑖∈{1,...,𝑛} 𝑥𝑖 and 𝜂2(𝑥) := ∥𝑥∥. If 𝜌(𝐴(0)) > 1, then 𝐹 is uniformly strongly 𝜂𝑖-
persistent.

Proof. Assume 𝜌(𝐴(0)) > 1. It follows from Lemma 5.3.3 that

𝐹
(
R𝑛+\{0}

)
⊂ Int

(
R𝑛+

)
.

Clearly 𝜌(𝐴(0)) > 1 implies that 𝜌(𝐴(0)𝑇 ) > 1. In the proof of Proposition 5.3.1 we saw
that 𝐹′(0) = 𝐴(0) ≻ 0. It then follows from Lemma 2.2.2 that there exists 𝑣 ≻ 0 such that

𝐹′(0)𝑇 𝑣 = 𝐴(0)𝑇 𝑣 ≻ 𝑣 =⇒ 𝐹′(0)𝑇 𝑣 ≥ 𝑟0𝑣

for some suitably chosen 𝑟0 > 1. It follows from Proposition 5.3.4 that there exists 𝑀 > 0
such that ∥𝐹 (𝑥)∥1 ≤ 𝑀 for all 𝑥 > 0. As noted in [255], the set

𝑋
(𝑖)
0 := {𝑥0 ∈ R𝑛+ : 𝜂𝑖 (𝑥(𝑡, 𝑥0)) = 0, ∀ 𝑡 ≥ 0}

is equal to {0} precisely when 𝐹 (0) = 0 and for all 𝑐 > 0 there exists 𝑠 ∈ N such that

𝐹𝑠 (𝑥) ≻ 0, 0 < ∥𝑥∥ ≤ 𝑐, (5.3.4)

for 𝑖 ∈ {1, 2}, where ∥ · ∥ is any norm on R𝑛. We can see from the form of 𝐹 that

𝑓𝑖 (0) = 0 ∀ 𝑖 ∈ {1, ..., 𝑛} =⇒ 𝐹 (0) = 0.
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As 𝐹 is strongly positive we can also see that (5.3.4) holds for all 𝑐 > 0, with 𝑠 = 1.
Therefore we have that 𝑋 (𝑘)

0 = {0}, 𝑘 ∈ {1, 2}. We have thus verified the assumptions of
Theorem 2.3.2. We can thus conclude that there exists 𝜖1, 𝜖2 > 0 such that

min
𝑖∈{1,...,𝑛}

𝑥𝑖 (0) > 0 =⇒ lim inf
𝑡→∞

min
𝑖∈{1,...,𝑛}

𝑥𝑖 (𝑡) ≥ 𝜖1,

∥𝑥(0)∥ > 0 =⇒ lim inf
𝑡→∞

∥𝑥(𝑡)∥ > 𝜖2,

i.e. (5.2.3) is uniformly strongly 𝜂𝑖-persistent, 𝑖 ∈ {1, 2}. □

5.4. Sources and Sinks: A Numerical Study

In this section we will use numerical methods to investigate several questions suggested
by the results of the previous section. All numerical computations and simulations were
conducted in R [263]. This section also illustrates how the model class we consider either
supports or exhibits behaviours that are distinct from some of the other metapopulation
models discussed earlier. Let us consider the simplest case of (5.2.3) when 𝑛 = 2.
Therefore (5.2.3) reduces to

𝑥1(𝑡 + 1) = 𝑑11(𝑥1(𝑡)) 𝑓1(𝑥1(𝑡)) + 𝑑12(𝑥2(𝑡)) 𝑓2(𝑥2(𝑡))
𝑥2(𝑡 + 1) = 𝑑22(𝑥2(𝑡)) 𝑓2(𝑥2(𝑡))︸                   ︷︷                   ︸

remaining

+ 𝑑21(𝑥1(𝑡)) 𝑓1(𝑥1(𝑡)),︸                    ︷︷                    ︸
dispersing

(5.4.1)

for 𝑥(0) ∈ R2
+. This is similar in form to system (4.2.1) in Chapter 2, but in this case

we have that (5.2.2) holds and so each 𝑑𝑖 𝑗 can be a different map for the remaining and
dispersing components. We also have that 𝑓1 and 𝑓2 do not have to be the same map (in
Chapter 4 both were Ricker maps), but can be two different maps in M.

In this section we will investigate the following:

• Does an analagous result to Theorem 3.5.1 hold for (5.2.3)?

• Is 𝜌(𝐴(0)) > 1 necessary for the existence of a positive equilibrium?

• How does varying parameters of the parameterised dispersal maps 𝑑𝑖 𝑗 affect the
total population size over time?

• How does varying parameters of system (5.2.3) affect its asymptotic behaviour?

Note that the following example is a simple consequence of Theorem 5.3.1.

Example 5.4.1. Consider (5.4.1) with each 𝑓𝑖 given by a Generalised Beverton-Holt,
Hassell, Ricker or Logistic map. Then, if 𝑎𝑖 ∈ (0, 1) for 𝑖 = 1, 2, it follows from
Proposition 5.3.1 that extinction for (5.4.1) is at least LAS for any choice of 𝑑𝑖 𝑗 (𝑥).
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Given a 𝐶1 Kolmogorov type map, 𝑓 (𝑥) = 𝑔(𝑥)𝑥, in [247] the author states that

a) 𝑔(𝑥) < 1 ∀ 𝑥 ≥ 0 =⇒ 𝑥(𝑡, 𝑥0) → 0 as 𝑡 → ∞ for all 𝑥(0) = 𝑥0 > 0, and

b) 𝑔(0) > 1 =⇒ 𝑥(𝑡, 𝑥0) ↛ 0 as 𝑡 → ∞ for some 𝑥(0) = 𝑥0 > 0.

For 𝑓𝑖 ∈M, we call region 𝑖 a sink if it is a low quality habitat where an isolated population
would go extinct, i.e. a) holds for 𝑔𝑖. On the other hand, region 𝑖 is a source if it can sustain
an inhabiting population, i.e. b) holds for 𝑔𝑖. Throughout the rest of this section we will
explore our model in the context of source-sink dynamics.

5.4.1. Regional Dynamics

To demonstrate the impact and flexibility of our model, let’s consider two different classes
for local dynamics: Ricker and Hassell maps. Note that other choices of maps in M are of
course possible. Assume that 𝑓1 is given by a Ricker map, i.e. 𝑓1(𝑥) = 𝑎1𝑥 exp(−𝑏1𝑥) and
𝑓2 is given by what we call a Hassell-1 map (a Hassell map as in Section 5.2.1 with 𝑐 = 1),
i.e. 𝑓2(𝑥) = (𝑎2𝑥)/(1 + 𝑏2𝑥), where 𝑎𝑖, 𝑏𝑖 > 0 for 𝑖 = 1, 2. In Chapter 4 we outlined some
of the qualitative properties of the Ricker map. We will recall these and some properties
of the Hassell-1 for ease of exposition in the current context.

For Ricker and Hassell-1 maps, one has that 𝑔𝑖 (0) = 𝑎𝑖 < 1 implying that 𝑔𝑖 (𝑥𝑖) < 1
for all 𝑥𝑖 ≥ 0 and so the regional extinction equilibrium is GAS for 𝑓𝑖. If 𝑎𝑖 > 1, the
extinction equilibrium is unstable for 𝑓𝑖. This also implies that there exists a unique
positive equilibrium for 𝑓𝑖. For 𝑓1 this is given by 𝑥∗

𝑅
:= ln(𝑎1)/𝑏1 and for 𝑓2 this is given

by 𝑥∗
𝐻

:= (𝑎2 −1)/𝑏2. For the Ricker map, if 1 < 𝑎1 < 𝑒 we have that 𝑥∗
𝑅

is LAS. If 𝑎1 > 𝑒

we have that 𝑥∗
𝑅

is unstable. For the Hassell-1 map, if 𝑎2 > 1 we have that 𝑥∗
𝐻

is GAS
[59]. Unless stated otherwise we further assume that region 1 is a source and region 2 is a
sink, i.e. 𝑎1 > 1 and 𝑎2 < 1. Thus we are interested in examining some of the dynamical
behaviour of (5.4.1) in various scenarios when a patch destined for extinction is coupled
to a patch which exhibits long-term growth.

5.4.2. Density-Dependent Dispersal

Unless stated otherwise, throughout the rest of this section, let the dispersal functions in
(5.4.1) be given by

𝑑𝑖 𝑗 (𝑥 𝑗 ) =
𝑟𝑖 𝑗

(1 + exp
(
−𝑘𝑖 𝑗

(
𝑥 𝑗 − 𝑠𝑖 𝑗

) ) , (5.4.2)
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where 𝑟𝑖 𝑗 ∈ (0, 1) and 𝑘𝑖 𝑗 , 𝑠𝑖 𝑗 ≥ 0 for 𝑖, 𝑗 ∈ {1, 2}. Note that this form of dispersal map
has considerable biological justification. In the papers of [164, 272, 289] the authors
conducted numerical simulations using such a dispersal map for a variety of ecological
scenarios. The authors used their models with density-dependent dispersal to investigate
various natural phenomena, such as patch-population synchrony, where populations on
two disjoint patches exhibit synchronous dynamics over time. We will use such a dispersal
map to investigate some of the qualitative behaviour of (5.4.1).

𝒚

𝒄

𝒅 𝒙

𝒙

𝒂

𝟏 + 𝐞𝐱𝐩 𝒃𝒄

𝒂

𝒂

𝟐

Figure 5.4: Illustration of 𝑦 = 𝑑 (𝑥) := 𝑎(1 + exp (−𝑏 (𝑥 − 𝑐))−1 (grey solid curve) for
𝑎 ∈ (0, 1) and 𝑏, 𝑐 ≥ 0. The dotted grey line is the curve 𝑦 = 𝑎. The dashed grey line is the
curve 𝑦 = 𝑑 (0) = 𝑎(1 + exp(𝑏𝑐))−1. The dashed black line is the curve 𝑦 = 𝑑 (𝑐) = 𝑎/2.
The dotted black line is the curve 𝑥 = 𝑐.

The dispersal function (5.4.2) may describe, for example, regional populations that exhibit
a mixture of both negative and positive density-dependent dispersal, which can be con-
trolled through the parameters 𝑟𝑖 𝑗 , 𝑘𝑖 𝑗 and 𝑠𝑖 𝑗 [237]. For instance, one can model positive
density-dependent dispersal on both regions by letting both 𝑟𝑖𝑖 and 𝑘𝑖𝑖 be sufficiently small,
and 𝑟𝑖 𝑗 and 𝑘𝑖 𝑗 be sufficiently large, for 𝑖 ≠ 𝑗 . In other words, 𝑑𝑖𝑖 (𝑥𝑖), which models the
proportion of individuals remaining on region 𝑖, will be relatively small for all values of
𝑥𝑖 and is an increasing function of 𝑥𝑖, with the rate of increase being quite gradual. At the
same time, 𝑑 𝑗𝑖 rapdily increases toward 𝑟 𝑗𝑖, which is relatively close to 1, as 𝑥 𝑗 increases.

Density-dependent dispersal may be positive or negative depending on the specific context.
For example, it is known that for many aphid species, when densities become too high,
wingless generations can begin to produce winged offspring, which results in increased
movement away from their natal region [36]. On the other hand, when densities become
sufficiently low, perhaps due to unfavourable conditions, aphid populations will produce
winged individuals in order to disperse and occupy other habitats that have the potential
to increase fecundity and survival.
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The dispersal function (5.4.2) is also a specific form of the generalised logistic function
or so-called Richards curve [233]. An illustration of a function of the form of (5.4.2) is
given in Fig. 5.4. We can observe that the following hold:

𝑑𝑖𝑖 (𝑥) + 𝑑 𝑗𝑖 (𝑥) < 1 ⇐⇒ 𝑟𝑖𝑖 + 𝑟 𝑗𝑖 < 1, 𝑖 ≠ 𝑗 ;

𝑑𝑖 𝑗 (0) =
𝑟𝑖 𝑗

1 + exp(𝑘𝑖 𝑗 𝑠𝑖 𝑗 )
> 0;

lim
𝑥→∞

𝑑𝑖 𝑗 (𝑥) = 𝑟𝑖 𝑗 < 1; and

𝑑𝑖 𝑗
(
𝑠𝑖 𝑗

)
=
𝑟𝑖 𝑗

2
.

5.4.3. Global Stability Dichotomy

Theorem 5.3.5 gave a sufficient condition for the existence of a positive equilibrium for
(5.2.3), the proof of which gave a region in the state space where one can find such an
equilibrium. Theorem 3.5.1 stated sufficient conditions for the global stability of the
extinction equilibrium and a positive equilibrium, as proved in [156].

In relation to (5.2.3), a natural question to ask is: does an analagous result hold to Theorem
3.5.1 for any choice of appropriate 𝑓𝑖 and 𝑑𝑖 𝑗? In particular we ask, for { 𝑓1, ..., 𝑓𝑛} ⊂ M
and 𝑑𝑖 𝑗 satisfying (5.2.1),

• does 𝜌(𝐴(0)) < 1 =⇒ 𝑥∗ = 0 is a GAS equilibrium for system (5.2.3); and

• does 𝜌(𝐴(0)) > 1 =⇒ 𝑥∗ ≻ 0 is a GAS equilibrium for system (5.2.3)?

The answers to the above questions are in fact no, as we can demonstrate using examples.

First we consider the case when 𝜌(𝐴(0)) < 1.

Example 5.4.2. Let all parameters be as in Fig. 5.5. Let 𝑎1 = 50. Then we get that
𝜌(𝐴(0)) ≈ 0.1051 < 1. If we simulate this parameterised system we can observe in
Fig. 5.5 (left) the existence of a periodic solution of period 2. Hence 𝑥∗ = 0 is not GAS.

Next we consider the case when 𝜌(𝐴(0)) > 1.

Example 5.4.3. Let all parameters be as in Fig. 5.5. Let 𝑎1 = 750. Then we get that
𝜌(𝐴(0)) ≈ 1.058 > 1. If we simulate this parameterised system we can observe in Fig. 5.5
(right) the existence of a periodic solution of period 2. Hence 𝑥∗ ≻ 0, which exists by
Theorem 5.3.5, is not GAS.
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Let 𝑥 (1)
𝑃

and 𝑥 (2)
𝑃

respectively be the period-2 trajectories in Examples 5.4.2 and 5.4.3. We
numerically checked that, for 𝑖 = 1, 2, 𝐹2(𝑥 (𝑖)

𝑃
) = 𝐹 (𝐹 (𝑥 (𝑖)

𝑃
)) = 𝑥 (𝑖)

𝑃
.

Figure 5.5: Simulated periodic dynamics of (5.4.1) for (left) 𝑎1 = 50 and (right) 𝑎1 = 750.
We plot the last 10 out of 𝑇 = 500, 000 time steps. Here, dark grey is region 1 and black
is region 2. In both simulations we let 𝑎2 = 0.4, 𝑏1 = 0.04, 𝑏2 = 0.01, 𝑟11 = 0.2, 𝑟22 =

0.3, 𝑟12 = 0.6, 𝑟21 = 0.7, 𝑘11 = 𝑘22 = 𝑘12 = 𝑘21 = 0.5, 𝑠11 = 10, 𝑠22 = 6, 𝑠12 = 3 and
𝑠21 = 12. Initial conditions in both were (𝑥1(0), 𝑥2(0)) = (92, 103).

5.4.4. Positive Fixed Point Existence

Theorem 5.3.5 shows that 𝜌(𝐴(0)) > 1 is sufficient for the existence of a positive fixed
point for (5.2.3). We can numerically show that this is not necessary.

Example 5.4.4. Let 𝑎1 = 4 and 𝑎2 = 0.9. Further let all other parameters be as in Fig. 5.6.
We can then observe that 𝜌(𝐴(0)) ≈ 0.81 < 1 but (𝑥∗1, 𝑥

∗
2) ≈ (28.17, 9.52) is a positive

equilibrium of this system (see also Fig. 5.6).

We simulated this system for 400 different positive initial conditions in Fig. 5.6. The
results of this simulation suggest this equilibrium is unique and locally stable. We observed
convergence to the extinction equilibrium when initial conditions were sufficiently close
to the boundary of R2

+. This behaviour is distinct to the dynamical behaviour in [156], as
seen via Theorem 3.5.1. As mentioned above, the spectral radius dichotomy for stability
does not, in general, hold for the model class we consider. However, when 𝑔𝑖 and 𝑑𝑖 𝑗
are decreasing with 𝑑𝑖𝑖 constant, we can ensure GAS for a positive equilibrium (Theorem
5.3.5).
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Figure 5.6: Simulations of (5.4.1) for various positive initial conditions 𝑥(0) ∈ [1, 30]2,
where dark grey (left) and black (right) trajectories respectively correspond to regions 1
and 2. We let 𝑎1 = 4, 𝑎2 = 0.9, 𝑏1 = 0.04, 𝑏2 = 0.01, 𝑟12 = 𝑟21 = 0.1, 𝑟11 = 𝑟22 = 0.75,
𝑘12 = 𝑘21 = 𝑘11 = 𝑘22 = 1 and 𝑠12 = 𝑠21 = 𝑠11 = 𝑠22 = 1. We increased the number of
iterations for each plot to 100, 000 to ensure convergence to the fixed point approximately
given by (𝑥∗1, 𝑥

∗
2) ≈ (28.17, 9.52).

5.4.5. The Total Population Size

In [93] the authors looked at how dispersal affects the total population before and after
coupling. They demonstrated that for the specific planar systems with constant dispersal
rates, dispersal can have varying effects on the overall population. We will now present
two simple examples where one can observe analogous effects, when dispersal is nonlinear
and asymmetric, and when regional maps come from different model classes. We will
specifically look at the affects of source-sink and source-source dynamics.

5.4.5.1. Source-Sink

To give a simple demonstration of these effects in a source-sink context we will let
𝑟 = 𝑟12 = 𝑟21 vary in (0, 0.5) and fix all other parameters. We also let 𝑑𝑖𝑖 to be constant,
i.e. the proportion remaining in region 𝑖 stays fixed over time. Note that a sufficient
condition for (5.2.1) to hold in this context is that 𝑟𝑖 𝑗 ∈ (0, 0.5) for 𝑖, 𝑗 ∈ {1, 2}, 𝑖 ≠ 𝑗 . Let
𝑎1 = 65, 𝑎2 = 0.4 and 𝑑11(𝑥) = 𝑑22(𝑥) ≡ 0.499. Further let the remaining parameters be
as in Fig. 5.6. We have that

𝐴(0) =
©«

𝑟11𝑎1
𝑟𝑎2

1 + exp(𝑘12𝑠12)
𝑟𝑎1

1 + exp(𝑘21𝑠21)
𝑟22𝑎2

ª®®¬ ,
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which, for a given 𝑟, has characteristic polynomial approximately given by

𝜒(𝜆) ≈ (32.4 − 𝜆) (0.2 − 𝜆) − 1.9𝑟2.

By solving for 𝜆 in the above equation we can observe that 𝜌(𝐴(0)) ≈ 𝑟𝑎1 ≈ 32.4 > 1 for
all 𝑟 ∈ (0, 0.5). It follows from Theorem 5.3.6 that (5.2.3) is uniformly strongly persistent
with respect to the total population size. Despite this, we can see from Fig. 5.7 that for
certain values of 𝑟, dispersal can have an increasing, decreasing or neutral effect on the
total population size.

Figure 5.7: Plot of 𝑥1(𝑇) + 𝑥2(𝑇) when patches are connected by dispersal (solid dark
grey) and when isolated (dashed black) after 𝑇 = 10, 000 time steps. Initial conditions,
(𝑥1(0), 𝑥2(0)) = (55, 54).

In our example we see from Fig. 5.7, that after some critical value, 𝑟𝑐 ≈ 0.22, increasing
𝑟 has a monotonically increasing effect on the total population size. This may be due to
some sort of population buffering, where increased dispersal may lead to greater overall
population resilience. If a sink population faces environmental pressures, increasing the
dispersal rate beyond some critical value may allow for quicker replenishment from the
source patch, maintaining higher effective population sizes across the landscape. Note
that while we know the population is uniformly strongly persistent, it is possible that the
asymptotic time when this occurs may change when varying 𝑟 . It is also possible that the
persistence threshold 𝜖 changes when varying 𝑟.

5.4.5.2. Source-Source

We also conducted an analagous simulation for the case where both regions were sources
(see Fig. 5.8). We kept the initial conditions and all parameters the same as in Fig. 5.7
and set 𝑎2 = 10, i.e. region 2 is also a source. We can then see that, although 𝑎1 is the
same as in the previous source-sink case, when we connect two sources by dispersal we
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can get that the total population size is always below that of the case where the regions are
isolated, for identical initial conditions.

Figure 5.8: Plot of 𝑥1(𝑇) + 𝑥2(𝑇) when two source regions are connected by dispersal
(solid dark grey) and when isolated (dashed black) after 𝑇 = 10, 000 time steps. Initial
conditions, (𝑥1(0), 𝑥2(0)) = (55, 54), were as in Fig. 5.7.

The importance of studying the effect of dispersal on the total population has been em-
phasised in [113] for planar systems, where each region was a source and dispersal was
constant. We have demonstrated that, as did [93] for the case of constant dispersal, the
manner in which two patches are connected can have varying effects on the total population
size.

5.4.6. Bifurcation Analyses

In the above numerical simulations we observed that varying dispersal and regional pa-
rameter values can result in quite complex dynamical behaviour for trajectories of system
(5.4.1). Therefore in order to briefly explore parameter sensitivity we will conclude this
section by looking at single- and two-parameter bifurcation diagrams.

As 𝑔𝑖 (0) := 𝑎𝑖 determines stability (of the extinction and/or positive equilibrium) on region
𝑖, we produced a two-parameter bifurcation diagram for 𝑎1 and 𝑎2, to observe what range
of dynamical behaviour can arise. Recall the ad-hoc informal description of chaos [258]
given in Chapter 2. Fig. 5.9 shows an example of a numerical simulation of (5.4.1) with
𝑎1 = 90 and 𝑎2 = 0.14, and all other parameters as in Fig. 5.5. We simulated (5.4.1) for
𝑇 = 500, 000 time steps, while also numerically computing the number of unique values
attained over [0, 𝑇]. This resulted in no observed periodic behaviour. We also tested
if this aperiodicity is sensitive to choices in initial conditions. In particular, for various
sufficiently small 𝜖𝑖 > 0, initial conditions given by (𝑥1(0), 𝑥2(0)) = (131 ± 𝜖1, 19 ± 𝜖2),
resulted in trajectories of (5.4.1) that enter a different aperiodic regime from those observed
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in Fig. 5.9. These observations suggest that (5.4.1) may be capable of dynamical behaviour
similar to that exhibited by chaotic systems.

Figure 5.9: Simulated dynamics of (5.4.1) for the initial condition (𝑥1(0), 𝑥2(0)) =

(131, 19), where black and dark grey trajectories respectively correspond to region 1
and 2, where 𝑇 = 500, 000. We let 𝑎1 = 90, 𝑎2 = 0.14, while all other parameters were as
in Fig. 5.5. The last 50 time steps are plotted.

In order to produce a two-parameter bifurcation diagram for 𝑎1 and 𝑎2, we considered the
last 100 observations after 100, 000 iterations (see Fig. 5.10). All other parameters were
fixed as in Fig. 5.5. We produced bifurcation diagrams for various other initial conditions
(different from the one in Fig. 5.5) and observed similar asymptotic behaviour. In Fig. 5.10
we let 𝑎1 ∈ (1, 300] and 𝑎2 ∈ (0, 1). The colour-number legend in Fig. 5.10 shows the
period of the various periodic trajectories, with 1 representing convergence to a unique
fixed point (either extinction or a positive equilibrium), and > 8 representing periods
higher than 8 and possibly chaotic dynamics, as chosen also in [279]. In Fig. 5.10 we can
observe that a large region of the (𝑎1, 𝑎2)−parameter space consists of trajectories that
either converge to a fixed point or enter period-2 periodic trajectories. For 𝑎2 ∈ (0, 0.28)
we see a region where period-2 periodic trajectories emerge from chaotic type dynamics.
For sufficiently low values of 𝑎2 we see a portion of the (𝑎1, 𝑎2)-plane where there is high
sensitivity to changes in 𝑎1. One moves from period-2 periodic trajectories to regions
of higher period and potentially chaotic regimes, followed by regions where trajectories
converge to extinction for low enough 𝑎2. This diagram demonstrates the complexity
that the model we consider can capture. That is, depending on the appropriate choice of
both the dispersal and regional maps, deriving simple criteria for local/global stability of
extinction or a positive equilibrium, in terms of 𝑎1 and 𝑎2, is not so trivial.

We will now observe how varying 𝑎𝑖, with 𝑎 𝑗 fixed, for 𝑖 ≠ 𝑗 , affects the asymptotic
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dynamics of (5.4.1). We will do this by giving a single-parameter bifurcation plot for each
𝑎𝑖 vs 𝑥1 and 𝑥2. First let all parameters except 𝑎1 and 𝑎2, be as in Fig. 5.5. Similar to
Fig. 5.10, we considered the last 100 observations after 100, 000 iterations. We first fix
𝑎1 to a relatively low (Fig. 5.11 (left)) and high value (Fig. 5.11 (right)), while varying 𝑎2

within (0, 1). We set (𝑥1(0), 𝑥2(0)) = (20, 10). We produced single-parameter bifurcation
diagrams for various other initial conditions and observed similar asymptotic behaviour.
For 𝑎1 = 10, Fig. 5.11 (left), we observed (stable) fixed point regimes for all values of 𝑎2

in the interval (0, 1). Once we increased 𝑎1 to 100 for small 𝑎2 we observe stability of
the extinction equilibrium and then the appearance of periodic windows, where there was
period halving bifurcations as 𝑎2 increased. For all values of 𝑎2 > 𝑐1 ≈ 0.24, we see the
appearance of period-2 periodic trajectories. Thus for a low enough range of 𝑎2 values
and high enough 𝑎1 we see chaotic-type dynamics. These then undergo a period-halving
route to a (seemingly) locally stable period-2 solution.

Figure 5.10: Bifurcation diagram for the (𝑎1, 𝑎2)-plane where regions 1 and 2 were re-
spectively given by Ricker and Hassel-1 maps, for 𝑎1 ∈ (1, 300], 𝑎2 ∈ (0, 1). Initial
conditions were given by (𝑥1(0), 𝑥2(0)) = (131, 19). Other parameter values were as in
Fig. 5.5. The colour-number legend shows the period of the various periodic trajectories
(with periods 2-8), with 1 representing convergence to a unique fixed point (either extinc-
tion or a positive equilibrium), and > 8 representing periods higher than 8 and possibly
chaotic dynamics. Parameter grid resolution was 150 × 150.

We also fixed 𝑎2 to a relatively low (Fig. 5.12 (left)) and high value (Fig. 5.12 (right)),
while varying 𝑎1 within (1, 150). We set (𝑥1(0), 𝑥2(0)) = (20, 10), as in Fig. 5.11. In
this case we observed significantly different behaviour than in Fig. 5.11. For 𝑎2 = 0.1 we
observed that extinction was stable for sufficiently small 𝑎1 values, with a stable positive
fixed point emerging, followed by the appearance of periodic windows. As 𝑎1 increased
toward 150 we observed period doubling bifurcations. We then enter a chaotic regime for
large 𝑎1 values where the dynamics become quite unpredictable. Once we increased 𝑎2 to
0.9 we saw that for low enough values of 𝑎1 extinction is stable, and for sufficiently large
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values of 𝑎1 less than 𝑐2 ≈ 75 we observe stability of a positive equilibrium followed by
the emergence of a stable period-2 solution.

Figure 5.11: Bifurcation diagrams of 𝑎2 ∈ (0, 1) versus 𝑥1 (dark grey) and 𝑥2 (black),
where regions 1 and 2 were respectively Ricker and Hassell-1 maps. We considered the
last 100 observations after 10, 000 iterations when (left) 𝑎1 = 10 and (right) 𝑎1 = 100.
Initial conditions where (𝑥1(0), 𝑥2(0)) = (20, 10) for both scenarios.

Figure 5.12: Bifurcation diagrams of 𝑎1 ∈ (1, 150) versus 𝑥1 (dark grey) and 𝑥2 (black),
where regions 1 and 2 were respectively Ricker and Hassell-1 maps. We considered the
last 100 observations after 10, 000 iterations when (left) 𝑎2 = 0.1 and (right) 𝑎2 = 0.9.
Initial conditions where (𝑥1(0), 𝑥2(0)) = (20, 10) in both scenarios.
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5.5. Summary

Understanding the qualitative dynamics of sub-populations following coupling (via dis-
persal) is important for numerous ecological applications. In this chapter, we considered a
nonlinear model of dispersal, giving sufficient conditions for the stability of the extinction
equilibrium, uniform persistence, and the existence of a positive fixed point. We also
briefly explored how our results, via numerical simulations and bifurcation diagrams,
can be used to study the long term dynamics of populations dispersing between sources
and sinks. Our numerical results show that introducing density-dependent dispersal can
alter the asymptotic dynamics of a previously passive dispersal model. In particular, we
observed both periodic dynamics and chaotic-type dynamics, which is different to the be-
haviour of the passive dispersal models that we mention throughout the chapter. We also
saw that the existence of a positive fixed point is possible when 𝜌(𝐴(0)) < 1, showing that
𝜌(𝐴(0)) > 1 is not necessary for this fixed point to exist. We also conducted simulations
to demonstrate the overall effect of density-dependent dispersal on the asymptotic total
population size, showing that the way two patches are connected via dispersal is highly
sensitive to changes in parameter values and choices in regional and dispersal maps.
This is important for conservation management, if one wants to know how heterogeneous
sub-populations can persist within a fragmented landscape.
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6. Diffusive Stability and Growth for
Populations with Demographic Structure

In this chapter, we propose a two-patch, discrete-time model of diffusive dispersal between
populations with demographic structure. This accompanies the work in Chapters 4 and
5 by considering dispersal between populations that are partitioned into an arbitrarily
finite number of compartments or classes, which can correspond to their life cycle, for
example. We demonstrate the relation of the existence of various common Lyapunov
functions to the global stability of the extinction equilibrium, which is robust to changes
in diffusive couplings, what we call robust diffusive stability. Additionally, we explore the
opposite scenario, so-called diffusive growth, where we are interested in finding specific
diffusive couplings that lead to overall population growth. We apply our results to various
matrix classes commonly utilised in structured population modelling. Finally we explore
an additional model of stage-structured diffusion and state results related to matrices of
Leslie and LPA form.

6.1. Motivation

As demonstrated in the Chapters 4 and 5, dispersal within a patchy environment has
important consequences for both invasive species management and metapopulation con-
servation. Although we have discussed the importance of including density-dependent
dispersal, we will now consider a different perspective on dispersal, namely linear diffu-
sion between demographically-structured populations. Diffusion, or diffusive dispersal,
means that, at a given time, dispersal/movement occurs from an area of high density to
an area of low density. The model we propose in this chapter assumes that the strength
of movement between classes is fixed over time, i.e. is passive diffusion. Although we
have demonstrated that density-dependent dispersal is important for ecological dynamics,
the model in this chapter we focus on a simpler scenario where movement between pop-
ulations is based only on density gradients. This approach helps us study how diffusion
affects the spatial dynamics of demographically-structured populations. The model we
consider can describe, for example, migratory species that disperse along some resource
or environmental gradient [143].

Individuals within a population transition through distinct developmental stages, as was
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discussed in Chapter 3. They can also be partitioned into other demographic classes such
as age, sex, kin groups and size. This motivates the use of demographically-structured
population models, where individuals are partitioned into distinct compartments/groups
[61, 62]. These groups may interact with one another, like for example if we split the
populations into male and female. There also may be transitions between such groups
corresponding to their life-cycle, like for example with juvenile and adult stages. This
class of models in turn allows for the consideration of within-population variation that
is common across many species. Knowledge of how the strength and mechanisms of
dispersal within such patchy populations is important to consider in order to understand
the effects of habitat fragmentation and biodiversity loss on vulnerable and endangered
species exhibiting such demographic structure [23].

In this chapter, inspired by the work in [69], we consider a discrete-time linear model for
the dynamics of demographically-structured populations subject to diffusive dispersal. In
particular we want to investigate when diffusively coupled populations grow unbounded
or decline to extinction. As demonstrated in the fundamental theorem of demography (see
Chapter 3), this reduces to deriving sufficient conditions for 𝜌(𝐴) ⋄ 1, where 𝐴 ∈ R𝑛×𝑛+ is
the system matrix, describing interconnections between demographic classes, and ⋄ is one
of the relations > or <. In this chapter we will derive conditions that ensure that two sink
regions can be coupled to ensure that the resulting coupled system has a GAS extinction
equilibrium, which is robust to changes in diffusive couplings. This then determines what
assumptions are necessary for overall population growth, given that the population in each
isolated region goes extinct in the long run. We will also consider the problem of finding
diffusive couplings that result in such isolated sinks being coupled so that the overall
population grows, what we call diffusive growth. Other authors have referred to such a
phenomenon as dispersal-driven growth [114] or dispersal-induced growth [153].

We will first outline our general modelling framework. We will then discuss how common
Lyapunov functions relate to robust diffusive stability, while also demonstrating our results
using specific matrix classes as examples. Following this analytical work, we will then
discuss some numerical examples related to the ecological application in question. In
particular we will investigate scenarios involving so-called diffusive growth in this context.
Finally we will discuss RDS in relation to an alternative model of diffusive dispersal when
one considers common matrix classes used in ecology, such as Leslie matrices. Note
that we do not provide numerical simulations in this chapter, as was done in Chapters 4
and 5 as the dynamics of the model we consider is linear. As we are interested in the
stability/instability of the extinction equilibrium, the resulting numerical simulations will
either show trajectories tending to 0 or tending to ∞ for all initial conditions.
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6.2. The Diffusive Dispersal Model

Recall from Chapter 3 the model formulation of diffusively coupled systems as described
in [69]. In this chapter we consider the simplest case of (3.4.4), where𝑚 = 2 and𝐶 = R2𝑛

+ .
Let 𝐴, 𝐵 ∈ R𝑛×𝑛+ be matrices respectively describing the linear population dynamics in
two distinct regions, i.e. each isolated population’s dynamics is governed by

𝑥1(𝑡 + 1) = 𝐴𝑥1(𝑡),
𝑥2(𝑡 + 1) = 𝐵𝑥2(𝑡),

where 𝑥𝑖 (0) ∈ R𝑛 for 𝑖 ∈ {1, 2}. Denote by D𝐴,𝐵 the set of nonnegative diagonal matrices
such that, for 𝐷 ∈ D𝐴,𝐵, 𝐴 − 𝐷 ⪰ 0 and 𝐵 − 𝐷 ⪰ 0. Our diffusively coupled system is
given by

𝑥1(𝑡 + 1) = 𝐴𝑥1(𝑡) + 𝐷 (𝑥2(𝑡) − 𝑥1(𝑡)),
𝑥2(𝑡 + 1) = 𝐵𝑥2(𝑡) + 𝐷 (𝑥1(𝑡) − 𝑥2(𝑡)),
(𝑥1(0)𝑇 , 𝑥2(0)𝑇 )𝑇 ∈ R2𝑛

+ ,

(6.2.1)

where 𝐷 ∈ D𝐴,𝐵 (see Fig. 6.1). This can be thought of as a discrete-time, planar version
of the continuous-time model of [69] and a special case of one of the models of [114]. By
letting 𝑥 := (𝑥𝑇1 𝑥

𝑇
2 )
𝑇 ∈ R2𝑛

+ , we can rewrite (6.2.1) as

𝑥(𝑡 + 1) = 𝑀𝑥(𝑡)

𝑀 :=

(
𝐴 − 𝐷 𝐷

𝐷 𝐵 − 𝐷

)
(6.2.2)

𝑥(0) = 𝑥0 ∈ R2𝑛
+ .

The matrices in D𝐴,𝐵 can be interpreted as describing the diffusive dispersal of individuals
between their respective demographic classes, where there is movement from high density
to regions of low density. Note that the influx/outflux of individuals can be in different
directions. For example, let 𝑛 = 2, 𝐷 = diag(𝑑1, 𝑑2) ∈ D𝐴,𝐵 and 𝑥𝑖 := (𝑥𝑖,1 𝑥𝑖,2)𝑇 ∈ R2

+,
𝑖 ∈ {1, 2}. The dispersal components as in (6.2.1), for 𝑗 ≠ 𝑖, are of the form

𝐷 (𝑥 𝑗 − 𝑥𝑖) =
(
𝑑1 0
0 𝑑2

) ((
𝑥 𝑗 ,1 − 𝑥𝑖,1
𝑥 𝑗 ,2 − 𝑥𝑖,2

))
.

For a given time, assume that 𝑥 𝑗 ,1 > 𝑥𝑖,1 and 𝑥 𝑗 ,2 < 𝑥𝑖,2. We would then have that at this
instant there is a movement of individuals from region 𝑗 to region 𝑖 in the 1st group, while
movement in the 2nd group is in the opposite direction. Note that the model we consider
can be written as a linear-time invariant system, with system matrix𝑀 , it can be interpreted
as modelling positive density dependence, as there is a diffusion of a demographic class
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from regions of high density to regions of low density. As the diffusion matrices are fixed,
we can additionally interpret this as being passive dispersal, where the density-dependence
arises due to the difference in regional abundances, perhaps due to competitive effects or
variability of resources. The dispersal components of our model are additive. One may
also have multiplicative dispersal or diffusion (for example see [114]).

The diffusive dispersal of individuals within certain demographic classes, from areas
of high density to areas of low density, can be understood through Charnov’s so-called
Marginal Value Theorem, which states that an individual should leave a resource patch
when the marginal rate of return, i.e. the energy gained per unit of time spent in a patch, falls
below the average rate of return across all patches in the environment [49]. In the context
of optimal foraging theory, individuals may disperse from crowded or overpopulated areas
in search of more favorable conditions [86]. Such behavior reflects the idea of optimising
resource use, with organisms foraging for environments that provide the greatest benefits
in terms of survival, reproduction, or resource availability for example. This interpretation
is not restricted to the current diffusion model, but is an intuitive explanation of positive
density-dependent dispersal, both in general and in the context of Chapters 4 and 5 for
example.

𝐷
𝐴 𝐵

Figure 6.1: Conceptual diagram of system (6.2.1), where 𝐴 and 𝐵 describe the linear
dynamics of each regional population and 𝐷 describes the diffusive movement between
each of the demographic classes.

If we assume both regions in question are sinks, i.e. both populations go extinct asmp-
totically, this is characterised mathematically in terms of the spectral radii of 𝐴 and 𝐵 as
𝜌(𝐴), 𝜌(𝐵) < 1. Our first goal is to investigate when these two regions can be coupled via
diffusive dispersal such that the resulting system has a GAS extinction equilibrium for any
choice of admissible coupling matrix. One may also ask: can we ensure that both these
regions are rescued from global extinction, i.e. when do we get an unstable equilibrium
for (6.2.1)? As noted in [69], instead of determining

"when destabilization occurs, one can try to restrict the classes of matrices
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to which 𝐴 and 𝐵 belong to guarantee that the question can be answered
affirmatively."

Thus we want to determine conditions on 𝐴 and 𝐵 such that 𝜌(𝑀) < 1 for all 𝐷 ∈ D𝐴,𝐵,
what we will call robust diffusive stability (RDS).

The system we are interested in is composed of two linear time invariant (LTI) subsystems
which are diffusively coupled. These LTI subsytems may be the result of the linearisation
of a nonlinear model around some equilibrium or linearity may be an a priori assumption.
The problem we consider is closely related to similar robust matrix stability problems,
such as Turing instability and quiescent stability, as discussed in Chapter 3. Note that
system (6.2.2) may also arise from linearisation of some nonlinear dispersal model around
some equilibrium. Thus sufficient conditions for GAS of the extinction equilibrium for
6.2.2 are then sufficient for the LAS of the equilibrium in question for the nonlinear model.

In [69] the author studied a similar system to (6.2.2), albeit in continuous-time and for
arbitrarily many finite subsystems defined on a proper cone. Similar models have been
studied in both discrete and continuous time in [114], where the subsystems are restricted
to R𝑛+ (see Chapter 3). In both [69] and [114] the authors made use of common linear
copositive Lyapunov functions to obtain sufficient conditions for the global stability of the
extinction equilibrium in the coupled models they studied. We are interested in exploring
how other types of common Lyapunov function can ensure RDS. Next we will discuss such
ideas in the context of (6.2.2). All numerical examples were computed using MATLAB
[142].

6.3. Common Lyapunov Functions

In this section we highlight how the existence of various types of common Lyapunov
functions relate to RDS. We refer the reader to Chapter 2 for a more detailed description of
the various types of Lyapunov function that arise when studying positive systems. First note
that, given 𝑚 linear time-invariant positive system matrices, A := {𝐴1, ..., 𝐴𝑚} ⊂ R𝑛×𝑛+ ,
a Lyapunov function 𝐿 : R𝑛 → R is called a common Lyapunov function for A if it is a
Lyapunov function for each system with system matrix 𝐴𝑖, 𝑖 ∈ {1, ..., 𝑚}.

6.3.1. Copositive Lyapunov Functions

Note that, for 𝐷 ∈ D𝐴,𝐵, we have that 𝐴 − 𝐷, 𝐵 − 𝐷 ⪰ 0. One can then observe that
𝑀 ⪰ 0 and so system (6.2.2) is positive. We will now state a result analagous to one given
in [69] for continuous-time systems defined on proper cones.
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Theorem 6.3.1. Assume 𝐴, 𝐵 ∈ R𝑛×𝑛+ are Schur. If there exists a common linear copisitive
Lyapunov function (CLCLF),𝑉 (𝑥) := 𝑣𝑇𝑥, for 𝐴 and 𝐵, then 𝑀 is Schur for all 𝐷 ∈ D𝐴,𝐵.

Therefore the existence of a CLCLF for 𝐴 and 𝐵 is sufficient for RDS. The next result we
state is another simple sufficient condition for RDS.

Proposition 6.3.2. Assume 𝐴, 𝐵 ∈ R𝑛×𝑛+ are Schur. If there exists 𝑣 ≻ 0 such that 𝐴𝑣 ≺ 𝑣

and 𝐵𝑣 ≺ 𝑣, then 𝑀 is Schur for all 𝐷 ∈ D𝐴,𝐵.

Proof. Let diagonal 𝐷 ≥ 0 be arbitrary. As 𝐴 and 𝐵 are Schur, it follows from Lemma
2.2.2 that 𝐴𝑣 = (𝐴 − 𝐷)𝑣 + 𝐷𝑣 ≺ 𝑣 and 𝐵𝑣 = (𝐵 − 𝐷)𝑣 + 𝐷𝑣 ≺ 𝑣. It is then easy to see
that 𝑀𝑦 ≺ 𝑦 for 𝑦 := (𝑣𝑇 𝑣𝑇 )𝑇 . The result then follows from Lemma 2.2.2. □

Recall that the induced 𝑙∞-norm of 𝐿 = (𝑙𝑖 𝑗 ) ∈ R𝑛×𝑛 is given by ∥𝐿∥∞ := max𝑖∈{1,...,𝑛}
∑𝑛
𝑗=1 |𝑙𝑖 𝑗 |

[137]. The next result immediately follows from Proposition 6.3.2.

Corollary 6.3.3. Let 𝐴, 𝐵 ∈ R𝑛×𝑛+ . Assume that ∥𝐴∥∞ < 1 and ∥𝐵∥∞ < 1. Then 𝑀 is
Schur for all 𝐷 ∈ D𝐴,𝐵.

Proof. Recall that for 𝐿 ∈ R𝑛×𝑛, 𝜌(𝐿) ≤ ∥𝐿∥ for any induced matrix norm ∥ · ∥ on R𝑛

[137]. Therefore both 𝐴 and 𝐵 are Schur. Set 𝑣 = 1 as in Proposition 6.3.2. □

6.3.2. The Lyapunov Inequality

We will now state how the existence of a common diagonal solution to the Lyapunov
inequality relates to RDS.

Theorem 6.3.4. Let 𝐴, 𝐵 ∈ R𝑛×𝑛+ be Schur. If there exists a 𝐶 = diag(𝑐1, ..., 𝑐𝑛) > 0
satisfying

𝑄𝐴 := (𝐴 − 𝐼)𝑇𝐶 + 𝐶 (𝐴 − 𝐼) < 0,

𝑄𝐵 := (𝐵 − 𝐼)𝑇𝐶 + 𝐶 (𝐵 − 𝐼) < 0,

then 𝑀 is Schur for all 𝐷 ∈ D𝐴,𝐵.

Proof. Let𝐷 = diag(𝑑1, ..., 𝑑𝑛) ∈ D𝐴,𝐵 be arbitrary. We will show that 𝑃 := diag(𝐶,𝐶) >
0 defines a diagonal solution to the Lyapunov inequality

𝑄𝑀 := (𝑀 − 𝐼)𝑇𝑃 + 𝑃(𝑀 − 𝐼) < 0. (6.3.1)
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A simple calculation involving matrix multiplication yields

𝑄𝑀 =

(
(𝐴 − 𝐼 − 𝐷)𝑇𝐶 + 𝐶 (𝐴 − 𝐼 − 𝐷) 2𝐶𝐷

2𝐶𝐷 (𝐵 − 𝐼 − 𝐷)𝑇𝐶 + 𝐶 (𝐵 − 𝐼 − 𝐷)

)
=

(
𝑄𝐴 − 2𝐶𝐷 2𝐶𝐷

2𝐶𝐷 𝑄𝐵 − 2𝐶𝐷

)
.

Define

𝐺 = (𝑔𝑖 𝑗 ) :=

(
−2𝐶𝐷 2𝐶𝐷
2𝐶𝐷 −2𝐶𝐷

)
.

As 𝐶 and 𝐷 are diagonal, we have that 𝐺 = 𝐺𝑇 and therefore its eigenvalues are all real.
The 𝑖th diagonal entry of 𝐺 is −𝑐𝑖𝑑𝑖 ≤ 0, while the only other non-zero entry in the 𝑖th
row is 𝑐𝑖𝑑𝑖. It follows from the Gershgorin Circle Theorem that the eigenvalues of 𝐺 are
real and negative [137]. As 𝐺 is symmetric we have that 𝐺 ≤ 0. We also have that

𝑄𝐴, 𝑄𝐵 < 0 =⇒ 𝑄 :=

(
𝑄𝐴 0
0 𝑄𝐵

)
< 0.

We can then see that for 𝑄𝑀 = 𝑄 + 𝐺 and every 𝑥 ≠ 0 we have that

𝑥𝑇𝑄𝑀𝑥 = 𝑥
𝑇 (𝑄 + 𝐺)𝑥 = 𝑥𝑇𝑄𝑥 + 𝑥𝑇𝐺𝑥 < 0

and so 𝑄𝑀 < 0. Therefore 𝑃 is a diagonal Lyapunov function for 𝑀 − 𝐼. It then follows
from Theorem 2.2.6 that 𝑀 − 𝐼 is Hurwitz. Therefore there exists 𝑣 ≻ 0 such that
(𝑀 − 𝐼)𝑣 ≺ 0. Then we have that 𝑀𝑣 ≺ 𝑣. It then follows from Theorem 2.2.5 that 𝑀 is
Schur. □

Recall that an analagous result to the main result of [69] shows that 𝐴 and 𝐵 admitting
a common linear copositive Lyapunov function, is sufficient for RDS. We will now show
that one can find 𝐴 and 𝐵 that do not admit a common linear copositive Lyapunov function,
but do satisfy the assumptions of Theorem 6.3.4.

Example 6.3.1. Consider

𝐴 = 𝐵𝑇 =

(
0.1 1
0 0

)
Clearly 𝐴 and 𝐵 are Schur. Assume 𝐴 and 𝐵 admit a common linear copositive Lyapunov
function 𝑉 (𝑥) := 𝑤𝑇𝑥, where 𝑤 ≻ 0, i.e.

𝐴𝑇𝑤 =

(
0.1𝑤1

𝑤1

)
≺

(
𝑤1

𝑤2

)
, 𝐵𝑇𝑤 =

(
0.1𝑤1 + 𝑤2

0

)
≺

(
𝑤1

𝑤2

)
.
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This implies that 𝑤1 < 𝑤2. We then have that 0.1𝑤1 + 𝑤2 < 𝑤1 < 𝑤2. This then implies
that 0.1𝑤1 < 0, which is a contradiction. Hence 𝐴 and 𝐵 do not admit a CLCLF. One can
show that

𝐶 = 𝐼 =⇒ 𝑄𝐴 = 𝑄𝐵 =

(
−1.8 1

1 −2

)
< 0

It then follows from Theorem 6.3.4 that 𝑀 is Schur for all 𝐷 ∈ D𝐴,𝐵.

In [191] the authors gave the following necessary and sufficient condition for the existence
of a common diagonal Lyapunov function (CDLF) in continuous time for two positive
matrices.

Theorem 6.3.5. [191] Let 𝐴, 𝐵 ∈ R𝑛×𝑛 be Metzler and Hurwitz matrices with no zero
entries. Then there exists a diagonal 𝑃 > 0 satisfying

𝐴𝑇𝑃 + 𝑃𝐴 < 0,

𝐵𝑇𝑃 + 𝑃𝐵 < 0,

if and only if 𝐴 + 𝐶𝐵𝐶 is non-singular for all diagonal 𝐶 > 0.

Using Theorem 6.3.4 we can state the following sufficient condition for RDS.

Corollary 6.3.6. Let 𝐴, 𝐵 ∈ R𝑛×𝑛+ be Schur matrices such that 𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 ≠ 1 for all 𝑖, 𝑗 ∈
{1, ..., 𝑛}. If 𝐴 − 𝐼 + 𝐶 (𝐵 − 𝐼)𝐶 is non-singular for all diagonal 𝐶 > 0, then 𝑀 is Schur
for all 𝐷 ∈ D𝐴,𝐵.

Proof. As 𝐴 = (𝑎𝑖 𝑗 ) and 𝐵 = (𝑏𝑖 𝑗 ) are Schur and 𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 ≠ 1 for all 𝑖, 𝑗 ∈ {1, ..., 𝑛}, this
implies that 𝐴− 𝐼 and 𝐵− 𝐼 are Hurwitz and have no zero entries. It follows from Theorem
6.3.5 that there exists diagonal 𝑃 > 0 satisfying

(𝐴 − 𝐼)𝑇𝑃 + 𝑃(𝐴 − 𝐼) < 0,

(𝐵 − 𝐼)𝑇𝑃 + 𝑃(𝐵 − 𝐼) < 0.

The result then follows from Theorem 6.3.4. □

6.3.3. Quadratic Lyapunov Functions

In [114] the authors asked: does the existence of a common quadratic Lyapunov function
(CQLF) imply that their coupled system has globally stable zero equilibrium? Formally
the question asks does the existence of 𝐶 > 0 that satisfies the Stein inequalities

𝐴𝑇𝐶𝐴 − 𝐶 < 0,

𝐵𝑇𝐶𝐵 − 𝐶 < 0
(6.3.2)
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imply that their coupled system matrix is Schur for any feasible coupling? They provided
a counterexample to show that this was not true for the system class considered in [114].
However, this is not a counterexample if we ask the same question for the system described
by (6.2.2). We can demonstrate, with a different example, that the existence of a common
quadratic Lyapunov function for 𝐴 and 𝐵 is indeed not sufficient for RDS.

Example 6.3.2. Consider

𝐴 =
©«

0.260 0.572 0.5910
0.134 0.597 0.377
0.195 0.055 0.493

ª®®¬ , 𝐵 =
©«

0.563 0.150 0.323
0.048 0.132 0.156
0.575 0.066 0.503

ª®®¬ ,
and

𝐶 =
©«

2.7094 −2.2095 −1.3574
−2.2095 2.2726 1.5634
−1.3574 1.5634 1.2748

ª®®¬ .
It can be verified numerically that the eigenvalues of 𝐶 are positive, so 𝐶 > 0. One
can also verify that (6.3.2) holds. Thus 𝐶 > 0 defines a CQLF for 𝐴 and 𝐵. By letting
𝐷 = diag(0.131, 0.066, 0.247), we can then compute 𝜌(𝑀) ≈ 1.001 > 1. Thus, the
system is not robustly diffusively stable even though 𝐴 and 𝐵 admit a common solution to
the Stein inequality.

6.3.4. Diagonal Lyapunov Functions

Up to now we have shown how the Lyapunov inequality and common quadratic Lyapunov
functions relate to RDS. The Lyapunov inequality arises in continuous-time linear systems
analysis. An analogous equation in discrete time is the Stein inequality. Recall from
Chapter 2 that a solution to the Stein inequality can be used to define a quadratic Lyapunov
function (QLF) for a linear time-invariant system. In Example 6.3.2 we saw that the
existence of a CQLF for 𝐴 and 𝐵 is not sufficient for RDS. This then motivates us
to restrict the class of Lyapunov function and therefore to look at diagonal Lyapunov
functions. We will next show that the existence of a CDLF for 𝐴 and 𝐵 is in fact sufficient
for RDS.

Theorem 6.3.7. Let 𝐴, 𝐵 ∈ R𝑛×𝑛+ be Schur. If there exists a diagonal 𝐶 > 0 satisfying

𝐴𝑇𝐶𝐴 − 𝐶 < 0,

𝐵𝑇𝐶𝐵 − 𝐶 < 0,

then 𝑀 is Schur for all 𝐷 ∈ D𝐴,𝐵.
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Proof. Suppose 𝐶 > 0 is a diagonal solution of

𝐴𝑇𝐶𝐴 − 𝐶 < 0. (6.3.3)

By adding and subtracting 𝐶𝐴 on the LHS in (6.3.3), we can see that

𝐴𝑇𝐶𝐴 − 𝐶 = (𝐴 − 𝐼)𝑇𝐶𝐴 + 𝐶𝐴 − 𝐶
= (𝐴 − 𝐼)𝑇𝐶𝐴 + 𝐶 (𝐴 − 𝐼). (6.3.4)

By adding and subtracting (𝐴 − 𝐼)𝑇𝐶 on the RHS of (6.3.4) to see that

(𝐴 − 𝐼)𝑇𝐶𝐴 + 𝐶 (𝐴 − 𝐼) = (𝐴 − 𝐼)𝑇𝐶 + 𝐶 (𝐴 − 𝐼) + (𝐴 − 𝐼)𝑇𝐶 (𝐴 − 𝐼). (6.3.5)

It then follows from (6.3.4) and (6.3.5) that

𝐴𝑇𝐶𝐴 − 𝐶 = (𝐴 − 𝐼)𝑇𝐶 + 𝐶 (𝐴 − 𝐼) + (𝐴 − 𝐼)𝑇𝐶 (𝐴 − 𝐼). (6.3.6)

As 𝐴 is Schur we have that 𝐴 − 𝐼 is invertible. Therefore, as 𝐶 > 0, we have that
(𝐴 − 𝐼)𝑇𝐶 (𝐴 − 𝐼) > 0. It follows from (6.3.6) that

𝐴𝑇𝐶𝐴 − 𝐶 < 0 =⇒ (𝐴 − 𝐼)𝑇𝐶 + 𝐶 (𝐴 − 𝐼) < 0.

Using an analogous argument we can show that

𝐵𝑇𝐶𝐵 − 𝐶 < 0 =⇒ (𝐵 − 𝐼)𝑇𝐶 + 𝐶 (𝐵 − 𝐼) < 0.

Therefore it follows from Theorem 6.3.4 that 𝑀 is Schur for all 𝐷 ∈ D𝐴,𝐵. □

It is well known that the existence of solutions to the Lyapunov and Stein inequalities are
linked via the Cayley transform, as discussed in Chapter 3. We can see in the proof of
Theorem 6.3.7 that the existence of a common solution to the Stein inequality for 𝐴 and
𝐵 implies that there exists a common solution to the Lyapunov inequality for 𝐴 − 𝐼 and
𝐵− 𝐼. Together these observations motivate us to investigate if the converse holds, i.e. are
the two sufficient conditions for RDS in Theorems 6.3.4 and 6.3.7 equivalent? This is in
general not true, as we can demonstrate with an example. Before we do so, we will need
the following result which gives a sufficient condition for the non-existence of a common
solution to the Stein inequality.

Theorem 6.3.8. Let 𝐴, 𝐵 ∈ R𝑛×𝑛. If there exists nonzero 𝑌1, 𝑌2 ≥ 0 such that

𝐴𝑌1𝐴
𝑇 − 𝑌1 + 𝐵𝑌2𝐵

𝑇 − 𝑌2 ≥ 0,

then there does not exist a common solution to the Stein inequality, i.e. there does not exist
𝑃 > 0 such that

𝐴𝑇𝑃𝐴 − 𝑃 < 0,

𝐵𝑇𝑃𝐵 − 𝑃 < 0.
(6.3.7)
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Proof. Let 𝑆𝑛 ⊂ R𝑛×𝑛 denote the set of symmetric matrices, 𝑆+𝑛 ⊂ 𝑆𝑛 the set of positive
semi-definite matrices and Int(𝑆+𝑛) the set of positive definite matrices. Given 𝑋 ∈ R𝑛×𝑛,
define 𝐿𝐴 (𝑋) = 𝐴𝑇𝑋𝐴 − 𝑋 and 𝐿𝐵 (𝑋) = 𝐵𝑇𝑋𝐵 − 𝑋 . Then 𝐿𝐴 and 𝐿𝐵 map from
𝑆𝑛 to 𝑆𝑛. The Hilbert-Schmidt inner product on 𝑆𝑛 is defined as ⟨𝐴, 𝐵⟩ = Tr(𝐴𝐵)
[137]. The adjoint mapping of 𝐿𝐴 (𝐿𝐵) with respect to ⟨·, ·⟩ on 𝑆𝑛 is given by 𝐿∗

𝐴
(𝑋) =

𝐴𝑋𝐴𝑇 − 𝑋
(
𝐿∗
𝐵
(𝑋) = 𝐵𝑋𝐵𝑇 − 𝑋

)
. To see this, note that

⟨𝑋, 𝐿𝐴 (𝑌 )⟩ = Tr(𝑋𝐴𝑇𝑌 𝐴 − 𝑋𝑌 )
= Tr(𝐴𝑋𝐴𝑇𝑌 − 𝑋𝑌 )
= ⟨𝐴𝑋𝐴𝑇 − 𝑋,𝑌⟩,

where we use the fact that the trace is linear and for 𝐴, 𝐵 ∈ R𝑛×𝑛 we have that Tr(𝐴𝐵) =
Tr(𝐵𝐴).

We prove our result by contradiction. It is well known that 𝑆𝑛+ is self-dual, i.e. (𝑆𝑛+)∗ = 𝑆𝑛+,
and so Int((𝑆+𝑛)∗) = Int(𝑆+𝑛) (see Example 2.24 of [35]). Therefore for 𝑋 ∈ Int(𝑆+𝑛) and
nonzero 𝑍 ∈ 𝑆+𝑛 , we have that ⟨𝑋, 𝑍⟩ > 0. Suppose there exists 𝑌1, 𝑌2 ≥ 0, with at least
one nonzero, such that 𝐿∗

𝐴
(𝑌1) + 𝐿∗𝐵 (𝑌2) ≥ 0 and there exists 𝑋 > 0 such that 𝐿𝐴 (𝑋) < 0

and 𝐿𝐵 (𝑋) < 0. Therefore we have that

𝐿∗𝐴 (𝑌1) + 𝐿∗𝐵 (𝑌2) = 𝐴𝑌1𝐴
𝑇 − 𝑌1 + 𝐵𝑌2𝐵

𝑇 − 𝑌2 ≥ 0.

We know at least one of 𝑌1, 𝑌2 is non-zero and we are assuming that both 𝐿𝐴 (𝑋) < 0 and
𝐿𝐵 (𝑋) < 0. This implies that

⟨𝐿𝐴 (𝑋), 𝑌1⟩ + ⟨𝐿𝐵 (𝑋), 𝑌2⟩ < 0.

This then implies that

⟨𝑋, 𝐿∗𝐴 (𝑌1) + 𝐿∗𝐵 (𝑌2)⟩ < 0. (6.3.8)

We then have that (6.3.8) contradicts the assumption that 𝐿∗
𝐴
(𝑌1) + 𝐿∗𝐴 (𝑌2) ≥ 0. □

Using Theorem 6.3.8 we can show that the existence of a common solution to the Lyapunov
inequality (for 𝐴− 𝐼 and 𝐵− 𝐼) does not imply that there is a common solution to the Stein
inequality (for 𝐴 and 𝐵).

Example 6.3.3. Consider

𝐴 =

(
0.622 1.114
0.164 0.295

)
, 𝐵 =

(
0.283 0.164
0.766 0.223

)
,
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and 𝐶 = diag(1.049, 2.233). One can show that

(𝐴 − 𝐼)𝑇𝐶 + 𝐶 (𝐴 − 𝐼) ≈
(
−0.793 1.535
1.535 −3.149

)
< 0,

(𝐵 − 𝐼)𝑇𝐶 + 𝐶 (𝐵 − 𝐼) ≈
(
−1.504 1.883
1.883 −3.470

)
< 0.

Consider the positive definite matrices

𝑌1 =

(
51.054 39.958
39.958 43.663

)
and 𝑌2 =

(
74.859 13.410
13.410 8.557

)
.

One can then verify that

𝐴𝑌1𝐴
𝑇 − 𝑌1 + 𝐵𝑌2𝐵

𝑇 − 𝑌2 =

(
10.869 −0.107
−0.107 5.750

)
> 0.

It follows from Theorem 6.3.8 that there cannot exist a common quadratic solution to
(6.3.7), which in turn shows that there cannot exist a common diagonal solution to (6.3.7).

We saw that the existence of a CQLF for 𝐴 and 𝐵 is not sufficient for RDS. Theorem 6.3.7
shows that the existence of a CDLF for 𝐴 and 𝐵 is sufficient for RDS. This sufficient con-
dition, along with that in Theorem 6.3.4 together provide two distinct sufficient conditions
for RDS, as demonstrated using Example 6.3.3. In fact the condition in Theorem 6.3.4
is a weaker assumption, as it implies that there exists a common diagonal solution to the
Stein inequality for 𝐴 and 𝐵. Therefore the result of Theorem 6.3.4 is stronger.

If we considered a continuous-time version of (6.2.1), then if 𝐴 and 𝐵 are both Metzler
and Hurwitz, this would correspond to each isolated system being positive and having
a globally stable extinction equilibrium. In this case, as noted in Chapter 3, the set of
matrices that act diffusively on R𝑛+ are diagonal Metzler matrices. RDS in this continuous
time case corresponds to 𝑀 being Hurwitz for all diagonal 𝐷 > 0. It can be shown that in
this continuous-time case, the existence of a CQLF for 𝐴 and 𝐵, is not sufficient for RDS.
However, the existence of a CDLF for 𝐴 and 𝐵 is sufficient for RDS, the proof of which
is the same as that of Theorem 6.3.4, albeit replacing 𝐴 − 𝐼 and 𝐵 − 𝐼 respectively with
𝐴 and 𝐵 in 𝑄𝐴 and 𝑄𝐵. Therefore we can conclude that in both discrete and continuous
time, the existence of a common diagonal Lyapunov function for 𝐴 and 𝐵 is sufficient for
RDS.

Next, we will look at some applications of Theorem 6.3.4.
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6.4. Applications

To demonstrate the applicability of Theorem 6.3.4 we will now show how it relates to
specific classes of matrices that may arise when looking at stage-structured population
dynamics and provide some ecological interpretations of these results.

One well studied class of matrices are commuting matrices. The matrices 𝐴, 𝐵 ∈ R𝑛×𝑛

are said to commute if 𝐴𝐵 = 𝐵𝐴. To demonstrate the applicability of Theorem 6.3.4 we
will first show that if two Schur matrices commute, then we can ensure RDS.

6.4.1. Commuting Matrices

Proposition 6.4.1. Let 𝐴, 𝐵 ∈ R𝑛×𝑛+ be Schur. If 𝐴𝐵 = 𝐵𝐴, then 𝑀 is Schur for all 𝐷 ∈
D𝐴,𝐵.

Proof. First observe that

𝐴𝐵 = 𝐵𝐴 ⇐⇒ (𝐴 − 𝐼) (𝐵 − 𝐼) = (𝐵 − 𝐼) (𝐴 − 𝐼).

As 𝐴 and 𝐵 are Schur, we have that 𝐴− 𝐼 and 𝐵− 𝐼 are Hurwitz. It follows from Theorem
2.2.6 that (𝐴 − 𝐼)−1 ⪯ 0 and (𝐵 − 𝐼)−1 ⪯ 0. By definition we have that

det(𝐴) ≠ 0 ⇐⇒ rank(𝐴) = 𝑛. (6.4.1)

Therefore as 𝐴 − 𝐼 is Hurwitz we have that det(𝐴 − 𝐼) ≠ 0. Therefore 𝐴 − 𝐼, and similarly
𝐵 − 𝐼, has no all zero rows or columns. Choose some 𝑥 ≻ 0. We then have that

𝑥 ≻ 0 =⇒ 𝑦 := (𝐴 − 𝐼)−1(𝐵 − 𝐼)−1𝑥 ≻ 0,

as (𝐴 − 𝐼)−1(𝐵 − 𝐼)−1 ⪰ 0. We can then see that

(𝐴 − 𝐼)𝑦 = (𝐵 − 𝐼)−1𝑥 ≺ 0.

We also have that (𝐴 − 𝐼) (𝐵 − 𝐼) = (𝐵 − 𝐼) (𝐴 − 𝐼) implies that

(𝐵 − 𝐼)𝑦 = (𝐵 − 𝐼) (𝐴 − 𝐼)−1(𝐵 − 𝐼)−1𝑥

= (𝐴 − 𝐼)−1(𝐵 − 𝐼) (𝐵 − 𝐼)−1𝑥

= (𝐴 − 𝐼)−1𝑥 ≺ 0.

The result follows from Proposition 6.3.2. □
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Note that we could simply prove Proposition 6.4.1 using Lemma 9.6 of [162], which can
be used to show that any finite set of matrices that commute pairwise admit a CLCLF.
However, in our proof of Proposition 6.4.1 we show how one can construct a CLCLF for
𝐴𝑇 and 𝐵𝑇 . A simple consequence of this result is contained in the following Corollary.
For 𝐴 ∈ R𝑛×𝑛, 𝐴 is circulant if it is of the form 𝐴 =

∑𝑛−1
𝑘=0 𝑎𝑘+1𝐶

𝑘
𝑛 , where 𝑎1, ..., 𝑎𝑛 ∈ R

and

𝐶𝑛 :=

(
0 𝐼

1 0

)
∈ R𝑛×𝑛.

Corollary 6.4.2. Let 𝐴, 𝐵 ∈ R𝑛×𝑛+ be Schur. Further assume that one of the following
hold:

1. 𝐴 and 𝐵 are circulant.

2. 𝐴 and 𝐵 are simultaneously diagonalisable.

Then 𝑀 is Schur for all 𝐷 ∈ D𝐴,𝐵.

Proof. The first statement follows from the well-known fact that circulant matrices com-
mute [137]. The second statement follows from the other well-known fact that if two
matrices are simultaneously diagonalisable then they commute [137]. In either case the
result follows from Proposition 6.4.1. □

We now present an example that demonstrates the ecological applicability of Corollory
6.4.2.

Example 6.4.1. Consider 𝐴 and 𝐵 of the form

𝑈 =
©«
𝑢1 0 𝑢2

𝑢2 𝑢1 0
0 𝑢2 𝑢1

ª®®¬ , (6.4.2)

where 𝑢1, 𝑢2 ∈ (0, 1) are such that 𝑢1 + 𝑢2 < 1. The matrix 𝑈 is a special case of
an Usher matrix, which are commonly used in size-structured population models [61].
Populations structured by size include many fish and tree species, where such populations
are partitioned into size classes that may correspond to developmental stages or sex, which
in many cases can be easier to measure than age/stage characteristics in field studies [163,
189]. The matrix𝑈 is circulant. We can also compute

𝜎(𝑈) =
{
𝑢1 + 𝑢2,

2𝑢1 − 𝑢2 ± 𝑖
√

3𝑢2

2

}
.
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It is easy to see that

𝑥2 + 𝑦2 − 𝑥𝑦 <
√︃
𝑥2 + 𝑦2 − 𝑥𝑦 < 𝑥 + 𝑦 ∀ 𝑥, 𝑦 ∈ (0, 1).

We can also observe that�����2𝑢1 − 𝑢2 ± 𝑖
√

3𝑢2

2

����� = √︃
𝑢2

1 + 𝑢
2
2 − 𝑢1𝑢2.

These observations in turn imply that 𝜌(𝑈) = 𝑢1 + 𝑢2 < 1. Note that this more easily
follows from the fact that 𝜌(𝑈) ≤ ∥𝑈∥∞ = 𝑢1 + 𝑢2. 𝐴 and 𝐵 are of the form (6.4.2), and
so are both Schur and circulant. It then follows from Corollary 6.4.2 that 𝑀 is Schur for
all 𝐷 ∈ D𝐴,𝐵.

We will next state a sufficient condition for RDS for the case when 𝑛 = 2.

6.4.2. Planar Systems

Proposition 6.4.3. Let 𝐴 = (𝑎𝑖 𝑗 ), 𝐵 = (𝑏𝑖 𝑗 ) ∈ R2×2
+ be Schur. Assume that 𝑎 := 𝑎11 = 𝑎22

and 𝑏 := 𝑏11 = 𝑏22, (𝑎 − 1)2 − (𝑎12 + 𝑎21)2 > 0 and (𝑏 − 1)2 − (𝑏12 + 𝑏21)2 > 0. Then 𝑀
is Schur for all 𝐷 ∈ D𝐴,𝐵.

Proof. First note that 𝐴 and 𝐵 are of Toeplitz form, i.e. have constant diagonal terms
[137]. If 𝑎12 = 𝑎21 and 𝑏12 = 𝑏21, then 𝐴 and 𝐵 are both symmetric and circulant. The
result then follows from Corollary 6.4.2. Therefore assume that 𝑎12 ≠ 𝑎21 and 𝑏12 ≠ 𝑏21.
Let 𝑝 > 0, 𝑃 = 𝑝𝐼 and

𝑄𝐴 := (𝐴 − 𝐼)𝑇𝑃 + 𝑃(𝐴 − 𝐼)
𝑄𝐵 := (𝐵 − 𝐼)𝑇𝑃 + 𝑃(𝐵 − 𝐼)

By direct calculation one can show that both 𝑄𝐴 and 𝑄𝐵 are Metzler (also see Lemma
3.1. of [191]). We can then see that 𝑆 ∈ R𝑛×𝑛 is Hurwitz if and only if det(𝑆) > 0 and
Tr(𝑆) < 0. As 𝐴 and 𝐵 are Toeplitz, it follows from (a) and (b) that

det(𝑄𝐴) = 𝑝2(4(𝑎 − 1)2 − (𝑎12 + 𝑎21)2) > 0,

det(𝑄𝐵) = 𝑝2(4(𝑏 − 1)2 − (𝑏12 + 𝑏21)2) > 0.

As 𝑝 > 0 and 𝑎, 𝑏 < 0, we have that Tr(𝑄1) = 4𝑝𝑎 < 0 and Tr(𝑄2) = 4𝑝𝑏 < 0. Therefore
𝑄𝑘 is Hurwitz. We also have that 𝑄𝐴 and 𝑄𝐵 being symmetric implies that 𝑄𝐴, 𝑄𝐵 < 0.
The result follows from Theorem 6.3.4. □
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Note that in Proposition 6.4.3 not only do we get RDS, but we can see from the proof that
2 × 2 matrices that are Toeplitz and Schur admit a CDLF given by 𝑝𝐼 for any 𝑝 > 0. We
will now demonstrate the ecological applicability of Proposition 6.4.3.

Example 6.4.2. Consider a coupled two-patch population, where each of the patch sub-
populations is partitioned into two age classes, where individuals can transition back and
forth between these two given age classes. Let

𝐴 =

(
0.48 0.14
0.12 0.48

)
and 𝐵 =

(
0.59 0.09
0.13 0.59

)
One could respectively interpret 𝑎11 = 𝑎22 = 𝑎 = 0.48 and 𝑏11 = 𝑏22 = 𝑏 = 0.59 as
identical intrinsic growth rates or fecundity of each sub-population stage class on patches
1 and 2. One can also interpret 𝑎𝑖 𝑗 and 𝑏𝑖 𝑗 , with 𝑖 ∈ {1, 2} 𝑖 ≠ 𝑗 , as asymmetric transition
rates. We could justify the identical growth rates on each patch by assuming the patches
are similar in resource allocation. We can also assume, for simplicity, that these species
are living in a closed ecosystem, such as a laboratory environment for example, and so
their growth rates can be controlled. This could possibly describe a cnidarian species,
such as jellyfish, sea anemones or corals, for example [224]. This species has two age
classes, namely the polyp and medusa reproductive ages, which transition between these
age classes through what is known as ontogeny reversal. We can see that 𝐴 and 𝐵 are
Toeplitz and Schur. We also have that

(𝑎 − 1)2 − (𝑎12 + 𝑎21)2 = 0.2028 > 0,

(𝑏 − 1)2 − (𝑏12 + 𝑏21)2 = 0.1197 > 0.

Therefore by Proposition 6.4.3, we have that𝑀 is Schur for all 𝐷 ∈ D𝐴,𝐵. Therefore in this
case, when each demographic class on their respective patch has identical growth rates,
with asymmetric transition rates between these classes, we get that diffusive dispersal
cannot rescue such declining patches from extinction, under the technical assumptions
that (𝑎 − 1)2 − (𝑎12 + 𝑎21)2 > 0 and (𝑏 − 1)2 − (𝑏12 + 𝑏21)2 > 0.

6.5. Diffusive Growth

In previous sections we investigated when the extinction equilibrium of (6.2.2) was GAS
for all feasible diffusive couplings, otherwise known as robust diffusive stability. We will
now numerically explore the situation when, given that 𝜌(𝐴) < 1 and 𝜌(𝐵) < 1, one can
find a diagonal 𝐷 ∈ D𝐴,𝐵 𝜌(𝑀) > 1, what we will call diffusive growth, i.e. the extinction
equilibrium of (6.2.1) is unstable. This, in the context of demographically-structured
populations, corresponds to finding certain diffusive couplings that result in two sink
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populations being connected such that overall population growth across the two patches is
observed. This concept has been discussed recently for continuous time models in [153,
22] and for discrete-time, stage-structured population models in [114], where it referred
to as dispersal-induced growth or dispersal-driven growth. This is a similar concept to
the rescue effect, as discussed briefly in Chapter 4, where a declining populations is
connected via dispersal to a growing population in order to prevent overall extinction. For
diffusive growth however, we are assuming that both patches are sinks. Diffusive growth
is particularly relevant if, for example, one was interested in conserving migratory species
or constructing ecological corridors [148, 252, 143].

6.5.1. Convex Hull

The convex hull arises frequently when investigating stability in control and systems
analysis, and has recently been of interest in relation to stage-structured population models
[127, 48]. We will say that the convex hull of 𝐴 and 𝐵, {𝛼𝐴 + (1 − 𝛼)𝐵 : 𝛼 ∈ (0, 1)}, is
unstable if 𝜌(𝛼𝐴 + (1 − 𝛼)𝐵) ≥ 1 for some 𝛼 ∈ (0, 1).

The existence of a common linear, diagonal, or quadratic Lyapunov function all imply that
the convex hull of 𝐴 and 𝐵 consists only of Schur matrices. In fact, it can be shown that
this is the case for any convex common Lyapunov function [174]. Given the link between
common Lyapunov function existence and diffusive growth (or the opposite, RDS), as
discussed in previous sections of this chapter, these considerations lead us to investigate
the relationship between diffusive growth and the existence of an unstable convex hull.
Before we investigate diffusive growth, we first state a result on the potential instability of
the convex hull of two Schur matrices.

Proposition 6.5.1. Let 𝐴, 𝐵 ∈ R𝑛×𝑛+ be Schur. Then TFAE:

(a) there exists 𝛼 ∈ (0, 1) such that 𝜌(𝛼𝐴 + (1 − 𝛼)𝐵) ≥ 1.

(b) (𝐴 − 𝐼) (𝐵 − 𝐼)−1 has a negative real eigenvalue.

(c) 𝐴 − 𝐼 + 𝛾(𝐵 − 𝐼) is singular for some 𝛾 > 0.

(d) 𝐴 − 𝐼 + 𝛾(𝐵 − 𝐼) is not Hurwitz for some 𝛾 > 0.

Proof. Let �̂� := 𝐴 − 𝐼 and �̂� := 𝐵 − 𝐼.

(𝑎) ⇐⇒ (𝑏). As 𝐴 and 𝐵 are Schur, and 𝜌(·) is a continuous function of its matrix
argument elements, (a) is equivalent to the existence of some 𝛾 ∈ (0, 1) such that 𝜌(𝛾𝐴 +
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(1 − 𝛾)𝐵) = 1. For such a 𝛾 let 𝐶 = 𝛾�̂� + (1 − 𝛾)�̂�. We can observe that 𝐶 is Metzler. It
then follows that 0 ∈ 𝜎(𝐶). We then have that

det (𝐶) = 0 ⇐⇒ det
(
𝛾�̂� + (1 − 𝛾)�̂�

)
= 0.

�̂� is Hurwitz and so det(�̂�) ≠ 0. Therefore

det
(
𝛾�̂� + (1 − 𝛾)�̂�

)
= 0 ⇐⇒ det

(
𝛾�̂��̂�−1 + (1 − 𝛾)𝐼

)
det(�̂�) = 0

⇐⇒ det
(
�̂��̂�−1 + (1 − 𝛾)

𝛾
𝐼

)
= 0.

It is then immediate that 𝜇(𝐶) = 0 if and only if

0 >
𝛾 − 1
𝛾

∈ 𝜎
(
�̂��̂�−1

)
.

(𝑏) ⇐⇒ (𝑐) ⇐⇒ (𝑑): Proof as in [191]. □

Using the above result we can now show that the existence of an unstable convex hull can
correspond to diffusive growth.

Example 6.5.1. Consider

𝐴 =

(
0.74 0.20
0.40 0.67

)
and 𝐵 =

(
0.73 0.08
0.87 0.73

)
.

We can compute that 𝜌(𝐴) ≈ 𝜌(𝐵) ≈ 0.99. Therefore 𝐴 and 𝐵 are both Schur. One can
also verify that −14.0262 ∈ 𝜎((𝐴 − 𝐼) (𝐵 − 𝐼)−1). It follows from Proposition 6.5.1 that
there exists 𝛼 ∈ (0, 1) such that 𝜌(𝛼𝐴 + (1 − 𝛼)𝐵) ≥ 1. Therefore it follows that there
exists no common Lyapunov function of any type for 𝐴 and 𝐵. We can also see that for
𝐷 = diag(0.73, 0.67) one has 𝜌(𝑀) ≈ 1.009 > 1.

The fact that it is possible to have diffusive growth when there is an unstable convex
combination is not really surprising. However, a natural next question to ask is: for
every {𝐴, 𝐵} ⊂ R𝑛×𝑛+ such that 𝐴 and 𝐵 are Schur and there exists 𝛼 ∈ (0, 1) such that
𝜌(𝛼𝐴 + (1 − 𝛼)𝐵) ≥ 1, does there exist a 𝐷 ∈ D𝐴,𝐵 such that 𝜌(𝑀) > 1, i.e. does the
existence of an unstable convex combination of 𝐴 and 𝐵 imply diffusive growth? The
answer to this is in fact no, as we can demonstrate with a simple example. First we state
the following characterisation of Hurwitz stability, as proved more generally in [79]. Let
𝑃, 𝑆, 𝑅, 𝑄 ∈ R𝑛×𝑛. Further let

Γ :=

(
𝑃 𝑄

𝑅 𝑆

)
. (6.5.1)

The Schur complement of Γ with respect to 𝑃 (resp. 𝑆) is defined as Γ\𝑃 := 𝑆 − 𝑅𝑃−1𝑄

(resp. Γ\𝑆 := 𝑃 − 𝑅𝑆−1𝑄), provided that 𝑃−1 (resp. 𝑆−1) exists [137].
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Proposition 6.5.2. [79] Let 𝑃, 𝑆 ∈ R𝑛×𝑛 be Metzler and let 𝑅,𝑄 ∈ R𝑛×𝑛+ . Let Γ be of the
form (6.5.1). Then TFAE:

1. The Metzler matrix Γ is Hurwitz.

2. 𝑃 is Hurwitz and Γ\𝑃 is Metzler and Hurwitz.

3. 𝑆 is Hurwitz and Γ\𝑆 is Metzler and Hurwitz.

We can now show that there exists Schur 𝐴, 𝐵 ∈ R𝑛×𝑛+ and 𝛼 ∈ (0, 1) such that 𝜌(𝛼𝐴 +
(1 − 𝛼)𝐵) > 1, but 𝜌(𝑀) < 1 for all diagonal 𝐷 ∈ D𝐴,𝐵.

Example 6.5.2. Consider

𝐴 =

(
0.4 0.76

0.78 0

)
and 𝐵 =

(
0.5 0.45

1.01 0.07

)
.

We can compute that 𝜌(𝐴) ≈ 𝜌(𝐵) ≈ 0.99 and verify that −5.6501 ∈ 𝜎((𝐴− 𝐼) (𝐵− 𝐼)−1).
It follows from Proposition 6.5.1 that there exists𝛼 ∈ (0, 1) such that 𝜌(𝛼𝐴+(1−𝛼)𝐵) ≥ 1.
Therefore it follows that there exists no common Lyapunov function of any type. As both
𝐴 − 𝐷 ⪰ 0 and 𝐵 − 𝐷 ⪰ 0, we have that 𝐷 = diag(𝑑1, 0) for 𝑑1 ∈ [0, 0.4]. We therefore
have that

𝑀 − 𝐼 =
©«
−0.6 − 𝑑1 0.76 𝑑1 0

0.78 −1 0 0
𝑑1 0 −0.5 − 𝑑1 0.45
0 0 1.01 −0.93

ª®®®®®¬
.

The Schur complement of 𝑀 − 𝐼 with respect to 𝐵 − 𝐼 − 𝐷 is

(𝑀 − 𝐼)\(𝐵 − 𝐼 − 𝐷) = 𝑆 := 𝐵 − 𝐼 − 𝐷 − 𝐷 (𝐴 − 𝐼 − 𝐷)−1𝐷.

Observe that 𝑀 − 𝐼 is Metzler. 𝐵 − 𝐼 − 𝐷 is Metzler and as 𝐴 − 𝐷 is Hurwitz, we have
that (𝐴 − 𝐷)−1 ⪯ 0. Therefore

−𝐷 (𝐴 − 𝐼 − 𝐷)−1𝐷 ⪰ 0,

which implies that 𝑆 is also Metzler. We can compute that

𝑆 =

(
−0.5 − 𝑑1 0.45

1.01 −0.93

)
−

(
𝑑1 0
0 0

) (
−0.6 − 𝑑1 0.76

0.78 −1

)−1 (
𝑑1 0
0 0

)
=

(
−0.5 − 𝑑1 0.45

1.01 −0.93

)
− 1
𝑑1 + 0.6072

(
𝑑1 0
0 0

) (
−1 −0.76

−0.78 −0.6 − 𝑑1

) (
𝑑1 0
0 0

)
=

(
−0.5 − 𝑑1 0.45

1.01 −0.93

)
+

𝑑2
1

𝑑1 + 0.6072

(
1 0
0 0

)
.
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6.5. Diffusive Growth

From the form of the characteristic polynomial of 𝑆 we can see that it is a Hurwitz matrix
if and only if Tr(𝑆) < 0 and det(𝑆) > 0. As 𝑑1 > 0 we have that

Tr(𝑆) < 0 ⇐⇒ −1.4907𝑑1 − 0.8683 < 0,

det(𝑆) > 0 ⇐⇒ 0.5752𝑑1 + 0.0064 > 0.

Therefore 𝑆 is Hurwitz. It then follows from Proposition 6.5.2 that 𝑀 − 𝐼 is also Hurwitz
for all diagonal 𝐷 ∈ D𝐴,𝐵. Therefore we have that 𝑀 is Schur for all diagonal 𝐷 ∈ D𝐴,𝐵.

The main aim of this subsection was to demonstrate the link between diffusive growth and
the existence of an unstable convex hull. Example 6.5.2 demonstrated that for any pair of
system matrices, 𝐴 and 𝐵, that are Schur, the existence of an unstable convex combination,
and therefore the nonexistence of a common Lyapunov function, does not imply that we
can find a feasible diffusive coupling that results in overall population growth.

6.5.2. Asymmetric Dispersal

As discussed in Chapters 4 and 5, dispersal can also be asymmetric rather than diffusive,
i.e. symmetric. We will next show that we can induce diffusive growth if we have
asymmetric dispersal rather than diffusion. To define asymmetric dispersal we first rewrite
the diffusively coupled system (6.2.2) as

𝑥(𝑡 + 1) = 𝑀𝑥(𝑡)

𝑀 :=

(
𝐴 − 𝐷1 𝐷2

𝐷1 𝐵 − 𝐷2

)
(6.5.2)

𝑥(0) = 𝑥0 ∈ R2𝑛
+ ,

where 𝐷1 and 𝐷2 are nonnegative diagonal matrices such that 𝐴 − 𝐷1 ⪰ 0, 𝐵 − 𝐷2 ⪰ 0
and 𝐷1 ≠ 𝐷2. Note that system (6.5.2) is a special case of (3.6.1) with diagonal dispersal
matrices, 𝐷1 and 𝐷2, and setting 𝛾1 = 𝛾2 = 1.

Example 6.5.3. Consider

𝐴 =

(
0.413 0.668
0.199 0.763

)
, 𝐵 =

(
0.088 0.808
0.509 0.536

)
. (6.5.3)

One can verify that 𝐴 and 𝐵 are Schur and that 𝐶 = diag(3.494, 7.713) > 0 is a com-
mon diagonal solution to (6.3.3). Although this is the case, we can see that, for 𝐷1 =

diag(0.413, 0.763) and 𝐷2 = diag(0.088, 0.536), we have that 𝜌(𝑀) ≈ 1.003 > 1. If we
were to have diffusion instead of asymmetric dispersal, we can see that the assumptions of
Theorem 6.3.4 hold. Therefore we would get RDS. However the example above implies
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that the extinction equilibrium in the case of asymmetric dispersal is unstable, i.e. overall
population growth occurs. Therefore the existence of a common Lyapunov function for
𝐴 and 𝐵 does not imply that we have 𝜌(𝑀) < 1 for all feasible asymmetric dispersal
matrices.

We will now discuss some results related to RDS and diffusive growth for two common
population matrix models used in ecology, namely the Leslie matrix model and the LPA
model.

6.6. Stage-Structured Diffusion

As discussed in Chapter 3, stage-structured models take account of the discrete stages
within a species’ life cycle. We will now discuss RDS and diffusive growth in this context.

6.6.1. Leslie Matrices

Recall from Subsection 3.1.2 of Chapter 3 that when using population matrix models it is
common to decompose the system matrix 𝐴 ∈ R𝑛×𝑛+ as 𝐴 = 𝑇 + 𝐹, where 𝑇 = (𝑡𝑖 𝑗 ), 𝐹 =

( 𝑓𝑖 𝑗 ) ∈ R𝑛×𝑛+ are respectively called transition and fertility matrices [61]. The entries of
these matrices satisfy, for 𝑖, 𝑗 ∈ {1, · · · , 𝑛},

𝑓𝑖 𝑗 ≥ 0, 𝑡𝑖 𝑗 ∈ (0, 1],
𝑛∑︁
𝑖=1

𝑡𝑖 𝑗 ≤ 1. (6.6.1)

One such class of matrices that satisfies (6.6.1) were introduced in [170], as defined in
Chapter 3. In this chapter we consider a generalisation of such matrices. We say that
𝐴 ∈ R𝑛×𝑛+ is an extended Leslie matrix if it takes the form

𝐿 =

©«

𝑓11 𝑓12 𝑓13 · · · 𝑓1𝑛

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 0

ª®®®®®®®¬︸                              ︷︷                              ︸
F

+

©«

0 0 0 · · · 0
𝑡21 0 0 · · · 0
0 𝑡32 0 · · · 0
...

. . .
. . .

...

0 0 0 𝑡𝑛𝑛−1 𝑡𝑛𝑛

ª®®®®®®®¬︸                               ︷︷                               ︸
T

. (6.6.2)

where 𝑓1𝑖 ≥ 0 and 𝑡 𝑗 𝑗−1 ∈ (0, 1] are respectively called stage-specific fecundity and
survival/transition rates, for 𝑖 ∈ {1, · · · , 𝑛}, 𝑗 ∈ {2, · · · , 𝑛} [62]. The parameter 𝑡𝑛𝑛 ∈
[0, 1] corresponds to the proportion of the final stage class that survives to the next
generation. This is interpreted as a fixed proportion, 𝑡𝑛𝑛, of individuals in final stage class
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6.6. Stage-Structured Diffusion

who survive to the next census. When 𝑡𝑛𝑛 = 0 we have that (6.6.2) reduces to a standard
Leslie matrix, as we saw in Chapter 3. We will simply refer to matrices of the form (6.6.2)
as Leslie matrices (see Fig. 6.2). Note that (6.6.2) is of the form of a so-called Lefkovich
matrix [177].

𝟏 𝟐 ⋯ 𝒏 − 𝟏 𝒏

𝑡𝑛𝑛𝑡𝑛𝑛−1𝑡21

********* ***𝑓12*** ****** ***

𝑓11

𝑓1𝑛−1 𝑓1𝑛

Figure 6.2: Directed graph corresponding to the extended Leslie matrix (6.6.2).

Leslie matrices in the context of patchy dispersal were investigated in [13]. The authors
studied the model

𝑥𝑖 (𝑡 + 1) = 𝑇𝑖𝑥𝑖 (𝑡) +
𝑛∑︁
𝑗=1
𝑐𝑖 𝑗𝐹𝑗𝑥 𝑗 (𝑡),

where 𝐹𝑖 and 𝑇𝑖 are respectively of the form of 𝐹 and 𝑇 in (6.6.2), with 𝑡𝑛𝑛 = 0, and
where 𝐶 = (𝑐𝑖 𝑗 ) ∈ R𝑛×𝑛+ is a dispersal connectivity matrix whose entries correspond
to the proportions of successfully dispersed juveniles. The authors looked at how the
reproduction number for such Leslie matrices related to metapopulation growth for various
types of dispersal networks.

Up to now, we have used diagonal matrices to describe dispersal between patches. How-
ever, for several discrete time models, the structure of the matrices describing local
dynamics makes diagonal dispersal matrices inappropriate. Leslie matrix models are
stage-structured, and as these are also discrete-time models, each time step corresponds to
the length of time spent in each stage class. Recall that the nonzero entries of 𝑇 describe
transitions between stage classes and the survival of the adult class to the next generation.
This then means that the most appropriate position for our diffusion terms between stage
classes would be in the (𝑖, 𝑖 − 1) and (𝑛, 𝑛) positions, for 𝑖 ∈ {2, ..., 𝑛}. More formally, as-
sume that 𝐷 ∈ D𝐿 (𝐴,𝐵) , where D𝐿 (𝐴,𝐵) is the set of lower-triangular, nonnegative matrices
of the form

𝐷𝐿 =

©«

0 0 0 · · · 0
𝑑21 0 0 · · · 0
0 𝑑32 0 · · · 0
...

. . .
. . .

...

0 0 0 𝑑𝑛𝑛−1 𝑑𝑛𝑛

ª®®®®®®®¬
, (6.6.3)

such that 𝐴 − 𝐷𝐿 ⪰ 0 and 𝐵 − 𝐷𝐿 ⪰ 0. Further define the following:
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• For 𝑖 ∈ {2, ..., 𝑛}, D𝑖
𝐴,𝐵

:= {𝐷𝐿 ∈ D𝐿 (𝐴,𝐵) : 𝑑𝑖𝑖−1 > 0, 𝑑 𝑗 𝑗−1 = 𝑑𝑛𝑛 = 0, 𝑗 ≠ 𝑖},
i.e. diffusion only affects the transition class 𝑖. This could arise in a scenario where,
for example, there is natal/breeding dispersal of one mobile class of juveniles or
adults [123].

• D 𝑓

𝐴,𝐵
:= {𝐷𝐿 ∈ D𝐿 (𝐴,𝐵) : 𝑑𝑛𝑛 > 0, 𝑑21 = 𝑑32 = · · · = 𝑑𝑛𝑛−1 = 0}, i.e. diffusion only

affects the remaining/surviving adult class. This could arise in a scenario where
there is delayed dispersal of adults only, due to, for example, cooperative breeding
[158].

We now state a result about Leslie matrices that makes use of the column selection set of
𝐴 and 𝐵. Given a matrix 𝐴, let 𝐴[𝑖] denote its 𝑖th row. Given a matrix pair {𝐴, 𝐵} ⊂ R𝑛×𝑛

define 𝑆(𝐴, 𝐵), the so-called row selection set of 𝐴 and 𝐵, to be the set of all real matrices,
each of which has 𝑖th row given by the 𝑖th row of either 𝐴 or 𝐵 [3].

Let 𝐴 and 𝐵 be Leslie matrices of the form (6.6.2). Further let

𝑆𝐴 :=

©«

𝑎11 𝑎12 𝑎13 · · · 𝑎1𝑛

𝑚21 0 0 · · · 0
0 𝑚32 0 · · · 0
...

. . .
. . .

...

0 0 0 𝑚𝑛𝑛−1 𝑚𝑛𝑛

ª®®®®®®®¬
and 𝑆𝐵 :=

©«

𝑏11 𝑏12 𝑏13 · · · 𝑏1𝑛

𝑚21 0 0 · · · 0
0 𝑚32 0 · · · 0
...

. . .
. . .

...

0 0 0 𝑚𝑛𝑛−1 𝑚𝑛𝑛

ª®®®®®®®¬
where we define𝑚𝑙𝑙−1 := max {𝑎𝑙𝑙−1, 𝑏𝑙𝑙−1}, for 𝑙 ∈ {2, ..., 𝑛}, and𝑚𝑛𝑛 := max {𝑎𝑛𝑛, 𝑏𝑛𝑛}.

We will now state a useful result for establishing RDS for Leslie matrices.

Theorem 6.6.1. Let 𝐴, 𝐵 ∈ R𝑛×𝑛+ be Schur and of form (6.6.2), such that 𝑎1𝑛, 𝑏1𝑛, 𝑎𝑛𝑛, 𝑏𝑛𝑛 >

0. Then there exists 𝑣 ≻ 0 such that 𝐴𝑣 ≺ 𝑣, 𝐵𝑣 ≺ 𝑣 if and only if 𝜌(𝑆𝐴) < 1 and 𝜌(𝑆𝐵) < 1.

Proof. ( =⇒ ) Assume that there exists 𝑣 ≻ 0 such that 𝐴𝑣 ≺ 𝑣, 𝐵𝑣 ≺ 𝑣. Each entry in 𝑆𝐴𝑣
and 𝑆𝐵𝑣 are given by the corresponding entry in one of 𝐴𝑣 or 𝐵𝑣. We can then conclude
𝑆𝐴𝑣 ≺ 𝑣 and 𝑆𝐵𝑣 ≺ 𝑣. It follows from Lemma 2.2.2 that 𝑆𝐴 and 𝑆𝐵 are Schur.

( ⇐= ) Conversely assume that 𝑆𝐴 and 𝑆𝐵 Schur. Given 𝑅 ∈ 𝑆(𝐴, 𝐵) we have that 𝑅 ⪯ 𝑆𝐴

or 𝑅 ⪯ 𝑆𝐵. As both 𝑆𝐴 and 𝑆𝐵 are Schur, then 𝑅 is also Schur. This then implies that
every 𝑃 ∈ 𝑆(𝐴 − 𝐼, 𝐵 − 𝐼) is Hurwitz. □

The next two results state sufficient conditions for RDS for Leslie matrices where diffusion
only affects the remaining/surviving adult stage class, i.e. 𝐷 ∈ D 𝑓

𝐴,𝐵
.
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Corollary 6.6.2. Let 𝐴 = (𝑎𝑖 𝑗 ), 𝐵 = (𝑏𝑖 𝑗 ) ∈ R𝑛×𝑛+ be Leslie matrices of form (6.6.2) such
that 𝑎1𝑛, 𝑏1𝑛, 𝑎𝑛𝑛, 𝑏𝑛𝑛 > 0. Assume that 𝑆𝐴 and 𝑆𝐵 are Schur. Then 𝑀 is Schur for all 𝐷 ∈
D 𝑓

𝐴,𝐵
.

Proof. It follows from Theorem 6.6.1 that both 𝜌(𝑆𝐴) < 1 and 𝜌(𝑆𝐵) < 1 if and only if
both 𝐴𝑣 ≺ 𝑣 and 𝐵𝑣 ≺ 𝑣. Hence, by Proposition 2.2.2, 𝑀 is Schur for all 𝐷 ∈ D 𝑓

𝐴,𝐵
. □

Corollary 6.6.2 states that if the Leslie matrices 𝐴 and 𝐵 only differ in their fertility
parameters, i.e. their first rows, then we can ensure RDS. We next state an even stronger
result for Schur Leslie matrices.

Theorem 6.6.3. Let 𝐴 = (𝑎𝑖 𝑗 ) = 𝐹1 + 𝑇1, 𝐵 = (𝑏𝑖 𝑗 ) = 𝐹2 + 𝑇2 ∈ R𝑛×𝑛+ be Schur, Leslie
matrices of form (6.6.2), such that 𝑎1𝑛, 𝑏1𝑛, 𝑎𝑛𝑛, 𝑏𝑛𝑛 > 0. Then 𝑀 is Schur for all 𝐷 ∈
D 𝑓

𝐴,𝐵
.

Proof. 𝑆 ∈ R𝑛×𝑛 is irreducible if and only if the corresponding digraph of 𝑆 is strongly
connected [137]. As 𝑎1𝑛, 𝑏1𝑛, 𝑎𝑛𝑛, 𝑏𝑛𝑛 > 0, 𝑎𝑖𝑖−1, 𝑏𝑖𝑖−1 > 0 for all 𝑖 ∈ {2, ..., 𝑛}, the
directed graph corresponding to 𝐴 and 𝐵 are strongly connected. Thus both 𝐴 and 𝐵 are
irreducible. By assumption we have that 𝐷 ∈ D 𝑓

𝐴,𝐵
. Therefore

𝐴 − 𝐷, 𝐵 − 𝐷 ⪰ 0 =⇒ 𝐷 = diag(0, 0, · · · , 𝑑),

for some 𝑑 ∈ [0,min{𝑎𝑛𝑛, 𝑏𝑛𝑛}]. If 𝑑 = 0 then 𝑀 is block diagonal and so, if 𝐴 and 𝐵 are
Schur, then so is 𝑀 . Assume that 𝑑 > 0. One can observe that from the form of 𝑀 that
its corresponding digraph is strongly connected. Therefore 𝑀 is irreducible. As 𝑀 ⪰ 0 it
follows from Theorem 2.2.1 that there exists 𝑦 ≻ 0 such that 𝑀𝑦 = 𝜌(𝑀)𝑦.

We prove our result by contradiction. Assume 𝜌(𝑀) ≥ 1. As 𝐴 and 𝐵 are Schur and
because 𝜌(𝐿) is a continuous function of the entries in 𝐿 ∈ R𝑛×𝑛, there must exist some
diagonal 𝐷 > 0 such that 𝜌(𝑀) = 1. For such a 𝐷, it follows from Lemma 2.2.2 that
𝜌(𝑀) = 1 if and only if there exists 𝑦 := (𝑣 𝑤)𝑇 ≻ 0 such that 𝑀𝑦 = 𝑦. One can then
observe that 𝑀𝑦 = 𝑦 if and only if

(𝐴 − 𝐼)𝑣 = 𝐷 (𝑣 − 𝑤) = (0 0 · · · 0 𝑑 ((𝑣𝑛 − 𝑤𝑛))𝑇 (6.6.4)

(𝐵 − 𝐼)𝑤 = 𝐷 (𝑤 − 𝑣) = (0 0 · · · 0 𝑑 ((𝑤𝑛 − 𝑣𝑛))𝑇 . (6.6.5)

The RHS of one of (6.6.4) or (6.6.5) must be nonnegative. This means that either 𝐴𝑣 ⪰ 𝑣
or 𝐵𝑤 ⪰ 𝑤. Assume that 𝐴𝑣 ⪰ 𝑣. We then have that (𝐴 − 𝐼)𝑣 ⪰ 0 if and only if 𝐴𝑣 ⪰ 𝑣,
which contradicts that 𝐴 is Schur. This holds similarly if we assume 𝐵𝑤 ⪰ 𝑤. Therefore,
in either case, 𝑀 is Schur for all 𝐷 ∈ D 𝑓

𝐴,𝐵
. □
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Theorem 6.6.3 means that if we allow only adult diffusion, we cannot rescue the two
patches from extinction. Using a similar argument as in the proof of Theorem 6.6.3, we
can prove the following result, where diffusion only affects one particular transition stage
class, i.e. we have that 𝐷 ∈ D𝑖

𝐴,𝐵
for some given 𝑖 ∈ {2, ..., 𝑛}.

Theorem 6.6.4. Let 𝐴 = (𝑎𝑖 𝑗 ), 𝐵 = (𝑏𝑖 𝑗 ) ∈ R𝑛×𝑛+ be Schur, Leslie matrices of form (6.6.2),
such that 𝑎1𝑛, 𝑏1𝑛 > 0. Then, for a given 𝑖 ∈ {1, ..., 𝑛}, 𝑀 is Schur for all 𝐷 ∈ D𝑖

𝐴,𝐵
.

In Theorem 6.6.4 we saw that diffusion is only permitted in transition stage class. In
Theorems 6.6.3 and 6.6.4 we can see that allowing diffusion between only one stage class
results in RDS. A natural next question to ask is: can we guarantee RDS if we allow
diffusion in more than one stage class? The answer to this in general is in fact no, as we
can demonstrate with a simple example.

Example 6.6.1. Consider

𝐴 =
©«

0.10 0.84 0.14
0.93 0 0

0 0.64 0.18

ª®®¬ , 𝐵 =
©«

0.59 0.13 0.99
0.4900 0 0

0 0.35 0.47

ª®®¬ .
One can verify that 𝐴 and 𝐵 are Schur. Letting

𝐷 =
©«

0 0 0
0.2500 0 0

0 0.1800 0

ª®®¬
one can verify that 𝜌(𝑀) ≈ 1.02 > 1. Thus diffusive growth occurs once diffusion is
permitted to take place between more than one transition stage class.

We will next demonstrate how the above results apply to the LPA model, a nonlinear
extension of a 3 × 3 extended Leslie matrix model.

6.6.2. The LPA Model

As discussed in Chapter 3, a well-known structured population model in ecology is the
nonlinear LPA model [55]. We can see from the form of the matrix valued function 𝐴(𝑥),
given by (3.2.4), that 𝐴(0) is of the extended Leslie matrix form

𝐴(0) :=
©«

0 0 𝑝

𝑞 0 0
0 𝑟 𝑠

ª®®¬ , (6.6.6)
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where 𝑝 > 0 and 𝑞, 𝑟, 𝑠 ∈ [0, 1]. Motivated by the diffusively coupled sysem (6.2.2), we
can write this system as a nonlinear matrix model as follows. Let 𝐴(𝑥) and 𝐵(𝑥) be of the
form (3.2.4). Then our nonlinear diffusively coupled system can be written as

𝑥(𝑡 + 1) = 𝑀 (𝑥)𝑥(𝑡)

𝑀 (𝑥) :=

(
𝐴(𝑥) − 𝐷 𝐷

𝐷 𝐵(𝑥) − 𝐷

)
(6.6.7)

𝑥(0) = 𝑥0 ∈ R2𝑛
+ ,

for 𝐷 ∈ D𝐿 (𝐴,𝐵) . As the LPA model is nonlinear, for each patch to be a sink, in the context
of (6.6.8), we will assume that 𝜌(𝐴(0)), 𝜌(𝐵(0)) < 1. We can observe from the form of
(3.2.4) that 𝐴(𝑥) ⪯ 𝐴(0) and 𝐵(𝑥) ⪯ 𝐵(0). It then follows that for 𝑥(0) = 𝑥0 ∈ R2

+, a
solution of (3.2.1) satisfies 𝑥(𝑡, 𝑥0) =

∏𝑡
𝑠=1 𝐴(𝑥(𝑡 − 𝑠))𝑥0 ≤ 𝐴(0)𝑡𝑥0 for 𝑡 ≥ 1. Therefore

we have that 𝜌(𝐴(0)) < 1 implies that 𝐴(0)𝑡 → 0 as 𝑡 → ∞. Therefore we can see that
𝜌(𝐴(0)), 𝜌(𝐵(0)) < 1 implies the extinction equilibrium is GAS on both patches.

In the context of the LPA model, one would expect dispersal to occur at the adult stage,
where the species is mobile. Therefore assume 𝐷 ∈ D 𝑓

𝐴,𝐵
, i.e. diffusion occurs in the

adult survival stage class. It then follows from Theorem 6.6.3, that if we allow diffusive
dispersal from the adult class, we must have that the extinction equilibrium is LAS and in
turn we must have that it is also GAS, where dispersal is described by a constant matrix
𝐷 as 𝑀 (𝑥) ⪯ 𝑀 (0) in this case. Therefore when dispersal is constant and occurs from
the adult class we can ensure that diffusive growth can never occur. We can generalise
dispersal so that it is nonlinear, by rewriting (6.6.8) as

𝑥(𝑡 + 1) = 𝑀 (𝑥)𝑥(𝑡)

𝑀 (𝑥) :=

(
𝐴(𝑥) − 𝐷 (𝑥) 𝐷 (𝑥)

𝐷 (𝑥) 𝐵(𝑥) − 𝐷 (𝑥)

)
(6.6.8)

𝑥(0) = 𝑥0 ∈ R2𝑛
+ ,

where we assume that𝐷 : R𝑛+ → R𝑛×𝑛+ is a matrix valued function of the form (6.6.3). Each
𝑑𝑖 𝑗 is a smooth function describing the density-dependent diffusion of that respective tran-
sition stage class. From the form of 𝐴(𝑥) and 𝐵(𝑥) we must have that 𝐷 = diag(0, 0, 𝑑 (𝑥)),
where 𝑑 : R+ → R+, such that 𝑟 ≥ 𝑑 (𝑥) for all 𝑥 ≥ 0, so that our system remains posi-
tive. We can then see from that if 𝜌(𝐴(0)), 𝜌(𝐵(0)) < 1 then we get that 𝑀 (0) is LAS.
The interplay between 𝐴(𝑥) and 𝐷 (𝑥) would need to be further investigated to conclude
a stronger statement about stability. To further demonstrate the ecological applicability
of our results, we will show next how they apply to a well-known model of amphibian
dynamics.
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6.6. Stage-Structured Diffusion

6.6.3. An Invasive Bullfrog Model

In the context of modelling invasive species, in [112] the authors proposed a model for the
stage-structured dynamics of the American bullfrog, a species that has been introduced
around the world and which causes great damage to native populations. In this paper the
authors proposed the following system matrix for modelling its linear dynamics:

𝐴𝐹 :=

©«

0 0 0 0 𝑎1

𝑎2 0 0 0 0
0 𝑎3 0 0 0
0 𝑎4 𝑎5 0 0
0 0 0 𝑎6 𝑎7

ª®®®®®®®¬
, (6.6.9)

for 𝑎1 > 0, 𝑎𝑖 ∈ (0, 1] for 𝑖 ∈ {2, ..., 6} and 𝑎7 ∈ (0, 1). This matrix model describes the
fecundity of the adult class, as well as transitions between tadpole, juvenile and adult stage
classes. The 𝑎4 entry corresponds to the transition of one year old tadpoles to juveniles.
The matrix 𝐴𝐹 is very similar in form to a extended Leslie matrix, apart from the 𝑎4 > 0
entry. As noted in [62], 𝐴𝐹 is irreducible as its associated digraph is strongly connected.
One can then observe that the following result holds, the proof of which is identical to that
of Theorem 6.6.3.

Theorem 6.6.5. Let 𝐴, 𝐵 ∈ R5×5
+ be Schur matrices of the form in (6.6.9). Then 𝑀 is

Schur for all 𝐷 ∈ D 𝑓

𝐴,𝐵
.

We will now demonstrate the use of Theorem 6.6.5 using an empirical example.

Example 6.6.2. In [112] the authors estimated the entries of 𝐴𝐹 for a suburban population
of American bullfrog in Victoria in British Columbia, Canada as

𝐴𝐹 =

©«

0 0 0 0 2080
0.070 0 0 0 0

0 0.078 0 0 0
0 0.016 0.020 0 0
0 0 0 0.129 0.318

ª®®®®®®®¬
. (6.6.10)

Let 𝐴 be given by (6.6.10) and further let

𝐵 =

©«

0 0 0 0 2080
0.02 0 0 0 0

0 0.318 0 0 0
0 0.129 0.078 0 0
0 0 0 0.016 0.070

ª®®®®®®®¬
. (6.6.11)
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6.7. Summary

As the authors only give one parameterised population projection matrix, we assumed
that the entries in 𝐵 were given by (6.6.11), which is the matrix 𝐴 with transition rates
shuffled. We based this on the fact that factors like temperature or resource quality could
induce different survival rates across transition stages on the two patches. Although this
is an oversimplification, this example is merely to demonstrate the applicability of the
concepts in this chapter. One can numerically check that 𝜌(𝐴) = 𝜌(𝐴𝐹) ≈ 0.855 < 1
and 𝜌(𝐵) ≈ 0.599 < 1. It then follows from Theorem 6.6.5 that 𝑀 is Schur for all 𝐷 ∈
D 𝑓

𝐴,𝐵
. Thus, in this case, if one’s goal was to ensure eradication of such an invasive pest,

then only permitting diffusive dispersal in the adult stage class will result in the overall
extinction of two sink patches.

6.7. Summary

In this chapter, we considered a number of matrix theoretic questions related to struc-
tured population dynamics, where there is movement between demographic classes in
two regions. In particular, we investigated how one can guarantee that the extinction
equilibrium is stable for all feasible diffusive couplings (robust diffusive stability or RDS).
We demonstrated how various types of Lyapunov functions relate to RDS. In particular
we demonstrated that the existence of a CQLF for our system matrices is not sufficient
for RDS, but the existence of a CDLF is sufficient. We described some variations of this
problem and also gave some examples of when RDS does not hold, what we termed diffu-
sive growth. We also briefly explored how our results applied to a range of matrix classes
that arise in stage-structured modelling, such as Leslie matrix models, the LPA model and
using a bullfrog model. The results and examples in this chapter highlight the importance
of taking account of the demographic makeup of a population, as the effect of dispersal on
sub-groups within populations is an important factor to understand when trying to project
future ecological population dynamics under varying habitat characteristics.
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7. Stochastic Group Interactions within
Social Animal Populations

In this chapter, we take a stochastic perspective when modelling structured populations.
In particular, we propose a time series model that couples the dynamics of animal groups
within a population with social structure and an additional auxiliary population. This
framework is proposed in order to infer the temporal associations/interactions among such
groups and the influence of such auxiliary population. We first outline our methodology.
We validate it through various simulation scenarios, to assess parameter estimation and
bias. We then apply our model to a well-known predator-prey case study to assess how
various parameters can be interpreted and how they can be used to infer associations.
Finally, we derive, under a new simpler time series model, an approximation of the
marginal correlation structure between groups, termed the net group interaction strength,
and interpret this within the context of predator-prey theory to highlight its potential
applicability.

Parts of this chapter appeared in: McGrane-Corrigan, B., Mason, O. and de Andrade
Moral, R., 2024. Inferring stochastic group interactions within structured populations via
coupled autoregression. Journal of Theoretical Biology, 584, p.111793.

7.1. Motivation

Many animals have a tendency to congregate into clusters or distinct groups across space
and time. This within-population structure in turn affects the ability of such populations
to compete for resources, occupy home-ranges and participate in community interac-
tions [217]. Dispersal events also greatly influence such populations, as was theoreti-
cally demonstrated in Chapters 4, 5 and 6 in relation to invasion, metapopulations and
demoraphically-structured populations. In the evolutionary theory proposed in [122], liv-
ing in groups has major benefits for group members, as well as the overall population.
These include, for example, alloparenting, where non-parental individuals care for young
[184], along with many costs, such as inter-group competition and free-riding [270]. Thus,
trade-offs balance such intra- and inter-group factors which can lead to higher group fitness
and perhaps to the detriment of individual members. As noted in [4], other important
factors influencing group dynamics include predation risk, as well as diet and the spa-
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7.2. Group Interactions

tiotemporal heterogeneity of resources in many large animal populations [105, 245]. Many
studies have investigated the efficiency of group living [15, 40, 110, 194]. For example,
in [84] the authors analysed a mathematical model of wolf-pack hunting, concluding that
larger packs reduce the effectiveness of group hunting, which explains why hunting suc-
cess tends to peak at small pack sizes. Other authors have focused on how group size
may impact disease spread [38] or theoretical aspects such as the evolution of cooperation
[155, 211].

In the previous chapters we have looked at various mathematical models of within-
population dynamics such as metapopulation dispersal and stage-structure. In this chapter
our specific interest is to model the stochastic dynamics of animal groups that are mon-
itored over some observation window, in order to better understand how these groups
interact with one another and how the presence of an additional auxiliary population
could alter these interactions over time. We will first discuss our model formulation and
how we can fit the model in a Bayesian setting. We then discuss different simulation
scenarios that show how well our model performs. We then present an implementation
of our model for inferring associations within a real-world predator-prey system, namely
wolf-elk interactions in Yellowstone National Park (YNP). We then show, under common
assumptions, how we can derive an approximation to the net group correlation structure
of a social population. Finally we describe possible interpretations of this approximation
in the context of predator-prey theory.

7.2. Group Interactions

As outlined in Chapter 3 for modelling interactions among populations, we could fit a
PLV model to the time series of 𝑔 subgroups within a population. However, we would
need to estimate each component of the intrinsic growth rate vector, 𝑟, and each element
of the interaction matrix, 𝐴. Therefore the number of parameters to estimate over all
the groups would be 𝑔(𝑔 + 1). This does not include the number of parameters that
would need to be estimated when an auxiliary population model is also considered, which
depends on the chosen model parameterisation. Therefore for inferring pairwise group
interactions, it would be beneficial to explicitly deduce which groups are strongly/weakly
associated to one another. A disadvantage of this approach in the group context would
be that for short observation periods, which are common in ecological time series [144],
the resolution of data is too low to accurately estimate such parameters, with parameter
estimation becoming difficult as 𝑔 gets large. The model we consider in this chapter does
not involve specifying any specific interaction type, as in the example outlined in Chapter 3
for modelling predator-prey dynamics. This is because parametrising such systems would
be difficult, if perhaps the number of groups was large. We would also need good high
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7.3. The Coupled Autoregressive Model

resolution group-specific data such as kill rates, mortality rates, along with assuming a
specific form for the functional response for example, in order to fit such a model.

When dealing with groups within a population, we can safely assume that groups interact
with one another either through a variety of processes such as dispersal, resource compe-
tition and hunting cooperation, among others [217]. Therefore we will use the standard
Pearson’s correlation coefficient as a metric of interaction in our group context, which
we will discuss further in later sections, along with interpreting our model parameters
as indicators of interaction also. In the following section we will present our coupled
autoregressive model for modelling group dynamics and later describe how the (pairwise)
correlation, as in (3.7.3), between such groups can possibly be used to measure interaction
strengths among a set of subgroups within a population.

7.2.1. Low Counts and Zero Observations

Many count time series models used in ecology often assume normality on the log scale,
which means that density or abundance is considered multiplicative on the log scale. This
can be valid when counts are large enough to be effectively modelled by autoregressive
models (such as the Gompertz model) with white noise error structure [218]. However,
for low counts, this might not fully capture the dynamics in the same way it does for larger
counts. Additionally, these models often rely on the assumption of a direct linear relation-
ship between covariates and the response variable [212]. Applying log transformations
to raw data may also affect how model outputs are interpreted. Finally, zero observations
may not be addressed in the most straightforward way. In certain cases, such as modelling
social groups in large mammals, where group sizes typically remain small (often fewer
than ten individuals), low counts may be a common occurrence [37].

We next describe our coupled autoregressive model, where we use an observation-driven
approach, as outlined more generally in Chapter 3. We also discuss how our general
framework may address some attributes of modelling social group dynamics, such as
short-observation periods, low counts and zero-inflation.

7.3. The Coupled Autoregressive Model

Consider 𝑔 ∈ {2, 3, ...} groups within some finite population, 𝑋 , and an auxiliary popula-
tion,𝑌 , both of which are observed/censused over𝑇 ∈ Z+ time steps. The random variables
under consideration are discrete counts (abundances) of all groups, 𝑋𝑡 := {𝑋1,𝑡 , ..., 𝑋𝑔,𝑡},
and an auxiliary population, 𝑌𝑡 , at time 𝑡 ∈ [0, 𝑇] ⊂ Z+. Thus (𝑋𝑖,𝑡)[0,𝑇] and (𝑌𝑡)[0,𝑇] are
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7.3. The Coupled Autoregressive Model

respectively realisations of the temporal point processes. In our context these are abun-
dance time series respectively for animal group 𝑖 ∈ {1, ..., 𝑔} and an auxiliary population
over the finite time horizon [0, 𝑇]. Examples of social populations that our framework
could model include:

• Predator-prey systems: 𝑋 is a population of predator groups, such as orca pods, and
𝑌 their main prey population, such as Atlantic herring [149];

• Consumer-resource systems: 𝑋 is a population of consumer groups, such as vervet
monkey troops and 𝑌 one of their main seasonal food resource, such as pink ivory
[246];

• Host-parasite systems: 𝑋 is a population of host groups, such as ant colonies, and 𝑌
their parasitoid, such as parasitic wasps [87];

• Predator-competitor systems: 𝑋 is a population of predator groups, such as North
American grey wolf packs, and 𝑌 a competitor population, such as North American
cougars [81].

7.3.1. The Observation Processes

Let G𝑟 := {𝑋𝑠, 𝑌𝑠 : 𝑠 = 0, ..., 𝑟} to be the set of counts for all groups and the auxiliary
population up to and including a given time 𝑟 ≥ 0 and H 𝑡 := {𝑋𝑡 , 𝑌𝑡} be the set of all
groups and the auxiliary population at a given time 𝑡 ≥ 0. We first assume that

P(𝑋𝑖,𝑡 |G𝑡−1) = P(𝑋𝑖,𝑡 |H 𝑡−1),
P(𝑌𝑡 |G𝑡−1) = P(𝑌𝑡 |H 𝑡−1),

for all 𝑖 ∈ {1, ..., 𝑔} and any fixed 𝑡 ∈ {1, ..., 𝑇}. In other words,
(
𝑋𝑖,𝑡

)
[0,𝑇] and (𝑌𝑡) [0,𝑇]

are discrete-time Markov chains. Similar to the models in previous chapters, here we are
assuming that the current observation only dependes on the initial past values of the group
and auxiliary population counts.

Further let
𝑤 :=

{
𝜔𝑋𝑖 , 𝜆

𝑋
𝑖 , 𝜓𝑖, 𝛿𝑖; 𝑖 ∈ {1, ..., 𝑔}

}
. (7.3.1)

The elements of 𝑤 are random variables given by

𝜔𝑋𝑖 ∼ N(𝜇𝜔, 𝜎2
𝜔), 𝜆𝑋𝑖 ∼ N(𝜇𝜆, 𝜎2

𝜆 ), 𝜓𝑖 ∼ N(𝜇𝜓 , 𝜎2
𝜓), 𝛿𝑖 ∼ N(𝜇𝛿, 𝜎2

𝛿 ), (7.3.2)

for 𝑖 ∈ {1, ..., 𝑔}, where
𝑀 := {𝜇𝜔, 𝜇𝜆, 𝜇𝜓 , 𝜇𝛿} ⊂ R4,

Σ :=
{
𝜎2
𝜔, 𝜎

2
𝜆 , 𝜎

2
𝜓 , 𝜎

2
𝛿

}
⊂ R4

+
(7.3.3)
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7.3. The Coupled Autoregressive Model

are assumed to be known a priori. The elements of 𝑤 are called random effects, with 𝑀
being a set of population-level means and Σ being a set of population-level variances. We
will discuss these in more detail later in this section. Here N(𝜇, 𝜎2) denotes a Gaussian
distribution with probability density function given by

𝑓 (𝑥, 𝛼, 𝛽) :=
1√︁

2𝜋𝛽2
exp

(
− (𝑥 − 𝛼)2

2𝛽2

)
,

for 𝛼 ∈ R and 𝛽 > 0.

With H 𝑡 and 𝑤 defined as above, we assume that

𝑋𝑖,𝑡 |H 𝑡−1, 𝑤 ∼ Pois
(
𝜇𝑋𝑖,𝑡

)
, (7.3.4)

𝑌𝑡 |H 𝑡−1, 𝑤 ∼ Pois
(
𝜇𝑌𝑡

)
, (7.3.5)

for 𝑡 ∈ [1, 𝑇] and 𝑖 ∈ {1, ..., 𝑔}, where we assume that the initial conditions 𝑋𝑖,0 = 𝑥𝑖,0 ≥ 0,
𝑌0 = 𝑦0 ≥ 0, 𝜇𝑋

𝑖,0 > 0, 𝜇𝑌0 > 0 are known a priori. Here Pois(𝜇) denotes a Poisson
distribution with probability mass function given by

𝑓 (𝑘, 𝜇) = 𝜇𝑘𝑒−𝜇

𝑘!
,

where 𝑘 ∈ Z+ and 𝜇 > 0. Therefore each 𝑋𝑖,𝑡 and 𝑌𝑡 are conditional Poisson random
variables with inhomogenous intensities respectively given by 𝜇𝑋

𝑖,𝑡
and 𝜇𝑌𝑡 . In a slight

abuse of notation, we are assuming that the elements of H 𝑡−1 and 𝑤 are known in the
conditional probabilities (7.3.4) and (7.3.5), but omit writing these for ease of exposition.

The random variables in 𝑤 are commonly called random effects, with𝑀 and Σ respectively
being the set of population level means and variances, otherwise known as hyperparame-
ters. See Subsection 3.7.2 in Chapter 2 for more on random effects. These random effects
are assumed to be mutually independent from one another. At each fixed time 𝑡 ≥ 0 we
also assume they are independent to the elements of H 𝑡−1. These random effects will be
included in the components that make up 𝜇𝑋

𝑖,𝑡
and 𝜇𝑌𝑡 , which we will describe in the next

section. The inclusion of random effects allows us to account for across-group variability
in each of the intensity processes. It is common procedure to monitor individual animals
and pool their counts to estimate population-level effects without taking account of group-
level variation. However, we explicitly take account of group dynamics, their couplings
and the influence of an external auxiliary population. The use of random effects allows us
to incorporate the assumption that each group’s dynamics are governed by realisations of
random variables that describe the global behaviour of a theoretically infinite number of
possible groups. We will now outline the various coupling components of our model.
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7.3. The Coupled Autoregressive Model

7.3.2. The Intensity Processes

The inhomogenous mean of each conditional Poisson process is a function of 𝑋𝑖,𝑡 and
𝑌𝑡 . This allows us to couple these processes together to build our coupled autoregressive
model (see Fig. 7.1). The log-intensity process for (7.3.4) is given by

ln(𝜇𝑋𝑖,𝑡) = 𝜔𝑋𝑖 + Λ𝑋
𝑖,𝑡−1 + Ψ𝑖,𝑡−1 + Δ𝑖,𝑡−1. (7.3.6)

The random intercept parameter for group 𝑖, 𝜔𝑋
𝑖

, incorporates density-independent effects
for group 𝑖 in isolation, i.e. intrinsic growth. The autoregressive component,

Λ𝑋
𝑖,𝑡 = 𝜆

𝑋
𝑖 ln

(
𝑥𝑖,𝑡 + 1

)
,

accommodates temporal correlation in 𝑋𝑖,𝑡 . That is, group 𝑖’s abundance at time 𝑡 depends
on 𝜆𝑋

𝑖
and the observed count 𝑥𝑖,𝑡 , with their magnitudes determining how strong this

dependence is. This component incorporates within-group density-dependent effects for
group 𝑖. The intraspecific component,

Ψ𝑖,𝑡 = 𝜓𝑖 ln

(∑︁
𝑗≠𝑖

𝑥 𝑗 ,𝑡 + 1

)
, (7.3.7)

describes how cumulative changes in abundances of each group 𝑗 ≠ 𝑖 affects group 𝑖, with
𝜓𝑖 and the magnitude of each of the observed counts of all of the other groups determining
how strong this dependence is. This intraspecific component could, for example, take ac-
count of the effects of across-group processes like group predation/foraging or competition
for territory. The auxiliary component,

Δ𝑖,𝑡 = 𝛿𝑖 ln (𝑦𝑡 + 1) , (7.3.8)

describes how changes in the auxiliary population affect group 𝑖, where 𝛿𝑖 and the mag-
nitude of the observed 𝑦𝑡 determines how strong this dependence is. The auxiliary
component could, for example, take account of the effects of prey availability or indirect
competition.

The log-intensity process for (7.3.5) is given by

ln(𝜇𝑌𝑡 ) = 𝜔𝑌 + Λ𝑌𝑡−1 + Γ𝑡−1. (7.3.9)

The intercept parameter, 𝜔𝑌 , incorporates density-independent effects for the auxiliary
population in isolation, i.e. intrinsic growth. The autoregressive component,

Λ𝑌𝑡 = 𝜆𝑌 ln (𝑦𝑡 + 1) , (7.3.10)
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7.3. The Coupled Autoregressive Model

accommodates temporal correlation in 𝑌𝑡 . That is, the abundance of the auxiliary pop-
ulation at time 𝑡 also depends on 𝜆𝑌 and the observed count 𝑦𝑡 , with their respective
magnitudes determining how strong this dependence is. This component incorporates
within-population density-dependent effects for 𝑌𝑡 . The interspecific component,

Γ𝑡 = 𝛾 ln ©«
𝑔∑︁
𝑗=1
𝑥 𝑗 ,𝑡 + 1ª®¬ , (7.3.11)

accounts for how changes in the overall target population affects 𝑌𝑡 , where 𝛾 and the
magnitude of each of the other observed counts of groups determine how strong this
dependence is. The interspecific component could, for example, take account of the
effects of predation or interspecific competition. Note that the inclusion of a natural log-
link in (7.3.6) and (7.3.9) is to ensure that 𝜇𝑋

𝑖,𝑡
and 𝜇𝑌𝑡 are non-negative. Adding a constant

1 within each ln argument ensures that our model can capture zero abundance observations
and so correlations can take values inR, as noted by [90]. It also to avoid sampled intensity
values to increase rapidly when these mean processes are only regressed on 𝑋𝑖,𝑡−1 and𝑌𝑡−1

[90, 201]. Conditioning on (7.3.2) in the latent processes (7.3.6) and (7.3.9) can allow
for the accommodation of overdispersion, i.e. violation of expectation-variance equality
[206], a common issue faced when modelling count time series.

𝑿

𝒀

Figure 7.1: Conceptual diagram of how 𝑋 and 𝑌 are coupled, which includes intraspecific
components (7.3.7), auxiliary components (7.3.8), and a interspecific component (7.3.11).

Our modelling approach is similar to level-correlated models, which incorporate depen-
dence between components of a count vector via an underlying correlated latent process [2,
52, 67]. Another way of allowing for overdispersion is using quasi-likelihood methods, but
we adopt a mixed model approach in order to also account for the grouping behaviour and
inter-group variation. In time series models of counts, observational and latent processes
are included to account for measurement error [138]. In our hierarchical framework,
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the data generating process is given by (7.3.5) and (7.3.4), with the unobserved or latent
processes modelled by (7.3.6) and (7.3.9). Therefore we are implicitly assuming perfect
detection. We do not explicitly model the measurement process, as we are only concerned
with inferential aspects of our model.

7.3.3. Model Fitting

To fit our model we took a Bayesian perspective (see Chapter 3 for a brief overview of
Bayesian time series analysis). In all of the analyses below, we employed a Hamiltonian,
no-U-turn sampler (NUTS) algorithm to fit our model (see Chapter 3 for a brief explanation
of HMC). We implemented this via the probabilistic programming language Stan, using
the R package rstan [44]. We used four chains in each of the simulations in the above
scenarios and the case study below. For our case study we used 20,000 iterations, a
thinning rate of 20 and burn-in of 2000. Convergence was assessed using trace plots,
autocorrelation function plots, effective sample size and the Gelman-Rubin statistic [101].

In Chapter 2 we discussed how one may choose to assign priors for variance and mean
terms. When fitting our model in this chapter we assigned independent noninformative
Gaussian priors to our mean hyperparameters and auxiliary population parameters, 𝜃𝜇 ∼
N(0, 1002), for 𝜃𝜇 ∈ 𝑀 ∪

{
𝜔𝑌 , 𝜆𝑌 , 𝛾

}
, where 𝑀 is given in (7.3.3). For our standard

deviation hyperparameters we assigned independent noninformative half-Gaussian priors,
𝜃𝜎 ∼ N+(0, 1002), for 𝜃𝜎 ∈ Σ, where Σ is given in (7.3.3).

7.4. Simulation Studies

Within the ecological literature, count time series may vary from low to high resolution,
which reflects the nature of how the data is observed and collected. To evaluate model
performance, we simulated synthetic data from (7.3.5) and (7.3.4) for 5 different scenarios.
This allows us to validate our estimation procedure outlined in the previous section,
independently of uncertainties due to data constraints, or inadequate data resolution which
are widespread in empirical abundance time series [64, 144]. It also allows us to show that
the parameter estimates can be used to infer group interactions/associations in a stochastic
setting. Being able to reliably estimate parameters is also important within the context of
our theoretical work later in this chapter.

The scenarios we consider in this section include the following:

1. 𝑔 = 10, 𝑇 = 20;
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2. 𝑔 = 42, 𝑇 = 20;

3. 𝑔 = 50, 𝑇 = 50;

4. 𝑔 = 42, 𝑇 = 20, 𝛾 = −0.15, 𝜇𝜓 = 0.15, 𝜇𝛿 = 0.15

5. 𝑔 = 42, 𝑇 = 20, 𝛾 = 0.05, 𝜇𝜓 = −0.05, 𝜇𝛿 = −0.05.

The remaining parameters were set to the values as given in Table 7.1. For scenarios 1-3
we further set 𝛾 = −0.05, 𝜇𝜓 = −0.5 and 𝜇𝛿 = 0.2.

Parameter 𝜔𝑌 𝜆𝑌 𝜇𝜔 𝜇𝜆 𝜎𝜔 𝜎𝜆 𝜎𝛿 𝜎𝜓
True Value 0.9 0.9 0.9 0.06 0.2 0.2 0.04 0.04

Table 7.1: True parameter values chosen for simulation scenarios S1—S5.

Scenarios 1 - 3 were used to observe how well parameters were estimated when the
resolution of the ecological data varies from low to high, due to either the number of
groups observed or the length of each time series. In scenario 1 we have a small number
of groups and short observation period length, which could arise when modelling elusive
social species over a sparse observation period for example. In scenario 2 we have a
moderate number of groups and observation period length. This echoes the data structure
of our case study in the next section. In scenario 3 we have a large number of groups
and long observation period length. This could describe a scenario when monitoring
the weekly abundance of a highly mobile species for example. We included the last two
scenarios to deduce how well parameters are estimated where a predator population and
its prey is monitored, for example.

In scenario 4, as 𝛾 < 0, we are assuming that predator groups have negative effect on prey
abundance. This may be due to the direct effect of depletion of the prey by the predators.
As 𝜇𝛿 > 0, we are assuming that the prey has a net positive effect on predator group
abundance. This may be due to the direct effect of prey consumption by the predators.
Lastly, as 𝜇𝜓 > 0 we are assuming that predator groups have a net positive effect on other
predator group abundances. This may be due to, for example, hunting cooperation [7].

In scenario 5, as 𝛾 > 0, we are assuming that predator groups have a positive effect on prey
abundance. As 𝜇𝛿 < 0, we are assuming that the prey has a net negative effect on predator
group abundance. The sign of both 𝛾 and 𝜇𝛿 being positive could arise in a situation where
predator satiation is observed for example, where the prey produces are large number of
offspring in order to ensure population survival following predation [141]. Predators can
also have a net positive effect on prey through so-called predator-induced modifications,
where the predator can reduce the foraging time of a prey species, which in turn can lead to
an increase in prey resource levels [220]. Lastly, as 𝜇𝜓 < 0 we are assuming that predator
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groups have a net negative effect on other predator group abundances. This may be due to
the direct effect of group competition for prey or territory [254]. We further discuss some
of the situations above in more depth in our theoretical work later.

We ran 100 simulations for each scenario. We can interpret these parameter values in
a biological context. Observe that 𝜇𝜔 > 0, which implies that intrinsic growth for the
auxiliary population is positive. We also can infer positive density dependence for the
auxiliary population, as 𝜆𝑌 > 0. Positivity of the mean parameters, 𝜇𝜔 and 𝜇𝜆, implies that
the target population has both positive intrinsic growth and density-dependence. Finally
the standard deviation parameters indicate that across groups there is small variation
around these mean values, as determined by (7.3.2). For scenarios 1-3 the values of
𝛾, 𝜇𝜓 and 𝜇𝛿 respectively indicate that predator groups have a negative effect on prey
abundance, that the prey has a net positive effect on predator group abundance, and that
predator groups have a net negative effect on other predator group abundances.

For scenarios 1, 2, 4 and 5 we used 20,000 iterations, a thinning rate of 20 and burn-in of
2000. For scenario 3, as this was the highest resolution of our simulated data scenarios,
we used 40,000 iterations, a thinning rate of 40 and burn-in of 4000, so to ensure HMC
chain convergence. For each simulation scenario we let 𝑌0 = 10, 000 and for each 𝑋𝑖0 we
sampled random values from a discrete uniform distribution 𝑈 (1, 20). Initial conditions
were simulated once and fixed for all simulation scenarios. Three examples of simulated
time series are given in Fig. 7.2, for scenarios 2, 4 and 5. In each plot we show time series
for 3 groups (main) and the auxiliary population (inset).

Figure 7.2: Three randomly selected time series of three groups (main) and the auxiliary
population (inset) for scenarios 2, 4 and 5.

The accuracy of parameter estimates was assessed by calculating the root mean square
error (RMSE), bias and relative bias over all 100 simulations. Let 𝜃 be a true (known)
parameter and 𝜃𝑖 an estimate of the posterior mean for simulation 𝑖 ∈ {1, ..., 𝑛}. We define
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RMSE over 𝑛 simulations as

RMSE :=

√︄∑𝑛
𝑖=1(𝜃𝑖 − 𝜃)2

𝑛
.

We respectively define bias (B𝑖) and relative bias (RB𝑖) for the 𝑖th simulation as

B𝑖 := 𝜃𝑖 − 𝜃,

RB𝑖 :=
B𝑖
𝜃
,

given that 𝜃 ≠ 0. RMSE assesses how close our predicted values are to the true values. The
lower RMSE is the closer our estimates are to the true simulated parameters. We also used
bias and relative bias as other accuracy measures. Bias and relative bias, in our context,
measure the difference and scaled difference between the mean obtained from a large
number of simulations and our true parameter value. Using all three of these measures
will help us understand how well our parameters are estimated. For all scenarios the
RMSE for parameter estimates can be seen in Table 7.2. We clearly see an improvement
of parameter estimation, via lower values of RMSE, as our sample size increases from
scenarios 1 to 3, with some possible small exceptions. The RMSE for 𝜇𝜔 gets smaller as
sample size increases but remains relatively large in scenario 3 at 0.406. For scenarios 4
and 5 we see that in general RMSE is quite low, except for 𝜇𝜔 in scenario 4. This large
value could be due to the high variability of our parameter estimates, as indicated by the
boxplots in Fig. 7.8 – 7.12, which we will discuss next.

Parameter Scenario
1 2 3 4 5

𝜔𝑌 0.061 0.057 0.059 0.053 0.272
𝜆𝑌 0.009 0.008 0.007 0.004 0.015
𝛾 0.011 0.008 0.006 0.005 0.025
𝜇𝜔 0.784 0.472 0.406 1.187 0.135
𝜇𝜆 0.129 0.064 0.078 0.068 0.042
𝜇𝜓 0.120 0.079 0.102 0.099 0.028
𝜇𝛿 0.088 0.055 0.027 0.091 0.007
𝜎𝜔 0.147 0.060 0.069 0.089 0.060
𝜎𝜆 0.109 0.066 0.044 0.069 0.031
𝜎𝛿 0.011 0.012 0.014 0.014 0.007
𝜎𝜓 0.015 0.015 0.019 0.024 0.012

Table 7.2: RMSE for posterior mean estimates in scenarios 1 – 5 calculated across 100
different simulations.

For bias and relative bias we plotted boxplots, with medians and outliers, as can be seen in
Fig. 7.8 – 7.12 in the Appendix. In all the scenarios the boxplots for bias and relative bias
have medians close to 0, relative to the boxplot of 𝜇𝜔, which has quite a high variance.
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Issues arise however with the biases for the intercept mean in scenario 5, as data resolution
increases. We therefore plotted bivariate plots of our HMC draws in order to see if there
was any confounding between parameters (see Fig. 7.13 – 7.15 in the Appendix for a
single simulation for scenarios 1 – 3 as an example of such confounding, as an example).
In some simulation runs for scenarios 1 – 3 we saw slight confounding between 𝜔𝑌 and
𝜆𝑌 , and between 𝜇𝛿 and 𝜇𝜔, which indicates that these parameters are sometimes slightly
biased and there may be slight identifiability issues, as already indicated through the larger
RMSE values for 𝜇𝜔. We do not include bivariate plots for these in the Appendix. Overall,
more work would be needed to further elucidate the causes of such partial confounding.
However, we found that such confounding reduced (lower correlation) as the sample size
increased, showing that larger resolution of data results in less biased estimation (see
Fig. 7.13 – 7.15 for an example).

Bias is relatively low for most of our parameters, indicating that under all of these scenarios
of interest our estimation procedure is reasonable accurate in estimating such parameter
values. The overall low RMSE values and low bias values indicates that our estimates are
somewhat close to their true values, with some issues for specific parameters. In partic-
ular, 𝜇𝜔 and 𝜇𝜆 stand out as being particularly problematic, which suggests confounding
between these parameters within our model. In order to better understand the underlying
issues with the estimation procedure, one could look at the coverage of the credible inter-
vals. Where the bias of some parameters is high one may observe that the credible interval
coverage is poor. For example, some of the variance components are also slightly biased,
based on the relative bias boxplots, especially 𝜎𝜓 . To address this further, one could also
increase the number of simulations, while altering the HMC set-up so to get better chain
convergence. To address confounding, between 𝜔𝑌 and 𝜆𝑌 for example (see Fig. 7.13
– 7.15), one could also look at the posterior mean values from each of the simulation
replicates and plot these as scatter plots to assess the potential lack of orthogonality in
parameter estimates.

7.5. Predator-Prey Dynamics: A Case Study

We will now apply our model to a case study, namely the predator-prey dynamics of grey
wolves (Canis lupus) and elk (Cervus canadensis) in Yellowstone National Park (YNP)
over 20 years. Since the reintroduction of grey wolves to YNP and the surrounding areas
in 1995, wolf and elk populations have been thoroughly monitored in order to assess
ecosystem responses [34]. Thus a lot is known about their predator-prey relationship
and, more generally, the ecological processes that affect these populations. We chose this
predator-prey system as we can verify our model results with the empirical work that has
been undertaken in YNP over this long study period. Predation is one of several regulatory
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factors of elk population growth in YNP [254]. By applying predator-prey theory, in
[277] the authors predicted that elk abundance would decrease to a low equilibrium state
following wolf reintroduction. Many studies have questioned how significant this predation
effect has been [222]. However there is general consensus that wolf predation is largely
density-dependent, with stronger dependence attributed wolf density [280].

It has been observed that the rate of predation of wolf packs can remain constant even
when elk densities are declining, suggesting that at certain times the functional response
(the intake rate of a predator as a function of prey density) of wolves may just be a
linear function of prey abundance [132]. Intra-pack and inter-pack competition also has
a substantial effect on hunting efficiency and prey acquisition by wolf packs [46]. This
suggests that studying pack dynamics in this context is vital to understand how social
animals behave over time.

Figure 7.3: Wolf pack (main) and elk (inset) abundances in YNP from 1996-2016. Each
grey line represents one pack abundance time series.

Annual predator and prey observational abundance data was obtained from [37] (see
Fig. 7.3). Yearly abundance data for grey wolf packs from YNP were collated over 20
years using observational studies and field research. As noted by [37], in the dataset, the
group membership and composition of packs is known. For our framework, we therefore
assume that we have perfect detection, i.e. we do not have an additional process that
explicitly takes account of the uncertainty of abundance measurement. In Chapter 8 we
expand on this in more detail.

7.5.1. Group Formation and Splitting

Grey wolf packs are known to form and disband over time via natal or breeding disper-
sal [254]. They are largely territorial with overlapping spatial ranges. However, wolf
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packs tend to avoid neighbouring packs, in order to miminise aggressive interactions and
mortality [154]. We assume that once a pack forms, its abundance stays positive until it
splits, and thereafter its abundance is zero. Note that this is different to the model in our
simulation studies in Section 7.4, where groups have the possibility to reform once they
have disbanded. In order to account for pack formation and splitting we modify (7.3.6) to
become

𝑋𝑖,𝑡 |𝑤,H 𝑡−1 ∼ P
(
𝜇𝑋𝑖,𝑡𝐶 (𝑋𝑖,𝑡)

)
,

𝐶 (𝑋𝑖,𝑡) := IN{𝑋𝑖,𝑡−1}︸      ︷︷      ︸
𝐴(𝑋𝑖,𝑡 )

+ I0

{
𝑡−1∑︁
𝑘=0

𝑋𝑖,𝑘

}
︸          ︷︷          ︸

𝐵(𝑋𝑖,𝑡 )

,

for 𝑡 ≥ 1, where 𝜇𝑋
𝑖,𝑡

is the same as in (7.3.6). For 𝑆 ⊂ Z+ and 𝑡 ≥ 1 we define

I𝑆{𝑍} :=

{
1 if 𝑍 = 𝑆,

0 if 𝑍 ≠ 𝑆.

We set 𝐴(𝑋𝑖,0) = 1 − 𝐵(𝑋𝑖,0) = 1 so that 𝐶 (𝑋𝑖,0) = 1. Consider 𝑋𝑘,𝑡 for some fixed
𝑘 ∈ {1, ..., 𝑔} and 𝑡 ≥ 1. Our model is first-order Markovian. So at time 𝑡, we assume that
we know the state 𝑋𝑘,𝑡−1. If a pack has not formed up to time 𝑡, i.e. 𝑋𝑘,𝑠 = 0 for 𝑠 < 𝑡,
then there is still opportunity for pack emergence. We thus want to include such zero
abundance observations in our extended framework. Instead, if a pack has split at time 𝑡,
i.e. 𝑋𝑘,𝑠 = 0 for 𝑠 > 𝑡, then we know it will not form again. Thus we want to ignore these
zero abundance observations. We include an illustrative example of how the indicators 𝐴
and 𝐵 respectively correspond to pack formation and splitting in Table 7.3, reflecting the
data structure in question.

In the wolf-elk data-set obtained from [37], observations of lone wolves (members of no
packs) and transient packs (groups existing for less than two consecutive months) were
removed by the authors. Therefore we do not want to model (non-group) events such as
these. We will discuss possibilities for extending our model to include such structure in
Chapter 8.

7.5.2. Results and Interpretation

Parameter posterior mean estimates can be seen in Table 7.4, along with their respective
95% credible intervals (CIs). We can interpret our parameter estimates in the context
of this wolf-elk system as characterising how each group/population is affected by the
other over the observation period. Using Bayesian models for inferential purposes means
we must test for parameter identifiability. Weakly identifiable models are subsets of
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parameter redundant models, and can therefore aid us in knowing when our model is
unidentifiable [53]. It is important to know whether parameters are identifiable when the
focus is interpreting parameter estimates, for example to infer interaction strengths. This
is because we would like to know if these accurately capture the behaviour of the system
in question.

t Xt A(Xt) B(Xt) C(Xt)
0 0 0 1 1
1 0 0 1 1
2 3 0 1 1
3 10 1 0 1
4 5 1 0 1
5 0 1 0 1
6 0 0 0 0
7 0 0 0 0

Table 7.3: Example of how 𝐴 and 𝐵 allow for group formation and splitting, where 𝑋𝑡 is
a count random variable at time 𝑡 ≥ 0.

Suppose 𝑓 (𝜃 |𝑦) is the marginal posterior distribution for a parameter, 𝜃, and 𝜋(𝜃) the
prior distribution assigned to 𝜃. Recall, from Chapter 3, that 𝜃 is weakly identifiable if
𝑓 (𝜃 |𝑦) ≈ 𝜋(𝜃). As also outlined in Chapter 3, by plotting the prior-posterior overlap
(PPO), or by computing this overlap via kernel density estimation, we can deduce whether
their model is weakly identifiable [53]. For this case study we looked at the prior-posterior
overlap for each of our estimates. These can be seen numerically in Table 7.4 and
graphically in Fig. 7.4. The largest observed overlap was 7.5% < 𝜏, where 𝜏 = 35% is the
recommended (ad hoc) threshold value given in [97]. If we have that the prior-posterior
percentage overlap for each parameter is above this threshold, then that parameter is said
to be weakly identifiable, i.e. the data does not provide us with more information than
the priors alone, and thus the model is unidentifiable. As all of our parameters have
sufficiently small prior-posterior overlap, we can conclude that our model is identifiable,
giving us stronger justification for interpreting our parameter estimates.

In YNP, elk undergo habitat selection so as to avoid wolf predation in the summer. In
winter, they use other strategies, like grouping, to avoid predation, thus altering their
seasonal distribution in direct response to predator presence [188]. For elk, the estimated
intercept, �̂�𝑌 , and autoregressive parameter, �̂�𝑌 , suggest that elk intrinsic growth was
positive and the net intraspecific effect of changes in elk abundance was also positive over
the study period. This suggests a positive coupling between elk abundance and growth.
Many mammals, such as ungulates, are known to exhibit irruptive or boom-bust type
dynamics, i.e. short term increases in abundance followed by rapid decline [78]. This
is in line with our findings, suggesting that elk mean growth was positive with negative
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density-dependence hindering this population from increasing in abundance. Perhaps this
density dependence played a more significant role as the population reached higher values,
when also coupled with other factors, thus reducing the overall population to a much lower
level near the end of our study period. Negative density-dependence is known to be caused
by predation and competition for resources [222].

Parameter Estimate 95% CI PPO (%) Interpretation
𝜔𝑌 0.85 [0.74, 0.96] 0.20 Elk intrinsic growth
𝜆𝑌 0.91 [0.90, 0.93] 0.00 Elk intraspecific effect
𝛾 −0.02 [−0.03,−0.02] 0.00 Effect of wolf on elk
𝜇𝜔 10.32 [4.05, 17.70] 7.50 Wolf mean growth rate
𝜇𝜆 0.50 [0.29, 0.69] 0.40 Wolf intra-pack net effect
𝜇𝜓 1.14 [0.56, 1.84] 0.90 Wolf inter-pack net effect
𝜇𝛿 −1.74 [−2.55,−1.06] 1.20 Net effect of elk on wolves
𝜎𝜔 15.24 [9.93, 21.92] 6.90 Wolf growth rate variability
𝜎𝜆 0.46 [0.28, 0.7] 0.30 Wolf intra-pack variability
𝜎𝜓 1.41 [1.20, 2.58] 1.10 Wolf inter-pack variability
𝜎𝛿 1.80 [0.83, 2.19] 1.10 Auxiliary net effect variability

Table 7.4: Parameter posterior mean estimates, with their respective 95% credible interval
(CI), prior-posterior overlap (PPO) and interpretations for YNP wolf-elk case study.

We interpret �̂� as the net effect of changes in wolf abundance on elk. Some authors have
suggested that the influence of predation pressure on declining elk population has been
overemphasised, with hunting pressure and drought, for example, having a substantially
larger effect [222]. Our results suggest that �̂� is negative, indicating that increases in the
wolf population abundances has had a negative net effect on the elks mean process. The
magnitude of this negative effect may suggest that over this 20 year period wolf related
processes, such as predation, may not have been the dominant cause of elk abundance
reduction.

We can see that �̂�𝜔 and �̂�𝜔 are both large compared to the other parameter estimates.
This may suggest that there was a high wolf population mean growth rate, with large
variability, over the study period. The wide credible intervals suggest high variability, as
in the simulation studies, suggests that these may be difficult to estimate. Their values
suggests that individual wolf pack abundance, across the whole study period, has increased
significantly since reintroduction, with increases varying in magnitude across packs. This
can be seen by the cyclic rise and fall of wolf pack abundances across the study period.
Pack size is known to be a major determinant of hunting success, with this success varying
with prey type [254]. Small wolf pack sizes result in low prey consumption, but also low
kill rates, meanwhile large pack sizes result in both high kill rates and consumption [286].
Pack composition is also an important aspect, due to quantitative benefits such as hunting
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success and negative consequences when acquiring resources, such as free-riding. For
example, packs with a larger proportion of older members or adult males have a greater
chance of winning in aggressive interactions, even though they may have a quantitative
disadvantage [46]. The value of �̂�𝜆 suggests a net positive pack response to increasing
pack abundances over the study period, which suggests positive density-dependence, as
for the elk.

Figure 7.4: Prior- posterior overlap for fixed effects and hyperparameters. The black
curve is the prior distribution and grey curve is estimated posterior density. We set
𝜃𝜇 ∼ N(0, 1002) for 𝜃𝜇 ∈ M ∪

{
𝜔𝑌 , 𝜆𝑌 , 𝛾

}
and 𝜃𝜎 ∼ N+(0, 1002), for 𝜃𝜎 ∈ Σ.

As 𝜇𝜓 = 1.14 > 0, this suggests that there was net positive inter-pack response to increasing
pack abundances, with moderate variation around this population mean as seen via 𝜎𝜓 .
Even though wolf packs are highly territorial, our model might not capture this fully as we
are not taking into account that some packs may rarely come into contact with one another,
due to low overlapping ranges. It has been noted however that the specific location of the
aggressive interaction in relation to pack territories has little to no effect on inter-pack
interaction outcomes. Thus the relationship of aggressive interactions to spatial location
is quite heterogeneous over time. The interactions of two packs may benefit each of them,
perhaps via indirect mutualism (where multiple species benefit from each other’s presence
indirectly through the presence of another set of species or through environmental factors,
rather than through direct interspecies interactions) [276], at specific times depending on
pack composition [46].

The value of �̂�𝛿 has multiple interpretations. As a first interpretation it may suggest that
there was weak elk predation, with moderate variation around this population mean as
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seen via �̂�𝛿. This magnitude being interpreted as weak is somewhat subjective and is
inferred from the following reason. Grey wolves are generalists and so have multiple prey
types at any given time. They can also undergo prey switching when certain prey types
become scarce [227]. As optimal foraging theory suggests, wolves have a preference for
elk, but this decreases as total prey abundance available declines. Prey selection by wolves
has been shown to be primarily determined by the within-population vulnerability of elk,
where wolves tend to minimise risk of harm from predation [139]. Grey wolves can also
shift from hunting to scavenging when their primary prey become rare [261]. Secondly,
the percentage of elk hunted by wolf packs has remained around 5% per year despite
elk numbers decreasing significantly over the 20 year study period, following an inital
increase in elk abundance [254]. This observation and the fact that total wolf abundance
rapidly increased up to 2007 and then fell slightly, saturating at around 100 wolves, could
also explain the negative mean estimate. The second intepretation is that this parameter
may not capture direct predation. Increases in the elk population, at certain times, could
have coincided with decreases in the wolf population, thus suggesting that the effect of
increasing elk is negative. As in classical predator-prey theory, there are times when
predator abundance will be decreasing as prey abundance increases, as there is a delay
effect on their dynamics. After 2007, when the overall wolf population was around 170
individuals, abundance decreased significiantly and flucuated close to 100 individuals up
to 2016 [254]. Following a rapid increase in abundance from 1997, this lulling period
may explain why this parameter is low and negative.

We can observe the realisations of the random effects for each pack through violin plots
(showing the estimated posterior density with 0.5-quantiles) in Figure 7.5. Some packs,
like pack 6 and 19 for example, have medians close to 0 for both 𝜓𝑖 and 𝛿𝑖. Meanwhile
others, such as pack 23 and 27, have medians below 0 for 𝛿𝑖 and above 0 for 𝜓𝑖. Packs 4
and 28, for example, have random effect medians for 𝜓𝑖 below 0, indicating negative net
effects in relation to other packs present in the system. The resolution of time series data
was different for each pack, resulting in varying levels of uncertainty around these median
values, as seen in the probability density plots of our posterior estimates in Figure 7.5.
Even though the population level means for each random effect may have been positive
or negative, these effects varied across all 42 packs, showing that our parameters are
able to capture inter-pack heterogeneity when explicitly modelling group dynamics. The
relationship between packs cannot be reduced to single time-invariant parameter values as
in our model. However, our mean estimates do capture the general relationship between
wolf packs and elk, with the changes in both elk and wolf abundance having varying net
effects on each pack’s dynamics.

This predator-prey system, although highly complex, can offer us insight into how species
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may interact with one another, while also explicitly modelling the internal structure of one
of the species. These findings could explain how some packs have negative net effects to
increases in elk abundance, for example. To quote from [98],

"as the elk population declined wolves killed a larger proportion of the popu-
lation. Such an inverse density-dependent response is destabilizing, however,
predator-prey theory suggests that at low prey densities the total response may
become density dependent and thus be regulatory, resulting in persistence of
the predator–prey system at a lower prey density than realized in the absence
of wolves".

Figure 7.5: Violin plots for 𝜔𝑋 := {𝜔𝑋1 , ..., 𝜔
𝑋
42}, 𝜆

𝑋 := {𝜆𝑋1 , ..., 𝜆
𝑋
42}, 𝜓 := {𝜓1, ..., 𝜓42}

and 𝛿 := {𝛿1, ..., 𝛿42}. Each plot shows the posterior density estimates for realisations of
the random effects for all 42 wolf packs, with the respective 0.5-quantiles.

7.6. Quantifying Group Interactions

Our modelling framework includes (7.3.7), (7.3.8) and (7.3.11) that respectively capture
the effect of changes in abundance of each group with every other group, of each group
with an auxiliary population and of an auxiliary population with the main population
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of interest. Our aim is to formulate a model that can be used to quantify changes in
associations. Our model allows for the modelling of populations where subgroups can
disband and reform over time, as is the case with many social animals [217]. As stated
in Chapter 3, a crude but effective metric of interactions strength is Pearson’s correlation
coefficient. In the next section we will discuss such an interaction strength metric in the
context of a new, simplified count model. This derivation is a first attempt at deriving
such an interaction metric for this type of count time series model.

7.6.1. Correlation Approximation

It is desirable to have analytic results characterising the group correlation structure. How-
ever, obtaining such results in the general framework considered thus far is likely to be
analytically intractable. To do so would involve deriving the (marginal) temporal group
correlation 𝜌𝑖 𝑗 𝑡 := Corr(𝑋𝑖,𝑡 , 𝑋 𝑗 ,𝑡), the standard Pearson’s correlation between groups 𝑖
and 𝑗 ≠ 𝑖 at time 𝑡. In order to approximate 𝜌𝑖 𝑗 𝑡 , by the Law of Total Expectation, we
would have to evaluate

E[𝑋𝑖,𝑡] = E[E[𝑋𝑖,𝑡 |𝑤,H 𝑡−1]]
= E

[
exp

(
𝜔𝑋𝑖 + Λ𝑋

𝑖,𝑡−1 + Ψ𝑖,𝑡−1 + Δ𝑖,𝑡

)]
(7.6.1)

= E

exp
(
𝜔𝑋𝑖

)
(𝑋𝑖,𝑡 + 1)𝜆𝑖

(∑︁
𝑗≠𝑖

𝑋𝑖,𝑡 + 1

)𝜓𝑖

(𝑌𝑡 + 1)𝛿𝑖
 .

This would involve marginalising the product inside this expectation over 𝑤 and H 𝑡 . The
form of this expectation includes several nonlinearities and approximating it would lead
to calculating the expected value of the product of non-independent random variables via
sequential Taylor approximations. Even though 𝑋𝑖𝑡 is conditionally Poisson, this does
not imply that the marginal distribution of 𝑋𝑖𝑡 is Poisson. In fact it may be a mixture
of distributions. This intractability motivated us to approximate 𝜌𝑖 𝑗 𝑡 under reasonable
assumptions. While the general problem seems analytically intractable, it is however
possible to derive results which can give insight into the group correlation structure with
the addition of some further assumptions. We next outline these assumptions, and show
how they allow us to derive an approximation to 𝜌𝑖 𝑗 𝑡 . Following this, we will then discuss
its interpretation as an indicator of interaction, which is in line with the interaction strength
metrics as reviewed in [25]. In this section we disregard (7.3.4) and (7.3.5) as being the
data generating processes. We will define what these are below for the new model, while
emulating the mean process structure of our original model, which will then allow us to
derive an approximation of 𝜌𝑖 𝑗 𝑡 in this context.
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Assumption 1: Firstly we assume that

ln(𝑌𝑡) |𝑤,H 𝑡−1 ∼ N
(
ln(𝜇𝑌𝑡 ), ln(𝜇𝑌𝑡 )

)
ln(𝑋𝑖,𝑡) |𝑤,H 𝑡−1 ∼ N

(
ln(𝜇𝑋𝑖,𝑡), ln(𝜇𝑋𝑖,𝑡)

)
,

(7.6.2)

where ln(𝜇𝑌𝑡 ) and ln(𝜇𝑋
𝑖,𝑡
) are the same as in (7.3.6) and (7.3.9). We assume that both

ln(𝑋𝑖,𝑡), ln(𝑌𝑡), 𝑋𝑖,𝑡 and 𝑌𝑡 have finite moments. Modelling the log of abundance using
classical autoregressive models, with standard white noise error, is common in ecological
time series analyses [20, 135, 144, 212]. Assuming that the data comes from a log-
normal distribution is a somewhat valid assumption when one is modelling multiple
species within a community, where there are large population abundances, or, for example,
when modelling social animal groups that each comprise hundreds or even thousands of
individuals. Recall that

ln
(
𝜇𝑋𝑖𝑡

)
= 𝜔𝑋𝑖 + Λ𝑋

𝑖,𝑡−1 + Ψ𝑖,𝑡−1 + Δ𝑖,𝑡−1

= 𝜔𝑋𝑖 + 𝜆𝑋𝑖 ln
(
𝑋𝑖,𝑡−1 + 1

)
+ 𝜓𝑖 ln

(
𝑔∑︁
𝑗≠𝑖

𝑋 𝑗 ,𝑡−1 + 1

)
+ 𝛿𝑖 ln (𝑌𝑡−1 + 1) .

(7.6.3)

The elements of 𝑤∪H 𝑡−1 are mutually independent. Therefore because of (7.6.3) and the
linearity of expectation we have that

E[E[ln(𝑋𝑖,𝑡) |𝑤,H 𝑡−1]] = E
[
𝜔𝑋𝑖 + Λ𝑋

𝑖,𝑡−1 + Ψ𝑖,𝑡−1 + Δ𝑖,𝑡−1
]

= E
[
𝜔𝑋𝑖

]
+ E

[
𝜆𝑋𝑖

]
E[ln(𝑋𝑖,𝑡−1 + 1)]

+ E[𝜓𝑖]E
[
ln

(
𝑔∑︁
𝑗≠𝑖

𝑋 𝑗 ,𝑡−1 + 1

)]
+ E[𝛿𝑖]E[ln(𝑌𝑡−1 + 1)] .

(7.6.4)

Assumption 2: As we are modelling multiple groups of the same species, we further
assume a Heterogeneous Compound Symmetry (HCS) conditional variance-covariance
structure [265, 287], similar to when analysing repeated measurements of clustered data.
That is, for 𝜎2

𝑖𝑡
:= Var(𝑋𝑖,𝑡 |𝑤,H 𝑡−1), we are assuming that

Cov(𝑋𝑖,𝑡 , 𝑋 𝑗 ,𝑡 |𝑤,H 𝑡−1) = 𝜌𝑡𝜎𝑖𝑡𝜎𝑗 𝑡 (7.6.5)

where we have that 𝜌𝑖 𝑗 𝑡 = 𝜌𝑡 ∈ [−1, 1] for all 𝑖, 𝑗 ∈ {1, ..., 𝑔}, 𝑖 ≠ 𝑗 .

Assumption 3: Deriving the expectation of non-linear functions of random variables
can lead to complicated expressions of covariance and correlations. For 𝑋 a nonnegative
random variable with finite moments, we approximate the marginal expectation of 𝑓 (𝑋) :=
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ln(𝑋 + 1) using a second order Taylor expansion around E[𝑋] [45]. We thus have that

E[ln(𝑋 + 1)] ≈ 𝑓 (E(𝑋)) + 𝑓 ′′ (E(𝑋))
2

Var(𝑋) (7.6.6)

= ln(E(𝑋) + 1) + Var(𝑋)
2(E(𝑋) + 1)2 . (7.6.7)

Assumption 4: Finally, we assume that (7.6.2) satisfies

E[ln(𝑌𝑡) |𝑤,H 𝑡−1] = ln(𝜇𝑌𝑡 ) ≡ ln(𝜇𝑌 ) ∈ R,
E[ln(𝑋𝑖,𝑡) |𝑤,H 𝑡−1] = ln(𝜇𝑋𝑖,𝑡) ≡ ln(𝜇𝑋𝑖 ) ∈ R

for 𝑖 ∈ {1, ..., 𝑔}, what we will refer to as conditional constancy. This then implies that
𝜌𝑡 ≡ 𝜌 ∈ [−1, 1], i.e. we are essentially calculating the net group associations/interactions
within a population over the time horizon [0, 𝑇]. This final main assumption is purely
a technical one, which will allow us to derive a tractable approximation to the marginal
correlation structure between groups. Note that conditional constancy may arise in simpler
models such as white noise or moving average models. For ln(𝑍) ∼ N (𝜇𝑧, 𝜎2

𝑧 ), it is well
known that

E[𝑍] = exp

(
𝜇𝑧 +

𝜎2
𝑧

2

)
,

Var(𝑍) = exp
(
2𝜇𝑧 + 𝜎2

𝑧

) (
exp

(
𝜎2
𝑧

)
− 1

)
.

(7.6.8)

It follows from (7.6.2) and (7.6.8) that

E
[
𝑋𝑖,𝑡 |𝑤,H 𝑡−1

]
= exp

(
3 ln

(
𝜇𝑋
𝑖

)
2

)
=

(
𝜇𝑋𝑖

) 3
2
. (7.6.9)

Conditional constancy, the Law of Total Expectation and (7.6.9) imply that

E[𝑋𝑖,𝑡] = E
[
E

[
𝑋𝑖,𝑡 |𝑤,H 𝑡−1

] ]
=

(
𝜇𝑋𝑖

) 3
2
, (7.6.10)

where we use the fact that E[𝑎] = 𝑎 for 𝑎 ∈ R. It follows from (7.6.8), (7.6.10) and the
Law of Total Variance [157] that

Var(𝑋𝑖,𝑡) = E
[
Var(𝑋𝑖,𝑡 |𝑤,H 𝑡−1)

]
+ Var

(
E

[
𝑋𝑖,𝑡 |𝑤,H 𝑡−1

] )
= E

[
exp

(
2 ln

(
𝜇𝑋𝑖

)
+ ln

(
𝜇𝑋𝑖

)) (
exp

(
ln

(
𝜇𝑋𝑖

))
− 1

)]
+ Var

((
𝜇𝑋𝑖

) 3
2
)

= (𝜇𝑋𝑖 − 1) (𝜇𝑋𝑖 )3 =: 𝑉𝑋𝑖 .

(7.6.11)

In (7.6.11) we use the fact that the variance of a constant is zero. Analogous expressions for
the expectation and variance of 𝑌𝑡 follow similarly. Similarly define 𝑉𝑌 := (𝜇𝑌 − 1) (𝜇𝑌 )3.
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It follows from (7.6.5), (7.6.10) and the Law of Total Covariance [157] that

Cov(𝑋𝑖,𝑡 , 𝑋 𝑗 ,𝑡) = E
[
Cov

(
𝑋𝑖,𝑡 , 𝑋 𝑗 ,𝑡 |𝑤,H 𝑡−1

) ]
+ Cov

(
E

[
𝑋𝑖,𝑡 |𝑤,H 𝑡−1

]
E

[
𝑋 𝑗 ,𝑡 |𝑤,H 𝑡−1

] )
= E

[
𝜌

√︃
𝑉𝑋
𝑖
𝑉𝑋
𝑗

]
+ Cov

((
𝜇𝑋𝑖

) 3
2
,

(
𝜇𝑋𝑗

) 3
2
)

= 𝜌

√︃
𝑉𝑋
𝑖
𝑉𝑋
𝑗
.

(7.6.12)

The well known Bienaymé’s identity [157] states that for a set of random variables
{𝑍1, ..., 𝑍𝑛} with finite moments,

Var

(
𝑛∑︁
𝑖=1

𝑍𝑖

)
=

𝑛∑︁
𝑖=1

Var(𝑍𝑖) +
𝑛∑︁

𝑖, 𝑗=1
𝑖≠ 𝑗

Cov(𝑍𝑖, 𝑍 𝑗 ). (7.6.13)

It then follows from (7.6.11), (7.6.12) and (7.6.13) that

Var

(
𝑔∑︁
𝑗≠𝑖

𝑋 𝑗 ,𝑡

)
=

𝑔∑︁
𝑗≠𝑖

𝑉𝑋𝑗 + 𝜌
𝑔∑︁

𝑘, 𝑗≠𝑖
𝑘≠ 𝑗

√︃
𝑉𝑋
𝑗
𝑉𝑋
𝑘
, (7.6.14)

for a fixed 𝑖 ∈ {1, ..., 𝑔}. By the Law of Total Expectation, we have that

E[ln(𝑋𝑖,𝑡)] = E[E[ln(𝑋𝑖,𝑡) |𝑤,H 𝑡−1]] (7.6.15)

for all 𝑡 ∈ [0, 𝑇]. Using (7.6.15) and our conditional constancy assumption we will now
approximate ln

(
𝜇𝑋
𝑖𝑡

)
by letting the final expression in (7.6.4) be approximately equal to

ln(𝜇𝑋
𝑖
). Without our assumptions it may not be true that E[ln(𝑋𝑖,𝑡)] can be approximated

by a constant. Despite this, as a first port of call in deriving the marginal expectations and
variances, we will, under our four main assumptions, use our simplified expression as an
approximation. We already know the random effects, given by (7.3.2), are Gaussian with
their respective means and variances given in (7.3.3). Using (7.6.14), (7.6.15), (7.6.4) and
our Taylor approximation (7.6.6) we get that

ln(𝜇𝑋𝑖 ) ≈ 𝜇𝜔 + 𝜇𝜆
©«ln

((
𝜇𝑋𝑖

) 3
2 + 1

)
+

𝑉𝑋
𝑖

2
( (
𝜇𝑋
𝑖

) 3
2 + 1

)2

ª®®®¬
+ 𝜇𝜓 ln

(
𝑔∑︁
𝑗≠𝑖

(
𝜇𝑋𝑗

) 3
2 + 1

)
+ 𝜇𝛿

©«ln
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𝜇𝑌

) 3
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+ 𝑉𝑌

2
( (
𝜇𝑌

) 3
2 + 1

)2

ª®®¬
+

𝜇𝜓

2
(∑𝑔

𝑗≠𝑖
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𝜇𝑋
𝑗

) 3
2 + 1

)2

©«
𝑔∑︁
𝑗≠𝑖

𝑉𝑋𝑗 + 𝜌
𝑔∑︁

𝑘, 𝑗≠𝑖
𝑘≠ 𝑗
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𝑉𝑋
𝑗
𝑉𝑋
𝑘
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We can then solve for 𝜌 which gives

𝜌 ≈ �̃� = − 𝐴𝑖
𝜇𝜓

− 𝜇𝛿𝐵𝑖

𝜇𝜓
− 𝐶𝑖, (7.6.16)

for each 𝑖 ∈ {1, ..., 𝑔}, where

𝐴𝑖 := −𝐷𝑖
©«ln(𝜇𝑋𝑖 ) − 𝜇𝜔 − 𝜇𝜆
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𝑖

2
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ª®®®¬ ,

𝐵𝑖 := 𝐷𝑖
©«ln
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)
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2
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𝑘

,

𝐷𝑖 :=
2
(∑𝑔

𝑗≠𝑖

(
𝜇𝑋
𝑗

) 3
2 + 1

)2

∑𝑔

𝑘, 𝑗≠𝑖
𝑘≠ 𝑗

√︃
𝑉𝑋
𝑗
𝑉𝑋
𝑘

.

7.6.2. Theoretical Interpretation

We interpret �̃� as the approximate net group correlation. In order for (7.6.2) to be well
defined we assume that 𝜇𝑋

𝑖
, 𝜇𝑌 > 1 for all 𝑖 ∈ {1, ..., 𝑔}. This is so the standard deviation

terms in (7.6.2) are nonnegative. We also have that

𝜇𝑋𝑖 > 1 =⇒ 𝑉𝑋𝑖 = (𝜇𝑋𝑖 − 1) (𝜇𝑋𝑖 )3 > 0,

and similarly for 𝑉𝑌 . Therefore we have that both 𝐶𝑖 and 𝐷𝑖 are well defined. In order
for �̃� to be well defined we assume that 𝜇𝜓 ≠ 0. In practice, elements of 𝑀 will not be
exactly 0 and so this is reasonable to assume.

As �̃� is not indexed by 𝑖 or 𝑡, we thus have 𝑔 approximations to the net interactions
between groups over [0, 𝑇]. If our underlying assumptions are correct, these should be
consistent and not vary significantly. This simple observation gives us a way of testing
our assumptions and, where these appear to be valid, we could potentially combine the
independent approximations to obtain an improved estimate of the net group correlation.
We also note that since this approximation is based on a second-order Taylor expansion
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around zero, and other simplifying assumptions, �̃� may not be contained within [−1, 1]
for certain parameter and mean values. However, should the assumptions hold, this
approximation would be an informative measure of net group interactions. In practice, if
this approximation resulted in �̃� being slightly outside of [−1, 1] we could, for example,
take the approximate net group correlation as being given by

�̃�∗ :=


1, if �̃� > 1
�̃�, if �̃� ∈ [−1, 1]
−1, if �̃� < −1.

As our approximation assumes conditional constancy, it would not be appropriate for
the simulation study (see Fig. 7.2) or wolf-elk case study (see Fig. 7.3). In the wolf-elk
application we also include a pack formation-splitting data process, which for certain 𝑖
and 𝑡 can result in 𝑋𝑖𝑡 being modelled by a degenerate Poisson distribution. Instead, for
illustrative purposes we will theoretically interpret �̃� in the context of a general predator-
prey system, i.e. 𝑌 is a population of prey and 𝑋 is a population of predator groups.

In practice, the signs of the elements of 𝑀 can be either positive or negative. Note
that we exclude the cases where the parameters in 𝑀 can be zero. Therefore, there
are 2|𝑀 | = 24 = 16 possible positive-negative parameter combinations. The magnitude of
these values can also result in additional scenarios to discuss. So, for brevity and illustrative
purposes, we will look at four ecologically meaningful scenarios. We will discuss how
the intraspecific and auxiliary coupling parameters (𝜇𝜓 and 𝜇𝛿) play a role in determining
the sign of �̃�. In each scenario we assume that 𝜇𝜔 > 0 (positive population-level intrinsic
growth) and 𝜇𝜆 ≥ 1 (positive population density dependence).

Clearly 0 < 𝑥 < 1 implies that ln(𝑥) < 0. By monotonicity of ln,

𝑥 > 1 =⇒ ln
(
𝑥

3
2 + 1

)
> ln (𝑥 + 1) > ln(𝑥) > 0.

For 𝜇𝜆 ≥ 1, it is then clear to see that

ln (𝑥) − 𝜇𝜆 ln
(
𝑥

3
2 + 1

)
< 0, (7.6.17)

for all 𝑥 > 0. It then follows that

𝜇𝑋𝑖 , 𝜇
𝑌 > 0 =⇒ 𝐷𝑖, 𝐴𝑖, 𝐵𝑖, 𝐶𝑖 > 0,

for all 𝑖 ∈ {1, ..., 𝑔}. From Fig. 7.6 we can see that if 𝜇𝜓 > 0, for each 𝑖 ∈ {1, ..., 𝑔},

�̃� > 0 ⇐⇒ 𝐴𝑖 + 𝜇𝛿𝐵𝑖 + 𝜇𝜓𝐶𝑖 < 0

�̃� < 0 ⇐⇒ 𝐴𝑖 + 𝜇𝛿𝐵𝑖 + 𝜇𝜓𝐶𝑖 > 0,
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and if 𝜇𝜓 < 0, for each 𝑖 ∈ {1, ..., 𝑔},

�̃� > 0 ⇐⇒ 𝐴𝑖 + 𝜇𝛿𝐵𝑖 + 𝜇𝜓𝐶𝑖 > 0

�̃� < 0 ⇐⇒ 𝐴𝑖 + 𝜇𝛿𝐵𝑖 + 𝜇𝜓𝐶𝑖 < 0.

Figure 7.6: Illustration of the 𝜇𝜓-𝜇𝛿 parameter space for some fixed 𝑖 ∈ {1, ..., 𝑔}, treating
all parameters except 𝜇𝜓 and 𝜇𝛿 as known and fixed. Dark (light) grey shaded areas indicate
where �̃� > 0 (�̃� < 0). The grey dotted line represents the line −𝐴𝑖 − 𝜇𝛿𝐵𝑖 − 𝜇𝜓𝐶𝑖 = 0.
The black dashed line indicates that 𝜇𝜓 ≠ 0 (by assumption). The white circle is the point
(𝜇𝜓 , 𝜇𝛿) = (−𝐴𝑖/𝐶𝑖, 0).

Scenario 1: First, suppose 𝜇𝛿, 𝜇𝜓 > 0. The sign of 𝜇𝜓 suggests that the effect of increasing
group abundance has a net benefit to the mean processes of each group. The prey coupling
and benefit of increasing group abundance will be stronger as both of these parameters
become large in magnitude. This may arise, for example, in a scenario where the overall
predator population is sufficiently large, inter-group responses to increases in predator
abundance is strong and the predator is a specialist, i.e. monitors prey availability and is
sensitive to abundance changes in their primary prey [8]. As (7.6.17) holds we have that
𝜇𝜓 , 𝜇𝛿 > 0 implies that �̃� < 0 irrespective of the magnitudes of 𝜇𝛿 and 𝜇𝜓 . The sign
of 𝜇𝛿 suggests that there is a positive coupling between predator groups and their prey.
Depending on the values of the constant means of the groups in 𝑋 and 𝑌 , the magnitude
of �̃� will vary. Therefore these group responses may still result in either weak (�̃� ≈ 0) or
strong (�̃� ≪ 0) negative interactions. There also could be multiple prey types, for each
group. This in turn can allow for a strong numerical response, i.e. a strong change in
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predator abundance as a function of change in prey abundance [24]. Even though 𝜇𝜓 > 0,
which may suggest positive pack correlations, the negative �̂� could be due to high group
numbers and therefore high prey competition, resulting in 𝐶𝑖 ≫ 0, for example.

Scenario 2: Assume 𝜇𝜓 < 0. We have two cases to consider for the sign of 𝜇𝛿.

(a) Suppose 𝜇𝛿 > 0. As is the case in Scenario 1, this means there is a positive coupling
between the predator population and their prey. With 𝜇𝜓 < 0, the sum of the expression
involving 𝐴𝑖 and the remaining terms involving 𝐵𝑖 and 𝐶𝑖 can result in either positive
or negative �̃� (see Fig. 7.6). For example, if 𝜇𝑌 ≫ 0, a situation may arise where the
positivity of the first term dominates the negativity of the sum of the other terms, resulting
in �̃� > 0. This may arise, for example, in a scenario where there is specialist predation
and strong inter-group responses to changes in predator abundance (potentially due to
strong competition). This can still result in positive interactions among groups, with the
prey-coupling potentially compensating for the negative effects of inter-group changes in
abundance. This could be explained, for example, by hunting cooperation among certain
groups [6]. On the other hand, if there are a larger number of predator groups, we could
have that

−𝐶𝑖 ≪ 0 =⇒ �̃� < 0,

as in Scenario 1. This may arise in a situation where there are negative interactions at
higher group densities, where strong prey-coupling compensates for the large negative
effects of overcrowding, for example. This has been shown mathematically in [145] for
a particular spatial model of prey-taxis (where predators have a tendency to move toward
regions of highest prey density).

As an example, suppose we observe two groups, 𝑋1 and 𝑋2, along with their prey 𝑌 , over
a time horizon of length 𝑇 . Further suppose we estimate 𝜇𝜔 = 0.001, 𝜇𝜆 = 1, 𝜇𝜓 = −0.62,
𝜇𝛿 = 0.0001, 𝜇𝑋1 = 𝜇𝑋2 = 1.5 and 𝜇𝑌 = 100. In this case, if we were looked at the
(𝜇𝜓 , 𝜇𝛿)-parameter space, as in Fig. 7.6, the values of 𝜇𝜓 and 𝜇𝛿 indicate that we have
�̃� > 0. In fact if we calculate �̃� using the parameter values we get two estimates which are
both approximately 0.745. This implies that the net group correlation was positive and
strong (as it is close to unity). For this example, we generated a contour plot (see Fig. 7.7),
showing what values of 𝜇𝑋1 and 𝜇𝑋2 result in �̃� being either in (0, 1) or (−1, 0).

(b) Suppose 𝜇𝛿 < 0. This means that as prey abundance increases this will have negative
net effects on predator abundance. This may arise in a scenario where there is predator
satiation [169]. This is an inverse density-dependent process, where a prey population
inundates their predators with more food than they can consume at a certain time. This is
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followed by little to no prey reproduction, thus causing large decreases in the numerical
responses of the predator.

𝜇2
𝑋

𝜇1
𝑋

𝜌 ∈ 0,1

𝜌 ∈ −1,0

Figure 7.7: Contour plot of (𝜇𝑋1 , 𝜇
𝑋
2 ) ∈ (1, 2.25]2 which result in �̃� ∈ (0, 1) (black) and

�̃� ∈ (−1, 0) (dark grey), where 𝜇𝛿 = 0.0001, 𝜇𝜓 = −0.62, 𝜇𝜆 = 1, 𝜇𝜔 = 0.001 and
𝜇𝑌 = 100.

This can occur via synchronised birth events, herding behaviour or seed masting for
example [75, 198, 273]. In this context we could get that

𝜇𝑌 ≫ 0 =⇒ �̃� < 0.

When resources become scarce following rapid decreases in prey, the negative group
interactions would be induced in response to resource scarcity. On the other hand, if 𝑔 and
𝜇𝑌 were small, and 𝜇𝜓 was large enough, it could happen that the expression involving
𝐵𝑖 > 0 may be large enough to result in �̃� > 0. This could arise in a scenario where
the predator is a generalist, i.e. those that consume numerous species while having little
dependence on specific prey types [8], and the prey population being modelled decreases
due to environmental disturbances. This would result in positive interactions between
groups due to hunting cooperation, in order to switch to alternative prey types.

Scenario 3: Lastly, suppose that

𝜇𝛿 ≈ 0, 𝜇𝜓 ≫ 0 =⇒ 𝜇𝛿𝐵𝑖

𝜇𝜓
≈ 0.

As mentioned above, the mean parameters in 𝑀 are not exactly equal to zero, but here we
assume 𝜇𝜓 is sufficiently large so that the expressions involving 𝐵𝑖 adds little contribution
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to �̃�. This implies that there is weak coupling between predator groups and their prey. It
also implies that the effect of increasing group constant means increases the mean process
of each group. This may arise, for example, in a scenario where predation is generalist.
These values also imply that inter-group responses to increases in predator abundance
is beneficial, which could have multiple interpretations. If there is weak dependence on
changes in both the prey and group abundances, then this could signify that there is prey
switching occurring in this system [168, 223]. Having abundant resources means that
direct competition may be weak, for example. All the while, the effects of predation could
remain sufficiently low for the prey to have minimal impact. There could also be a low
number of groups, with small spatial overlapping of territories, and so scarce aggressive
interactions. This could consequently lead to competitive effects remaining weak overall
and so interactions are deemed beneficial for each group.

We would like to point out that the above interpretations are not exhaustive. Other scenarios
can be extrapolated from these parameter values taking various signs and magnitudes.
However, based on theoretical and observed phenomena in ecology, we have discussed
four plausible scenarios that could occur. In each of these scenarios the sign of �̃� can
vary, with its magnitude also changing in response to changes in both the magnitudes
of elements of 𝑀 , given in (7.3.3), and the magnitude of the constant means of the
groups within 𝑋 and 𝑌 . The strength of group interactions can change depending on the
trade-off between processes like resource competition and predation, for example [51].
This dichotomy is not so clear, as we can see in the above scenarios. The sign of �̃�
is not a direct measure of interaction in the sense of there being strong/weak predation
or competition in the system. Incidental events such as indirect mutualism, temperature
changes, drought, hunting pressure and other ecological and environmental phenomena,
that are not explicitly observed, may also affect the sign of �̃�.

Demographic and ecological processes, such as those described in the previous theoretical
scenarios, can either enhance or inhibit a group’s fitness and growth. This can occur due
to factors like discounting, where individuals prioritise immediate rewards over future
benefits, leading to a reduced investment in cooperative behaviors. For example, an
individual with a group may choose to consume resources quickly rather than contributing
to the group efforts, such as hunting or reproduction, that would benefit the population
in the long run [131]. Additionally, predator interference can further complicate these
dynamics, as the presence of other predators can disrupt a main predators foraging abilities.
When additional predators are present, prey may become more cautious, reducing their
foraging time and thus limiting prey acquisition by a focal predator [54].

In evolutionary game theory, heterogeneous populations can be viewed as comprising
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cooperators — those who invest maximally in fitness and survival — and defectors —
those who do not contribute to such efforts. Mathematically, it has been established that
the ratio of gains to losses from cooperative versus defective interactions must surpass a
threshold for cooperation to evolve. Specifically, this ratio must exceed the average degree
of nearest neighbors in an evolutionary graph. In this framework, each node reflects
an individual in the population, and the edges represent the connections or interactions
they have with others. The average degree indicates how many direct interactions each
individual has, which ultimately influences the spread of cooperative behavior. If the gains
from cooperation outweigh the losses from defection within this population, cooperation
can be maintained, thereby enhancing the group’s fitness [175]

In this context, network reciprocity plays a crucial role in sustaining cooperation at the
population level [282]. Network reciprocity is a mechanism by which cooperative behavior
is sustained in a population through the formation of networks where cooperators are
clustered together, providing protection against defectors. In the illustrative scenarios
mentioned earlier, the varying interaction strengths, as indicated by �̃�, must ensure that
temporal interactions have a positive effect on the overall population, for cooperation to
thrive and for groups to remain cohesive. Simultaneously, these interactions should not
be so costly to the overall population that one group could dominate, thereby undermining
overall population fitness. Therefore, while we can observe that groups may have a net
negative or positive interaction strength over some time horizon, as measured by �̃�, the
individual pairwise interactions could tell us more about how the balance of cooperative
and defective behaviors, influenced by demographic and ecological factors, shape such a
populations’ long-term persistence.

7.7. Summary

In this chapter, we introduced a stochastic framework to analyse the dynamics of ani-
mal groups within a population, accounting for group interactions and the influence of
an auxiliary population. Our framework does not assume log-Gaussian distributions for
abundance counts, a common assumption in species dynamics modeling [144, 292]. We
model both observation and latent processes, allowing for overdispersion. We applied this
model to a 20-year wolf-elk dataset and confirmed that wolf predation isn’t the primary
cause of elk declines, inter-pack dynamics are heterogeneous, and wolf populations in
Yellowstone National Park are generalist predators. Inter-pack associations were inter-
preted to have a weak effect on regulating population abundance. Simulation studies
demonstrated the robustness of our model across different contexts. We also derived
an approximation to inter-group correlation for a simpler autoregressive model, which
captures various predator-prey relationships.
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7.8. Appendix

In this appendix we present some plots related to our simulation studies. Fig. 7.8 – 7.12
are boxplots of bias and relative bias for our parameter values over all 100 simulations for
each S1 – S5, respectively. Fig. 7.13 – 7.15 are bivariate plots for simulation No. 20 for
S2 and S3. The bivariate plots show the marginal (posterior) distribution of the specified
parameters along the main diagonal, with bivariate distributions for specified parameter
pairs on the off-diagonal. The boxplots show the median of the posterior estimates (bold
horizontal line) and the interquartile range with bounds at 25% and 75% quartiles (boxes).
The vertical lines indicate the amount of variability beyond the interquartile range. The
grey dots represent data points that are outliers with respect to the interquartile range. The
boxplots show the estimated posterior density for each parameter and demonstrate when,
if present, there was confounding between variables within some HMC runs.

Figure 7.8: Boxplots of bias and relative bias for 𝜃 ∈ 𝑀 ∪ Σ ∪ {𝛾, 𝜆𝑌 , 𝜔𝑌 } for S1.
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Figure 7.9: Boxplots of bias and relative bias for 𝜃 ∈ 𝑀 ∪ Σ ∪ {𝛾, 𝜆𝑌 , 𝜔𝑌 } for S2.

Figure 7.10: Boxplots of bias and relative bias for 𝜃 ∈ 𝑀 ∪ Σ ∪ {𝛾, 𝜆𝑌 , 𝜔𝑌 } for S3.
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Figure 7.11: Boxplots of bias and relative bias for 𝜃 ∈ 𝑀 ∪ Σ ∪ {𝛾, 𝜆𝑌 , 𝜔𝑌 } for S4.

Figure 7.12: Boxplots of bias and relative bias for 𝜃 ∈ 𝑀 ∪ Σ ∪ {𝛾, 𝜆𝑌 , 𝜔𝑌 } for S5.

154



7.8. Appendix

Figure 7.13: Bivariate plots for {𝜔𝑌 , 𝜆𝑌 , 𝜇𝜓 , 𝜇𝛿} from simulation No. 20 for S1.

Figure 7.14: Bivariate plots for {𝜔𝑌 , 𝜆𝑌 , 𝜇𝜓 , 𝜇𝛿} from simulation No. 20 for S2.
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Figure 7.15: Bivariate plots for {𝜔𝑌 , 𝜆𝑌 , 𝜇𝜓 , 𝜇𝛿} from simulation No. 20 for S3.
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In this thesis we have shown how one can account for various types of internal population
heterogeneity when modelling species dynamics in discrete-time. In each chapter we
attempted to demonstrate the relevance of our model frameworks and how the results
could give us insight into real-world populations that exhibit such ecological complexities.
We will now review some of the main results and outline some avenues one could take
in relation to the ideas and results in this thesis, to either extend, complement or improve
upon such work.

In Chapter 4 we explored a two-patch population model of both passive and density-
dependent, cost-free range expansion, motivated by examples based on invasive species,
where the dynamics on each patch were modelled by a Ricker map. We provided sufficient
conditions for the LAS of the extinction equilibrium, the existence of a patch coexistence
equilibrium, weak uniform persistence with respect to one of patches, and strong uniform
persistence with respect to both the total population and minimum patch size. One
possibility for future work would be to determine if there exist conditions for the existence
of a unique positive equilibrium for two coupled Ricker maps with density-dependent
dispersal. Following this one could also look at when such an equilibrium is LAS and
GAS. This was done for the passive, symmetric dispersal case, as can be seen in [17].

Following the analytical work in Chapter 4, we briefly discussed some ecological scenarios
that our model can describe, including transience and spatial synchrony. Finally we applied
our model to a case study of plant-host shift, to get some insight into how altering crop types
can affects the long term dynamics of an invasive insect. In the context of modelling pest
dynamics, one could try extend our model to include stochasticity and detect population
outbreaks. For example, this may be done using the Pattern-Based Prediction framework
outlined in [219], where the imhomogenous mean of a count distribution is given by our
model equations (4.2.1).

In Chapter 5 we investigated the dynamics of a nonlinear metapopulation model, where
the maps describing regional dynamics belong to a general class of bounded population
maps and dispersal was density-dependent with a cost across the overall population. We
briefly discussed how our model relates to many passive dispersal models. We provided
sufficient conditions for the LAS and GAS of the extinction equilibrium. We then derived
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conditions for the existence of a positive equilibrium: our proof also described a region
in the interior of the nonnegative orthant in which the equilibrium is located. As with
the material in Chapter 4, a natural question to ask here is: under what further conditions
on both 𝑓𝑖 ∈ M and 𝑑𝑖 𝑗 satisfying (5.2.1) can one prove either the existence of a unique
positive equilibrium or a GAS positive equilibrium? As in [156], it would be interesting
to see When (if at all) system (5.2.3) is strongly monotone and if the dichotomous result of
[156] holds for some feasible choice of 𝑓𝑖 and 𝑑𝑖 𝑗 . In this chapter we also gave a sufficient
condition for strong uniform persistence with respect to any norm on R𝑛+ and minimum
patch size.

We finished Chapter 5 by numerically investigating our model, exploring when various
dynamical behaviour arose, for example periodic solutions and chaotic type dynamics.
In the context of modelling metapopulations, it would be interesting to see if our results
can be specialised to models where there is specific network topologies, i.e. when not
all patches/regions are connected via dispersal? This would change the assumption that
𝑑𝑖 𝑗 ∉ {0, 1} and so more work would be needed to be carried out in order to see if our
results can be extended to these cases. In [113] the authors looked at how the strength of
passive dispersal between sources and sinks affects the asymptotic total population size
when 𝑛 = 2. Another avenue for future work would be to see if the results of [113] could
be extended to density-dependent, costly dispersal for 𝑛 ≥ 2 when one looks at movement:
(i) only between sources; and (ii) between sources and sinks. Both of these extensions
have important consequences for ecological corridors and habitat connectivity [93].

In Chapter 6 we explored a linear two-patch population model, where each patch population
is partitioned into demographic classes, and there is diffusive dispersal between each of the
classes. Given that each patch is a sink, i.e. each isolated population tends to extinction,
we gave several sufficient conditions for the asymptotic stability of the zero equilibrium
of the coupled model, which is robust to feasible diffusive couplings, also known as
robust diffusive stability (RDS). In particular we showed how common linear copositive,
quadratic and diagonal Lyapunov functions relate to RDS. Generalising these results for
nonlinear matrix models [255] or for diffusively coupled continuous-time systems on
proper cones [69] is a natural next step.

In Chapter 6 we also looked at when one can find specific diffusive matrices that induce
overall population growth, referred to as diffusive growth. In particular we looked at how
the existence of an unstable matrix in the convex hull of our system matrices 𝐴 and 𝐵
related to diffusive growth. In [127] the authors investigated how the the spectral abscissa
of a convex combination of two matrices compared to the convex combination of their
individual spectral abscissas. This problem was motivated by a continuous-time structured

158



Chapter 8. Future Directions

population model. Investigating how these results apply to discrete-time models and how
do they relate to RDS or diffusive growth would be an interesting route to take. Throughout
this chapter we also discussed how our results could be used to study diffusive dispersal
for commonly used linear population models in ecology, such as Leslie matrices. Leslie
matrix models are used widely in applied ecology for predicting population dynamics.
Within the context of our model, one could statistically estimate the entries of the Leslie
matrices 𝐴 and 𝐵, by fitting dynamic state-space models to time series data of interest,
where 𝐴 and 𝐵 are the true generating process for the mean of a count distribution [41].
Then using the results of this chapter, these estimates could be used to infer if diffusive
dispersal will result in RDS or help in finding when diffusive growth occurs.

In Chapter 7 we investigated a stochastic time series model of animal groups within a
population and an associated auxiliary population. Our aim was to use such time series
for inferring interactions among such groups and how the auxiliary population may affect
these associations. We then validated this framework under various simulation scenarios to
demonstrate parameter estimation and bias, and fitted this model to a real-world predator-
prey dataset, in a Bayesian setting. If one was interested in short term predictions one could
use observational random effects within our framework in order to account for potential
outliers [215]. In this context one may want to reformulate our model into observation and
data-generating processes in order to account for imperfect detection and measurement
error [201]. One could also, in this case, explicitly account for potential high frequency
of zero observations using hurdle or zero-inflated models [124].

In Chapter 7 we were particularly interested in interactions over time. If one was interested
not only in the temporal aspect of group interactions, but also their spatial extent, then one
could perhaps do this via spatial random effects [150]. One could also incorporate spatiality
by introducing a temporally varying network structure into our model. This would be of
interest if one was interested in modelling the explicit inflow/outflow of individuals from
groups, which could incorporate lone individuals. Perhaps this could be done using, for
example, multilayer networks [140] or graphical models [207], where nodes of a spatial
graph represent groups or individuals and edges their interactions. We introduced random
effects to reduce parameter dimensonality and to model within-population heterogeneity.
One way to improve on our work would be to introduce pairwise interaction parameters,
either by extending our count time series model, or via the Poisson Lotka-Volterra model
of [249]. If both were fitted, then one could select which model is a better fit to the data
via methods such as the Bayes factor or using information criteria [176].

Following our simulation and case studies in Chapter 7, we then derived an approximation
to the marginal pairwise correlation between groups for a new simpler model, what we
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called the net group interaction strength, which quantifies the total interaction strength
across all groups over the whole time horizon. Lastly, we discussed the meaning of such
an approximation for some theoretical predator-prey scenarios, to show how it can be
interpreted. An obvious final question to ask is: it possible to remove the simplifying
assumptions that allow for our derivation of �̂�, that is, to derive an analytic expression for
the marginal correlation structure of our model, i.e. (7.6.1), without using a second order
Taylor approximation and/or the assumptions of log-normality, conditional constancy and
heterogenous compund symmetry?
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