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ABSTRACT 

A technique for detecting note onsets using FIR comb filters 

which have different filter delays is presented. The proposed 

onset detector focuses on the inharmonic characteristics of the 

onset component and the energy increases of the signal. Both 

properties are combined by utilizing FIR comb filters on a 

frame by frame basis in order to obtain an onset detection 

function, which is suitable for detecting slow onsets. The 

proposed approach improves upon existing methods in terms of 

the percentage of correct detections in signals containing slow 

onsets. 

1. INTRODUCTION

A musical onset is defined as the precise time when a new note 

is produced by an instrument. The onset of a note is very 

important in instrument recognition, as the timbre of a note 

with its onset removed can be very difficult to recognize. Masri 

[1] states that in traditional instruments, an onset is the stage 

during which resonances are built up, before the steady state of 

the signal. Other applications use separate onset detectors in 

their systems, for example in rhythm and beat tracking systems 

[2], music transcriptors [3-7], time stretching [8], or music 

instrument separators [9]. 

The onset detectors encounter problems in notes that fade-in; 

in ornamentations such as grace notes, trills or cuts and strikes 

in traditional Irish music; and in fast passages such as 

arpeggios, or legatos. Also, the physical attributes of the 

instruments and recording environments can produce artifacts, 

resulting in detection of spurious onsets. Amplitude and 

frequency modulations that take place in the steady part of the 

signal can also result in inaccurate detections.  

Section 2 provides an overview of the existing approaches 

that have dealt with the onset detection problem. Section 3 

focuses on comb filter theory. In section 4 the proposed onset 

detector method is presented. Some results which validate the 

approach are shown in section 5 and finally, some conclusions 

and further work are discussed in section 6. 

2. EXISTING APPROACHES 

There are many different classifications of onsets. However, the 

two most common are: 

A fast onset, which is a short duration of the signal with an 

abrupt change in the energy profile, appearing as a wide band 

noise burst in the spectrogram (see Fig.1). This change 

manifests itself particularly in the high frequencies and is 

typical in percussive instruments. 
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Figure 1: Spectrogram of Piano playing F5

Slow onsets which typically occur in wind instruments like 

the flute or the tin whistle, are more difficult to detect. In this 

case, the onset takes a much longer time to reach the maximum 

onset amplitude value and has no noticeable change in the high 

frequencies. 
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Figure 2: Spectrogram of a tin whistle playing F#5 

A significant amount of research on onset detection and 

analysis has been undertaken. However, accurate detection of 

slow onsets remains a significant problem. 

Energy based systems have been widely utilized for detecting 

onsets. Early work which dealt with the problem analyzed the 

amplitude envelope of the entire input signal for the purpose of 

onset detection [10]. To obtain information on specific 

frequency regions where the onset occurs, Bilmes suggested a 

multi band approach which computes the short time energy of a 

high frequency band using a sliding window [11], and Masri in 

[1], gives more weight to the high frequency content (HFC) of 

the signal. In [2], Scheirer presents a system for estimating the 

beat and tempo of acoustic signals requiring onset detection. A 
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filterbank divides the incoming signal into six frequency bands, 

each one covering one octave, the amplitude envelope is then 

extracted, and the peaks are then detected in every band. 

Klapuri in [12], developed an onset detector system based on 

Scheirer’s model. He utilizes a bank of 21 non-overlapping 

filters covering the critical bands of the human auditory system, 

and incorporates Moore’s psycoacoustic loudness perception 

model [13] into his system. Klapuri obtains the loudness of 

every band peak, then combines all peaks together sorted in 

time, and calculates a new peak value for every onset candidate 

by summing the peak values within a 50 ms time window 

centered at the onset candidate. All the above approaches 

behave well for sharp onsets and for signals with a rich 

harmonic content. 

In order to obtain more accurate results on detecting slow 

onsets, an approach that customizes an energy based onset 

detector system according to the characteristics of the Irish tin 

whistle is presented in [6]. A filterbank splits the signal into 

one band per note that the tin whistle can play, and different 

band thresholds are set according to expected note blowing 

pressure. 

An alternative to energy based onset detection is proposed in 

[14], by calculating the frame by frame distribution of the 

differential angles by using phase vocoder theory. This 

approach is more sensitive than standard energy based 

approaches for analyzing soft onsets.  

A combination of energy and phase information to favor the 

detection of slow and sharp onsets is presented in [15]. 

3. FIR COMB FILTER THEORY 

By using FIR comb filters, the comb spectral shape can be 

obtained by summing an input signal x[n] with a delayed 

version of the same signal [16]. The FIR comb filter transfer 

function and the difference equation are represented as follows: 
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where g is a factor which scales the gain of the filter between 

1+g and 1-g, and D is the delay in samples. 

The comb effect results from phase cancellation and 

summation between the delayed and undelayed signal. This can 

be appreciated in Figure 3 where the magnitude responses of a 

filter with g = 1, sampling rate fs = 44100 Hz and a delay D = 

16 is depicted.  
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Figure 3: FIR comb filter magnitude response using 

g=1, D=16 and fs=44100 Hz 

From Figure 3, it is apparent that at frequencies: 
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where n is an integer, the delay D causes a 360 degree shift 

between the original and delayed signal causing addition, which 

produces peaks in the filter magnitude response at frequencies 

denoted by equation 2. 

Thus, the energy of the signal x[n] is doubled only if the 

peaks of the signal coincide with the peaks of the FIR comb 

filter. This will only occur for a given delay D and its integer 

multiples.

4. PROPOSED APPROACH 

A technique for detecting onsets by using comb filters is 

proposed. In Figure 4, a block diagram illustrating the different 

components of the system is depicted. 
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Figure 4: Onset Detection system 

The frequency evolution over time is obtained using the 

Short Time Fourier Transform (STFT), which is calculated 

using a Hanning window.
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where w(n) is the window that selects a L length block from the 

input signal  x(n), m and  k are the frame and bin numbers 

respectively, and H is the hop length in samples. 

Then, the frame representation in the frequency domain 

X(m,k) is fed into a bank of FIR comb filters, which uses 

different delays Di, where i is a configurable range of filter 

delays [Dmin…Dmax]. Next, the filter output YD(m,k) is 

calculated  as follows: 
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where H(Di,k) denotes a FIR comb filter frequency response 

built with a delay Di.

Then, the energy of each output is calculated in the 

frequency domain as follows: 
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where M denotes the FFT length. 

From equation 1, it can be seen that the maximum output 

amplitude that the FIR comb filters can reach with g =1 is
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ymax(n) = 2*x(n), which can only occur for the case of x(n) = 

x(n+D). In that case, the maximum output energy is E(ymax) =

4*x
2
(n). Then, by normalizing each output energy E(m,Di) with 

E(ymax), a measure of how similar the filter H(Di,k) is to the 

perfect FIR comb filter that extracts the maximum energy 

E(ymax) is obtained: 
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Since comb filter peaks are equally spaced along the 

frequency domain (see Figure 3), E(m,Di) will vary 

considerably depending on the spectral harmonicity of the 

peaks of the analyzed signal. Thus, equation 7 provides a 

compromise between spectral harmonicity and energy filtered, 

which we call “spectral fit”. As an example, a FIR comb filter

H(Di,k) with peaks in the magnitude response matching the 

harmonic peaks of a monophonic signal, will have Em(m,Di)

close to 1. In contrast, a filter with peaks that do not coincide 

with the bins where the energy of the signal is will have 

Em(m,Di) closer to 0, which is common in the onset component 

of a musical signal. 

Since we are interested in the deviation of Em(m,Di) from the 

perfect “spectral fit”, the following transformation is 

performed: 
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Thus, E’m(m,Di) equal to 0 and 1 corresponds to the perfect and 

worst spectral fit respectively.  

In order to obtain the onset detection function, the sum of the 

squared difference [17], between the maximized output 

energies for each delay Di is performed for each pair of 

consecutive frames as follows:  
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Figure 5: onset detection function of a tin whistle signal 

In Figure 5, the onset detection function of a tin whistle 

signal (top plot) utilizing the presented approach is depicted in 

the middle plot. As a comparison, the energy function of the 

signal is also shown in the bottom plot [1]. In the FIR comb 

filter based approach, there is a prominent peak at the onset 

position; however, the energy function does not show an 

increase in the onset component. In order to illustrate how the 

onset peak arises, the E’m(m,Di) function for the frame range m

= 2 to 6 are depicted in Figure 6. The delays utilized 

correspond to the pitch period of the 12 notes of the third 

octave, and the sampling frequency is 44100 Hz. It can be 

appreciate that there is not a noticeable change in the functions 

between frames 2 and 3, and frames 5 and 6. However, there is 

a significant change between frames 3 and 4, and frames 4 and 

5, which are the samples where the onset occurs, as can be 

appreciated in Figure 5. 
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Figure 6: E’(m,Di) function for frames m = [2...6] 

5. RESULTS

As mentioned in sections 1 and 2, slow onsets such as wind 

instruments are more difficult to detect. Figure 7 illustrates the 

strength of the presented approach for detecting onsets in a tin 

whistle signal, with its spectrogram and time domain 

representation depicted in the first and second row respectively. 

The results obtained by the use of the proposed method are 

depicted in the third row of Figure 7. To demonstrate the 

benefits of the approach, the onset detection function of four 

other methods is also shown. The systems utilized were the 

spectral difference method [17] (see the fourth row), the 

complex based method [15] (see the fifth row), the phase based 

method [14] (see the sixth row), and an energy based method 

[1] (see the seventh row). All functions were obtained by the 

use of a STFT analysis, with a frame length N and hop size H

equal to 1024 and 512 samples respectively. Then, the resulting 

onset detection functions were normalized. 

It can be seen that the onset detection function in the presented 

approach shows very distinct peaks at the position of the 

onsets. However, the other onset detection functions do not 

contain very clear onsets, resulting in inaccurate detections. In 

the analyzed signal of Figure 7, two notes are played with a 

slide effect, which is an inflection of the pitch (see sample 

ranges [8000…26000] and [48000…67000] respectively). It 

can be appreciated that the slide, which produces a gradual 

change in the amplitude and harmonicity of the frequency 

tracks in the spectrogram, do not alter the accuracy of the 

detection in the proposed approach (see third row). In contrast, 

the onset detection function of other methods contains several 

spurious peaks, which are significantly more noticeable in the 

second inflected note. The proposed onset detector is sensitive 

to sudden harmonicity changes that typically occur during the 

noisy onset component of the signal. However, the offset part 

of the signal can also have unexpected energy and harmonicity 

changes, which causes a spurious detection in the proposed 

approach at sample 67000 approximately (see row 3). The only 
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approach that did not detect that spurious offset is the energy 

based system (see row 7). However, by only analyzing the 

sections of the signal where there is an energy increase, rapid 

note changes will also remain undetected (see Figure 5, bottom 

plot).
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Figure 7: Onset detection methods comparison

6. CONCLUSIONS AND FURTHER WORK 

A system that detects note onsets using FIR comb filters is 

presented. The system improves upon the performance of other 

onset detector approaches such as an energy based, phase 

based, complex based and spectral difference based onset 

detector, in the difficult case of detecting slow onsets. This 

shows that by combining the inharmonicity properties of the 

onset component of the signal with the energy increase utilizing 

FIR comb filters, the accuracy of the onset detection function is 

improved. To implement a multiresolution onset detector in 

order to obtain more accurate time precision, and investigating 

a method in order to avoid the detection of spurious offsets 

should be considered as an area for future research.     
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