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Summary

When exploring how a unique individual’s characteristics can lead to variations

in their response to treatment, Bayesian non-parametric causal inference ma-

chine learning methods based on Bayesian Additive Regression Trees (BART) and

Bayesian Causal Forests (BCF) have emerged as leading approaches. This thesis

presents a series of studies focused on extending and applying these methods to

large scale educational studies.

We begin by demonstrating the broad potential for these methods in educa-

tional studies by applying BART to English data from the Teaching and Learning

International Survey (TALIS 2018). By estimating the effect of multiple treat-

ments on teacher job satisfaction, we identify positive factors such as continual

professional development and induction activities that may be used to improve

job satisfaction, thus encouraging teachers to stay in their jobs and new entrants

to join the profession.

Our second contribution is a multivariate extension of Bayesian Causal Forests,

designed to estimate the effect of an intervention on multiple outcome variables

simultaneously. By allowing the tree structure of BCF to benefit from the shared

information across all outcome variables, we demonstrate the performance gains

made possible with this approach. Applying this method to Irish data from the

Trends in International Mathematics and Science Study (TIMSS 2019), we also

investigate the effect of a number of home-related factors on student achievement

such as having access to a study desk at home, often being absent, or often feeling

hungry when arriving at school.

Later, we augment this multivariate model in order to investigate the separate

effects of homework frequency and homework duration on student achievement in

x



mathematics and science, again using data from TIMSS 2019. We find that while

increasing homework frequency can lead to greater homework benefits, increasing

homework duration beyond 15 minutes has no additional effect.

Our final contribution is a longitudinal extension of BCF, designed to estimate

treatment effects from multiple waves of data, using a structure similar to that

of the difference-in-differences approach. With the help of simulation studies, we

demonstrate the performance gains made possible with our new method. Applying

this model to data from the High School Longitudinal Study of 2009 (HSLS), we

also reveal the negative effects of participation in intensive part-time work by high

school students.
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1
Introduction

This thesis will focus on developing and applying new extensions of Bayesian non-

parametric causal inference machine learning methods to large-scale educational

studies. Our aim is to broaden the applicability of these methods, improve their

performance, and allow them to be applied in situations that they would other-

wise not be well suited to. In doing so, we also aim to tackle several important

research questions from the world of education, which are of importance because

of their implications for education policy both in Ireland and internationally. In

this first chapter, we provide an introduction to the datasets we will work with,

the challenges they pose, and some of the existing methods that have been used to

study them. Finally, we outline the key contributions made within each chapter

of this thesis.

1.1 Large Scale Educational Studies

1.1.1 Overview of Datasets Used in This Thesis

Large scale educational studies is a broad term used to describe a number of

research initiatives, often designed to measure and compare the outcomes and

features of educational systems across different countries (Rutkowski et al., 2010).

These studies provide valuable information about educational systems, learning

outcomes, and factors that influence student performance. They are organised

by large national or international cooperative institutions, and typically involve
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representative samples of students or teachers from participating countries in the

grade level of interest. Often repeated at regular intervals, they offer up-to-date

information and allow for the analysis of trends in national achievement outcomes

over time. Due to their strengths, datasets from large scale educational studies

have become an increasingly popular area of research, and have been used in a

diverse range of applications (Hernández-Torrano and Courtney, 2021).

The first dataset that we will work with in this thesis is called the Teaching and

Learning International Survey (TALIS, OECD, 2019a). Unlike most educational

studies which focus on students, TALIS is the world’s largest international study

of teachers and school principals. It is widely regarded as a highly important

educational study because of the very valuable insights it offers into the working

and learning environments of school systems in participating countries. Organised

by the Organisation for Economic Cooperation and Development (OECD), TALIS

first took place in 2008. Further cycles were conducted in 2013 and 2018, with

work on a fourth cycle currently in progress. TALIS 2018 is the largest of the

studies to date and took place in 48 countries. The focus is on teachers of lower

secondary school students, but participating countries also have the option of

involving primary school teachers and upper secondary school teachers.

Ireland did not take part in TALIS 2018, so our analysis in Chapter 3 is based

on the English subset of the data. This subset of the data contains 2009 primary

and 2376 lower secondary school teachers. Principals of 162 primary and 157 lower

secondary schools are also included. As part of the study, teachers are asked to

complete a questionnaire on a wide variety of topics such as personal background,

current teaching duties, their perception of the school climate, and job satisfaction.

Principals, meanwhile, are given a questionnaire on aspects related to the school

characteristics, leadership, staffing, and policies that are in place in the school.

Being the only large scale international dataset involving representative samples

of teachers, TALIS is uniquely placed as a resource for researchers investigating

factors related to school working and learning environments.

One of the longest running large scale assessments in education is the Trends in

International Mathematics and Science Study (TIMSS, Broer et al., 2019). TIMSS

first took place in 1995 and has taken place every four years since then, with TIMSS

2019 being the most recent study for which data is publicly available. Data from
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TIMSS 2023 is expected to be released at the end of 2024. It is one of a number of

studies regularly conducted by the International Association for the Evaluation of

Educational Achievement (IEA). TIMSS 2019 took place in 64 different countries

making it the largest of the TIMSS studies conducted to date (Mullis et al., 2020).

As part of the study, students from the fourth and eighth grades of partici-

pating countries (aged approximately 10.5 and 14.5 years on average) are given

a short assessment in mathematics and science to measure their achievement in

these subjects. Surveys are also given to the students (or their parents in the case

of the fourth grade students), their teachers, and their school principals. Specifi-

cally, the Irish eighth grade version of data from TIMSS 2019 that we will explore

later in Chapters 4 and 5 involved a representative sample of 4118 students, and

more than 500 teachers from almost 150 schools. These surveys collect important

contextual information such as the socioeconomic backgrounds of the students, the

education level of their parents, teaching practices within the classrooms, and the

availability of school resources. This makes TIMSS an excellent source of informa-

tion for researchers investigating factors associated with student achievement in,

or attitudes towards studying mathematics and science.

The final dataset explored in this thesis is the High School Longitudinal Study

of 2009 (HSLS, Ingels et al., 2011). HSLS is the most recent of a series of five

longitudinal studies organised by the National Center for Education Statistics

(NCES). An important feature of HSLS is that unlike many educational studies

which employ a cross sectional design, it uses a longitudinal design which follows

the same cohort of students over time. This allows for an analysis of changes in

student achievement, or indeed other important outcomes over time.

The first wave of data collection for HSLS took place in the fall of 2009 when the

target population were in the ninth grade of high school. More than 20,000 students

from nearly 1000 high schools took part and were given a short mathematics

assessment designed to measure their algebraic reasoning abilities. Similarly to

TIMSS 2019, questionnaires were also completed by the students, their parents,

their teachers, and school administrators. These questionnaires facilitated the

collection of important background information such as socioeconomic status, sense

of belonging at school, parental education, school type, and location. A follow up

of these students then took place in the spring of 2012 when the students were in
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the eleventh grade. The mathematics ability of the students was re-assessed and

updated questionnaires were completed to track any changes in student, family,

or school circumstances. Further follow ups have also taken place, and HSLS is in

fact an ongoing longitudinal study. However, Waves 1 and 2 are the only waves

to administer standardised mathematics assessments, so Chapter 6 will focus on

these waves only.

1.1.2 Critical Perspectives on Large Scale Educational Studies

Before continuing, we should acknowledge that despite the many strengths of the

datasets discussed above, they have also occasionally been the subject of criticism,

and their results sometimes brought into question. Concerns have been raised in

the past, for example, regarding the potential of countries, motivated by a desire

to achieve strong standings in international league tables, to “fudge” sampling

designs (Berliner, 2011), while others fear that the low-response rates within some

countries could limit the generalisability of what should be fully representative

samples (Eivers, 2010). Language translation challenges (Upsing and Hayatli,

2021) and cultural differences (He et al., 2022) also present difficulties. Lastly,

aside from the potential for technical challenges, some researchers also fear that

competitive international comparisons can lead to a detrimental homogenisation

of education systems, and stifle innovation (Zhao, 2020).

One of the key criticisms faced by the organisers of large scale education studies

such as the OECD, is that they can create what is viewed as a narrow, one size fits

all view of education (Volante et al., 2017). Their prioritisation of standardised

test scores and cross country comparisons (Niemann et al., 2017) can shift focus

to international benchmarks and away from local region specific needs as may be

the case in developing countries (Murphy, 2014). Due to the established nature

of large scale assessments in many countries, organisations such as the OECD

have developed a strong position in relation to educational policy (Rutkowski,

2007; Sellar and Lingard, 2014). Some fear this position of authority held by such

organisations can prompt individual countries to adopt policies based on improving

standings in international rankings, rather than what may be best for their own

students (Zhao, 2020).
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Another common area of criticism in relation to large scale educational studies

is the standards and values promoted by these assessments (Engel et al., 2019),

which may not be reflective of or helpful for advancing the needs of all participating

countries. Notably, studies such as TIMSS and related studies such as PISA or

even national versions such as HSLS predominantly focus on what many consider

to be a narrow view of what counts as educational success, such as high test scores

in STEM oriented subjects, considered essential for the modern economy and skills

for the 21st century (Delahunty, 2024). Consequently, some fear there is a risk that

education systems from across the world can be increasingly shaped by a single

vision of achievement that may not be appropriate for local contexts (d’Agnese,

2015).

Despite these concerns and criticisms, however, the data collected from large

scale educational studies such as TALIS, TIMSS, or HSLS can certainly offer sig-

nificant value. These datasets can help identify gaps in and barriers to equity

in areas like teacher job satisfaction and student achievement. For example, the

findings from Chapter 3, which explore factors influencing teacher job satisfaction,

need not be seen solely as a means to ensure adequate staffing. Instead, they can

be understood in light of evidence showing that more satisfied teachers contribute

to more motivated and happier students as well (Toropova et al., 2021), highlight-

ing broader benefits. Similarly, Chapter 4’s findings, which point to the negative

impact of arriving at school feeling hungry on student achievement, can be viewed

through the wider lens of advocating for free school meal programmes, not only

to boost academic outcomes but also to promote student well-being (McKelvie-

Sebileau et al., 2023). In this way, large scale educational studies can inform

meaningful educational improvements that extend beyond narrow, standardised

metrics, and this is an aim this thesis also seeks to support.

1.2 Challenges Posed by Data From Large Scale Ed-

ucational Studies

There are some specific challenges that are met when analysing data from large

scale educational studies that are worth discussing briefly. The first is that ow-
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ing to the nature of large scale educational data, which often involves students

nested within classrooms and schools, there is a clear hierarchical aspect to the

data. This is a feature that is true of all of the datasets explored in this thesis.

Accounting for this multi-level structure of the data is therefore very important

in order to correctly capture the uncertainty in model estimates created by the

sampling design of the studies, and to adjust for between group differences. In

the case of the TALIS data in Chapter 3, the recommended strategy by the study

organisers is to use Fay’s Balanced Repeated Replication method, for which repli-

cation weights are provided in the dataset (OECD, 2019b). For the TIMSS data

in Chapters 4 and 5, meanwhile, the models used are equipped with a random in-

tercept at the classroom level. However, due to data confidentiality concerns, the

public use version of the HSLS data used in Chapter 6 does not contain school or

classroom identifiers, precluding a hierarchical modelling strategy. This limitation

is discussed in more detail in Chapter 6.

Large scale educational studies often employ complex sampling designs to en-

sure that their samples are representative of the target populations. These designs

can involve methods such as stratification and probability sampling, often based

on features such as school size. As a result, sampling weights are required in or-

der to adjust for the varying probabilities of selection. TIMSS 2019, for example,

adopted a stratified two-stage cluster sampling design. In the first stage, schools

were sampled with a probability proportional to their size. In the second stage,

classes were sampled from the participating schools. To address the issue of some

selected schools declining to participate, non-participation adjustments were also

applied to the sampling weights. Accounting for these adjustments and sampling

weights is necessary to ensure that the parameter estimates resulting from an

analysis are reflective of the entire population.

One challenge specific to working with large scale education data is the use

of plausible values to estimate student achievement. Studies such as TIMSS and

HSLS typically employ Item Response Theory (IRT, Cai et al., 2016) to create

estimates of student achievement based on test answers. This process is complex,

as it aims to accurately measure student achievement using relatively short tests,

which are necessary to minimise the burden on participating schools and students.

Further complicating matters is the fact that not all students answer the same
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questions. TIMSS, for example, used a rotated booklet design, while HSLS em-

ployed an adaptive computerised assessment. The result is a degree of uncertainty

in the achievement estimates of students. To address this uncertainty, it is common

for studies like TIMSS and HSLS to report five plausible values for each student’s

achievement rather than a single point estimate. These values are random draws

from the posterior distribution of the student’s achievement estimate, reflecting

the uncertainty that is present (Wu, 2005; Khorramdel et al., 2020). Plausible

values are treated analogously to multiple imputations in a statistical analysis. In

the Bayesian framework, this involves running separate chains for each of the five

plausible values and then pooling the results together after burn-in. This ensures

that the uncertainty in parameter estimates is not understated, and was performed

appropriately in Chapters 4, 5 and 6.

Finally, an important challenge that is encountered when working with all ob-

servational studies is the ever present issue of confounding. Confounding variables

have the potential to create an illusion of causality, resulting in misleading or

incorrect findings. This challenge is perhaps especially relevant in the field of edu-

cation, where policy decisions based on secondary analyses of large scale education

datasets have the potential to impact tens of thousands of students, teachers, and

entire education systems, often requiring many millions of euros in funding to im-

plement. This challenge, which provides a motivation for the methods extended

and employed throughout this thesis, is what we will discuss next.

1.3 Causal Inference and Educational Studies

Causal inference is the field of study concerned with cause and effect. Within this

domain, practitioners are often interested in investigating questions of the form

“Does A cause B?”, and if so, “What effect does A have on B”? Answering these

questions can be a seemingly simple but deceptively difficult task. A common

“cause” of this difficulty is the presence of confounding variables. A confounding

variable is one which simultaneously influences both the likelihood of receiving

treatment, and the outcome variable of interest (Greenland et al., 1999). Students

from advantaged socioeconomic backgrounds, for example, may be more likely to

wear designer shoes. These same students may also have higher achievement on
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average due to increased exposure to beneficial factors such as increased physical

and human educational resources at home. The confounding variable, socioeco-

nomic status, creates an illusion of causality by making it appear as if there is a

direct relationship between designer shoes and student achievement when in fact

this may not be the case.

The best way to avoid the unwanted effects of confounding variables is to

perform an experiment via a Randomised Controlled Trial (RCT). By randomly

assigning students to control and treatment groups, RCTs break the link between

the confounding variables and the decision to receive treatment. In this ideal

scenario, the causal effect τ of an intervention can be estimated by simply looking

at the difference in the average outcomes of the control and treatment groups.

Using yi to denote the realised outcome associated with observation i, and Zi to

indicate if observation i was assigned to a control or treatment group (Zi = 1 for

treatment, Zi = 0 for control), of which we will say there are nC and nT members

respectively, an estimate for the average effect of treatment Z on y can be obtained

with

τ̂RCT =
∑
Zi=1

1

nT

yi −
∑
Zi=0

1

nC

yi.

However, RCTs are often not feasible due to factors such as cost, complexity, or

ethical considerations (West et al., 2008). Fortunately, several causal methods

have been developed for working with observational data.

Many of these approaches are founded on the Neyman-Rubin causal model

(Splawa-Neyman et al., 1990; Sekhon, 2008), which postulates that for every ob-

servation i, there are two potential outcomes that may be observed: One that

would be observed under treatment, yi(Zi = 1), and one that would be observed

under control, yi(Zi = 0). The challenge lies in the fact that we only ever observe

one of these potential outcomes. As a result, direct calculation of the treatment

effects for any observation, τi = yi(Zi = 1) − yi(Zi = 0), is not possible. This

is known as the fundamental problem of causal inference. Many causal inference

methods therefore rely on finding clever ways to determine what the unobserved

potential outcomes should be, even though we never observe them directly. For

these approaches to work, three key assumptions must be met (Angrist et al., 1996;

Kurz, 2022):
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Assumption 1: The Stable Unit Treatment Value Assumption. This as-

sumption requires that the potential outcomes of any ob-

servation i must be independent of the treatment status

Zj of any other observation j. This assumption also re-

quires that there should be “no multiple versions” of the

same treatment. This ensures there are not multiple po-

tential outcomes corresponding to different versions or

types of the same treatment.

Assumption 2: The Ignorability Assumption. The potential outcomes

of observation i must be independent of whether or not

observation i received treatment. In other words, there

must be no residual confounding that we can not con-

trol for with the available covariates xi. In notation, this

means that we assume yi(Zi = 0), yi(Zi = 1) ⊥ Zi|xi.

Assumption 3: The Overlap Assumption. For every observed set of co-

variates, there must be a non-zero probability of receiv-

ing, or not receiving treatment: 0 < P (Zi = 1|xi) < 1.

Two popular methods that rely on these assumptions involve the use of propen-

sity scores (Pan and Bai, 2018). The propensity score πi of student i represents

the probability of them receiving a treatment Z conditional on their characteristics

xi. Using Zi = 1 to indicate that student i did receive treatment, and Zi = 0 to

indicate that student i did not receive treatment, the propensity score πi is defined

as πi = P (Zi = 1|xi). The propensity score, by capturing important information

related to the non-random selection of individuals into treatment, can be used to

recover treatment effects in two different ways. The first, known as inverse proba-

bility weighting (Kurz, 2022), replaces the simple difference in mean outcomes of

the control and treatment groups with the following:

τ̂IPW =
∑
Zi=1

1

nT

yi
π̂i

−
∑
Zi=0

1

nC

yi
1− π̂i

.

The result is that the treated units who were unlikely to receive treatment, and
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the untreated units who were likely to receive treatment are up-weighted. This

accounts for the non-random selection mechanisms which may be present owing to

the confounding variables, and leads to a more “balanced” estimate of the mean

outcomes under both treatment conditions. Henderson (2019), for example, used

this approach to investigate the effect of “dual enrolment” courses on the high

school achievement of students in the US. Meanwhile, McNealis et al. (2024) and

Bowman et al. (2023) have used similar approaches to investigate the effects of

supplemental instruction and maternal education on academic outcomes of stu-

dents.

A second strategy involving the use of propensity scores is called propensity

score matching (Stuart, 2010). Many variations exist in the specifics of how this

method is used, but the key idea and the underlying principles remain the same.

In a common version of this approach, each member of the treated group is paired

with a member of the control group with a similar propensity score. The re-

sult is a new dataset that mimics the conditions of an RCT by ensuring that

members of the control and treatment groups do not differ substantially in selec-

tion probabilities. Estimating the causal effect of treatment can then proceed by

looking at the difference in the mean outcomes of the treatment group, and the

group of paired observations with similar propensity scores. This was the approach

adopted by Kretschmann et al. (2014) to investigate the effect of skipping a grade

on the achievement of German elementary school students. Other examples of

this method in use include McCormick et al. (2013), who examined the impact

of teacher-student relationships on student achievement, and Ponzo (2013), who

studied the effect of bullying on student achievement.

Other causal methods, such as the difference-in-differences (DiD, Donald and

Lang, 2007) approach are applicable to specific types of data, namely longitudinal

data. This approach is useful when data is available on a sample of individuals at

an initial time 1 and a later time 2. Interest is in determining the effect of some

treatment or intervention that was applied to a subset of the sample at a point be-

tween time 1 and time 2. The key assumption underpinning this approach is called

the parallel trend assumption. It requires that the outcome variable of the treated

units would have followed a similar trajectory to that of the untreated units if they

had not received treatment. This means the untreated units can be used as an
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𝜏

𝛿

Figure 1.1: Illustration of the difference-in-differences approach where the solid
blue and red lines indicate the observed trend for the control and treatment groups
respectively. The dashed red line indicates the counterfactual trend for the treated
group, had it not received treatment. δ shows the difference in achievement ex-
perienced by the control group, while τ represents the difference in this difference
experienced by the treated group.

indication of what the difference in outcomes for the treated units would have been

had they not received treatment, allowing us to recover the counterfactual trend,

and outcome at time 2 for the treated group. See Figure 1.1 for an illustration of

this in action. For a review of how the difference-in-differences design has been

used in education research in the past, the reader is referred to Corral and Yang

(2024).

Other popular methods include instrumental variables (Newhouse and Mc-

Clellan, 1998), two way fixed effects (Imai and Kim, 2021), and Bayesian causal

networks (Pearl, 1995). A key limitation of these extra methods and the ones

discussed above is that they are often restricted to providing an estimate of the

average effect of treatment. Often, however, interest is in understanding how

unique individuals or subsets of individuals with specific characteristics respond

to treatment. This is referred to as estimating heterogeneous treatment effects,
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and has important applications in tailored medicine, and careful policy design.

Doctors, for example, are often interested in knowing how their specific patient

may respond to a drug, and policy makers are often interested in understanding

how an education intervention may affect a specific group of students.

When understanding heterogeneity in treatment effects is important, a family

of methods based on causal inference machine learning has emerged as a leading

approach (Caron et al., 2022a). This family of methods relies on using the advanced

predictive capabilities of machine learning models to learn from patterns in the

available data in order to predict the counterfactual outcomes of the observations.

Any sufficiently accurate model can be used for this task, but the best candidates

are models that are flexible, allowing them to adapt to complicated features in the

data such as non-linear relationships and interaction terms, while also providing

reliable uncertainty quantification. For these reasons, approaches based on flexible

Bayesian tree-based regression models such as Bayesian Additive Regression Trees

(BART, Chipman et al., 2010; Hill, 2011; Carnegie et al., 2019; Dorie et al., 2022)

and Bayesian Causal Forests (BCF, Hahn et al., 2020) have become very popular.

These are the methods that we will work with and extend throughout this thesis,

and they deserve a more thorough introduction and discussion than is possible

here, so we will defer a detailed introduction of these methods and our extensions

of them to Chapter 2. But first, we provide an outline for the remaining chapters

of this thesis, and highlight the key contributions contained in each.

1.4 Thesis Outline and Contribution

After introducing BART, BCF, and their applications for causal inference in Chap-

ter 2, Chapter 3 uses English data from TALIS 2018 to demonstrate the use of

BART for causal inference in a study investigating factors affecting teacher job

satisfaction. Teacher shortages and attrition are issues of international concern

(UNESCO, 2015). A common reason for teachers leaving the profession is a lack

of job satisfaction (Madigan and Kim, 2021; Klassen and Chiu, 2010; Wang et al.,

2015). Therefore, identifying factors that may be positively or negatively impact-

ing teacher job satisfaction can be a valuable method for reducing turnover and

encouraging new teachers to join the profession. Given the widespread concern
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about teacher shortages, many studies have been conducted in this area. How-

ever, our study makes an important contribution in areas that have been relatively

under explored in much of the existing literature.

First, our use of the flexible non-parametric BART model is the first time, to

our knowledge, that an advanced statistical model of this type has been used in

this area. Our use of a flexible BART model is likely to be very valuable in this

setting, as job satisfaction is known to have a non-linear U-shaped relationship

with covariates such as age (Guarino et al., 2006; Boe et al., 1997), for example.

Secondly, our investigation focuses on specific and implementable factors, adding

practical value to our findings. This is in contrast to many prior studies which

have examined general aspects of school environments, such as overall collabora-

tion. These existing findings are useful and important, of course, but it is not

always immediately clear how to improve collaboration, and consequently job sat-

isfaction. Our investigation of factors such as induction schemes, however, does

offer a direct pathway to new or updated policy decisions that may improve job

satisfaction. Finally, given the well-documented teacher shortages currently facing

schools in England, our focus on a representative sample of teachers from a country

experiencing these shortages makes our results highly relevant and timely.

In Chapter 4 we develop and introduce a new multivariate extension of Bayesian

Causal Forests and apply it to Irish data from TIMSS 2019. Through simulation

studies, we demonstrate the improved accuracy, precision, and uncertainty quan-

tification of the approach. This is made possible by allowing the tree structures

of the underlying BART model to benefit from the shared information across all

outcome variables. We also demonstrate the robustness of the proposed approach

to violations of the model assumptions affecting only one of the outcome variables.

In our application to the TIMSS 2019 data, we investigate the effect of three

home-related factors on student achievement in both mathematics and science:

often being hungry when arriving at school, often being absent, and having access

to a study desk. We find that often arriving at school feeling hungry has a clear

negative effect on student achievement (Vik et al., 2022). Interestingly, this effect

is found to be less pronounced in schools with fewer resources - these are schools

which are more likely to benefit from free school meal schemes in Ireland (De-

partment of Social Protection, 2023). Our finding that having access to a study
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desk at home improves student achievement in mathematics, meanwhile, points

towards an opportunity to educate parents about the importance of students hav-

ing dedicated study spaces at home. Finally, our finding that often being absent

can negatively affect student achievement highlights the importance of schools in-

vestigating the reasons for these absences, and offering extra supports to affected

students where necessary (Vesić et al., 2021).

Chapter 5 focuses on an application of our newly developed multivariate BCF

model to examine the impact of homework frequency and duration on student

achievement in mathematics and science, using data from TIMSS 2019. Home-

work, like teacher shortages, is a topic of interest to many and has been the

subject of much debate in the literature (Kohn, 2006; Buell, 2008). However, de-

spite its important role in the daily lives of students, significant gaps remain in

the literature on homework. First, existing studies have typically focused on the

cumulative weekly time students spend on homework, overlooking how homework

is distributed throughout the week (Trautwein et al., 2002). Chapter 5 seeks to

address this limitation by untangling the effects of homework frequency and du-

ration, and determine the optimal distribution of homework throughout the week.

Secondly, much of the existing literature has focused on individual subjects in

isolation, with few exceptions (e.g., Eren and Henderson, 2011; Fernández-Alonso

et al., 2017). With the multivariate BCF model from Chapter 4, however, we are

able to identify subject specific differences in the effects of homework, allowing

teachers to tailor homework plans in mathematics and science separately. Finally,

a widely held belief among many researchers is that homework has a greater effect

for students from advantaged socioeconomic backgrounds, who may have better

home resources and parental support (Patall et al., 2008; Tan et al., 2020). How-

ever, through examining the heterogeneous treatment effect estimates from the

BCF model, Chapter 5 finds no evidence to support this, at least at the eighth

grade. This suggests that homework can remain a valuable tool for improving

student achievement across all socioeconomic backgrounds.

Motivated by two waves of data on high school mathematics achievement in

the US, Chapter 6 develops and introduces a new longitudinal extension of BCF.

The proposed model combines the structure and interpretability of the traditional

difference-in-differences approach with the accuracy and flexibility offered by mod-
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ern Bayesian non-parametric methods. It relaxes the parallel trend assumption

of the difference-in-differences model, enables the estimation of individual level

growth in student achievement, and also provides estimates for the heterogeneous

effects of treatment on this growth. In a simulation study we benchmark the pro-

posed model against competing methods, and demonstrate the improved predictive

performance and other advantages offered by the new approach.

Our application of this model to the HSLS data investigates the effect of in-

tensive part-time work on high school mathematics achievement, where intensive

part-time work is defined as upwards of 20 hours of work per week during the

school year (Lee and Staff, 2007). For many high school students, part-time jobs

have become an integral part of their daily routine (Singh and Ozturk, 2000). Prior

research shows that this part-time work can have a significant impact on their ed-

ucational journeys (Bachman and Schulenberg, 2014). Opinions differ, however,

on whether this impact can be given a causal attribution, and gaps remain in our

understanding of how student backgrounds and motivations may moderate the

effects of part-time work. Our findings from Chapter 6 point towards a widening

achievement gap between those with initially high and low mathematics achieve-

ment. Our results show that on average, intensive part-time work has a small

but negative impact on student achievement. For a subset of students with a low

sense of school belonging, however, we find that part-time work may actually have

a positive effect. These findings have implications for policies aimed at ensuring

young students are not adversely affected by very long working hours. They also

highlight the importance of early monitoring of achievement gaps, before they are

allowed to become established (Morgan et al., 2016).

Finally, we conclude our work in Chapter 7 by discussing the contributions,

limitations, and promising areas of future work for each of the chapters of this

thesis.

15



2
Bayesian Additive Regression Trees and

Bayesian Causal Forests for Causal

Inference

2.1 Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART, Chipman et al., 2010) is a Bayesian

non-parametric modelling tool for regression and classification tasks. It has become

very popular among researchers because of its excellent predictive performance and

uncertainty quantification. Building upon the earlier Bayesian Classification and

Regression Tree (Bayesian CART) model of Chipman et al. (1998), it can be used

to approximate any unknown function f with an ensemble of decision trees. In-

dividually, each decision tree contributes only a small amount to explaining the

variance of the unknown function f . Together, however, their combined contribu-

tions allow the model to effectively capture complicated patterns such as non-linear

relationships or interaction terms.

The most fundamental unit of a BARTmodel is the decision tree, which consists

of three key parts: 1) A root, 2) A set of decision rules, and 3) A set of terminal

nodes. An example diagram of a BART model with two decision trees is provided

in Figure 2.1. The roots of the trees, in the shape of a diamond, represent the

starting point of the decision process. Here, assuming the set of decision rules

is not empty, in which case the root of the tree is also the sole terminal node of
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NoYes NoYesOlder than 14? A parent went to 
university?

Figure 2.1: Diagram of two simple decision trees. By following the decision rules
from the root to the terminal nodes, the contributions from individual trees can
be combined into one final prediction for each observation.

the tree, the data is partitioned into two subsets which themselves can be further

partitioned into even smaller subsets with additional decision rules. Following the

set of decision rules leads to the terminal nodes of the tree, where a unique result

or prediction is assigned to each subset of the data.

Figure 2.1 shows that for an observation with an age of 15, the contribution

provided to the model by the first tree is 1.9. For the same student, with at

least one parent who went to university, the contribution provided by the second

decision tree is 2.1. Adding these two results together yields a final prediction of

4.0. By combining predictions from more decision trees, the final prediction from

the model can be informed by more covariates, more splitting values on those

covariates, and gradually capture more and more complex relationships.

Mathematically, the BART model can be written as follows:

yi =
J∑

j=1

g(Tj,Mj, xi) + ϵi, ϵi ∼ N(0, σ2)

Here, yi represents the outcome variable associated with each observation i. The

function g() returns the correct prediction from a given tree Tj of J total trees,

where Mj denotes its set of terminal nodes, and xi is the vector of covariates for
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observation i. The error term ϵi is assumed to follow a normal distribution with

mean 0 and variance σ2.

The model is fitted to the data using a process called Markov Chain Monte

Carlo, which allows the decision rules, the structure of the trees, and the terminal

node parameters providing the final predictions to learn from the data in a gradual

step by step manner. The process starts with all trees as stumps - trees where the

root of the tree is also the sole terminal node of the tree. Next, one of four possible

operations is selected at random to apply to the first tree: Grow, Prune, Change,

or Swap. If grow is selected, then a terminal node of the tree is selected at random

along with a variable to split on and a splitting value is also chosen from the set

of available valid options. If prune is selected then a parent node of two terminal

nodes is selected, and transformed into a terminal node by removing its children

nodes from the tree. The change operation takes a randomly selected non-terminal

node, and assigns to it a new decision rule. Finally, the swap operation selects

a parent-child pair which are both internal nodes, and swaps their splitting rules

with each other.

Once the chosen operation has been applied to the tree, the resulting structure

of the updated tree is either accepted or rejected using a Metropolis-Hastings

step. In order to prevent the trees from growing too large, a prior is placed on

the structure of each tree, which says that the probability of any node at depth

d being non terminal is given by α(1 + d)−β, where α and β can be adjusted to

modify the strength of the prior. If we apply this to a tree with terminal nodes

labelled as hj,1...hj,K , and non-terminal nodes labelled as bj,1...bj,L, we have that:

P (Tj) =
K∏
k=1

α(1 + d(hj,k))
−β

L∏
l=1

[1− α(1 + d(bj,l))
−β]

where d() is a function for returning the depth of any given node.

With the proposed structure of the tree accepted or rejected, the next step

is to update the terminal node parameters of the tree. This step is performed

conditional on the partial residuals Ri,j, given by y less the contributions from

all trees except tree j. In other words, the update is performed so that the new

terminal node parameters attempt to explain the leftover variation in y that is not

explained by the other trees in the ensemble:
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Ri,j = yi −
∑
k ̸=j

g(Tk,Mk, xi)

While completing this step, to ensure that each tree contributes an approxi-

mately equal amount to the overall predictions from the model, a normal prior is

placed on each of the K terminal node parameters of tree j:

µj,k ∼ N(µµ, σ
2
µ)

After scaling the response variable y to follow a normal distribution with mean

0 and standard deviation 1 during data pre-processing, a sensible choice for µµ and

σ2
µ is 0 and

1
J
respectively. This ensures that the prior on the combined contribution

of the terminal node parameters from all trees, E[Y |X] ∼ N(Jµµ = 0, Jσ2
µ = 1) is

appropriate for covering the range of all observed y values. This also helps to limit

the influence of each individual tree, encouraging all trees to contribute a small

amount to the final predictions, acting as a form of regularisation.

Now with the structure of the first tree updated, along with its terminal node

parameters, analogous updates are applied to each of the remaining trees in the en-

semble. Then, with the final tree updated, it is possible to calculate the combined

contribution of all trees, and the final residuals:

Ri = yi − ŷi = yi −
J∑

j=1

g(Tj,Mj, xi)

The final step is to update the residual variance term σ2 which has the conjugate

prior:

σ2 ∼ Inv-Gamma (ν/2, νλ/2)

A good strategy for selecting ν and λ is to note that σ is likely to be less than

the standard deviation of the raw y values. Given the flexibility of BART, it is also

reasonable to expect that σ is likely to be less than a residual standard deviation

σ̂ obtained with a less flexible model such as ordinary least squares regression.

Sensible choices for ν and λ therefore place a high prior probability on σ being less

than σ̂. Chipman et al. (2010), for example, suggest setting ν = 3 and choosing
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λ such that P (σ < σ̂) = 0.9. After repeating the above steps for a pre-specified

number of iterations, the result is a posterior of trees, terminal node parameters,

and sampled σ2 values.

Because of the impressive performance of BART, it has seen applications in

many different areas such as medicine, economics, and education (Pierdzioch et al.,

2016; Sparapani et al., 2016; McJames et al., 2023b, Chapter 3). This has also mo-

tivated researchers to extend the model in various ways, allowing it to be applied in

different scenarios that are not well suited to the standard BART implementation

described above. Some important BART extensions include a multinomial logistic

regression variant by Murray (2021), a version designed for situations involving

local linearities by Prado et al. (2021a), and a BART model well suited to high

dimensional data by Linero (2018). Additional BART extensions and applications

are discussed in Hill et al. (2020), but now we turn our attention to an extra im-

portant use for BART: the identification of heterogeneous treatment effects from

observational data.

2.2 BART for Causal Inference

One of the many areas that BART has found success in is the estimation of het-

erogeneous treatment effects from observational data. An important contribution

was made to this area by Hill (2011), who showed that by using BART to flex-

ibly model the response surface of the outcome of interest, accurate estimation

of causal effects with reliable uncertainty quantification is possible. Hill’s paper

considered the situation in which we have data on n observations, each accom-

panied by a response variable yi, a set of covariates xi, and a treatment variable

Zi where Zi = 1 indicates that observation i did receive treatment, and Zi = 0

indicates that observation i did not receive treatment. The goal is to understand

the impact that treatment may have on y, and how this effect may vary depending

on the specific covariates of the treated unit.

The approach is based on the previously described Neyman-Rubin causal model

(Splawa-Neyman et al., 1990; Sekhon, 2008), also known as the potential outcomes

framework. Hill’s contribution was to show that although we only ever observe one

of the potential outcomes, by using BART to estimate them with E [yi(Zi = 1)|xi]
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and E [yi(Zi = 0)|xi], we can estimate τi with τ̂(xi) = E [yi(Zi = 1)|xi]−E [yi(Zi = 0)|xi].

The BART based approach to heterogeneous treatment effect estimation proceeds

by fitting a BART model to the whole of the data, using the xi covariates and

Zi indicators to establish the decision rules within the trees. The trained BART

model can then assign to any observation two predictions, one for each potential

outcome: ŷi(Zi = 1) = f̂(xi, Zi = 1), and ŷi(Zi = 0) = f̂(xi, Zi = 0). From here,

estimates of individual conditional average treatment effects, τ̂(xi) (ICATEs), can

be obtained by calculating the difference between each individual’s predicted po-

tential outcomes: τ̂(xi) = f̂(xi, Zi = 1) − f̂(xi, Zi = 0). By averaging these

individual conditional average treatment effects over the population, the mixed

average treatment effect (MATE, Li et al., 2023), MATE = 1
N

∑N
i=1 τ̂(xi), can

also be estimated.

To provide a visual description of the approach, Figure 2.2 reproduces an ex-

ample provided in Hill (2011) which shows how BART can be used to estimate the

response surfaces corresponding to the two potential outcomes. The ICATEs are

given by the difference in height between the red and the green curves, which ap-

proximate the true response surfaces for the control and treatment groups coloured

in black and blue respectively.

This BART based approach has become very popular because of its strong

performance and the desirable ability to provide Bayesian credible intervals for

the estimated treatment effects. Studies adopting this approach include Hu and

Gu (2021); Gill et al. (2023); Blette et al. (2023); Carnegie et al. (2019); Dorie

et al. (2022). Recent work has categorised this approach as belonging to a family

of machine learning based approaches called an S-Learner, or Single-Learner, as

a single model is fitted to the dataset and then used to derive treatment effect

estimates (e.g. Caron et al., 2022a). Finally, owing to the success of this method,

others have been inspired to build upon the approach in various ways. One such

development is the Bayesian Causal Forest model of Hahn et al. (2020), which we

will discuss next.
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Figure 2.2: Illustration of the BART based approach for causal inference, repro-
ducing the simulated example from Hill (2011). By flexibly modelling the response
surface for the control and treatment groups, ICATEs can be estimated based on
the difference between the two potential outcomes for each observation.

2.3 Bayesian Causal Forests

Bayesian Causal Forests (BCF, Hahn et al., 2020) is a Bayesian non-parametric

causal inference machine learning algorithm based on Bayesian Additive Regression

Trees. It uses the Robinson (1988) treatment effect parameterisation, with BART

as a foundation, to split the estimation of y into two separate parts: A prognostic

effect µ, and a treatment effect τ :

yi = µ(xi, π̂i) + τ(xi)Zi + ϵi.

With Zi coded as 1 for treatment and 0 for control, the model takes on a

very intuitive interpretation, where µ(xi, π̂i) represents the expected outcome for

observation i in the absence of treatment, and τ(xi) represents the effect of the

intervention or treatment under investigation. Within the µ() and τ() parts of the

model, xi represents the covariates associated with observation i, used for estab-

lishing the decision rules in the trees. The additional covariate included in the µ()
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part of the model, π̂i, is the previously described propensity score. It represents

the estimated probability of observation i, receiving treatment, conditional on the

observed covariates: πi = P (Zi = 1|xi). The inclusion of this ‘clever covariate’

was recommended by Hahn et al. (2020) in order to avoid a phenomenon called

regularisation induced confounding, and has been found to help improve the es-

timation of treatment effects not only in the BCF model, but also when used as

a covariate as part of the BART based approach described above. Finally, ϵi is

the familiar random error term, which as before, is assumed to follow a normal

distribution with mean 0 and variance σ2.

The key advantage of this model over the BART based approach is that because

the treatment effect is estimated by a separate part of the model, it is possible to

apply separate priors and amounts of regularisation to µ() and τ(). For example,

given that it is reasonable to expect less heterogeneity in the treatment effects

than in the prognostic effect of the control variables, it is common to apply greater

regularisation to the τ part of the model. This can be accomplished with the α

and β priors, which are responsible for deciding the preferred tree depths. In the

µ part of the model, a choice of α = 0.95, β = 2, is common, while in the τ part

of the model, a stricter setting of α = 0.25, β = 3 is often preferred. Similarly, the

scale of the terminal node parameters σ2
µ and σ2

τ can also be adjusted if desired.

An extra important advantage is that separate sets of covariates can also be

used in the µ and τ parts of the model. This can be especially useful in situations

where there may be a strong a-priori belief that the confounding variables may

be different to the covariates responsible for moderating the effect of treatment.

Additionally, as the estimated treatment effects are now captured by a separate

part of the model, it is possible to make inference on the treatment effects directly,

without the need to perform the post-processing steps associated with the BART

based approach. Finally, with the treatment effect estimates disentangled from

the prognostic effect of the covariates on µ(), it is possible to study aspects such

as variable importance with model explainability tools developed to work with the

original BART model (Inglis et al., 2022a,b).

The BCF model, which shares the same impressive features of BART such as

strong predictive performance, and uncertainty quantification, has gained consider-

able traction in both applied and methodological research areas. Studies adopting
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the BCF model to investigate different research questions include Schwartz et al.

(2021), O’Neill et al. (2024), and McJames et al. (2023a). On the methodological

side, researchers have extended the BCF model in different directions to improve

its applicability to specific research questions. Notable examples include Starling

et al. (2021) and Caron et al. (2022b). The BCF model also provides a foundation

for three different extensions of the model which have been developed in the course

of writing this thesis. An outline of the variations of BART and BCF used in the

remainder of this thesis is what we will discuss next.

2.4 Variations of BART and BCF Used in This Thesis

2.4.1 Chapter 3

In Chapter 3, rather than introducing a novel extension of BART or BCF, we apply

the BART-based approach to causal inference outlined in Chapter 2.2 to a signifi-

cant issue in education. This chapter investigates the impact of various factors on

teacher job satisfaction. For each factor Z under investigation, a separate BART

model y = f(X,Z)+ϵ is fitted to the data to predict teacher job satisfaction based

on the observed covariates and treatment status. Individual conditional average

treatment effects are then averaged across the sample using a weighted mean to

obtain an estimate of the mixed average treatment effect (MATE, Li et al., 2023)

for each factor:

MATE =
n∑

i=1

wiτi =
n∑

i=1

wi

[
f̂(xi, Zi = 1)− f̂(xi, Zi = 0)

]

2.4.2 Chapter 4

Motivated by data from the Trends in International Mathematics and Science

Study (TIMSS 2019, Mullis et al., 2020), which includes data on student achieve-

ment in both mathematics and science, Chapter 4 introduces a multivariate ex-

tension of BCF, allowing BCF to be applied in situations where we are interested

in estimating the effect of a single intervention on multiple outcome variables si-
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multaneously. The BCF model structure remains the same:

Y i = µ(xi, π̂i) + τ (xi)Zi + ϵi

but Y i is now a length p vector of outcome variables, predicted by µ() and τ ()

which are ensembles of multivariate Bayesian Additive Regression Trees, with

length p error term ϵi.

Accordingly, multivariate normal priors are now used for the terminal node

parameters of the µ() and τ () trees, while an Inverse-Wishart prior is placed over

the residual covariance matrix Σ:

µj,k ∼ MVN
(
0,Σµ = σ2

µI
)
, τ j,k ∼ MVN

(
0,Στ = σ2

τI
)

Σ ∼ W−1 (ν,Σ0) .

Importantly, one prior that remains the same is the tree prior P (Tj). This is

because the same tree structure is used for all of the p outcome variables. The

effect of this is to encourage the model to carefully choose predictor variables and

tree structures appropriate for all outcome variables. A potential drawback of this

decision, which is tested and demonstrated in Chapter 4, is that this choice of prior

may not be well suited to situations where different predictors or tree structures

are required for separate outcome variables. However, given the focus of Chapter 4

on two highly correlated outcomes, and on home related factors that are likely to

influence student achievement in similar ways, this decision is justified.

A further extension used in Chapter 4 is the inclusion of a random intercept

term, αclass,i, into the BCF model:

Y i = µ(xi) + τ (xi)Zi +αclass,i + ϵi,

where we assume that each αclass comes from a multivariate normal distribu-

tion with a population mean µα and population covariance matrix Σα: αclass ∼
N(µα,Σα), where the prior on µα and Σα is: µα ∼ N(m = 0, s = 0.01I), and

Σα ∼ W−1(a = 1,Ω0 = 0.1I).

Yeager et al. (2019) were the first to introduce this important feature in the
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single outcome context, which we adapt to our multivariate setting. While not the

primary focus of the chapter, this is an important feature to include, necessitated

by the hierarchical structure of the TIMSS dataset, whereby students are nested

within classrooms. This random intercept feature allows the model to account for

classroom specific variations in achievement that are not captured by the available

covariates in µ().

Finally, we note that while the treatments of interest in Chapter 4 (having a

study desk at home, often arriving to school feeling hungry, or often being absent)

are not subject specific treatments, meaning that an indication of Zi = 1 implies

both outcome variables are affected by the treatment, there is nothing to prevent

the study of subject specific treatments with this model. Such a situation may

arise, for example, when studying the effect of paid tuition on student achievement,

as it is possible for students or parents to pay for extra tuition in neither, one and

not the other, or both subjects. This is made possible by replacing the multivariate

BCF parameterisation above with the following:

Y i = µ(xi) + τ (xi) ◦Zi +αclass,i + ϵi,

where Zi is now a length p treatment status indicator, connected to τ () through a

Hadamard product, ◦, allowing the treatment status of individual outcomes within

each student to be different.

2.4.3 Chapter 5

Chapter 5 is based primarily on the application of the newly developed multi-

variate BCF model to investigate the effect of homework frequency and duration

on student achievement in mathematics and science, using the same TIMSS 2019

data as Chapter 4. While not emphasised in the chapter, an important extension

is made to BCF in order to make this possible. The default implementation of

BCF is applicable only in situations where there is interest in the effect of a single

binary treatment on the outcome, or in the case of multivariate BCF, outcomes

of interest. This is an important limitation in the context of homework, because

in order to build a nuanced understanding of how students respond to homework,

and understand the optimal way in which homework can be distributed, it is im-
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portant to account for the differing frequencies (number of days per week), and

durations (number of minutes each evening) that homework can be assigned with.

In order to account for the differing levels of homework frequency and duration,

the multivariate BCF model applied to the TIMSS data in Chapter 5 uses the

following structure:

yi,j = µj(xi)+τj,1(xi)Zi,j,1+τj,2(xi)Zi,j,2+τj,3(xi)Zi,j,3+τj,4(xi)Zi,j,4+αclass,i,j+ϵi,j

where yi,j is the achievement of student i in subject j (j = 1 for mathematics or

j = 2 for science). For a student who receives homework up to one or two times

per week with a duration of up to fifteen minutes, their achievement in subject

j is given by µj(xi), where xi denotes the characteristics associated with student

i. Students who receive homework with a greater frequency or duration belong to

the treatment groups Zi,j,1 . . . Zi,j,4:

- Frequency of three or four times per week → Zi,j,1 = 1,

- Frequency of every day → Zi,j,2 = 1,

- Duration of fifteen to thirty minutes → Zi,j,3 = 1,

- Duration of greater than thirty minutes → Zi,j,4 = 1.

We estimate the causal effect of belonging to these groups with τj,k(xi), where k =

1 . . . 4 as above. Note that this is an example of a situation where the treatment

(homework) may apply differently to mathematics and science, as it is possible

a student may receive mathematics homework with a different frequency and or

duration to science homework.

This extension is closely related to the “no multiple versions of treatment”

aspect of the stable unit treatment value assumption. In the case of homework, this

extension was necessary because variations in homework frequency and duration

may constitute multiple versions of the same treatment. Therefore, this simple

yet powerful extension is also likely to be very useful in other domains such as

medicine, where multiple drugs or variations of the same treatment are commonly

tested in parallel with each other. As an example, a model with the following

(univariate) structure based on the homework model could potentially be useful
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in a medical context:

yi = µ(xi, π̂i) + τ1(xi)Zi,Medicine-1 + τ2(xi)Zi,Medicine-2 + ϵi

where two separate τ() ensembles are used for different medicines being compared

in a clinical trial.

Chapter 5 itself does not discuss this model in very technical terms, so this is

a good opportunity to note two additional advantages of this model that are not

discussed in Chapter 5 which focuses primarily on the application to the TIMSS

data. First, given the multiple treatment effect estimating parts of the model,

there is the interesting possibility to incorporate separate moderating variables

into each of the τ() parts of the model. This may be useful in cases where there

is a strong a-priori belief that separate effect moderators may be appropriate for

the treatments under investigation.

Second, given the model jointly estimates the effects of multiple treatments

simultaneously, the model may provide a promising approach for tackling the issue

of multiple comparisons that arises when multiple hypotheses are tested at once. A

full exploration of this promising possibility is beyond the scope of this thesis, but

we suggest that further exploration of this possibility may include experimentation

with different strengths of priors over the τ() parts of the model in order to shrink

the false discovery rate to a pre-defined threshold. Such an approach could be

further validated with large scale simulation studies designed to test how often

false discoveries are made in a controlled setting, relative to the false discovery

rate obtained with a simpler BCF approach involving the use of many separate

analyses.

2.4.4 Chapter 6

Finally, motivated by longitudinal data on student achievement from the High

School Longitudinal Study of 2009 (HSLS, Ingels et al., 2013), Chapter 6 introduces

a longitudinal extension of BART and BCF for modelling individual level growth

in mathematics achievement, and the heterogeneous impact of part-time work on

this growth. The idea is to model the trajectory of student achievement as the

cumulative sum of separate BART ensembles, each of which pertain to a specific
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period of time after an initial base year. Using yi,t to denote the mathematics

achievement of student i at time t, and xi,t to denote the available covariates

collected on student i up to time t, the model for student achievement becomes:

yi,t = µ(xi,1) +
T−1∑
w=1

Gw+1(xi,w+1, yi,1 . . . yi,w, π̂i,w+1)I(t > w) + ϵi,t

where

Gw+1() = δw+1(xi,w+1, yi,1 . . . yi,w, π̂i,w+1) + τw+1(xi,w+1, yi,1 . . . yi,w)Zi,w+1

This means that student achievement at Wave 1 is given by µ(xi,1), which repre-

sents the initial starting achievement of the students. Moving forward one step in

time, student achievement at Wave 2 is given by µ(xi,1) +G2(xi,2, yi,1, π̂i,2), where

G2(xi,2, yi,1, π̂i,2) represents the growth in achievement experienced by student i in

the period between Waves 1 and 2. Achievement in later waves up to Wave T is

given by adding this to G3(), then G4(), as far as GT ().

Within each Gw(), there are two separate BART/BCF ensembles, one which

estimates the growth that would have been experienced in the absence of treat-

ment δw(), and one which estimates the impact of the intervention of interest

on this growth, τw(). This structure is analogous to the difference-in-differences

method, where δw() represents the difference in achievement from Wave w − 1 to

w for the control group, and τw() represents the difference in this difference expe-

rienced by the treatment group. Our model, which extends BART and BCF to

the longitudinal setting, however, has a number of important advantages.

First, by using BART and BCF as a foundation, our model can readily detect

individual variations in mathematics achievement growth. Similarly, the same

flexibility also allows us to investigate heterogeneity in the treatment effects, thus

providing a richer and more nuanced understanding of how individual characteris-

tics can affect the quantities of interest, than more traditional methods which are

often limited to providing an average treatment effect only. An additional strength

of the model is that by controlling for the many confounding variables that may

jointly influence the likelihood of receiving treatment and the outcome of interest,

we are able to relax the easily violated parallel trends assumption that is necessary
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with traditional difference-in-differences based approaches (Roth et al., 2023).

Being a Bayesian model, we can also specify separate priors for each of the µ(),

δw(), and τw() parts of the model. This is useful, as if we expect the growth between

time periods to only be a fraction of the initial achievement level from Wave 1, we

can build this information into the prior, σ2
δ of the terminal node parameters of

the growth trees. Moreover, by devoting a separate ensemble of decision trees to

each of the quantities of interest, we can make use of existing model explainability

tools developed specifically for BART in order to extract variable importance and

interaction metrics (Inglis et al., 2022a,b).

Finally, two extra features are introduced to the longitudinal BCF model of

Chapter 6 in order to tackle challenges posed by missing data. The first is to

address missing data in the covariates used by the model. For this challenge,

we borrow the method introduced by Kapelner and Bleich (2015), which treats

missingness as an inherent and useful feature of the data. The procedure involves

directing observations with missing data to left or right children of nodes which

are being split on, thus allowing the model to learn from any patterns present in

the missingness of the data. The second new feature is to address missing data in

the treatment variable itself. Here, we make the assumption that the treatment

indicators are missing at random, and introduce an additional Gibbs sampling

step to impute the missing Zi values in each iteration of the MCMC algorithm,

conditional on the rest of the available data.

2.5 Chapter Summary

This chapter introduced Bayesian Additive Regression Trees and Bayesian Causal

Forests, describing how they fit into the framework of the Neyman-Rubin causal

model, and how they estimate heterogeneous treatment effects from observational

data. We also outlined the variations of BART and BCF used in the following

chapters, describing the challenges that motivated the extensions, and the key

idea behind the proposed solutions. Full details on all models and added features

can be found in the relevant chapters, with detailed derivations of log-likelihoods

used in the Metropolis-Hastings steps, and posterior distributions used in Gibbs

sampling steps deferred to the appendices of each chapter.
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Now, with our understanding of BART and BCF in place, we move on to the

first of the research chapters of this thesis, which shows how BART can be applied

to an important issue in the world of education - teacher shortages and teacher

job satisfaction.

31



3
Factors Affecting Teacher Job Satisfaction:

A Causal Inference Machine Learning

Approach Using Data From TALIS 2018

3.1 Introduction

3.1.1 Background

Teacher supply and demand is an important challenge faced by many countries

around the world (UNESCO, 2015). The scale of this problem is partly reflected in

the teacher shortages currently facing many countries including England (Hilton,

2017), Ireland (O’Doherty and Harford, 2018), the United States (Wiggan et al.,

2021), and many others. The scale of the challenge currently facing England is

made clear by a recent House of Commons report which reveals that the 2019 five-

year retention rate was at its lowest level since 1997, with 32.6% of teachers entering

the profession in 2014 no longer teaching in classrooms five years later (Long and

Danechi, 2021). These sustained high levels of attrition have led to a situation

where the total number of all qualified teachers in England working outside of

the state funded sector in 2019 (350,000) was nearly as high as the number of

teachers working inside it (454,000). This comes at a time when secondary school

pupil numbers are expected to rise by 7% in England between 2020 and 2026, thus

placing increasing pressure on already difficult recruitment and retention targets.
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Teacher shortages are often more pronounced in Science, Technology, Engineering

and Mathematics (STEM) subjects (Han and Hur, 2021). This is also noted in

the House of Commons report, which showed the subject specific vacancy rate

of unfilled teaching posts for these subjects was higher than the average (Science

1.4%, Technology 1.7%, Maths 1.4%) (Long and Danechi, 2021).

Teacher shortages may arise as a result of insufficient numbers of new entrants

to the profession or high levels of qualified teachers leaving their posts. In addition

to the serious challenges associated with not having enough teachers, higher levels

of teacher turnover have been shown to negatively affect student learning and

also incur large economic costs (Levy et al., 2012; Sorensen and Ladd, 2020).

Encouraging teachers to stay in their posts is therefore very important. Research

has shown that job satisfaction is one of the key predictors of a teacher’s intention

to remain in the profession (Madigan and Kim, 2021; Klassen and Chiu, 2010;

Wang et al., 2015). Consequently, it is vital to identify factors that can improve job

satisfaction in order to boost retention rates of qualified teachers and to attract new

entrants to start their career. In addition to the economic and staffing implications

of job satisfaction which are the primary focus of this study, Toropova et al. (2021)

point out that happier teachers tend to have happier students, and more satisfied

teachers provide higher quality teaching to their students as well (Spilt et al.,

2011; Klusmann et al., 2008). Job satisfaction has also been shown to predict

teacher self-efficacy which is another significant area of study within the literature

(Burić and Kim, 2021). These reasons combine to make teacher job satisfaction a

crucially important outcome of interest.

We decided therefore to investigate the effect that a number of selected factors

may have on teacher job satisfaction. Job satisfaction is a term for which no single

definition exists, but a widely accepted version describes job satisfaction as “the

pleasurable emotional state resulting from the appraisal of one’s job as achieving or

facilitating the achievement of one’s job values” (Locke, 1969, p. 316). Informally,

job satisfaction can be thought of as an overall sense of contentment with one’s

career.

Our approach in this study can be best described as an application of a causal

inference machine learning method. We employ these cutting-edge statistical mod-

els in order to identify specific, implementable steps that may be taken to enhance
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the job satisfaction of qualified teachers. This is a key advantage of our approach,

because it allows school principals and other policy makers to determine specific

steps that may be taken as part of a school strategy for improving job satisfaction.

Our method makes use of Bayesian Additive Regression Trees (BART) (Chipman

et al., 2010), a cutting-edge modelling tool which enables us to detect non-linear

relationships and interactions which would not normally be found in a standard

linear model. Additionally, this strategy allows us to control for a much larger

number of background (confounding) variables than would normally be possible

when using a linear model. Furthermore, we demonstrate how this approach can

be used to identify subgroups of teachers who are most (or least) likely to benefit

from the positive effects of a given treatment.

Our study uses data from the third cycle of the Teaching and Learning In-

ternational Survey (TALIS) which took place in 2018 (OECD, 2019a). TALIS is

the world’s largest survey of teachers and principals and has taken place every five

years since 2008. A fourth cycle is due to take place in 2024. Participating teachers

and principals are asked to complete questionnaires on a wide variety of topics such

as: personal background; current teaching duties; their perception of the school

climate; and job satisfaction. TALIS 2018 is the largest of the surveys to-date with

48 countries participating, and includes data on approximately 260,000 teachers

from 15,000 primary, and lower and upper secondary schools. For the purpose of

this study, however, we will limit our investigation to the data from England. This

subset of the entire dataset contains a representative sample of 2009 primary and

2376 lower secondary school teachers for a total sample size of 4385.

We decided to focus on the English subset of the TALIS data for a number

of reasons. Firstly, the English subset of the data is able to provide us with a

relatively large sample size of teachers from both primary and lower secondary

schools. This is advantageous for machine learning models, as it enables BART to

more easily detect relationships between variables in the data, and this is essential

for reliably producing accurate results. A second important factor we considered

is that England is currently facing a serious teacher recruitment and retention

problem (Hilton, 2017). This important contextual factor makes England a more

appropriate choice than a country not currently facing such difficulties. Further-

more, a number of initiatives such as the Early Career Framework (Daly et al.,
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2021; Department for Education, 2019) have recently been introduced in England,

thus making our investigation of mentorship and induction schemes particularly

relevant to the English context.

With these data, and using a causal inference machine learning approach, we

attempt to answer the following research question: What are the specific and im-

plementable factors that have the most positive (or negative) impact on teacher job

satisfaction? The factors we consider include: participation in induction schemes;

high levels of participation in continual professional development; team teaching;

observing other teachers; mentorship schemes; teaching in a public school; class

size; out-of-field teaching; and having a part-time contract. Our decision to include

these factors in our investigation has been informed by previous studies which show

they have a strong association with both teacher job satisfaction and retention.

We now discuss these findings in more detail in a literature review, focusing on

key aspects relevant to our research.

3.1.2 Literature Review

Induction and Mentoring Programmes

Induction is a broad term used to describe different activities or supports put in

place for teachers to assist them in adapting to the ethos or practices of a new

school (Allen, 2005). Induction programmes are frequently designed with newly-

qualified teachers in mind, but we will use the slightly more inclusive definition

from the TALIS questionnaire, which broadens the scope of induction activities to

include supports for experienced teachers who have recently begun teaching in a

different school (OECD, 2018).

Mentoring describes the arrangement whereby a newly-qualified teacher is as-

signed a more experienced member of staff at their school, who will advise and

assist them as they begin their career (Allen, 2005). Roles of a mentor can vary,

as can frequencies of meetings between a mentor and their mentee. For consis-

tency, we will once again use the more general definition provided in the TALIS

questionnaire which allows mentoring to encompass any situation where a more ex-

perienced teacher supports a less experienced one, who need not be newly qualified

(OECD, 2018).
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New teachers are commonly faced with many challenges in the classroom after

they qualify (Guarino et al., 2006). To mitigate the risk of newly qualified teachers

encountering difficulties, induction and mentoring schemes are often provided to

support them during this formative stage of their career. In fact, induction for

new teachers is statutory in many countries, such as in England where this is the

case in state schools, and a new scheme for early career teachers has recently been

introduced called the Early Career Framework (Daly et al., 2021; Department for

Education, 2019).

International evidence often points towards induction and mentoring schemes

as having a positive effect on the job satisfaction of participating teachers. Regres-

sion analyses of teachers in the US subset of TALIS 2018, for example, have found

a strong link between the presence of a mentor and considerably higher levels of

job satisfaction (Renbarger and Davis, 2019). This finding is backed by a review

of ten studies on the effect of mentoring, which reveals consistent evidence in sup-

port of the positive effects of mentoring on teacher retention (Ingersoll and Kralik,

2004). Other studies based on the US subset of TALIS 2018 have also identified

induction activities as having a positive effect on job satisfaction (Reeves et al.,

2022). Additionally, the provision of induction supports for newly qualified teach-

ers in their first year of teaching has also been linked to lower levels of attrition

(Ronfeldt and McQueen, 2017).

Despite their widespread use, the evidence supporting the use of induction and

mentoring schemes for all teachers has sometimes been brought into question. A

large scale review of over 90 studies by Allen (2005) found only limited evidence

that participation in induction and mentoring schemes leads to higher retention

rates of qualified teachers. Indeed, survey studies of teachers undergoing statu-

tory induction in the UK suggest that initial teacher education may be far more

important for preparing new teachers for the challenges they will face in their first

year of teaching (Hulme and Wood, 2022).

It is also true that while induction schemes or mentoring may be beneficial for

job satisfaction and retention in the long term, not all teachers report enjoying

induction or mentoring at the time. Some teachers undergoing induction in the

UK report it as being a stressful experience due to the busyness of their schedule,

and others report dreading meetings with mentors who provide them with criticism
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(Smethem, 2007).

The effect of being a mentor on job satisfaction has been the focus of relatively

little research in comparison to the effect of having a mentor. Despite this, there are

still studies which show that mentoring arrangements can be mutually beneficial

to both the mentor and the mentee. Lunsford et al. (2018) for example, in a study

of US teachers, found that those with either a mentor or a mentee are on average

more satisfied than teachers who do not.

It is important to note that most of the above findings are based on observa-

tional data, and therefore the positive correlation between induction or mentoring

and job satisfaction can not be claimed to be causal in nature. A recent study

with a longitudinal design which tracked a sample of newly-qualified teachers in

the US over the first 5 years of their career therefore makes an important contri-

bution (Gray and Taie, 2015). At each follow-up visit, teachers who were assigned

a mentor during their first year in the classroom were more likely to still be teach-

ing than those who did not receive this extra support, thus showing a temporal

association between mentoring and retention.

Continual Professional Development

Continual professional development (CPD) can refer to a wide range of activities

designed to assist teachers as they build upon and improve their professional skills

(OECD, 2018). Higher levels of participation in CPD have often been linked to

improved teacher job satisfaction (Wang et al., 2020; Yoon and Kim, 2022). In a

joint study of English and international data from TALIS 2013, Sims (2017) was

able to show that this relationship holds in both the national and international

context. With two separate analyses, they demonstrated that there is a positive

correlation between CPD and job satisfaction, firstly using data for England only,

then again for a combined dataset of more than 50,000 teachers from 38 different

countries.

CPD has also been shown to be related to higher levels of teacher retention.

A survey of 500 teachers based in England, for example, who had just completed

a professional development course showed that teachers who were more engaged

with the CPD course were more likely to respond that the course had a positive

37



3.1. INTRODUCTION

effect on their intention to remain teaching (Coldwell, 2017). This link was less

strong for teachers who only engaged moderately or weakly with the course. Fur-

thermore, Allen and Sims (2017), in a study of teachers at state-funded secondary

schools in England, found that similar effects were still being felt two years after

participation in a science subject-specific CPD course, and that participation had

reduced department turnover rates by two percentage points. This finding is es-

pecially important given that STEM subject teachers are known to be at higher

risk of attrition (Han and Hur, 2021).

Despite these benefits, one challenge often faced by teachers is that there may

be barriers to their attendance at different CPD activities due to factors such as

timetabling issues, cost of travelling to CPD events, or a lack of suitable events

being organised (Zhang et al., 2020). It is unsurprising then, that the presence of

barriers to attending quality CPD activities has also been linked to lower levels of

job satisfaction (Renbarger and Davis, 2019).

Teacher Cooperation

Higher levels of cooperation between teachers and staff within schools has been

identified as a strong correlate of job satisfaction in previous research (Lopes and

Oliveira, 2020). Examples of factors contributing to high levels of cooperation

within a school could include team teaching, observation of other teachers’ classes,

or sharing of teaching materials and resources (OECD, 2018). In fact, analysis of

international data from TALIS 2013 which includes teachers from England, has

shown teacher cooperation to be the most significant predictor of job satisfaction

when accounting for other working conditions and teacher characteristics (Sims,

2017). Similar trends have also been found in Swedish data from TIMSS 2015,

where cooperation has been identified as one of the strongest predictors of job

satisfaction (Toropova et al., 2021). Although often seen as positive, teamwork

can also have negative effects. Interview studies with Norwegian teachers, for

example, have found that teamwork can sometimes be a source of stress, and

disagreements can arise when teachers are unable to choose who they collaborate

with (Skaalvik and Skaalvik, 2015).

In addition to having a positive effect on job satisfaction, teacher cooperation
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has been linked to lower levels of teacher turnover in the US (Nguyen, 2021), where

teachers reporting higher levels of cooperation were found to be less likely to want

to leave their current school. However the same higher levels of cooperation were

not associated with lower probabilities of teachers wanting to leave the teaching

profession entirely.

Other Factors

In our data, a public school is defined as any school managed by a public education

authority, government agency, municipality, or governing board appointed by gov-

ernment or elected by public franchise (OECD, 2018). Previous studies have found

that job satisfaction is typically higher in private schools than in public schools.

This discrepancy, however, is often attributed to the differing levels of autonomy

(Lopes and Oliveira, 2020), or positive relationships with management (Sönmezer

and Eryaman, 2008) which may be present in these two types of schools. There-

fore, one might not expect to see a significant difference in the job satisfaction of

public and private school teachers when controlling for these variables. Despite

this, studies which have attempted to control for important policy, individual, and

workplace level characteristics have still found significantly higher levels of job sat-

isfaction in private schools (Small, 2020). The effect on job satisfaction of teaching

in a public vs. a private school is therefore an open question.

While larger class sizes and larger student teacher ratios have often been shown

not to have a large effect on student achievement (Woessmann and West, 2006;

Li and Konstantopoulos, 2017), a clear connection between class size and job

satisfaction has not been established. One interview study of 200 teachers in the

US, for instance, found that class size was one of the top 3 reasons reported by

teachers as justifications for their current levels of job satisfaction (Perrachione

et al., 2008). Other studies, however, have found that class size is not a major

driver of American or Japanese teacher job satisfaction when controlling for other

working conditions (Reeves et al., 2017).

A second factor which is less commonly examined in relation to teacher job

satisfaction is the practice of out-of-field teaching. Out-of-field teaching has been

linked to lower student achievement in a number of studies (Dee and Cohodes,
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2008; Hill and Dalton, 2013), but the literature available on the effects that out-of-

field teaching has on job satisfaction is quite limited. Olmos (2010) and Provasnik

and Dorfman (2005) found that out-of-field teachers in the US were more prone to

attrition, though other studies have not found as substantial an effect (e.g. Shen,

1997).

Finally, one additional factor which has not been the subject of much research

in relation to teacher job satisfaction is contract-type. Our search for studies

relating factors associated with the terms of a teacher’s employment and their job

satisfaction returned few results. Furthermore, those studies which we did find

were not focused primarily on terms of employment, but instead used it as one

of a variety of control variables, and results have varied across researchers. One

investigation of the effect of personal characteristics on teacher job satisfaction, for

example, found teachers with permanent contracts to be less satisfied on average

(Gil-Flores, 2017). In contrast, Capone and Petrillo (2020) found teachers with

permanent contracts to have higher levels of job satisfaction and well-being. Other

studies which have investigated the effects of part-time or full-time contracts have

revealed no discernible changes in job satisfaction (e.g. Ferguson et al., 2012).

3.2 Methods

3.2.1 Data and Pre-Processing

This study uses English data from TALIS 2018 (OECD, 2019a) which provides us

with a representative sample of 4385 primary and lower secondary school teachers

(2009 primary, 2376 lower secondary). Each observation includes more than 30

scales describing various teacher and school characteristics such as self-efficacy,

participation in CPD, and perceived cooperation among staff. The individual

survey responses upon which these scales are based are also provided, as well as

personal and background details for each of the teachers such as gender; school

level; qualification; and years’ experience. A full list of all variables used can be

found in Appendix A.3. A description of how we handled missing data in these

variables can be found at the end of this section.

The main variable of interest in this study is teacher job satisfaction. Teacher
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job satisfaction in the TALIS data is based on the responses of teachers to eight

items which gauge a teacher’s overall contentment and happiness with their cur-

rent working environment and profession. All eight questions share a common

stem which reads “We would like to know how you generally feel about your job.

How strongly do you agree or disagree with the following statements?”. An ex-

ample item for measuring satisfaction with the working environment is “I enjoy

working at this school”, and an example item for satisfaction with the profession is

“The advantages of being a teacher clearly outweigh the disadvantages”. Possible

responses to these items lie on a 4 point Likert scale, with options ranging from

strongly disagree (1) to strongly agree (4). The ordinal responses to these items

have been converted into a continuous measure of job satisfaction by the organisers

of the TALIS study using an approach called confirmatory factor analysis. This

continuous variable is the outcome we will use in our study. Confirmatory factor

analysis is a very widely used approach in the social sciences (e.g. McInerney et al.,

2018; Saloviita and Pakarinen, 2021). The organisers of TALIS have also conducted

a number of tests to ensure the reliability and validity of the constructed teacher

job satisfaction scale (OECD, 2019b). The resulting job satisfaction scale (after

combining primary and lower secondary school teachers) has a mean of 12.42, and

a standard deviation of 2.28.

To ensure a representative sample during the data collection stages of TALIS,

a stratified two-stage probability sampling design is employed within each coun-

try. Each teacher in the TALIS dataset is therefore assigned a set of weights to

rigorously estimate population parameters of interest and their associated stan-

dard errors. These sampling weights were fully incorporated into our analysis

through the Balanced Repeated Replication (BRR) procedure described in the

TALIS technical report (OECD, 2019b). The resulting confidence intervals are

presented in Figure 3.3. It is important to note that while our primary estimation

method, Bayesian Additive Regression Trees (BART), is inherently Bayesian and

provides posterior distributions for the estimated treatment effect, the application

of Fay’s BRR to construct confidence intervals represents a departure from a fully

Bayesian framework. Specifically, Fay’s BRR is a frequentist resampling method,

and its use with BART estimates forgoes direct reliance on the Bayesian posterior

distribution for uncertainty quantification. We adopted this approach based on
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the TALIS data organiser’s recommendation to appropriately reflect the complex

sampling design of the TALIS data. However, an alternative method possible in

future research would be to directly incorporate the hierarchical structure of the

sampling design within the Bayesian framework itself, using a multilevel (hierar-

chical) Bayesian model. This would enable both proper accommodation of the

sampling design and full retention of Bayesian uncertainty quantification.

Data from the survey can be missing for a number of reasons. Some teach-

ers did not reach every question, and others did not answer personal questions

such as those concerning their age. Of the variables we have used, 52 contained

missing values, with on average 8% of the data missing. In order to maximise

the data available for use, we have imputed these missing responses with the R

package missRanger (Mayer, 2019). This method substitutes missing values with

predictions based on an individual’s responses to all other questions in the survey.

This approach allows us to retain information that would otherwise be discarded

if missing cases were excluded and offers greater accuracy than simpler methods,

such as imputing with the mean value (Stekhoven and Bühlmann, 2012).

However, this method assumes that the data are missing at random (MAR)

(Donders et al., 2006), an important consideration when interpreting the results.

A limitation of this approach is that the uncertainty associated with imputing

missing values is not captured in the main analysis. Therefore, the true 95% con-

fidence intervals are likely to be slightly wider than reported. To address this

limitation, more sophisticated techniques, such as multiple imputation (Rubin,

1996), imputation with added noise (Gold and Bentler, 2000), or treating missing-

ness as a useful predictive feature of the data (Kapelner and Bleich, 2015), could

be employed. Incorporating these methods into the analysis would be an excellent

area for future work, but was outside the scope of the current study.

3.2.2 Limitations of Traditional Statistical Approaches

Commonly used approaches in international large scale assessments to investigate

the relationship between a set of independent variables, X, and a dependent vari-

able, Y , include ordinary least squares regression and other more sophisticated

modelling approaches such as multilevel models. These approaches are very use-
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ful but have a number of limitations. Firstly, they assume a linear relationship

between each independent variable and the outcome of interest. This can lead to

biased parameter estimates in some cases and can lead one to believe that there

is no relationship between two variables when in fact there is. For example, the

relationship between teacher attrition and age has been found to be U-shaped

in a number of different studies (Guarino et al., 2006; Boe et al., 1997). Such

limitations can be addressed within the framework of generalised linear models

by incorporating higher order polynomial terms or interactions, but these fea-

tures must be specified explicitly by the user, opening up the potential for model

misspecification, especially if the functional form of the response is complex or

unknown.

Thirdly, linear models can become difficult to interpret when a large number of

covariates have been included as explanatory variables. This means that it can be

difficult to control for a large number of factors simultaneously when investigating

the association of one variable of interest with another while still maintaining the

required interpretability. Consequently, researchers often limit their analysis to a

smaller subset of the available data. However, not controlling for some variables

may bias parameter estimates.

In Section 3.3 we have concentrated on factors which relate to measures that

school principals or other policy makers could introduce immediately with the view

to improving job satisfaction levels. By contrast, much of the existing literature

on teacher job satisfaction uses scale scores of different psychological constructs

which have been validated using approaches such as confirmatory factor analysis

(e.g. McInerney et al., 2018; Saloviita and Pakarinen, 2021). Such approaches

are certainly useful because, for example, they have demonstrated a link between

higher levels of teacher self-efficacy and job satisfaction. Teachers’ levels of self-

efficacy are not easily changed however, and so these results do not provide a

directly implementable process that can be used to improve job satisfaction or the

outcome of interest.
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3.2.3 Limitations of The Study Design

In addition to the modelling limitations discussed above, there are also inherent

constraints in the nature of the study design. Large-scale assessments such as the

one used in this study are typically cross-sectional and observational, meaning they

capture data at a single point in time without random assignment or experimental

manipulation. As a result, causal inferences cannot generally be made from such

data unless specific methodological strategies are employed, such as adjusting for

all relevant confounders to satisfy the assumption of no unmeasured confounding,

or by using quasi-experimental techniques like instrumental variable estimation or

difference-in-differences designs.

Furthermore, the directionality of observed associations is often unclear. For

example, while teacher self-efficacy has often been assumed to be an antecedent of

teacher job satisfaction, recent evidence suggests that the causal relationship may

actually be the opposite (Burić and Kim, 2021). These ambiguities underscore

the importance of caution when interpreting findings, especially in the context of

making policy recommendations.

While the relatively large sample size provided by the TALIS data used in this

study helps to mitigate concerns related to statistical power, it remains an impor-

tant topic when analysing educational data. Some common rules of thumb, for

example, recommend having at least 10 to 20 observations per predictor variable

to ensure sufficient power in traditional regression analyses. Within the Bayesian

framework, which includes methods such as BART and BCF, the emphasis tends

to shift away from hypothesis testing and power in the frequentist sense, toward

estimation and reliable uncertainty quantification, such as the use of credible in-

tervals and posterior distributions. This distinction is discussed well in Kruschke

and Liddell (2018) and Kruschke (2014).

An interesting Bayesian analogue to frequentist power analysis involves con-

ducting simulation studies in which synthetic datasets are generated under as-

sumed conditions. For each simulated dataset, it is assessed whether certain crite-

ria such as obtaining a sufficiently narrow credible interval or achieving a posterior

probability above a predefined threshold are met. The proportion of simulations

satisfying these conditions provides a Bayesian measure of prospective study per-
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formance, which can inform decisions about sample size and study design. While

this type of simulation based power analysis was not performed in the present

study given that we are working with publicly available, pre-collected data, it rep-

resents a valuable approach for future work, especially in the context of primary

data collection and experimental design.

3.2.4 Bayesian Additive Regression Trees for Causal Analysis

With the above considerations in mind, this study aims to investigate the effect of

a number of binary factors, which we call treatments, on teacher job satisfaction.

Our approach will be to use the R package bartCause which is a causal inference

machine learning package for the R programming language (Dorie and Hill, 2020;

R Core Team, 2021). The bartCause package allows us to estimate causal effects,

and has been demonstrated to be highly competitive in causal inference machine

learning competitions (Dorie et al., 2019). The package owes its success to the

impressive prediction capabilities of Bayesian Additive Regression Trees (BART),

a Bayesian non-parametric modelling tool which is well suited to a wide variety of

problems (Chipman et al., 2010). This flexibility has inspired a large number of

BART extensions, such as a recent paper which shows how BART based models

can be adapted for use in a mediation analysis setting (Linero and Zhang, 2022).

BART is known as a sum of trees model which can flexibly and accurately

predict an outcome of interest Y using a set of covariates X. It can be seen

as an extension of regression modelling that automatically identifies interactions

and non-linear relationships between the variables. In the case of a single tree

model, BART makes predictions by establishing a set of decision rules which when

followed, assign a prediction to each observation. See Figure 3.1 for an example of

a decision tree.

Bayesian methods are becoming increasingly popular in educational research

(König and van de Schoot, 2018). In particular, a recent study has used BART to

estimate the causal effects of private tuition on student achievement (Suk et al.,

2021). BART has also been used extensively in other fields outside of education,

and is a popular choice for many quantitative researchers (e.g. Prado et al., 2021b).
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Year of 
Qualification < 

2013

Contract = 
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Figure 3.1: Example of a single decision tree for the TALIS data. Each teacher’s
information can be fed into the tree by following the decision rules. The terminal
nodes provide the predictions for the job satisfaction of each teacher. In practice
the BART model works by creating many different decision trees and summing
the predictions together.
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3.2.5 Treatment Effect Estimation

To estimate the causal effect of a given intervention on the outcome variable we

adopt the Neyman-Rubin causal model (Splawa-Neyman et al., 1990; Rubin, 1974;

Sekhon, 2008). Central to the Neyman-Rubin causal model is the concept of

potential outcomes which posits that there are two potential outcomes for each

individual i, one that would be observed under treatment, yi(1), and one that

would be observed under control, yi(0) (no treatment). The individual treatment

effect would then be given by the difference between these potential outcomes:

τi = yi(1) − yi(0). Observing individual i simultaneously under both treatment

and control is impossible, however, and this is known as the fundamental problem

of causal inference.

Estimation of τ is a difficult task, especially in the case of observational data.

Challenges posed by observational data to estimating causal effects include the fact

that individuals are not randomly assigned to the treatment and control groups,

and that our observation of the data may not include all variables which have an

influence on the outcome of interest or the non-random assignment mechanism. It

is, however, possible to identify causal effects with a number of key assumptions

(Kurz, 2022). These assumptions include:

(1) The stable unit treatment value assumption (SUTVA). It requires that the

treatment status of any individual i should not affect the potential outcomes

of any other individual j. It also requires that there should be “no multi-

ple versions” of the same treatment, meaning that the treatment must be

consistently defined for all individuals.

(2) The ignorability assumption. This requires that the potential outcomes of in-

dividual i must be independent of their treatment status conditional on their

observed covariates. In other words, we require there to be no confounding

variables we have not observed.

(3) The overlap assumption. This requires that every individual must have a

non-zero probability of being assigned to both treatment conditions.

Assuming the above assumptions hold, the bartCause package estimates treat-

ment effects with BART by predicting the two potential outcomes for each individ-
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ual, using their observed characteristics and an indicator of whether or not they

received treatment as predictor variables. Using these BART derived estimates

of the potential outcomes, Hill (2011) showed that the conditional average treat-

ment effect (CATE) for observation i can then be estimated as τ̂i = ŷi(1)− ŷi(0).

We then compute the average of these individual-level CATEs over the sample,

weighted by the sampling weights, yielding what Li et al. (2023) refer to as the

mixed average treatment effect (MATE):

1

N

N∑
i=1

τ̂i =
1

N

N∑
i=1

ŷi(1)− ŷi(0).

Earlier, we identified several limitations of traditional modelling approaches,

such as their reliance on linearity assumptions, difficulties in inferring causal di-

rection from observational data, and challenges in managing complex models with

many covariates. The BART approach used in this chapter can help us to tackle

each of these concerns. Firstly, BART does not assume linear relationships and

can flexibly capture complex, non-linear associations and interactions between

variables, reducing the risk of biased estimates arising from model misspecifica-

tion. Secondly, provided the three key assumptions listed above hold, the causal

inference framework based on estimating potential outcomes under treatment and

control conditions should allow us to estimate causal effects from the data. Finally,

with automatic variable selection and the ability to handle a large number of co-

variates, the BART model maintains interpretability without the need to exclude

important confounding factors, thus mitigating the potential for omitted variable

bias.

3.2.6 Including Propensity Scores in Causal Models

Following the advice of Hahn et al. (2020), we will include an additional indepen-

dent variable as a predictor in our model. This additional variable is known as the

propensity score, and is defined as an individual’s probability of being assigned

to the treatment group. This probability can be estimated from an individual’s

characteristics such as their gender, year of qualification, degree type etc. Logistic

regression is a common choice for this task, but we have chosen to use BART
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instead to keep our approach as consistent as possible and retain the superior

predictive approach.

The inclusion of the propensity score has been shown to improve the estima-

tion of treatment effects (Hahn et al., 2020). Besides this practical advantage, it

can also be interesting to look at different trends in the propensity scores for in-

dividual teachers. Analysing such trends allows us to identify, for example, which

subgroups of teachers are particularly likely to belong to positive or negative treat-

ment groups. This process can identify specific subgroups of teachers who need to

be given extra support, or who would benefit from being assigned to a particular

treatment group. We highlight an example of this in our next section.

In addition to serving as a control variable in the BART model, the propensity

score is crucial for assessing the overlap assumption, which must hold for valid

causal inference. Overlap was evaluated by visually inspecting density plots of the

propensity score distributions for treated and control units to ensure no regions

lacked common support. Similar visual checks were performed for all continuous

covariates, while for categorical variables, contingency tables were used to confirm

that no levels contained only treated or control units. It is important to note,

however, that this assessment can only be applied to observed variables included

in the propensity score model. Unobserved confounders, if present, may still violate

the overlap assumption in ways that cannot be detected through these methods,

so the ignorability assumption is still required.

3.2.7 Choice of Treatment Variables

We calculate mixed average treatment effects for each of the following treatment

options (short names or abbreviations used in Figures are shown in brackets):

(1) Did the teacher take part in at least 4 CPD activities in the past year (CPD)?

(2) Did they take part in a formal/informal induction programme when they

started teaching at their current school (Induction)?

(3) Do they take part in observing other teachers (Observing)?

(4) Do they take part in team teaching (Team Teaching)?
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(5) Do they have a mentor (Has Mentor)?

(6) Are they a mentor to another teacher (Is Mentor)?

(7) Do they teach in a publicly managed school (Public School)? (Full definition

in Appendix A.2)

(8) Do they have ≥ 30 students in their class (30+ Students)?

(9) Are they an out-of-field teacher (Out-of-field)?

(10) Do they have a part-time contract (Part-Time)?

In each of the cases above, the MATE is estimated independently of the other

treatments. The set of predictor variables included in X remains unchanged,

as we control for the same covariates in every assignment option (with a few

exceptions). For an exact definition of each of these treatments see Appendix A.2.

Appendix A.3 identifies any variables which were removed from X for a specific

assignment option. For example, it would be inappropriate to control for the

number of students in a class when investigating the effect of teaching a class with

≥ 30 students (Variable Code: TT3G38).

We note that by investigating multiple factors affecting teacher job satisfaction,

there is an increased likelihood of introducing Type 1 errors or false positives. Com-

mon methods for controlling Type 1 errors or False Discovery Rates include the

Bonferroni correction or Benjamini-Hochberg procedure (Benjamini and Hochberg,

1995). However, these method are accompanied by an increased risk of Type 2

errors. As discussed in the literature review, the decision to investigate each of

the factors under consideration was founded on prior research and literature. This

should help to reduce the risk of spurious discoveries, but the increased risk of false

positives must still be borne in mind when interpreting the main results. As an

alternative to these conventional methods, we also highlight a later extension of

the Bayesian Causal Forests (BCF) model, developed in Chapter 5, which allows

for the joint modeling of multiple factors. This extension may offer a more robust

solution to the multiple comparisons issue, accounting for the interdependencies

between the treatment variables. For a more detailed discussion of this approach,

see Chapter 5.
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Figure 3.2 shows the control and treatment group sizes for the different factors

that we have created and are investigating. The control group size for CPD is

1618, meaning that 37% (unweighted) of teachers in the sample did not take part

in 4 or more CPD events over the course of the past year. The treatment group size

for this assignment option is 2767, corresponding to a 63% participation rate in at

least 4 CPD events. The other segments of the plot have similar interpretations.

As can be seen from Figure 3.2, 30% of teachers met our criteria for teach-

ing out-of-field. A more in depth analysis of these numbers reveals that 24% of

secondary school teachers meet this criteria, and 37% of primary school teachers

do. Further investigations also show that the subjects being taught out-of-field

by teachers are different across the two school levels. We bring this point to the

reader’s attention to make clear that these teachers are all treated identically, and

we do not make careful distinctions between reasons for teaching out-of-field. Fur-

thermore, we do not distinguish between primary vs. secondary school teachers

for this treatment effect (or indeed any of the other treatment effects).

Before continuing, we acknowledge that this decision may appear at odds with

the distinct educational contexts and student age groups that primary and post-

primary teachers engage with. However, this approach is based on evidence from

the data preparation process undertaken by the TALIS organisers, who conducted

measurement invariance testing across school levels. For the teacher job satisfac-

tion construct used in this study, scalar invariance was established, indicating that

the measure operates equivalently for both primary and post-primary teachers

(OECD, 2019b). This provides empirical justification for pooling the two groups

in our analysis. Nevertheless, we recognise this as an important limitation and

return to this point in the discussion.

3.3 Results

This section describes the results from:

(1) Choosing a treatment assignment option to consider from the list in Sec-

tion 3.2.7.
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Figure 3.2: Percentage of teachers belonging to the control and treatment groups
under investigation. There are different levels of balance across the groups.
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Figure 3.3: Plot of mixed average treatment effects for each treatment under
investigation. The central box of each error bar represents the best available
point estimate, while the full extent of the error bars represents a 95% confidence
interval.

(2) Estimating the mixed average treatment effect of this assignment option on

job satisfaction.

For a visual representation of these results, see Figure 3.3 which indicates

the final estimate and 95% confidence interval for each of the treatment effects.

Diagnostic tests were also performed for all models fitted to the data to ensure

convergence had been reached, and goodness of fit statistics were calculated to

ensure satisfactory predictive performance.

3.3.1 Continual Professional Development

Our results identify participation in at least 4 CPD events over the course of a year

as having a positive effect on teacher job satisfaction. The 95% confidence interval

for this mixed average treatment effect is [0.035, 0.309]. To give an idea of the

magnitude of this treatment effect, consider that the teacher job satisfaction scale

has a mean of 12.42, and a standard deviation of 2.28. Therefore, the centre-point
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of this confidence interval which is at 0.172 would correspond to an increase in job

satisfaction of 0.08 standard deviations, which is a small but positive improvement.

3.3.2 Induction and Mentoring Programmes

Our results show that taking part in induction when starting at a new school has

a positive effect on job satisfaction. The 95% confidence interval for the mixed

average treatment effect on job satisfaction is [0.107, 0.329]. Therefore, taking

part in an induction scheme is associated with a mean increase in job satisfaction

of 0.218 meaning that induction schemes are the most beneficial of all of the

treatment assignment options we have considered.

Mentoring, however, is not identified as having a strongly positive effect. As

can be seen from the 95% confidence intervals in Figure 3.3, this is true for both

mentors and mentees.

3.3.3 Observation and Team Teaching

Team teaching and observing the lessons of other teachers are both identified as

having a positive effect on job satisfaction. The uncertainty in these estimates

is quite large however, and this is reflected in the wide 95% confidence intervals

shown in Figure 3.3 which both include zero within their range. Given the large

confidence intervals it may be that there are large effects of these variables, but the

data here do not provide us with enough information to estimate them precisely.

Alternatively there may be sub-groups for whom the estimated effect is particularly

high or low. This, however, would also be difficult to ascertain with a high degree

of statistical confidence.

3.3.4 Other Factors

Of the remaining factors we considered, the treatment assignment option with the

largest effect in relation to job satisfaction is the possession of a part-time contract

of less than 90% of a typical full-time contract’s hours. This factor has the effect

of reducing job satisfaction on average by 0.216, 95% confidence interval [-0.388,

-0.044]. The results from analysing the propensity scores for this factor show

an interesting trend. Figure 3.4 shows that experienced female teachers generally
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Figure 3.4: Probability of having a part-time contract. Female teachers have higher
probabilities than male teachers, especially more experienced female teachers.

have much higher propensity scores (probability of being assigned to the treatment

group) than their male colleagues.

The other factors we have considered are out-of-field teaching, working in a

public vs. a private school, and teaching a class with 30 or more students. Ac-

cording to our results, these factors are not associated with a strong effect on job

satisfaction. We emphasise again that these factors may indeed be very impor-

tant, but the precision with which the data allows us to estimate these effects is

insufficient to make such claims with a high degree of statistical confidence in this

case.
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3.4 Discussion

We begin by discussing our main findings in more detail, and go on to highlight

some key aspects of this study which make a new and important contribution to

the literature on teacher job satisfaction. We finish this section by drawing the

reader’s attention to some limitations of this study, and by suggesting areas for

future research.

3.4.1 Main Findings

Continual Professional Development

Our results identify high levels of participation in CPD as having a positive effect

on teacher job satisfaction. This is in agreement with multiple studies which

have found a strong correlation between CPD and job satisfaction (e.g. Yoon and

Kim, 2022; Wang et al., 2020; Sims, 2017). Crucially, our result supports these

previous findings by verifying the strong positive effects of CPD using a causal

inference approach, and thus we are able to infer results about causation and not

just correlation. Furthermore, as job satisfaction is known to be an important

predictor of teacher intentions to remain teaching (Madigan and Kim, 2021), our

results also support recent findings from studies of teachers based in England which

have linked CPD to higher levels of retention (e.g. Coldwell, 2017; Allen and Sims,

2017). In addition, we have ensured that our treatment effect estimates are as

unbiased as possible, by removing the effect of possible confounding variables on

our outcome of interest.

We noted that only 63% of teachers in the English dataset have reached this

high level of CPD. Barriers to participation in CPD are known to be a key predictor

of job satisfaction (Zhang et al., 2020). Our results therefore also provide strong

support for this body of work by demonstrating the positive gains that can be made

by removing such barriers and encouraging and enabling more teachers to engage in

CPD events. For this reason, the emphasis on the importance of engagement with

CPD in the Early Career Framework in England is very welcome (Department

for Education, 2019). In addition, the inclusion of a 10% and 5% reduction in

timetabled teaching hours for teachers in their first and second years, in order to
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enable them to fully avail of the supports and training offered during this time is

likely to be crucial.

We highlight the fact that our investigation has only considered a binary version

of CPD. In reality, however, levels of attendance at CPD belong on a spectrum,

not just high/low. Furthermore, the benefits from CPD are likely to depend on

many factors such as the quality and relevance of the training to a teacher’s needs.

These factors warrant further investigation but were beyond the scope of this

study. Despite this, we do find clear evidence in favour of recommending CPD as

a measure for improving job satisfaction.

Induction and Mentoring Programmes

Our finding that induction schemes have a very positive effect on job satisfaction

agrees with prior work from Ronfeldt and McQueen (2017). Contrary to the review

by Allen (2005), we did not detect high levels of heterogeneity in the treatment

effect estimates of this assignment option. The recent introduction of the Early

Career Framework in England which includes mandatory induction for new teach-

ers is therefore an excellent step forward, but we argue that induction schemes

should also be made available more generally for all new teachers at a school,

regardless of number of years qualified or experience in the classroom.

Unlike some previous studies (e.g. Ingersoll and Strong, 2011; Renbarger and

Davis, 2019), our results do not identify the presence of a mentor as being beneficial

for job satisfaction. There are a number of plausible reasons for this. Firstly,

there may be some unobserved or unaccounted for confounding variables common

to schools with mentorship schemes which bias the estimates of these analyses.

Secondly, we did not consider other aspects related to mentoring, such as the

subject area of the mentor. Research has shown that a mentee is more likely to

benefit from a mentoring arrangement if their mentor is a teacher from the same

grade level (Parker et al., 2009). Other factors such as the mentoring quality

and the frequency of meetings can also be important (Richter et al., 2013). The

provision of training for mentors taking part in the Early Career Framework to

improve mentoring quality is therefore commended.

An indicator of whether or not a teacher is currently a mentor to another
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member of staff was also included as a component in our analysis. Similarly, we

did not find that this treatment was associated with an appreciable increase or

decrease in job satisfaction. Again, this could be a result of our binary view of

mentoring relationships, in which we only consider the presence or absence of a

mentee, and fail to account for other aspects such as the quality of the mentoring

relationship, which has been demonstrated to be an important predictor of job

satisfaction (Lunsford et al., 2018).

Observation and Team Teaching

The fact that we have not found a clear link between team teaching or observation

with job satisfaction may initially appear to be strange. The literature reviewed

consistently pointed towards higher levels of teamwork and cooperation as having

a positive effect on teacher job satisfaction. Therefore, we might have expected to

see this reflected in our results also.

One plausible explanation for this is that higher levels of teamwork and co-

operation within a school are difficult to attribute to a small number of specific

practices such as team teaching and observation. Higher levels of teamwork and

cooperation within a school are characterised by many different aspects such as

sharing resources with colleagues and collaborating together on different projects

etc. As a result, it is difficult to capture the true impact of higher levels of team-

work and cooperation as a whole by only considering two of a much larger number

of indicators. Therefore, the absence of a large effect size here does not necessarily

mean that team teaching and observation are not useful practices. Rather, the

results indicate that only implementing one or two of these factors is unlikely to

yield significant improvements in job satisfaction, and efforts should instead be

focused on improving teamwork and cooperation as a whole. This is made clear

by the very small treatment effect sizes that result from us considering two of these

such practices in isolation.

Other Factors

We investigated whether working at a publicly owned and managed school af-

fects job satisfaction. The results from our approach do not identify a significant
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causal effect for this treatment assignment. This result is in line with work by

Dahler-Larsen and Foged (2018) who attribute the difference in job satisfaction

between public and private schools to differences in organisational characteristics,

as opposed to the ownership of the school.

In line with research by Reeves et al. (2017), our results show that teaching a

class with 30 or more students does not have a large effect on job satisfaction. We

should note, however, that our finding is based on a cut-off point of 30 students.

This value was chosen to ensure an approximately even split of teachers in the

treatment and control groups. It is possible, however, that a different value would

yield different results, and teachers at the more extreme end of the distribution

with greater than 35 students may experience a more negative effect from this

treatment.

Given the lack of research linking out-of-field teaching to job satisfaction we

thought it was important to include this as a factor in our study. The magnitude

of the treatment effect that we have obtained in our results for this factor is very

small, but out-of-field teaching is a complex phenomenon (Hobbs and Törner,

2019), so it is reasonable to expect that the effects of teaching out-of-field may be

dependent on a number of contextual factors such as how dissimilar the subject

being taught is to one’s area of expertise. A more detailed investigation of the

effects of out-of-field teaching on job satisfaction is therefore warranted.

As in the study by Ferguson et al. (2012), the contract-type used in our study

refers to full-time or part-time contracts. We have chosen this as it will allow us

to have more evenly balanced control and treatment groups. Our results show

that teachers on a part-time contract are less satisfied with their career than their

full-time colleagues. Also, an analysis of the propensity scores for this treatment

effect shows that experienced female teachers have much higher probabilities of

being on part-time contracts than their male counterparts. Future research should

investigate the reasons for this, and supports that might be put in place for teachers

with childcare responsibilities.

In summary, of the factors that we have investigated, we have found that high

levels of participation in CPD and induction schemes have the strongest positive

influence on job satisfaction. Conversely, we have also found that possessing a

part-time contract can have a negative effect on job satisfaction. In the case of
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the other treatments we have studied, despite the mixed average treatment effects

often pointing in the direction we had expected, there was not enough certainty

in these estimates to claim the presence of a clear causal effect.

3.4.2 Contribution of This Study

We believe this study makes three main contributions to the current literature

on teacher job satisfaction. The first is that we have employed a causal inference

machine learning approach, bringing the power of advanced statistical modelling

techniques to an important problem in the world of education. One advantage

of this approach is the ability to flexibly model job satisfaction without assuming

a linear relationship between the predictor variables and the outcome of interest

which is a common feature of most conventional statistical models. This approach

is also well suited to detecting interactions between variables and allows us to

include a much wider variety of covariates than would normally be possible when

using linear models. This is absolutely crucial, because it enables us to model the

response surface using the propensity score along with a large number of other

variables, thus accounting for many potential sources of confounding which could

otherwise bias treatment effect estimates.

Second, instead of identifying important characteristics related to a teacher’s

working environment such as cooperation, quality of school leadership, or personal

traits such as self-efficacy, we have established several specific and implementable

measures that may be introduced in an attempt to improve job satisfaction. We

summarise our findings with the following recommendations:

(1) Our results provide strong evidence that participation in an induction scheme

when starting at a school can have a beneficial effect on teacher job satis-

faction. We therefore recommend that schools not currently offering such

schemes should endeavour to introduce them. We also recommend that

schools currently offering induction schemes should encourage participation

from all new staff, including experienced and novice teachers.

(2) We also find strong support for higher levels of participation in continual pro-

fessional development having a positive effect on job satisfaction. Therefore
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we suggest that school authorities should make it a priority to identify and

remove any barriers to staff attendance at CPD events, whilst also ensuring

a regular calendar of relevant CPD activities are available for attendance.

(3) Our finding that part-time contracts are negatively impacting on the job sat-

isfaction of affected teachers warrants a closer examination of how concerns

about job security may be affecting teachers. The fact experienced female

teachers are disproportionately more likely to be on a part-time contract also

requires a review into the supports that may be put in place for teachers with

young families.

Specific recommendations are important because although it may be known

that certain factors such as stress are negatively correlated with job satisfaction

(Klassen and Chiu, 2010), it is not always obvious how best to reduce stress levels

among teachers, or if a set of proposed changes will have the desired effect. This

study therefore avoids this pitfall by identifying factors such as induction schemes

which can be beneficial for job satisfaction, while also identifying the negative

effects of factors such as part-time contracts.

Finally, the propensity scores described in Section 3.2.6, although not the pri-

mary focus of this study, provide us with an interesting insight into the types of

teachers more likely to belong to the treatment and control groups we have inves-

tigated. This can help us to identify certain subgroups of teachers who have not

availed of positive treatments, and we can then ensure that these activities are

made available to them. This can also help us to identify subgroups of teachers

who are more likely to be exposed to the negative effects of a treatment, such as

experienced female teachers who we found were significantly more likely to have a

part-time contract.

3.4.3 Limitations and Areas for Future Research

As discussed in the methodology, the causal inference approach that we have em-

ployed makes a number of important assumptions. Among these is the ignorability

assumption, which requires that we have accounted for all potential sources of con-

founding when investigating a given treatment. Despite including a wide variety
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of control variables in our design matrix, X, it is certainly still possible that there

may be some confounding variables not collected as part of the survey. Teachers

with young children for example, may be more likely to work part-time, but there

is no indication in the TALIS data whether teachers have young children. Future

research could include a detailed assessment of the reasonableness of these assump-

tions in relation to TALIS by incorporating data from external sources, and using

different diagnostic methods designed to assess these assumptions.

A second limitation concerns the cross-sectional nature of the TALIS data.

Because all variables were measured at the same point in time, it is not always

possible to determine whether covariates included in the model are truly pre-

treatment. This concern is relevant, for example, in the analysis of the effect

of CPD on teacher job satisfaction, where teacher self-efficacy was included as

a potential confounder. While self-efficacy may influence a teacher’s decision to

participate in CPD, it is also possible that the self-efficacy measure in TALIS

reflects confidence gained after CPD participation. If this is the case, self-efficacy

functions as a mediator rather than a confounder, meaning the estimated effect in

this study should be interpreted as the direct rather than the total causal effect of

CPD on job satisfaction.

A third limitation of our approach is that some aspects of the working environ-

ment such as teamwork and cooperation are very difficult to capture with binary

variables. Therefore, it may be less meaningful to investigate binary factors in re-

lation to aspects such as this, because levels of teamwork and cooperation can not

be fully characterised by a simple dummy variable. Also, hours of CPD attended

and the number of students in a class are both continuous variables. Therefore,

their impact on job satisfaction can not be fully appreciated by artificially convert-

ing them into a binary factor. Additional studies using causal inference machine

learning methods designed to handle continuous treatment variables may be better

suited to this task.

A further limitation relates to the decision to analyse primary and post-primary

teachers together, without disaggregating by school level. This choice was informed

by measurement invariance testing conducted by the TALIS organisers, which

established scalar invariance for the teacher job satisfaction construct across school

levels (OECD, 2019b). This indicates that the measure functions equivalently for
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both primary and post-primary teachers, allowing for meaningful comparisons and

pooled analysis. Nonetheless, we acknowledge that this analytical decision may

obscure some important contextual differences, and that treatment effects could

function differently across teacher subgroups. Therefore, future research could

focus on exploring interaction effects to examine how specific treatments impact

primary and post-primary teachers in distinct ways.

Additionally, while the Bayesian Additive Regression Trees (BART) method

for causal inference introduced by Hill (2011) was adopted in this study, an al-

ternative method, Bayesian Causal Forests (BCF) (Hahn et al., 2020), could have

also been considered. However, given BCF extends BART with additional com-

plexity, BART was selected as a more accessible and appropriate starting point in

this first study. Future research could also explore the application of BCF or other

advanced causal inference methods to assess whether they yield different insights

or improved estimation accuracy.

Finally, as our results are based on data which only includes teachers from

England, we can not claim that the same treatment effects would be observed

in other countries and cultures, where other factors may be more important for

improving the job satisfaction of teachers. The application of a similar approach

to ours, but to different countries in the TALIS data is therefore a promising area

for future research.

3.5 Conclusion

Faced with increasing demand for qualified teachers in England and internation-

ally, it is of the utmost importance to identify strategies for improving teacher

job satisfaction. This can help to encourage higher retention rates of qualified

teachers, and attract new entrants to start their career. Many studies which in-

vestigate factors associated with job satisfaction, however, instead of identifying

specific and implementable measures for achieving this task, link higher levels of

job satisfaction to positive working environments or higher levels of self efficacy.

Our study has tackled this issue by employing a causal inference machine learning

approach to investigate the effect of a number of treatments on job satisfaction.

We encourage school management teams and educational administrations to take
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note of our results which further support the provision of induction schemes for

new teachers, and continual professional development for all staff. We also recom-

mend an examination of how part-time contracts may be causing anxiety around

job security and satisfaction for teachers. More generally, we advocate for further

research into the specific steps that may be taken for improving job satisfaction

through the use of causal inference methods.

64



4
Bayesian Causal Forests for Multivariate

Outcomes: Application to Irish Data From

an International Large Scale Education

Assessment

4.1 Introduction

Estimating heterogeneous treatment effects from observational data is a complex

yet essential task. The pursuit of precise and tailored interventions, informed by an

understanding of how individuals uniquely respond to treatments, holds profound

implications for many different fields. In this pursuit, we encounter two critical

challenges. The first is the ever present issue of confounding, which arises in

causal settings where Randomised Controlled Trials (RCTs) are not feasible. The

second challenge lies in detecting often subtle variations in individual responses to

treatment. To address these hurdles, advanced modelling strategies are required,

capable of flexibly controlling for confounding variables while guarding against

overfitting. As a result, there has recently been a surge of interest in applying

advanced non-parametric methods to tackle these challenges (see Caron et al.,

2022a, for a review).

This family of methods includes a vast assortment of techniques which exploit

the predictive capabilities of advanced regression models in order to estimate het-
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erogeneous treatment effects. A key strength of this family of methods is that it is

very flexible, and many of the relevant techniques can be performed with virtually

any suitable regression model. One of the most important contributions to this

area was made by Hill (2011) who demonstrated that by using a sufficiently flexi-

ble regression model such as Bayesian Additive Regression Trees (BART, Chipman

et al., 2010), it is possible to accurately estimate treatment effects. A second in-

fluential contribution was made by Hahn et al. (2020) who built on Hill’s work

by using Robinson’s (1988) treatment effect parameterisation to separate the es-

timation of Y into a prognostic effect µ, and a treatment effect τ . This approach,

named Bayesian Causal Forests (BCF), has a number of advantages over that of

Hill (2011) as it allows separate priors to be applied to the µ and τ components of

the model, and enables individual level treatment effects to be estimated directly

from the data.

Due to its flexibility and impressive predictive performance, the Bayesian Causal

Forest model has become one of the most popular causal inference methods avail-

able and has been the subject of multiple research papers, many of which have

extended its capabilities for use in different settings. Caron et al. (2022b), for

example, introduced a prior in the model which encourages BCF to focus more

on important predictor variables than less influential covariates. In another recent

extension, Starling et al. (2021) introduced a BCF model designed for estimating

treatment effects that exhibit smooth variations across a single covariate, drawing

inspiration from a BART model with a similar design outlined in Starling et al.

(2020). Other extensions of the BCF model include a hierarchical version which

was used to investigate the effectiveness of a growth mindset in improving student

achievement in a study by Yeager et al. (2019). Our model described later will

also include a hierarchical element in its application to the motivating dataset, but

this will not be the primary focus of our study.

An important limitation of many causal inference methods, including Bayesian

Causal Forests, is that they are only applicable to a single outcome variable sub-

ject to a binary treatment Z. Therefore, motivated by data from the Trends in

International Mathematics and Science Study (Mullis et al., 2020), which includes

data on both the mathematics and science achievement of eighth grade (approx-

imately 14 - 15 year old) secondary school students, we present a multivariate
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extension of BCF which is capable of estimating the causal effect of an interven-

tion on multiple outcomes simultaneously. With our new approach, we consider

the effect of a number of home-related factors on student achievement. Specifically,

we attempt to answer the following three research questions: 1) “What effect does

having access to a study desk at home have on student achievement in mathemat-

ics and science?”, 2) “What is the impact on student achievement in mathematics

and science of often arriving at school feeling hungry?”, and 3) “What effect does

regular absence from school have on student achievement in mathematics and sci-

ence?”. We investigate these factors because they have important implications

for student-focused initiatives such as free school meals programmes and back to

school allowances which are designed to assist students from disadvantaged back-

grounds (Taras, 2005; Kennedy, 2013).

The main advantage of our multivariate approach is a potentially substan-

tial reduction in the uncertainty associated with the causal parameters, since the

model now has access to extra information through the correlation of the out-

come variables and the treatment effects. Situations in which the model might

exploit a strong positive correlation in the effects of an intervention could occur

for many plausible reasons. To illustrate, imagine an intervention aimed at en-

hancing students’ problem-solving skills, specifically as measured by the TIMSS

cognitive domains of “Applying” and “Reasoning” (Mullis and Martin, 2017). As

these skills improve, it would be reasonable to anticipate a concurrent improve-

ment in TIMSS mathematics and science achievement scores, as both subjects

require students to apply learned concepts to novel contexts and engage in logi-

cal reasoning to solve complex tasks. These cognitive processes are not entirely

domain-general, of course, but share a degree of similarity such that improvements

in one area could support gains in the other. Consequently, by focusing on the

narrower definition of problem solving as captured by the TIMSS assessments,

rather than invoking a broad or abstract notion of STEM-general problem solv-

ing, we would expect to observe a positive correlation between the magnitude of

improvement in mathematics achievement and the corresponding improvement in

science achievement.

Conversely, the model might also exploit a strong negative correlation in situ-

ations where one of the outcome variables serves as a mediator for another. For
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instance, in an intervention focused on reducing stress levels among students, it

might be observed that lowered stress levels act as a mediator by enhancing stu-

dents’ productivity. If the intervention significantly reduces a student’s stress lev-

els, this may be associated with a substantial increase in productivity. Therefore,

this scenario demonstrates a negative correlation in treatment effects, as a larger

reduction in stress levels corresponds to a more significant increase in productivity.

As an additional advantage of the proposed multivariate BCF model, we also

note that by jointly modelling all outcome variables of interest simultaneously,

the model provides a natural way to account for the dependence between these

outcomes. By estimating the effect of each factor on all outcomes simultaneously,

the model may also prove useful in situations where the multiple comparisons

problem is of concern.

Whilst multivariate causal inference models are rare, our approach shares sim-

ilarities with that of a recent multivariate extension of Bayesian Factor Analysis

models for causal inference which demonstrates the potential for a multivariate

approach to causal inference (Samartsidis et al., 2020). Also of note is a multi-

variate random forest based method for causal inference developed by Guo et al.

(2021). Our work is different from these because the multivariate causal Factor

Analysis model developed by Samartsidis et al. uses a very different structure to

our BART based model. We believe our approach offers greater flexibility and

may be used in a much wider variety of settings. Also, the multivariate random

forest based method developed by Guo et al. (2021) requires RCT data with pre

and post intervention covariates. Our model, which is designed for observational

data, does not impose such requirements.

In addition to multivariate causal inference models, there is also precedent for

shared tree structures to assist in the estimation of multivariate parameters in

the Bayesian context. The first example of this to our knowledge is a study by

Linero et al. (2020) which demonstrated the impressive performance gains made

possible by this approach. Related to this work is a paper by Um et al. (2023)

which develops a multivariate BART model for skewed distributions, which also

highlighted the advantages of using a shared tree structure in a regression problem.

The key difference which separates these previous works from our study, however,

is that in contrast to the paper by Um et al. (2023) which focused on estimat-
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ing a multivariate target variable Y , or the paper by Linero et al. (2020) which

focuses on estimating multiple transformations of, or parameters associated with,

a single outcome variable, we are interested in estimating the causal effect of an

intervention on multiple outcomes.

The remainder of this chapter is organised as follows: In Section 4.2 we give

some background on the Trends in International Mathematics and Science Study,

the dataset motivating our multivariate approach. Section 4.3.1 describes Bayesian

Additive Regression Trees, the model providing the foundation upon which Bayesian

Causal Forests are built. Section 4.3.2 explains how BCF leverages the impressive

predictive capabilities of BART for the purpose of estimating heterogeneous treat-

ment effects, and Section 4.3.3 details the modifications necessary to extend BCF

to the multivariate setting. In Section 4.4 we present the results of a simulation

study, in which we demonstrate the substantial benefits of jointly modelling all

outcome variables available. In Section 4.5 we apply our multivariate extension of

BCF to the motivating dataset, TIMSS 2019. Here, we investigate the effects of a

number of treatments on student mathematics and science achievement, including

home study supports, being hungry at school, and absenteeism. We conclude this

chapter with a discussion of our results, the limitations, and potential avenues for

future research.

4.2 Trends in International Mathematics and Science

Study

The Trends in International Mathematics and Science Study (TIMSS) is a large

scale international assessment organised by the International Association for the

Evaluation of Educational Achievement (IEA). It has taken place in many coun-

tries across the world every four years since 1995, with 64 countries participating

in TIMSS 2019. As part of the study, students in the fourth and eighth grade of

secondary school (typically aged approximately 10 - 11 and 14 - 15 respectively)

are given a short assessment in mathematics and science, which is used to estimate

their overall achievement level. The eighth grade students also complete a short

background questionnaire on topics such as their home and classroom environ-
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ment, and how much they like and feel confident in these subjects. The teachers

and principals of these students are also given short questionnaires on their edu-

cational background, teaching practices, and school access to learning resources,

thus providing us with a large number of covariates to control for as potential

confounding variables. This makes TIMSS an excellent source of information for

researchers investigating factors associated with student confidence and achieve-

ment in mathematics and science.

Due to its scale and comprehensive nature, TIMSS data has been the subject

of many studies in the field of education since its origin in 1995. Some recent

studies using data from TIMSS include Tang et al. (2022) who investigate the im-

pact of science teacher continual professional development on student achievement

in science, and Chen (2022) who considers the effect of the interaction between

classroom and individual achievement levels on student confidence in mathematics.

Our focus in this chapter however will be on the effect of three specific treatments

on student achievement in mathematics and science. In contrast to much of the

existing literature which focuses on typically just one of these outcomes, we will

model achievement in both subjects jointly.

In this study, we delve into the causal factors associated with a student’s house-

hold environment, specifically examining the influence of home study supports,

hunger at school, and absenteeism. These factors possess the potential to exert

significant impacts on a student’s educational journey in various ways. Notably,

they are all susceptible to the influence of confounding variables. Home study

supports and access to educational resources are well-established predictors of stu-

dent achievement, as evidenced by prior research (Tsai and Yang, 2015). However,

given their likely correlation with socioeconomic status, it is imperative to untangle

this relationship within a causal framework. The detrimental effects of students

attending school on an empty stomach are widely acknowledged (Vik et al., 2022).

Hunger can hinder concentration and deprive students of essential nutrients, un-

derscoring the importance of free school meal programmes (Taras, 2005). Yet, the

prevalence of hunger may also be linked to a student’s socioeconomic background,

necessitating careful consideration as a potential confounding factor. Lastly, ab-

senteeism has been consistently linked to lower academic achievement (Vesić et al.,

2021). However, absenteeism itself is a multifaceted issue intertwined with other
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adverse factors like school bullying (Bennour, 2021; Ladd et al., 2017), making it

crucial to account for these variables (and others) collected as part of the TIMSS

study.

In summary, TIMSS is an excellent source of information for researchers in

the field of education. TIMSS data has been used extensively to answer many

important research questions over the years, but as the short discussion above

highlights, there can often be multiple layers of complexity with the potential to

bias the estimates of these analyses. Furthermore, much of the existing research

has focused solely on achievement in one subject, employing traditional approaches

such as multiple linear regression models which are not well suited to answering

questions of a causal nature. For this reason we propose that a multivariate causal

approach, capable of flexibly accounting for the many confounding variables that

may be present, is well suited to these data.

4.3 Bayesian Non-Parametric Estimation of Hetero-

geneous Treatment Effects

One of the fastest growing areas of research in the causal inference literature is

the application of Bayesian non-parametric machine learning methods for the esti-

mation of heterogeneous treatment effects. Before discussing these approaches in

detail, however, we must first cover some notation. In this study we will adopt the

Neyman-Rubin causal model (Splawa-Neyman et al., 1990; Rubin, 1974; Sekhon,

2008) which can be applied to situations where we are interested in the effect

of a treatment Z on an outcome Y . The Neyman-Rubin causal model is based

on the concept of potential outcomes, which asserts that for each observation i,

there are two potential outcomes: one that would be observed under treatment

yi(Zi = 1), and one that would be observed under control, yi(Zi = 0). Knowing

both yi(Zi = 0) and yi(Zi = 1) would allow us to calculate the individual treat-

ment effect for unit i, τi = yi(Zi = 1) − yi(Zi = 0). This is of course impossible,

because we only ever observe one of the potential outcomes, and this is known as

the fundamental problem of causal inference.

Although we may not observe both potential outcomes directly, we can esti-
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mate them with ŷi(Zi = 0) and ŷi(Zi = 1). Then, in the presence of the correct

conditions, we may estimate τi with τ̂i = ŷi(Zi = 1)− ŷi(Zi = 0). More generally,

we may also estimate the conditional average treatment effect (CATE), τ̂(xi), at

any covariate xi with ŷ(xi, Zi = 1)− ŷ(xi, Zi = 0). Calculating the average of these

CATEs over the population of interest then yields what Li et al. (2023) refer to as

the mixed average treatment effect (MATE):

1

N

N∑
i=1

τ̂(xi) =
1

N

N∑
i=1

ŷ(xi, Zi = 1)− ŷ(xi, Zi = 0).

The conditions which are required to hold for the reliability of this approach in

the univariate context are provided by Kurz (2022). However, for the sake of gen-

erality, given our focus on multivariate outcomes, we have extended and adapted

these assumptions to accommodate the complexities introduced by multiple out-

come variables:

(1) The stable unit treatment value assumption (SUTVA). The original

assumption requires that the potential outcomes of any individual i must not

be affected by the treatment status of any other individual j. For example, if

student j is often absent from school, this must not influence the achievement

level of any other student i. The SUTVA also requires that there are “no

multiple versions” of the same treatment. In other words, there should not

be multiple potential outcomes corresponding to different versions or types

of the same treatment.

Multivariate Modification: To align with the multivariate context, we now

stipulate that this must hold for all outcome variables associated with student

i.

(2) The ignorability assumption. Also known as the unconfoundedness as-

sumption, we require that there must be no residual confounding we have

not controlled for: yi(Zi = 1), yi(Zi = 0) ⊥⊥ Zi|xi.

Multivariate Modification: In our multivariate adaptation, we extend this

to each outcome variable yk by requiring that yi,k(Zi = 1), yi,k(Zi = 0) ⊥⊥
Zi|xi ∀i, k.
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(3) The overlap assumption. This requires that the propensity score for any

individual imust be bounded away from zero and one: 0 < P (Zi = 1|xi) < 1.

For example, if it was true that students from disadvantaged backgrounds

were guaranteed never to have a study desk, this would be a violation of the

overlap assumption.

Multivariate Modification: This assumption remains unchanged in the mul-

tivariate adaptation as the same treatment applies to all outcome variables.

The above provides us with a very flexible approach for estimating individual

treatment effects, as yi(Zi = 1) and yi(Zi = 0) can be estimated with any suffi-

ciently accurate model f . A good choice for f , for a number of reasons, is Bayesian

Additive Regression Trees, and this is what we will discuss next.

4.3.1 Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART) is a Bayesian non-parametric machine

learning algorithm that is well suited to a variety of regression and classification

tasks (Chipman et al., 2010). BART can be described as a tree based ensemble

method for predicting an unknown function f(X) based on the contributions of

many shallow trees. Individually these trees act as weak learners, each only ex-

plaining a small part of the unknown function, but when combined they are able to

capture very complicated relationships and interactions between variables in the

data. Owing to its impressive predictive performance, BART has become popular

with researchers from many disciplines and has been used for a diverse range of

applications in many fields such as medicine, economics, and education (Pierdzioch

et al., 2016; Sparapani et al., 2016; McJames et al., 2023b, Chapter 3). BART is a

very flexible model, which has enabled researchers to adapt or modify the under-

lying algorithm for various specialised use cases such as genomics, problems with

local linearities and, of course, causal inference (Sarti et al., 2023; Prado et al.,

2021a; Hill et al., 2020; Carnegie et al., 2019; Dorie et al., 2022).

Given an outcome variable y of length n, and a covariate matrix X consisting

of n observations of d variables, the BART model can be written as follows:
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yi =
J∑

j=1

g(Tj,Mj, xi) + ϵi, ϵi ∼ N(0, σ2)

where g() is a function which calculates the individual contribution of each tree

j of J total trees. Mj specifies the terminal node parameters associated with the

jth tree Tj. The residuals, ϵi, are assumed to be normally distributed with mean 0

and variance σ2. Being a Bayesian model, appropriate priors are required for Tj,

Mj and σ2.

The BART model is fitted using Markov Chain Monte Carlo. Before discussing

the intricacies of this procedure in detail, however, we will first consider how BART

can serve as the foundational framework for a powerful causal machine learning

approach: the Bayesian Causal Forest (BCF) model.

4.3.2 Bayesian Causal Forests

Bayesian Causal Forests is an advanced causal inference machine learning algo-

rithm (Hahn et al., 2020). BCF uses BART as a foundation for estimating causal

effects and shares the same desirable features such as impressive predictive perfor-

mance, careful regularisation through the use of Bayesian priors, and uncertainty

quantification. BCF does however have a number of advantages over BART for

estimating heterogeneous treatment effects, and this is made possible by adopting

the Robinson parameterisation which expresses the outcome y as:

yi = µ(xi, π̂i) + τ(xi)Zi + ϵi

where µ() and τ() are both BART ensembles which work together to estimate two

separate parts of the model: a prognostic effect µ, which can be thought of as

the expected outcome under control when the treatment variable Z is coded as 1

for treatment, 0 for control, and a treatment effect τ , which can be interpreted as

the impact on y of receiving treatment. The additional covariate π̂i included in

the µ() part of the model is the propensity score, which is simply the estimated

probability of individual i receiving treatment: πi = P (Zi = 1). The inclusion

of the propensity score in µ() is important for avoiding a phenomenon called reg-

ularisation induced confounding, and is especially useful in situations where the
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likelihood of receiving treatment is in some way related to the expected outcome

under control (Hahn et al., 2020). We will therefore include an estimate of π̂i,

obtained using a BART model, in all experiments in this study.

The parameterisation above has a number of important benefits associated

with it. First, it allows different amounts of regularisation to be applied to the µ

and τ parts of the model. It is common to apply greater regularisation to τ than

to µ because we expect the degree of heterogeneity in the treatment effects to be

relatively simple in comparison to y itself. This prior belief can be incorporated

into the model by encouraging shallower trees in the τ ensemble. The complexity

of the τ component of the model can be further reduced by using a smaller number

of trees to estimate τ than for µ. Secondly, if it is known that only a subset of

the variables in X are responsible for moderating the effect of Z on y, then it is

possible to use a different set of covariates in µ() and τ(). Finally, as τ is now an

explicit part of the model, it is possible to make direct inference on the treatment

effects with BCF, and this provides a more straightforward interpretation of the

model.

With our understanding of Bayesian Additive Regression Trees (BART) and

Bayesian Causal Forests (BCF) now in place, we can turn our attention to the

main focus of this chapter: a multivariate extension of BCF which we will see has

a number of important advantages over the standard univariate model.

4.3.3 Multivariate Bayesian Causal Forests

Motivated by data from TIMSS which includes information on student achieve-

ment in both mathematics and science, we now extend the BCF algorithm to

the multivariate setting. This extension allows us to estimate the causal effect

of a given intervention on two or more outcomes jointly, and thus we are able to

improve our predictions by taking advantage of the correlation between, and the

shared information across all outcome variables. With our new setup, the BCF

model specification becomes:

Y i = µ(xi, π̂i) + τ (xi)Zi + ϵi
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Algorithm 1 Bayesian Backfitting MCMC Algorithm for Multivariate BCF

Require: Multivariate target variable Y (n rows of p outcome variables), Feature
matrix X (n rows of d covariates),
Treatment variable Z (length n; 1 for treatment; 0 for control)

Ensure: Posterior list of trees T , residual covariance matrix Σ, multivariate fitted
values µ̂, multivariate fitted values τ̂
Set hyperparameter values of αµ, βµ, σµ, στ , ατ , βτ , ν, Σ0

Set number of µ trees Nµ, number of τ trees Nτ , number of iterations N
Set initial value Σ = I, and set all µ trees and τ trees to stumps with terminal
node parameters set to 0
for iterations i from 1 to N do

for µ trees j from 1 to Nµ do
With τ predictions fixed at their current values: compute multivariate

partial residuals Rµ,j from Y minus predictions of all trees except µ tree j
Grow a new tree T new

µ,j based on grow/prune/change/swap
Accept/Reject tree structure with Metropolis-Hastings step using

P (Tµ,j|Rµ,j,Σ) ∝ P (Tµ,j)P (Rµ,j|Tµ,j,Σ)
Sample µ values from multivariate normal distribution using

P (Mµ,j|Tµ,j, Rµ,j,Σ)
end for
for τ trees k from 1 to Nτ do

With µ predictions fixed at their current values: Compute multivariate
partial residuals Rτ,k from Y minus predictions of all trees except τ tree k

Grow a new tree T new
τ,k based on grow/prune/change/swap

Accept/Reject tree structure with Metropolis-Hastings step using
P (Tτ,k|Rτ,k,Σ) ∝ P (Tτ,k)P (Rτ,k|Tτ,k,Σ)

Sample τ values from multivariate normal distribution using
P (Mτ,k|Tτ,k, Rτ,k,Σ)

end for
Combine predictions from all trees to get Ŷ = µ̂+ τ̂Z
Update Σ with an Inverse-Wishart distribution using P (Σ|Ŷ )

end for
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where Y i is a length p vector representing the ith observation of the p dimensional

outcome variable Y , µ(xi) and τ (xi) represent the ith predictions from the mul-

tivariate prognostic and treatment effect functions, ϵi is the i
th residual, and Zi is

the familiar treatment status indicator: 1 for treatment, 0 for control.

The MCMC algorithm for fitting this model is based on that of BART, and

uses a combination of Gibbs sampling and Metropolis-Hastings steps. Specifically,

the contribution provided to the model by µ(xi) is based on an ensemble of Jµ

multivariate Bayesian Additive Regression Trees. Similarly, the contribution pro-

vided to the model by τ (xi) is based on an ensemble of Jτ multivariate Bayesian

Additive Regression Trees. The process begins by updating each of the Jµ trees

belonging to the µ(xi) part of the model. The structure of the jth such tree is

updated at each iteration by choosing at random one of four possible operations

to propose a new updated tree; grow, prune, change, or swap. If grow is selected,

then a splitting rule is assigned to a randomly chosen terminal node which then

becomes the parent of two children. If prune is selected, then a parent of two

terminal nodes is chosen at random, and its children are removed from the tree.

During the change operation, an internal node is chosen at random and its splitting

rule is replaced with a new randomly chosen split rule. Finally, the swap operation

selects a parent-child pair which are both internal nodes, and swaps their splitting

rules with each other.

To prevent any member of the ensemble from growing too large, a prior P (Tj)

is placed on the structure of the jth tree. This prior specifies that the probability

of any node at depth d being non-terminal is given by α(1+d)−β. Therefore, for a

tree Tj with terminal nodes hj,1...hj,K , and non-terminal nodes bj,1...bj,L, we have

that:

P (Tj) =
K∏
k=1

α(1 + d(hj,k))
−β

L∏
l=1

[1− α(1 + d(bj,l))
−β]

where d() is a function for returning the depth of an arbitrary node, and α and β

are hyper parameters which can be adjusted to place a higher probability on the

preferred tree depth. The purpose of this prior is to encourage more shallow trees,

thus restricting the amount of variance any one tree can explain, and helping to

avoid overfitting. Note that with this prior, we allow all outcome variables to share
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Figure 4.1: Diagram of a BART model with three decision trees as part of the
ensemble. The predictions for an observation are given by following the decision
rules from the root to the terminal nodes of the trees and summing the individual
contributions together. For example, for an observation with X1 > c1, X5 < c3,
X1 < c6 and X4 < c7, the final prediction would be given by 1.9 + 1.2 + 1.6 = 4.7.

the same tree structure. This is made appropriate by our motivating dataset, as

we expect our chosen covariates will predict both outcomes in a similar way. As a

result, the algorithm is encouraged to prioritise decision rules that will contribute

positively towards accurately estimating all components of Y . This helps to avoid

over-fitting and acts as a type of regularisation, improving predictive performance.

With the structure of the jth tree defined, the decision rules at each node form

a pathway directing observations to the leaves of the tree. See Figure 4.1 for

an example. Terminal node parameters µj,k are now assigned to each of the K

leaves of the jth tree, responsible for providing a small but important contribution

to the final prediction made by the model. To safeguard against any individual

trees becoming unduly influential in µ(xi), and to ensure that the scale of the µ

parameters is sufficient to cover the whole of the observed data, a multivariate

normal prior is placed over both µ and τ :

µj,k ∼ MVN
(
0,Σµ = σ2

µI
)
, τ j,k ∼ MVN

(
0,Στ = σ2

τI
)

With the columns of Y scaled during data pre-processing to follow a standard

normal distribution, a sensible choice for the hyper parameter σ2
µ is 1/Jµ, which

places a high prior probability over the range of all observed Y values. Depending
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on prior beliefs regarding the scale and heterogeneity of the treatment effects, a

reasonable choice for σ2
τ is likely to be smaller. In our experience, however, model

performance is typically quite insensitive to the choice of prior when it comes

from a sensible range of values - see the supplementary material for some exper-

imentation. The combination of priors above allows the likelihood used in the

Metropolis-Hastings step to be calculated in closed form as a multivariate nor-

mal distribution summed across terminal nodes. The data enter this multivariate

normal distribution as partial residuals calculated from the response minus the

predictions of the other trees that are not being updated.

When the terminal node parameters for tree Tj have all been sampled, a newly

selected grow/prune/change/swap operation is applied to tree Tj+1 and the process

is repeated until all Jµ trees belonging to the µ(xi) part of the model have had

their terminal node parameters updated. At this point, analogous updates are

applied to each of the Jτ trees belonging to τ (xi). At the end of each iteration

the combined contribution from all trees is subtracted from Y to calculate the

residuals and the residual covariance matrix Σ is updated. The above process

repeats for a pre-specified number of iterations and the end result is a posterior

distribution of trees, terminal nodes, and Σ parameters.

The conjugate prior we have used for the residual covariance matrix is an

Inverse-Wishart distribution:

Σ ∼ W−1 (ν,Σ0)

Our decision to employ the Inverse-Wishart prior in this study was motivated

by practical considerations. Specifically, we utilised an RCPP (Eddelbuettel and

François, 2011) implementation of the Inverse-Wishart distribution, which seam-

lessly integrated into our existing codebase. However, an important alternative

in this context is the LKJ prior introduced by Lewandowski, Kurowicka, and Joe

(Lewandowski et al., 2009). The LKJ prior has been demonstrated to offer several

advantages over the Inverse-Wishart prior in certain scenarios, particularly with

regard to its potential to exert less influence on the posterior distribution of the co-

variance matrix — a desirable trait. Despite this, our experimentation and testing

with the Inverse-Wishart prior did not reveal any serious concerns. Nevertheless,
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the LKJ prior presents an interesting avenue for further exploration.

For an algorithmic summary of the steps described above the reader is re-

ferred to Algorithm 1. Additionally, full derivations of the updates for each of the

parameters in the model can be found in the supplementary material.

We believe our multivariate extension of Bayesian Causal Forests introduces

a number of important advantages over previous approaches. Firstly, by sharing

the same tree structure, the predictions made by the model are able to benefit

from any correlation between the outcome variables. In this way, we expect to see

greater predictive performance as information can be shared across predictions for

all outcome variables. We might expect this advantage to be especially beneficial

in settings where there are few observations because if there is a lack of information

relating to one of the outcome variables at a specific region of the covariate space,

the information available for the other outcome variables can help to guide the

predictions. Finally, by jointly modelling all outcome variables we can estimate

additional model parameters related to the residual covariance between different

outcomes which may be of interest in certain applications.

However, it is also important to note that there may also be some disadvantages

to multivariate approaches. While in the majority of applications we expect the

outcome variables of interest to be strongly related in some way, this may not

always be the case. As a result, if the ideal tree structure for estimating one of the

outcome variables is quite different to the ideal tree structure of the other outcome

variables, the model may struggle to find a structure suitable for estimating all

outcome variables of interest. Though unlikely, it is clear that situations such as

this may pose challenges for our model which imposes the same tree structure on

all outcome variables.

An additional causal inference specific challenge that may be plausible is the

situation that arises when the assumptions of the model have been met for one of

the outcome variables, but not the other. For example, if a set of covariates X1 to

XP are sufficient to control for all sources of confounding impacting an outcome Y1,

but there is an additional unobserved covariate XU that introduces confounding in

Y2, then the unconfoundedness assumption of the model has been met for Y1 but

not for Y2. Clearly, in this situation the treatment effect estimates for Y2 should

be biased, but perhaps due to the shared dependency of Y1 and Y2 on the same
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tree structure, some otherwise avoidable bias might be introduced into Y1.

While we expect situations such as this to be rare, it is important to be aware

of these possible drawbacks. In the next section we explore these possibilities and

their impact on model performance based on a number of simulation studies.

4.4 Simulation Studies

In this section we present evidence of the advantages and improved predictive per-

formance of the new multivariate BCF approach. We do this via a simulation study

in which we have compared the performance of our multivariate implementation

of BCF with a univariate BCF model, and a univariate BART based approach

from Hill (2011). To further investigate the advantages of multivariate modelling

in heterogeneous treatment effect estimation we also compare our model with the

multivariate BART model of Um et al. (2023), using the same approach described

by Hill (2011). We compare the four different approaches above on three different

data generating processes, all based on a modified version of the first Friedman

dataset (Friedman, 1991), which is a commonly used benchmarking dataset as it

provides a complicated non-linear pattern with complex interactions. The data

generating processes are as follows:

Data Generating Process 1: With this data generating process we aim to

test the performance of multivariate BCF in a setting that we believe is almost

ideally suited to the model. The prognostic effect µ and the treatment effect τ use

the same variables and follow a very similar functional form. We generate 10 co-

variates X1 to X10. Variables X1 to X5 are uniformly distributed random variables

over the range zero to one. Variables X6 to X8 are random Bernoulli variables with

P (X = 0) = P (X = 1) = 0.5. Variables X9 and X10 are ordinal categorical vari-

ables with equal probability of being zero, one, two, three, or four. Our decision

to incorporate a mixture of uniform, Bernoulli, and categorical variables here is to

match the type of variables our model will encounter in the real life TIMSS data

in the next section. The functional form for Y1 and Y2 is given in Table 4.1, where

ϵ1,i and ϵ2,i come from a multivariate normal distribution with mean 0, covariance

matrix 502I and P (Zi = 1) = x4,i which makes X4 a confounding variable. The

coefficients and the signal to noise ratio above have also been chosen to ensure the
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scale of the data and treatment effects approximately matches what we expect in

the TIMSS data. In the case of the signal to noise ratio, this was chosen by fitting

standard univariate BART models to both outcome variables from the real TIMSS

data, both of which resulted in a residual standard deviation of approximately 50.

Data Generating Process 2: We investigate the performance of multivariate

BCF when the assumptions of the model have been met for Y2 but not for Y1. We

make a minor modification to DGP1 by setting the coefficient of X4 in µ2 to zero,

and we remove X4 from the set of covariates available to the model. This means

that Y2 is not affected by any residual confounding, as X4 has no impact on Y2,

but Y1 is affected by unobserved confounding as we hide X4 from the model and

X4 does have an impact on Y1. We therefore expect that all models will perform

poorly in estimating τ1 but they should not encounter any difficulties in estimating

τ2. We anticipate that this degradation in performance will be isolated to Y1 and

that the multivariate BCF estimates for τ2 will not be affected in any way.

Data Generating Process 3: We investigate if the multivariate BCF model

can successfully adapt to scenarios that require different tree structures for both of

the outcome variables Y1 and Y2. We make the following two changes to DGP1: 1)

For µ1, we replace 110 sin(πx1x2) with 110 sin(πx4x5). This ensures that Y1 and Y2

experience different interactions, and the tree structure will need to adapt to this.

2) For τ1 we replace 20x4+20x5 with 20x4+20x2, and replace τ2 with 10x3+30x5.

This ensures the tree structure responsible for estimating the treatment effects also

will need to change. We expect the flexible tree prior P (Tj) to allow the trees to

grow slightly larger if necessary, and to adapt to the greater flexibility that will be

required in this situation.

In the results that follow, we have generated 3000 synthetic data sets for each

data generating process, 1000 with a training sample size of 1000 observations,

1000 with a training sample size of 500 observations, and 1000 with a training

sample size of 100 observations. The test set contains 1000 observations in every

case. For multivariate and univariate BCF we have used 50 trees in the ensemble

for estimating the prognostic effect µ, and 20 trees in the ensemble for estimating

the treatment effect τ . For the BART and multivariate BART approach we have

used a total of 70 trees to estimate y. A total of 500 iterations were run for

both the pre and post burn-in stages of model fitting. In each simulation we have
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fitted the multivariate models to both outcome variables Y1 and Y2, and we have

fitted the univariate approaches to outcome variables Y1 and Y2 separately. The

R package bcf (Hahn et al., 2020) was used for the univariate implementation of

BCF and the R package bartCause was used for the BART approach (Dorie and

Hill, 2020). The R package accompanying the paper by Um et al. (2023) was used

for the multivariate BART model.

4.4.1 Results

Figure 4.2 provides a graphical illustration of how the investigated approaches com-

pare when predicting the heterogeneous treatment effects (τ), with a training sam-

ple size of 500 and 1000 observations. The full set of results, including results with a

training sample size of 100, 500, and 1000 observations can be found in the supple-

mentary material. This figure uses the precision in estimating heterogeneous effects

(PEHE; equivalent to the root mean squared error in estimating τ) to evaluate pre-

dictive performance when estimating τ(xi): PEHE =
√

1
N

∑N
i=1(τ(xi)− τ̂(xi))2.

A comprehensive overview of our findings can also be found in Table 4.2. In this

table, “PEHE on τ” denotes the mean PEHE across 1000 simulations for each data

generating process, while “Bias on MATE” signifies the average difference between

the true and predicted mixed average treatment effect, computed over the 1000

simulations. The, “τ 95% Coverage” represents the average 95% coverage rate

for estimating the heterogeneous treatment effects, also averaged across the 1000

simulations, while “MATE 95% Coverage” shows what proportion of the MATE

estimates from the 1000 simulations contained the true MATE. Lastly, the “τ 95%

CI Width” and “MATE 95% CI Width” rows show the average widths of the 95%

credible intervals for the heterogeneous treatment effects and the MATE estimates

respectively.

Looking at the PEHE results from DGP1 in Figure 4.2 which we referred to as

the ideal situation, multivariate BCF clearly outperforms the other three methods

when tasked with accurately predicting heterogeneity in the treatment effect τ .

This is evident across both outcome variables, and across both training sample

sizes. Unsurprisingly, all methods perform better with a training sample size of

1000 observations. Interestingly however, the relative performances of the tested
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approaches are quite consistent across the training sample sizes. We hypothesised

that as the training sample size decreases, the benefits of the multivariate BCF ap-

proach may become clearer, however from this simulation there is no clear evidence

of this, at least with these data set sizes.

Notably, in DGP1, where the multivariate model is ideally suited, the multi-

variate BART model also performs slightly better than its univariate counterpart.

However, even the multivariate BART model falls short of matching the perfor-

mance of the univariate BCF model, highlighting the advantages of the Bayesian

Causal Forest approach.

The PEHE, bias, and coverage results from DGP1 in Table 4.2 tell a very sim-

ilar story: In addition to the high accuracy in estimating heterogeneous treatment

effects, multivariate BCF shows minimal bias in estimating the mixed average

treatment effect, and the 95% coverage rate is close to ideal. Again, this is consis-

tent across both outcome variables. The credible interval widths for the MATE are

broadly similar across all methods, but the credible interval widths for the hetero-

geneous treatment effects are noticeably narrower for the multivariate BCF model,

indicating the multivariate approach can achieve the same excellent coverage but

with greater precision.

In DGP2 which included a confounded outcome Y1 and an unconfounded out-

come Y2, it is clear that the presence of the unobserved confounding variable

severely biased the treatment effect estimates of all models for Y1. This is clearly

reflected in the bias and PEHE rows of Table 4.2. Similarly, coverage rates are

hugely reduced across all four methods tested. A potential concern was that given

the shared dependency of outcomes Y1 and Y2 on the same tree structure, this

reduction in performance may also be observed in Y2. However, the results for Y2

show that the multivariate BCF and multivariate BART approaches were unaf-

fected by this and achieved strong performance on the unconfounded outcome Y2.

Multivariate BCF is again the strongest performer here in terms of PEHE, and

achieves very good bias and coverage.

Our final data generating process, DGP3 was designed to be more challenging

than DGP1 as it featured a different tree structure for both outcome variables.

Reassuringly, while a very slight reduction in the performance of multivariate

BCF is observed, the model maintains much of its impressive performance from
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DGP1, while also maintaining minimal bias and excellent coverage. This is an

important finding because it shows that even when the target variables are not

ideally suited to the multivariate approach, MVBCF still performs at least as well

as its competitors in this scenario. This may be attributable to the flexible tree

prior P (Tj) which allows the trees of the model to grow larger when necessary, and

to adapt to the greater flexibility that is required in such instances.

However, we note that the Data Generating Processes used in this simulation

were better suited to testing the model’s capabilities in complex settings, rather

than to directly mimicking the structure of real-world educational data. Therefore,

a potential avenue for future research would be to incorporate a hierarchical struc-

ture into the simulated data, clustering data points within schools or classrooms.

This would better reflect the data structures common in educational settings and

provide a more comprehensive test of the model’s hierarchical capabilities.

In future work, another interesting simulation study to perform would inves-

tigate how the multivariate normal assumption of the error term impacts model

performance in cases where the error term for one outcome is normally distributed,

but the error term for another outcome is not. This would provide valuable in-

sights into the model’s robustness when applied to only partially continuous out-

come variables, and clarify the extent to which deviations from normality affect

both predictive accuracy and inference quality.

To summarise, the results from this section have demonstrated the practical

benefits of employing a multivariate BCF approach when estimating the causal

effect of an intervention on two correlated outcomes. This is evident from the im-

proved performance in multivariate BCF, which outperformed its univariate (and

indeed multivariate) competitors when tasked with accurately predicting hetero-

geneous treatment effects. Good coverage and minimal bias was also achieved in

each setting with the exception of the test involving a confounded outcome. En-

couraged by the impressive performance of multivariate BCF, we now proceed to

apply our model to a real dataset from the world of education in the next section.
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4.5 Application to TIMSS 2019

In this section, we describe the data used from TIMSS 2019 before applying our

multivariate BCF model to investigate the effect of three different treatments on

student achievement in mathematics and science.

4.5.1 Data Description and Procedure

TIMSS 2019 is the seventh cycle of TIMSS to have taken place, with a total of 64

countries participating across the fourth and eighth grade components of the study,

making TIMSS 2019 one of largest installments of the programme to date (Mullis

et al., 2020). For the purposes of this study however, we will restrict our attention

to the eighth grade subset of the data from Ireland. This subset of the data

provides us with a representative sample of 4118 eighth grade secondary school

students; 2118 male, 1948 female, and 52 who did not say with an average age

of 14.42 years. In addition to this, the mathematics and science teachers of these

students participated in the study, providing us with data on 565 mathematics

teachers and 409 science teachers. The students’ school principals participated

too, giving us a total of 149 principal questionnaire observations.

After merging each student’s data together with that of their mathematics

teacher, science teacher, and school principal, the end product is a combined

dataset of 4118 observations, each comprising 50 variables describing various stu-

dent, teacher, and school characteristics. Important student level characteristics

include gender, age, attitude towards and motivation for studying mathematics

and science, as well as how many books are in their home, and the highest level

educational qualification received by both parents. Important teacher level char-

acteristics include number of years’ teaching experience, area of study during their

degree, perceptions of the school’s level of emphasis on academic success, and

teaching practices within the classroom. From the principal data we also have

access to information such as the number of students in the school, a description

of the average socioeconomic background of the students of the school, and a sum-

mary of how well resourced the school is in general. We will control for these

variables as potential confounders as we investigate the three factors described in
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Section 4.2. A complete list of all variables used can be found in the supplementary

material.

TIMSS 2019 used a stratified two-stage cluster sample design to ensure that

the data gathered can be used as a nationally representative sample of the pop-

ulation of eighth grade students within a country (Martin et al., 2020). As part

of this complex survey design, students taking part in the study are assigned a

sampling weight to indicate how many students in the total population they are

representative of. These weights were accounted for in our study by appropriately

weighting the treatment effect estimates of individual students when calculating

the mixed average treatment effect for the student population.

One extra complicating factor that must be addressed when working with data

from TIMSS is the use of plausible values for student achievement. It is difficult

for TIMSS to accurately estimate student achievement with only a limited number

of mathematics/science questions, and this is further complicated by the fact that

not all students answer the same booklet of questions during the TIMSS study.

Therefore, instead of providing a single achievement estimate of each student,

the TIMSS study organisers have drawn five plausible values from the posterior

distribution of each student’s achievement level in order to better represent the

underlying uncertainty that is present (Wu, 2005). In line with best practice, these

five plausible values which are available in the public data were fully accounted for

in our study. Five MCMC chains were run for every model, each corresponding to

one of the five plausible values. These chains were pooled together after burn-in

to capture the uncertainty in the provided estimates of student achievement.

Prior to this model fitting process, the overlap assumption, which is partially

testable, was assessed by visually inspecting density plots of the propensity scores

for each of the “Has Study Desk”, “Often Absent”, and “Often Hungry” factors, for

treated and control units to confirm there were no regions lacking common support.

Additionally, similar visual checks were conducted for all continuous covariates,

while for categorical variables, contingency tables were created to ensure that no

levels contained only treated or only control units.

Finally, there is a clear hierarchical structure to the TIMSS data as students

are nested within classrooms. Failure to account for such designs can lead to in-

accuracies, and underestimation of model uncertainty. Therefore the multivariate
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BCF model we have applied to the data has been equipped with an extra random

intercept parameter to account for the between classroom variation:

Y i = µ(xi) + τ (xi)Zi +αclass,i + ϵi

where αclass is an added multivariate random intercept term for each classroom.

We assume that each αclass comes from a multivariate normal distribution with a

population mean µα and population covariance matrix Σα: αclass ∼ N(µα,Σα),

where the prior on µα and Σα is: µα ∼ N(m = 0, s = 0.01I), and Σα ∼ W−1(a =

1,Ω0 = 0.1I).

To obtain the results in the following section, three separate multivariate BCF

models were applied to the TIMSS data, one for each of the treatments under inves-

tigation. For each model, the five plausible value chains were run for 3000 burn-in

and 2000 post burn-in iterations, with every second iteration kept to reduce mem-

ory costs. A total of 100 BART trees were used for the prognostic component µ(),

while a smaller number of 50 BART trees were used for estimating the treatment

effects τ(). Satisfactory convergence was assessed via visual inspection of samples

from the variance covariance matrix Σ, predicted values µ̂ and τ̂ for a random

sample of individuals in the dataset, and the MATE estimates themselves. For

comparison, we have also obtained results using a univariate BART, and univari-

ate BCF approach. The bartCause package used for fitting the univariate BART

model included functionality for working with hierarchical data, however, this fea-

ture was not present in the univariate bcf package, so to obtain the univariate

BCF results we instead applied our multivariate BCF model to each outcome sep-

arately in order to make use of the random intercept feature available with the

model. The multivariate BART model (Um et al., 2023) was not employed here

as it does not include functionality for working with hierarchical data.

4.5.2 Results

In the left column of Figure 4.3, we show density plots of the posterior distribu-

tions of the mixed average treatment effects for each of the treatments we have

investigated. Detailed credible intervals for each of these treatments can be found

in Table 4.3 which also provides the control and treatment group sizes for each
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intervention under investigation. For comparison, results from the other three

methods used in the simulation study have also been included. The treatment

group size for “Has Study Desk” is 3672, indicating that 89% of the students in

the sample did report having a study desk at home, while the remaining 11% did

not. The control and treatment group sizes for often being hungry when arriving

at school or often being absent have similar interpretations. A broader discussion

of the wider context of these results can be found in the following section, but for

now we will focus only on a summary.

Table 4.3 summarises the mixed average treatment effect results obtained from

each of the methods applied to the TIMSS data. Reassuringly, the MATE esti-

mates from each of the three methods are very similar, displaying a high level of

agreement for every treatment under investigation. The credible interval widths

are also of a very similar size and exhibit a high degree of overlap in each case.

This agrees with what we saw in the simulation study results, which showed that

the clearest improvements in performance related mainly to the estimation of the

heterogeneous treatment effects. It is worth noting that despite the high level of

agreement among all methods compared here, the true treatment effects remain an

unobserved quantity, so the results from the real TIMSS data can not be used to

compare the performance of the models - this is a task best suited to the simulation

study results. As a further comparison, we have included Table 4.4, which presents

the results of a 10-fold cross-validation for each of the three methods, assessing

their predictive performance on student achievement in mathematics and science.

Here, the multivariate BCF model displays a modest improvement in performance

relative to the univariate BCF model. The univariate BART model is the best

performer here, and this is expected given the primary focus of BART on predict-

ing y rather than directly targeting treatment effects. Again, it is important to

clarify that these results do not necessarily imply strong predictive performance in

estimating the treatment effects (τ), as knowing the ground truth of the treatment

effects is not possible.

To assist in the interpretation of the results that follow, consider that student

achievement at the eighth grade in mathematics in Ireland is approximately nor-

mally distributed with mean 524, standard deviation 73, and students at the 10th

and 90th percentiles scoring approximately 432 and 614 respectively. Therefore,
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TIMSS 10-Fold Cross Validation Results (RMSE)

MVBCF BCF BART

Mathematics Science Mathematics Science Mathematics Science

Has Study Desk 43.46 52.82 45.10 53.90 43.00 52.27
Often Hungry 43.70 53.15 45.12 53.94 43.03 52.08
Often Absent 44.27 53.89 45.20 54.00 43.41 52.74

Table 4.4: 10-Fold cross validation results for each method applied to TIMSS.
MVBCF performs strongly with marginally better results than the standard uni-
variate BCF model.

a treatment effect magnitude of 7.3 would correspond to a 0.1 standard devia-

tion increase/decrease in student achievement in mathematics. Effect sizes of this

magnitude are common in educational studies and can be thought of as being

“medium” in size (Kraft, 2020). Science achievement follows a very similar distri-

bution with mean 523 and standard deviation 83.

Multivariate BCF clearly identifies access to a study desk at home as having

a positive impact on student achievement in mathematics. The effect of having

a desk on student achievement in science is less clear however, and the mixed

average treatment effect is centred very close to zero. Our results for the second

treatment under investigation, often being hungry at school, show that this fac-

tor is associated with a very negative impact on both mathematics and science

achievement. The magnitude of the effect identified is almost identical for both

mathematics and science achievement. Finally, often being absent from school is

also identified as having a negative impact on achievement in both mathematics

and science. The impact on science achievement however, as was the case with

having access to a desk, is slightly less clear than for mathematics achievement.

The effects in mathematics and science achievement are positively correlated for

all three treatments under investigation. This agrees with our intuition that the

effect any of these three factors may have is likely to be similar on achievement

in both subjects. We did observe some differences in magnitude however, most

notably in relation to the “Has Study Desk” treatment.

Given these findings, it is important to consider the implications of multiple
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comparisons. First, there is a multiple comparisons concern arising from testing the

effects of three different factors. This is acknowledged as a limitation. Then there

is a second concern arising from analysing their effects on two outcomes, which we

believe should be mitigated by the multivariate nature of the model. By jointly

estimating the effects of each factor on both mathematics and science achievement,

the model explicitly accounts for the relationship between these outcomes, and

incorporates this dependence into the posterior of the effects on both outcomes.

Often, the effects of a treatment felt by an individual may be adjusted by one or

more moderating variables. Thus in addition to the density plots for the MATE, we

have included a scatterplot of the individual conditional average treatment effects

(ICATEs) in the right column of Figure 4.3, coloured by the parental education

variable to help highlight some of the underlying heterogeneity. This variable

was chosen because it appeared quite frequently in the splitting rules of the τ

part of the model, indicating the model had identified this variable as a source

of heterogeneity in the treatment effects. This can be seen visually in Figure 4.3,

as children with parents of a similar education level tend to be clustered quite

close together, albeit less so in the “Has Study Desk” treatment where there is

considerably less heterogeneity and all of the ICATE estimates are concentrated

quite closely together.

While parental education is used here as a categorical variable to aid in the

visualisation of treatment effect heterogeneity, it is important to acknowledge its

close and well-documented association with broader indicators of socioeconomic

status (SES). Within the TIMSS dataset, higher levels of parental education are

consistently correlated with increased access to home educational resources, more

advantaged school environments, and other key markers of socioeconomic advan-

tage. As such, the patterns of heterogeneity observed in the treatment effects likely

reflect underlying SES-related variation, the exact nature of which is beyond the

scope of this study.

Home resources and school resources also appeared quite frequently in the set

of splitting rules. To investigate the moderating effect of these variables we have

created individual conditional expectation (ICE; Goldstein et al., 2015) plots which

visualise the dependency of the treatment effects on these covariates. Figure 4.4

shows the results for the treatment “Often Hungry” which exhibits an interesting
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Figure 4.4: ICE Plot of the moderating role of school resources on the “Often
Hungry” treatment effect. (Random sample of 100 students to avoid overprinting).
A jittered rug has been added to the x-axis to display the distribution of the average
school resources variable. Students in schools with fewer resources appear to be
less negatively affected by arriving to school feeling hungry.

trend, as it would appear students in schools with fewer resources tend to expe-

rience a less negative treatment effect. Schools in disadvantaged areas with fewer

resources are more likely to receive access to free school meal programmes in Ire-

land (Department of Social Protection, 2023), so this is possibly an indication that

free school meal programmes are successfully mitigating the negative consequences

of students often arriving at school feeling hungry. Without knowing which schools

do in fact participate in free school meal programmes, however, we can only spec-

ulate on the true moderating role of school resources here. A different pattern

is observed in Figures 4.5 and 4.6 which show that students with more educated

parents and more home resources are less negatively affected by frequent absences

from school. These students may be in a better position to “catch up” on missed

school work due to the physical and parental resources available to them. However,

due to the black box like nature of BART and BCF, we must acknowledge that our

understanding of the genuine moderating role of home educational resources and

parental education in the context of frequent school absences remains speculative.
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Figure 4.5: ICE Plot of the moderating role of home educational resources on the
“Often Absent” treatment effect. (Random sample of 100 students to avoid over-
printing). A jittered rug has been added to the x-axis to display the distribution
of home resources variable. Students with greater educational resources at home
appear to be less negatively affected by regular absences. Notice the two clusters
of blue lines which correspond to students who know and don’t know their parent’s
education level (See Figure 4.6).

4.6 Discussion

Motivated by data from the Trends in International Mathematics and Science

Study which includes information on student achievement in both mathematics

and science, we have developed a multivariate extension of Bayesian Causal Forests

which can be used to estimate the causal effect of an intervention on two or more

outcome variables simultaneously. The key advantage of our approach is the use of

the same tree structure for both outcome variables. This enables us to leverage the

shared variance across the outcomes, resulting in improved predictive performance,

as demonstrated in our simulation study.

The results from our simulation study indicate that the multivariate BCF

model is capable of estimating causal effects with a greater level of accuracy than

the univariate BCF model and both BART based approaches. Our model was

robust to violations of the model assumptions affecting only one of the outcome

variables of interest. In the case where the target variables were not well suited to

a multivariate approach it was observed that MVBCF performed equally as well

as the univariate BCF model, showing that there was no reduction in performance
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4.6. DISCUSSION

below that of a univariate model. As well as observing an increase in predictive

performance, we noted that our multivariate BCF was able to attain satisfactory

coverage and minimal bias.

In our application of the multivariate BCF model to the motivating TIMSS

dataset we found that access to a study desk at home is associated with a clear

increase in mathematics achievement, but with no discernible change in science

achievement. Unsurprisingly, often being hungry at school was identified as having

a very negative impact on achievement in both mathematics and science. A similar

negative effect was found to be associated with often being absent from school.

These results agree with findings from previous studies within the field of education

which have identified the importance of home-related factors for predicting student

achievement in mathematics and science (e.g. Tsai and Yang, 2015; Vik et al.,

2022; Vesić et al., 2021). Our study therefore makes an important contribution by

verifying these results within a causal inference framework.

Our results provide further evidence of the potential for targeted interventions

such as free school meal programmes to tackle the negative consequences of stu-

dents frequently lacking a healthy breakfast in the morning, or a lunch while they

are at school. Notably, 23% of students in our dataset reported frequently experi-

encing hunger when arriving at school, and this hunger had a significant impact,

reducing student achievement by approximately five units in both mathematics

and science. The positive effect of having a study desk (Mathematics MATE

= +4.61) may also indicate an opportunity to inform parents about the impor-

tance of students having dedicated study spaces at home, as 10% of students in

the data did not report having access to a study desk. Finally, the clear negative

impact that was observed from students often being absent (Mathematics MATE

= −7.20, Science MATE = −3.45) may highlight the potential for schools to in-

vestigate these absences, and to prepare extra supports for the 12% of students

affected by this.

An important ethical consideration arising from this work concerns the treat-

ment of socioeconomic status (SES) as a confounding variable. While this approach

allows for the estimation and isolation of treatment effects separately from broader

SES influences, it also carries the risk of obscuring the deeper, structural inequal-

ities that shape educational opportunity and achievement. In particular, isolating
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the effects of variables such as hunger, absence, or lack of study space may under-

state the role of broader systemic disadvantage, which often manifests through and

is reinforced by socioeconomic conditions. It is therefore important to interpret

these findings within the wider context of educational inequality, recognising that

the variables analysed here may act as surface-level indicators of more entrenched

social and economic disparities.

One limitation of multivariate tree based models is that they can struggle when

the outcome variables of interest are weakly or not at all correlated. In some set-

tings it may be the case that a very different tree structure is appropriate for

the outcome variables, and in these situations the requirement that both outcome

variables share the same tree structure can be quite restrictive, leading to a reduc-

tion in overall performance. This is evident from our simulation study, in which

a slight reduction in performance was observed in MVBCF when applied to simu-

lated data of this type. We note, however, that limitations of this kind are unlikely

to apply to our investigation of the TIMSS data because there is a strong positive

correlation between student achievement in mathematics and science, r ≈ 0.85,

and it is likely that variables related to a student’s family’s socioeconomic status

or school will have a similar effect on achievement in both subjects, thus making

a shared tree structure very appropriate.

A second limitation arises from the cross-sectional nature of the TIMSS data,

which makes it difficult to establish the temporal ordering of variables with cer-

tainty. For instance, in the analysis of school absences, we included students’ sense

of school belonging as a potential confounder. While this variable could plausibly

influence student absences, it may also reflect a student’s feelings about school

after a pattern of regular absences has already developed — thereby acting more

as a mediator than a confounder. If this is the case, our estimates capture the

direct effect of absence on achievement, rather than the total causal effect. Future

work using longitudinal or experimental data would help to further explore these

temporal relationships and strengthen the results.

While not emphasised, the hierarchical extension of the model adopted in this

study is likely to hold significant value across many domains. Multilevel datasets

are common in many settings, and nowhere more so than in the context of educa-

tion, where accounting for hierarchical structures is crucial. Despite this, the only
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existing multilevel BART and BCF applications we are aware of prior to this study

are those of Dorie et al. (2022), and Yeager et al. (2019), who also applied BCF

to a multilevel dataset with different schools. Therefore, the development of more

advanced BCF models with the capability to account for even more complicated

hierarchical data structures, perhaps with multiple levels of data would be very

valuable. In particular, extending the work of Wundervald et al. (2022) which

proposes a hierarchical extension of BART would be of interest.

A second advantage of the multivariate model, which was not emphasised in

this chapter, is its usefulness in tackling the multiple comparisons problem. By

jointly modeling all outcome variables and explicitly capturing their relationships,

the model may reduce the risk of false discoveries that can arise from conducting

separate analyses. This approach allows for more precise estimation of treatment

effects, while also accounting for the correlations between outcomes, leading to

more robust and reliable inferences. Therefore, the multivariate approach adopted

in this Chapter can provide a principled way to address concerns related to multiple

hypothesis testing, strengthening the validity of the results.

The measures of mathematics and science achievement used in this study are

both continuous outcome variables. Often in education research, a question of in-

terest is whether or not students have attained a specific level of mastery or ability

in a given topic. These levels of mastery may be a simple binary outcome (achieved

or has not achieved mastery), or may be ordinal (for example low, medium, or high

level of mastery). Therefore, while some work has been conducted in the area of

BART/BCF and binary outcomes (Hu et al., 2020; Starling et al., 2021), an ex-

tension of the work by Murray (2021) to multinomial or ordinal outcomes with

BCF also presents a very exciting area for future research. Combining this with

the multivariate BCF extension in this study would also potentially allow for a

mixture of continuous, binary, or other types of outcomes.

To enhance the flexibility of the multivariate BCF approach, one potential av-

enue for further development is to enhance its flexibility by partitioning the ensem-

ble of BART trees, denoted as µ(), into subsets. Specifically, one subset, denoted

as M1, could be dedicated to independently predicting the first outcome, while

another subset, M2, could focus on predicting the second outcome. Additionally,

a third subset M3 could be designed to address all outcome variables collectively.
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This increased adaptability would empower the multivariate BCF method to bet-

ter accommodate distinct tree structures that might be well-suited for handling

highly uncorrelated outcome variables, by allowing it to benefit from any corre-

lation in the outcome variables through M3, while also allowing the model to

construct separate tree structures M1 and M2 for both outcomes if necessary. A

similar modification could also be applied to the ensemble of trees responsible for

predicting τ if there is reason to believe that the treatment effect is likely to have

a very different impact on both outcomes, and the effect is likely to be moder-

ated by a distinct set of variables for each outcome. In fact, since authoring this

Chapter, other researchers have begun work on implementing a similar approach

for use with BART (Esser et al., 2024). One potential drawback of this approach,

however, is that by devoting a separate ensemble of decision trees to each outcome,

the computational cost of this approach may limit its applicability to relatively

small numbers of outcome variables.

Finally, although our motivating dataset came from the world of education

in this study, it is also likely that our multivariate approach would be useful in

other fields such as economics or medicine. A researcher may be interested for

example in the effect of a drug D on both the systolic and diastolic blood pressure

of patients who have been prescribed it by their doctor. Areas for future research

therefore also include the application of multivariate BCF to other disciplines with

multivariate outcomes of interest.
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5
Little and Often: Causal Inference

Machine Learning Demonstrates the

Benefits of Homework for Improving

Achievement in Mathematics and Science

5.1 Introduction

Homework plays a significant role in the daily lives of many students. Defined

as the tasks assigned to be completed outside of school hours (Cooper, 1989),

its role in shaping academic outcomes is far from understood. The conflicting

perspectives surrounding the benefits and drawbacks of homework (Marzano and

Pickering, 2007) continue to permeate educational literature, sparking ongoing

discourse that shows no signs of abating. Some argue that homework is necessary

for reinforcing learning and developing important skills such as time management

and responsibility (Palardy, 1988), while others claim that it can be detrimental

to students’ mental health, and reduce the amount of time available for other

important activities (Galloway et al., 2013).

Much of the research on homework indicates a modest yet positive impact on

academic outcomes. However, this assertion demands critical examination. No-

tably, there is a growing awareness of the need to scrutinise how homework is

distributed throughout the week (Trautwein et al., 2002), how its effects may dif-
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fer by subject (Fernández-Alonso et al., 2017), and how students from different

socioeconomic backgrounds can be impacted by homework (Eren and Henderson,

2011; Rønning, 2011). Compounding these issues is the ubiquitous challenge of

confounding which is inherent in observational data, rendering causal interpreta-

tions elusive. However, causal inference methods remain a neglected avenue in the

study of homework effects.

Motivated by these gaps in the research, this study employs a new approach

to unravel the complex relationship between homework frequency, duration, and

student achievement. Unlike previous research which has typically focused on a

single subject at a time, our investigation extends to both mathematics and science.

Critically, we leverage a recent extension (McJames et al., 2024, Chapter 4) of a

causal inference machine learning model called Bayesian Causal Forests (Hahn

et al., 2020), marking a departure from conventional methodologies and allowing

a more precise understanding of causal relationships.

The key advantage of this model is its flexibility. While simpler models often

rely on rigid assumptions, such as assuming a linear relationship between explana-

tory variables and the outcome, the model employed in this study utilises a set

of decision trees. These decision trees can adapt automatically to complex fea-

tures, such as non-linear relationships or interaction terms, without requiring the

researcher to specify these relationships in advance. This is an important feature,

because complex factors are known to influence the amount of homework students

are likely to receive, and the benefit they may derive from it (Corno, 1996).

By accurately accounting for these often complicated relationships, the model

separates the estimation of student achievement into two distinct parts: a level of

achievement which would be observed without any homework, and a second part

which estimates the change in achievement directly attributable to the homework.

This isolation of the causal impact of homework from other associations allows for

a causal interpretation of the results. Specifically, the causal estimates provided

by the model are known as conditional average treatment effects: they estimate

for each individual the amount by which their achievement would change by if

they were moved from a control group (no homework) to a hypothetical treatment

group (homework with a defined level of frequency and duration).

We apply this model to Irish eighth grade data from the Trends in International
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Mathematics and Science Study (TIMSS 2019, Mullis et al., 2020): A nationally

representative sample of Irish eighth grade students, with an average age of 14.4

years, 51.2% of whom identified as male. The data provides us with an estimate

of academic achievement in both mathematics and science, as measured by a stan-

dardised assessment. Important contextual information related to the backgrounds

of the students, their parents, their attitudes towards studying these subjects, and

insights into their school learning environment are also provided. This data, com-

bined with details of how often the students receive homework, and how long this

homework usually lasts, makes TIMSS very well suited to the current investigation.

A more detailed description of our model, and the Irish data to which it is

applied can be found in the methodology section, but now we review some key

findings from the literature, and the unanswered questions motivating our study.

5.1.1 Factors Influencing Homework Efficacy

Frequency, Duration, and Time Spent on Homework

Studies exploring the impact of homework typically report a modest yet positive

association with student achievement (Cooper et al., 2006). However, the liter-

ature also reveals a less optimistic side, indicating that an excess of homework

can yield diminishing returns or, in some cases, even detrimentally affect stu-

dent performance (Cooper, 1989). Despite these findings, a concerning feature of

numerous investigations examining the homework and student achievement rela-

tionship is the reliance on models which assume a linear relationship (Zhou et al.,

2023). This reliance on a linear framework oversimplifies the dynamics at play,

potentially obscuring crucial insights.

Moreover, only a limited number of studies have ventured into determining

the optimal amount of time students should dedicate to homework. The precise

identification of a threshold, beyond which additional homework yields no dis-

cernible benefit, holds substantial value. Such insights could empower educators

to streamline homework assignments, optimising efficiency and benefits, while mit-

igating potential adverse effects such as heightened stress levels, reduced time for

extracurricular activities, and strains on families (Galloway et al., 2013; Pressman

et al., 2015).
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An often overlooked facet in homework studies is the strategic allocation of

homework time throughout the week. Trautwein et al. (2002) underscored the

importance of considering not only the total time spent on homework but also the

frequency at which it is given. Their study revealed that homework frequency is a

strong predictor of academic achievement, while overall time spent on homework is

not. This highlights the need to dissect homework into its frequency and duration

components for a more nuanced understanding. The primary importance of home-

work frequency rather than duration is further supported by Fernández-Alonso

et al. (2019) and Trautwein (2007) who arrive at similar conclusions. However,

Zhu and Leung’s (2012) contrary findings complicate this narrative, emphasising

the necessity for further research into the nuanced effects of homework frequency

and duration to reconcile these conflicting perspectives.

Subject Specific Homework Effects

In addition to the frequency and duration considerations discussed above, a number

of studies have indicated that the effects of homework on student achievement may

vary depending on subject. Results in this area are quite limited however, and

studies which have compared effect sizes in mathematics to other subjects such as

history or English have returned conflicting results. Some studies report a notably

stronger relationship between homework and mathematics achievement (Eren and

Henderson, 2011), while other studies have characterised the relationship within

mathematics as the weakest when compared to other subjects (Fernández-Alonso

et al., 2017). Subject specific differences are therefore likely to exist, but the precise

nature of these differences is difficult to determine without further research.

Further emphasising the need to differentiate between different academic sub-

jects, research has shown that subject specific motivational factors can significantly

contribute to the effort students put into completing their homework (Trautwein

and Lüdtke, 2009), thus influencing the benefit they can derive from it (Flunger

et al., 2015). Notably, an extra difference commonly reported in the literature

is that homework time commitment expectations tend to be quite high in math-

ematics relative to other subjects (Fan et al., 2017). These variations in time

expectations indicate that not only can the effects of homework differ by subject,
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but the nature and extent of the academic demands imposed on students can vary

significantly between subjects as well.

Socioeconomic Background and Homework Benefits

A common finding from homework studies is that students from socioeconomically

advantaged backgrounds can benefit more from homework than their peers (Patall

et al., 2008; Tan et al., 2020). This apparent divide could stem from many reasons

such as greater access to study aids at home, a more suitable study environment

with a desk, or the extra guidance that highly educated parents might be able to

provide to their children. Findings such as this could also potentially stem from

unobserved confounding if students from advantaged backgrounds are more likely

to be provided with higher quality or better targeted homework assignments from

school teachers (Dettmers et al., 2010).

Among these factors, one of the most explored is the role of parental involve-

ment in homework (Patall et al., 2008; Gonida and Cortina, 2014; Viljaranta

et al., 2018), and how its impact may be moderated by socioeconomic status.

Studies such as those by Daw (2012) and Eren and Henderson (2011) have un-

covered significant interactions between parental income or education and the

efficacy of homework. This has led some authors to conclude that homework

may be partially responsible for perpetuating social inequalities by widening the

achievement gap between those from advantaged and disadvantaged socioeconomic

backgrounds (Rønning, 2011). On a more positive note, some research suggests

that these adverse effects may be partially mitigated by carefully designing home-

work assignments that confer no advantage to privileged students (Edwards, 2018),

and educating teachers about the struggles faced by disadvantaged students (Mc-

Crory Calarco et al., 2022). Despite the importance of this issue however, we did

not find any causal studies that examined the moderating role of socioeconomic

status in homework effects, so there remains room for further exploration.

In addition to leading to a widening achievement gap, some authors have also

explored the added stress that homework can cause parents when they feel un-

able to help their children effectively (Lutz and Jayaram, 2015; Solomon et al.,

2002). Therefore, while this study focuses on exploring the relationship between
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homework frequency, duration, and academic outcomes, it is important to recog-

nise the broader implications and potential trade-offs associated with homework

assignments.

5.1.2 Causal Inference and Advanced Modelling Techniques in Homework

Studies

A common thread that runs through almost all homework studies is the challenge

of working with observational data. Randomised controlled trials are the gold

standard in all areas of research, but factors such as cost and complexity usually

make experiments of this type very difficult, necessitating the use of observational

data (West et al., 2008). While rare, however, a number of homework studies

have employed experimental designs: randomly assigning students to homework

versus no homework groups, or to groups using traditional versus online homework

systems (Grodner and Rupp, 2013; Foyle et al., 1990; Roschelle et al., 2016). Reas-

suringly, results from experiments such as these have often been in agreement with

the majority of the literature, affirming a small but positive effect of homework.

Due to the difficulty of organising these studies, however, they are often limited to

relatively small sample sizes and rarely involve representative samples, somewhat

limiting the generalisability of these findings (Daw, 2012).

Observational data on the other hand is often much easier to collect, allowing

rich data sets of representative samples to be collected as part of large scale na-

tional or international studies. Nevertheless, the drawback lies in the non-random

selection of treatment groups, influenced by individual characteristics, commonly

known as confounding variables. These variables may create an illusion of causality

between two factors, introducing potential biases into statistical analyses (Green-

land et al., 1999). Causal inference is the field of study focused on addressing

these concerns, and various methods have been developed to mitigate these issues.

Techniques range from controlling for confounding variables and matching indi-

viduals based on similar characteristics, to understanding how these traits impact

group membership propensity (Hill, 2011; Stuart, 2010; Pan and Bai, 2018).

Despite often relying on observational data, however, few studies have actively

integrated these methods into their investigations. In fact, to our knowledge, the
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work by Gustafsson (2013) stands alone as an example. Moreover, despite the

intricate nature of the relationship between homework and student achievement

(Corno, 1996), and the myriad factors interacting with homework to influence its

effectiveness, modern machine learning-based methods that can account for these

complex patterns within the data are seldom utilised. A notable exception is

the study by Eren and Henderson (2008), which linked homework to academic

achievement using both parametric and non-parametric statistical models. The

non-parametric approach used in their study demonstrates the potential of flexible

and accurate regression models in homework related studies, which are seen too

rarely in education research.

5.1.3 The Current Study

Our study aims to reduce the remaining uncertainty surrounding the effects of

homework on student achievement by combining three key features of studies con-

ducted by Trautwein et al. (2002), Eren and Henderson (2008), and Gustafsson

(2013). To accomplish this, we employ a causal inference machine learning model

to answer the following research questions:

RQ1: What is the effect of homework frequency on Irish students’ mathe-

matics and science achievement in TIMSS 2019? (Where homework

frequency is defined to be the number of days each week a student

is normally given a homework assignment of any duration)

RQ2: What is the effect of homework duration on Irish students’ mathe-

matics and science achievement in TIMSS 2019? (Where homework

duration is defined to be the number of minutes typically required

by a student to complete each homework assignment)

Given our dual focus on student achievement in both mathematics and science,

we also attempt to answer:

RQ3: Is the optimal distribution of homework frequency and duration dif-

ferent in mathematics and science?
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Finally, informed by prior research which indicates that students from advantaged

socioeconomic backgrounds may benefit more from homework than other students,

we ask:

RQ4: Do advantaged students benefit more from homework than their

peers?

The remainder of this chapter is structured as follows: First, we introduce the

TIMSS 2019 dataset, and the Irish sample of students who are the subject of our

study. We also describe our analytical strategy, based on multivariate Bayesian

Causal Forests. We then present the results of our study, highlighting how they

address our research questions. This is followed by a broader discussion, explaining

how our results relate to previous research, outlining the main contribution of our

study, and some limitations. Finally, we conclude this chapter by considering

the implications of our research for homework policy, and provide suggestions for

future research.

5.2 Method

5.2.1 Data and Sample

Our study uses data from the seventh cycle of the Trends in International Mathe-

matics and Science Study, TIMSS 2019, organised by the International Association

for the Evaluation of Educational Achievement (IEA, Mullis et al., 2020). TIMSS

2019 took place in 64 countries, which represented the largest cycle of this study

to date. TIMSS surveys students in the fourth and eighth grades but we focus

our attention on the Irish eighth grade subset of the data, comprising a nationally

representative sample of 4118 students. For context, these students are in their

second year of secondary school in Ireland, and are preparing for a national set

of examinations called the Junior Cycle Examinations. This is not considered a

high stakes exam, but it serves as a way to assess students’ progress, and will help

to determine the level of the courses the students will undertake for their final

examinations, known as the Leaving Certificate. Additionally, the Junior Cycle

Examinations provide valuable examination experience without the high-stakes
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implications. To ensure a nationally representative sample, TIMSS 2019 employed

a stratified two stage cluster sampling design which sampled complete classes from

a list of all suitable schools within a country. The sampling weights resulting from

this design were fully accounted for in our analysis by appropriately weighting our

results.

As part of TIMSS, the fourth and eighth grade students from participating

countries complete a short assessment in mathematics and science to measure

their achievement levels in these subjects. Additionally, the eighth grade students

answer a survey consisting of various questions designed to gauge their motivation,

confidence, and how much they like studying mathematics or science. Questions

related to their socioeconomic status such as how many books they have at home,

and the education level of their parents are also included. To offer a more com-

prehensive view of the students’ educational experiences, TIMSS extends its data

collection efforts to encompass input from their mathematics and science teachers,

as well as school principals. Mathematics and science teachers participate by com-

pleting a questionnaire that covers various aspects of classroom teaching practices,

their perception of discipline, homework assignments, and other pertinent factors.

Meanwhile, school principals provide valuable insights into school-related matters

such as available resources, the emphasis on academic achievement, and various

school characteristics.

Summary statistics on important characteristics related to the Irish eighth

grade sample of students can be found in Table 5.1. Further statistics on all vari-

ables collected during TIMSS, including other countries which were not examined

as part of this study can be found in the code books and almanacs published by

the IEA (Fishbein et al., 2021). Note that in order to interpret the variables asso-

ciated with the teacher or the school in Table 5.1, it is necessary to view them as

characteristics of the students. For example, the percentages in the teacher gender

section mean that 34.4% of students have a male mathematics teacher, not that

34.4% of mathematics teachers in Ireland are male.

Aside from the authors’ familiarity with the Irish school system, our decision

to focus on Ireland was based primarily on two reasons. Firstly, science is taught

as part of an integrated curriculum in Ireland, which includes biology, chemistry,

physics, and earth and space. Junior Cycle Science teachers in Ireland are trained
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in, and responsible for teaching all aspects of the science curriculum to their stu-

dents. This makes Ireland well-suited to our study of homework, as there is no

need to consider variations in homework requirements across the different science

strands, and students are typically taught by the same teacher for the whole course

which is taught as a single subject. Secondly, the sample size of 4118 students is

well-suited to our machine learning approach, as it is large enough to enable the

model to detect relationships and interactions between variables in the data.

5.2.2 Measures and Variables

Homework

The homework indicators we will use in this study to measure the frequency and

duration of homework assignments come from the student questionnaire (TIMSS

& PIRLS International Study Center, 2020). Students were asked “How often

does your teacher give you homework in the following subjects?”, and the possible

responses for both mathematics and science were 1) “Every day”, 2) “3 or 4 times

a week”, 3) “1 or 2 times a week”, 4) “Less than once a week”, or 5) “Never”.

The inclusion of “Every day” as a possible response introduces a minor ambiguity

here, as some students might interpret it as “every day we have class”, which may

not equate to five days per week. Nevertheless, due to the clear and sequential

structure of the response options, we believe it is reasonable to expect that most

students would have correctly understood “Every day” to mean five days per week.

For homework duration, the question asked was “When your teacher gives you

homework in the following subjects, about how many minutes do you usually spend

on your homework?”, with possible responses being 1) “My teacher never gives me

homework in (mathematics / science)”, 2) “1-15 minutes”, 3) “16-30 minutes”,

4) “31-60 minutes”, 5) “61-90 minutes”, and 6) “More than 90 minutes”. This

measure of duration refers to the average time spent on each assigned homework

assignment. Therefore, for a student who reports receiving mathematics homework

every day, with a duration of 16-30 minutes on average, their total weekly time

spent on mathematics homework is likely to be between 80, and 150 minutes.

Student interpretations of these questions could also impact results in another

way. If students delay homework and complete multiple assignments in one sitting,
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their reported duration may reflect accumulated work rather than the time spent

on a single assigned task. This could confound the results in a complicated way

that would depend upon both 1) how students interpret and respond to the TIMSS

question, and 2) their own decision-making regarding homework scheduling. Ad-

ditionally, there is the possibility that students who achieve lower academically

might be more likely to misunderstand the question, resulting in systematic differ-

ences in reporting accuracy. This could introduce additional biases in the observed

relationships between homework patterns and achievement, making it even more

challenging to draw accurate conclusions. While a full investigation of these issues

was beyond the scope of this study, it is important to acknowledge these potential

limitations when interpreting the results.

The student responses to the TIMSS 2019 student questionnaire indicating

how regularly they receive homework in mathematics and science, and how much

time they normally spend on this homework are summarised in Table 5.2. Mean

achievement scores observed in each category are also provided. Note that the

percentages in the homework duration categories do not add to 100% as some

students reported never receiving homework. An interesting observation from

Table 5.2 is that homework frequency tends to be much lower in science than in

mathematics, with 67% of students reporting receiving mathematics homework

every day, while only 16% of students report receiving science homework with the

same frequency. In contrast, homework duration appears to be remarkably similar

across both subjects. A tile plot displaying the popularity of each frequency and

duration combination is shown in Figure 5.1. A very popular combination in

mathematics appears to be homework every day, with a duration of 16-30 minutes.

A plausible reason for the higher frequency of homework in mathematics rel-

ative to science is that it is common for more instructional time to be devoted

to mathematics than to science in Ireland. Schools can exercise autonomy in this

regard in Ireland (Prendergast and O’Meara, 2017), so variations will exist from

school to school, but the TIMSS 2019 data showed that the most common instruc-

tional time per week in mathematics was 200 minutes, while for science the most

common instructional time was lower at 160 minutes. Clearly, instructional time is

likely to be strongly related to the amount of homework assigned in each subject,

so this is controlled for as a confounding variable.
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Homework Frequency and Duration

Frequency: Never
Less Than

Once a Week
1 or 2

Times a Week
3 or 4

Times a Week Every Day
Mathematics 1.0% (434.4) 1.0% (484.3) 5.3% (502.6) 25.7% (513.6) 66.9% (534.9)
Science 4.2% (479.2) 16.0% (539.8) 38.7% (535.0) 25.3% (533.1) 15.8% (514.1)

Duration:
1-15

Minutes
16-30

Minutes
31-60

Minutes
61-90

Minutes
More Than
90 Minutes

Mathematics 34.8% (517.3) 43.6% (533.8) 16.7% (533.1) 2.5% (524.7) 1.4% (511.4)
Science 40.0% (531.6) 41.0% (537.1) 12.3% (526.9) 1.5% (510.9) 1.0% (458.7)

Table 5.2: Reported frequency and duration of homework - observed data from the
TIMSS 2019 student questionnaire. The mean achievement of students belonging
to each category is shown in brackets after the percentage. Note that as these
achievement scores come directly from the observed data, care should be taken
when interpreting them, as other factors are likely to be influencing the achieve-
ment levels. Homework frequency is much higher in mathematics. Homework
duration is quite consistent across both subjects.
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Figure 5.1: Tile plot of homework frequency and duration. The plot shows, for
mathematics and science, the number of students who reported each combination
of frequency and duration.
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Later in our analysis, given the very small proportion of students reporting a

homework frequency of less than once or twice per week, and the small proportion

of students reporting a homework duration of greater than 30 minutes, we will

focus on the aggregated categories of “up to once or twice per week”, “three or

four times per week” and “every day” for frequency, while for duration we will

focus on the categories of “1-15 minutes”, “16-30 minutes”, and “greater than 30

minutes”. This will help to ensure a more parsimonious model, allow for a simpler

interpretation, and reduce the computational burden on our model.

The mathematics and science teachers were also asked how often they give

homework to their students, and how long they believe the homework should nor-

mally take the “average” student in their class. Therefore, we could have used

the teacher reports as our data instead, but decided the student reported version

would be most appropriate for two reasons. Firstly, the teacher reported duration

of homework only indicates how long the homework should take for the “aver-

age” student in the class, and fails to capture individual level differences which

are bound to exist, and which the students themselves are best placed to report.

Second, we wanted to be able to account for the possibility of homework differ-

entiation, whereby a teacher assigns different amounts of homework to individual

students based on their ability (see for example Keane and Heinz, 2019). This can

also only be accomplished with the student version of the reports.

Student Achievement

Student achievement in TIMSS is measured using a short assessment in both math-

ematics and science. This standardised assessment is carefully designed and val-

idated by the TIMSS study organisers to ensure its validity and reliability for

measuring student achievement (Martin et al., 2020). The assessment is care-

fully structured to cover a diverse range of topics, including algebra, geometry,

and various scientific strands. However, to assign every single item from the pool

of available questions to every student would make the assessment unduly long.

Therefore a rotated booklet design is employed whereby each student answers a

booklet of questions in mathematics and science, each containing a small subset

of the entire pool of questions. By ensuring an overlap exists between assessment
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booklets, i.e., booklet one shares common questions with booklet two, and booklet

two shares common questions with booklet three, it is possible to estimate the

relative ability levels of students whilst ensuring that a wide variety of topics are

covered without burdening students with a very long test. For the first time in the

history of TIMSS, some countries issued the assessment electronically via tablets

or other means in 2019, but Ireland opted for a traditional paper assessment.

Given the difficulty of accurately estimating any student’s achievement level

based on a limited subset of questions, assigning a single point estimate of achieve-

ment to any one student would be misleading. Therefore, to better capture the

uncertainty that is present in the achievement estimates of the students, TIMSS

supplies five plausible values for each student’s achievement in mathematics and

science. These five plausible values were fully accounted for in our analysis by

appropriately pooling the estimates from five separate models, each of which were

applied to one of the five plausible value estimates. Figure 5.2 shows a scatter plot

of student achievement in both subjects using the first of these plausible values.

A very strong positive correlation is evident (ρ ≈ 0.85).

Control Variables

In addition to homework and student achievement in mathematics and science,

TIMSS collects data on many other important factors such as socioeconomic sta-

tus, teacher experience, and school emphasis on academic success. These factors

can act as confounding variables, simultaneously influencing both the likelihood

of receiving treatment and the outcome of interest, potentially biasing results

(Greenland et al., 1999). For instance, teachers in academically focused schools

with already high performing students may assign more homework, believing it

enhances achievement. Alternatively, teachers under pressure to improve student

performance due to low instructional quality may assign more homework as a

means of compensation, obscuring the true relationship between homework and

achievement (Rønning, 2011). Given the ability of confounding variables to lead

to unexpected findings, it is important to control for their effects wherever possi-

ble. Therefore, we have taken steps to control for the influence of many potential

confounding variables from the TIMSS study. A full list of the TIMSS variables
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Figure 5.2: Scatter plot of student achievement in mathematics and science, using
the first plausible value. There is a very strong positive correlation between student
achievement in mathematics and science (ρ ≈ 0.85). The blue line added as a visual
aid is the line y = x.
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Parent Went to 
University?

High School 
Emphasis on Academic 

Success?

More Than 10 Books 
at Home?

Effect of 
Homework = +7

Effect of 
Homework = +5

Effect of 
Homework = +8

Effect of 
Homework = +6

Yes No

Yes No Yes No

Figure 5.3: Example of a BCF model with a single decision tree used to make
treatment effect predictions. The decision rules direct observations from the root
of a tree to its terminal nodes where each observation is assigned a prediction. In
this purely illustrative example, the rules say that for a student with a parent who
went to university, and a high school emphasis on academic success, homework
increases achievement by 7 units.

used in this study can be found in the supplementary materials.

5.2.3 Modelling Approach

Our study makes use of Bayesian Causal Forests (BCF, Hahn et al., 2020), a causal

inference machine learning algorithm based on the highly flexible modelling tool

called Bayesian Additive Regression Trees (BART, Chipman et al., 2010). BART

and BCF are both tree based models, meaning they make predictions by creating a

set of decision rules. When followed, these decision rules form a pathway directing

observations from the root, down to the leaves of a tree, where all observations

belonging to a leaf are assigned a prediction. See Figure 5.3 for an example. The

example used in Figure 5.3 has deliberately been made very simple for illustration,

but in practice, the predictions from BART or BCF are usually made by combin-

ing the outputs from multiple decision trees. BART and BCF can also adapt to

the complexity of the data by increasing or decreasing the tree sizes, and modi-

fying their decision rules as necessary. In this way, BART and BCF are capable

of capturing very complicated patterns in the data such as interactions between

variables and non-linear relationships.
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A particularly powerful feature of BART and BCF is their ability to perform

automatic variable selection. These models automatically assess the importance of

different variables while building the trees, allowing them to prioritise and select

the most relevant variables for making accurate predictions. This feature allows

researchers to include a wide range of predictors that might not be feasible in more

standard approaches, such as linear models, which often require manual selection to

avoid issues like multicollinearity. For these reasons, BART and BCF have become

increasingly popular and have been used in a diverse set of fields such as medicine,

economics, and education (e.g., Spanbauer and Sparapani, 2021; Pierdzioch et al.,

2016; Suk et al., 2021; Prado et al., 2021a).

To separate causation from mere correlation, the BCF model relies on a sta-

tistical framework known as the Neyman-Rubin causal model (Splawa-Neyman

et al., 1990; Sekhon, 2008). This framework, also known as the potential out-

comes framework, is based on the idea that for every observation, or student in

the dataset, there are two potential outcomes, or values of student achievement

that may be observed: One achievement score that would be observed if the stu-

dent was impacted by some treatment or intervention (such as homework), and

one that would be observed if the student was not.

Estimation of causal effects using BCF requires several key assumptions:

(1) Stable Unit Treatment Value Assumption (SUTVA). Each student’s

potential outcomes are unaffected by the treatment assignment of other indi-

viduals (no interference), and the treatment is well-defined without multiple

versions.

(2) Ignorability (Unconfoundedness). Conditional on observed covariates

xi, the treatment assignment Zi is independent of the potential outcomes:

yi(Zi = 1), yi(Zi = 0) ⊥⊥ Zi |xi. This implies that, after adjusting for

covariates, there is no unmeasured confounding.

(3) Overlap (Positivity). For all individuals, the probability of receiving treat-

ment given covariates must be strictly between 0 and 1: 0 < P (Zi = 1 |xi) <

1. This ensures that comparisons between treated and untreated groups are

possible across the range of covariates.
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Provided these assumptions hold, the BCF model uses two sets of decision

trees to predict these outcomes. The first set, often labeled as µ, predicts the

achievement of each student i without the treatment based on their characteristics

xi. The second set, labeled as τ , predicts the change in achievement directly

attributable to the treatment. By combining these predictions, the BCF model

estimates both potential outcomes and the causal effect of homework from other

associations in the data:

Predicted achievement of student i without homework (Potential Outcome 1) = µ(xi)

Predicted achievement of student i with homework (Potential Outcome 2) = µ(xi) + τ(xi)

Using τ(xi) to represent our estimate of what is known as a conditional average

treatment effect (CATE), the estimate of the effect of receiving treatment for all

individuals with covariates xi, we may also calculate the mixed average treatment

effect (MATE), which is the average of these estimates over the population of

interest.

Specifically, this study adopts a multivariate extension of BCF developed by

McJames et al. (2024) (Chapter 4), which allows BCF to be applied to multiple

outcome variables such as mathematics and science achievement simultaneously.

The structure of the model remains the same, but instead of providing a single

prediction at the leaves of the tree as shown in Figure 5.3, a separate prediction

is provided for each outcome, or in our case, subject of interest.

In addition to allowing the model to provide predictions for multiple outcomes,

given that the TIMSS homework data contains multiple levels of frequency, ranging

from never to every day, and multiple categories of duration, ranging from less

than fifteen minutes to greater than ninety minutes, we also allow the model to

provide different estimates of the effect of homework based on the given frequency

and duration. In summary, while the standard BCF model would be limited

to analysing one subject at a time, and to estimating the impact of receiving any

amount of homework relative to receiving no homework, the extended multivariate

BCF model used in this study allows us to estimate the varying effects of homework

frequency and duration in both mathematics and science.

As with all chapters in this thesis, we assessed the overlap assumption before

fitting the model to the data. Given the multiple levels of homework frequency and

duration in this study, this was performed by treating each additional homework
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category as a distinct treatment and assessing overlap for each one separately. As

before, this was evaluated by visually inspecting density plots of the propensity

scores for belonging to each each homework treatment category relative to the ref-

erence group, and ensuring there were no regions lacking common support. Similar

visual checks were also performed for all continuous covariates, while contingency

tables were created for categorical variables to confirm that no levels contained

only units belonging to the reference group of homework frequency and duration,

or the level of frequency or duration for which overlap was being assessed.

The TIMSS data employed in this study possesses a clear hierarchical struc-

ture, whereby students are nested within schools. To account for this, our model is

equipped with a random intercept term, which serves to shift the model estimates

for each individual up or down, depending on the class they belong to. The in-

clusion of this random intercept term, which acknowledges the hierarchical nature

of the data, introduces an extra level of robustness to the model. Full technical

details associated with all aspects of the model can be found in the supplementary

material.

Across all the variables used in our study, 6% of the data was missing. In order

to avoid losing data by completely deleting rows with missing values, we imputed

our dataset using the R package missRanger (Mayer, 2019). This procedure in-

volves replacing missing entries with a value based on the data that is available for

each observation. With this approach we are able to maximise the data available

for use, but we acknowledge there is a degree of uncertainty associated with these

imputed values which is not accounted for in our main study. Therefore, the true

95% credible intervals for our results reported later are likely to be slightly broader

than displayed. As an alternative approach for handling missing data, the sup-

plementary material also includes results from a version of the analysis that did

not rely on imputation of missing data, and instead relied on complete cases only.

This approach led to broadly similar results, but we will focus on the imputation

based approach as it maintains a nationally representative sample of students.
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5.3 Results

A summary of our results concerning the effect of homework on student achieve-

ment can be found in Table 5.3. Here we report the estimated mixed average

treatment effects (MATEs) of providing homework with a specified frequency or

duration relative to a reference level of up to one or two times per week for fre-

quency, and up to 15 minutes each time for duration. The uncertainty in these

values is reflected by the 95% credible intervals provided alongside each effect es-

timate. The 95% credible intervals represent the range of values within which the

MATE lies with 95% probability.

For context, it helps to know that student achievement in mathematics at

the eighth grade in Ireland follows an approximately normal distribution with

a mean of 524 and a standard deviation of 73. Student achievement in science

also follows an approximately normal distribution, but with a mean of 523 and

a standard deviation of 83. Therefore, for ease of interpretation, in addition to

the original effect estimates which are reported on the TIMSS achievement scale,

we also provide normalised versions. These normalised values indicate how many

standard deviations the effect estimates correspond to on the mathematics and

science achievement scales.

Returning first to research question one, which concerns the effect of home-

work frequency on student achievement in mathematics and science, we see that

in mathematics the MATE and 95% credible interval for providing homework ev-

ery day is 7.51 and (1.63, 16.57). This MATE represents the average change in

mathematics achievement that we would expect to see after increasing homework

frequency from up to one or two times per week to every day. The 95% credible

interval can be interpreted as meaning that we are 95% sure the true effect is in the

range 1.63 to 16.57. In science, increasing homework frequency to every day does

not have a clear benefit. Instead, the optimal homework frequency for science is

identified as three or four times per week. Providing homework at this frequency

is expected to improve student achievement by 5.31 points on the TIMSS scale,

and by between 2.35 and 8.25 points with 95% probability.

Our second research question focuses on the effect of homework duration on

student achievement in mathematics and science. Looking at the results for mathe-
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matics, we see that relative to only providing homework that lasts up to 15 minutes

each time, there is no clear benefit to increasing homework duration to 15-30, or

even more than 30 minutes. Similarly, in science, as the 95% credible intervals for

all effect estimates overlap with 0, there is insufficient evidence to say that longer

duration homework assignments will lead to increased achievement. Therefore, in

the absence of stronger evidence, homework assignments lasting up to 15 minutes

each time may be considered equally as beneficial as longer ones.

Based on the above analysis, we can also answer our third research question,

which asks if the optimal distribution of homework throughout the week may

be different in mathematics and science. With respect to homework duration,

given the lack of a clear benefit from increasing homework duration beyond 15

minutes, there is no indication that any duration should be preferred over any

other. However, due to the negative impact that long homework hours may have

on non-academic outcomes, it may be reasonable to suggest that adopting a policy

of up to 15 minutes in both subjects may be the best option, as it is equally as

beneficial as the longer homework durations. For frequency, the picture becomes

more nuanced, because in mathematics the greatest gains were made by increasing

homework frequency to every day, while in science the best results stemmed from

a frequency of three or four times per week. This indicates that the optimal

distribution of homework throughout the week is in fact subject dependent.

The effect sizes reported in Table 5.3 would be considered by some traditional

measures to be very small (LeCroy and Krysik, 2007). However, it is important to

note that in contrast to conventional effect sizes commonly reported in terms of

Cohen’s d, which are based purely on the raw difference in outcomes between two

groups, and susceptible to the effects of confounding, this effect size has a causal

interpretation. Furthermore, while larger effect sizes are commonly reported in

the literature (e.g. Hattie, 2008), they are often based on factors that are not

easily modified, and consequently provide no route to encouraging or enabling

higher student achievement. The effect sizes reported here however, result from

homework which can be easily modified by teachers and incorporated into updated

education policy. Therefore, given the causal interpretation of the results, and the

straightforward route they provide to enhancing student achievement, they should

not be considered unimportant. We also emphasise that while some of the effect
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estimates may be considered quite small, the uncertainty in the estimates allows

for the possibility that they may be slightly larger and the values reported at the

upper limits of the credible intervals are much more substantial. After taking these

factors into account, an effect size of the magnitude of 0.1 can be thought of as a

small to medium effect size (Kraft, 2020).

Finally, motivated by our fourth research question, we explored the potential

moderating role of parental education level and home educational resources on the

effect of receiving homework. These variables were chosen because they are use-

ful and commonly adopted proxies for socioeconomic background when analysing

TIMSS data (e.g. Broer et al., 2019; Heppt et al., 2022). A visual representation

of our results can be found in Figure 5.4. The results show no clear trend, in-

dicating that regardless of the number of books a student has at home, or the

level of education of their parents, all students are predicted to benefit by approx-

imately the same amount from the homework they are assigned. The lack of a

clear trend here is evident in both subjects and at both frequencies, suggesting

students from advantaged socioeconomic backgrounds do not benefit significantly

more from homework than their peers, at least in the eighth grade.

5.4 Discussion

Our study advances the existing literature on the effect of homework by applying

a causal inference machine learning approach to investigate its relationship with

academic achievement. To our knowledge, ours is the only study to have employed

such an approach. We have examined the impact of homework frequency and

duration without making any assumptions about their relationship with achieve-

ment. In this way we are able to account for complicated interactions between

variables and non-linear relationships which might otherwise go undetected by

standard analytical techniques. Moreover, our model accounts for a wide range of

confounding variables, eliminating the potential bias they may introduce to our

results. Furthermore, the multivariate nature of our model enables us to jointly

investigate both mathematics and science, which is important as subject specific

differences are known to exist in the effect of homework on academic achievement

(Eren and Henderson, 2011; Fernández-Alonso et al., 2017).
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Our main finding from this study is that homework frequency is more important

than homework duration for improving student achievement in mathematics and

science. This finding is supported by previous research which shows that regular

homework assignments are predictive of increased achievement, whereas weekly

time spent on homework is not (e.g., Trautwein et al., 2002; Trautwein, 2007;

Fernández-Alonso et al., 2019). It is also in line with the work of Kang (2016) who

argues that policy changes promoting spaced repetition learning strategies can

help to improve academic outcomes. As a result, educators may consider breaking

down large homework assignments into smaller, daily tasks that offer regular and

spaced opportunities to engage with the material, rather than assigning a single,

long homework problem set.

Our finding that spending up to fifteen minutes on homework each time is

equally as effective as spending up to an hour or more on homework is also in

agreement with previous studies which have found that spending too much time

on homework can lead to diminishing returns (Cooper, 1989). Researchers have

long been wary that too much time spent on homework by students can have

negative effects (e.g., Kohn, 2006; Buell, 2008). Our results can therefore help to

bridge the gap between those who advocate for homework as a tool for improving

academic outcomes (e.g., Cooper et al., 2006), and those who are concerned by the

negative effects that unduly long homework assignments can have on aspects such

as social development (e.g., Bennett and Kalish, 2007). By providing a middle

ground based on frequent homework assignments of short duration, our study’s

recommendation allows students to benefit from homework while also enabling

them to spend time on other pursuits in the evenings.

In line with previous research, our study revealed differences in the effect of

homework on student achievement between mathematics and science (Eren and

Henderson, 2011; Fernández-Alonso et al., 2017). However, in contrast to find-

ings by Eren and Henderson (2011), who found homework only to be beneficial

in science, our study found that homework can have a positive effect in both sub-

jects. Specifically, assigning homework every day in mathematics was found to be

associated with the largest increase in student achievement, while a frequency of

three to four times per week was identified as being the most beneficial in science.

These findings have important implications for educators and policymakers who
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can use this information to tailor their homework assignments to each subject and

optimise the potential benefits for students.

As discussed earlier, mathematics is typically assigned more instructional time

per week than science in schools in Ireland. This difference in time allocation may

have an impact on homework frequency and duration by affecting the number of

classes taught per week in each subject. Due to limitations of the data, a detailed

exploration of these subject specific differences was not possible. We note that

while this is a limitation in terms of contextual understanding, it is unlikely to

impact the results from our model as we have controlled for the total instructional

time per week, and also accounted for the hierarchical nature of the data with our

model. However, further research should continue to explore these subject-specific

differences related to homework efficacy and identify the underlying mechanisms

that contribute to them.

Our secondary exploration of the moderating role of home resources and parental

education found no evidence of students from advantaged socioeconomic back-

grounds benefiting more from homework than other students. This is in contrast

to previous findings from Daw (2012), and Rønning (2011) who both found that

advantaged students experienced a greater increase in achievement as a result of

completing homework. However, we believe that the different ages of the students

involved in these studies could offer a plausible explanation for this disparity. In

the study conducted by Rønning (2011), the average age of the students was ten,

which is nearly five years younger than the eighth-grade sample used in our study.

This age difference could partially account for Rønning’s finding that students

with highly educated parents derive greater benefits from homework, as younger

students tend to gain more from parental involvement in homework due to their

ongoing development of study habits, as found by Patall et al. (2008). On the

other hand, Daw’s study involved older students from grade eight to twelve. At

higher grade levels, as students delve into more advanced topics, their ability to

utilise their home educational resources for research purposes or seek assistance

from their parents may become more crucial. Therefore, the strength of the mod-

erating role of home resources and parental education may differ depending on the

ages of the students involved. Such differences warrant further investigation but

were beyond the scope of our study.
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While our study focuses on academic outcomes, it is important to acknowledge

the non-academic considerations associated with homework. From a beneficial

perspective, homework has been reported to promote time management skills and

responsibility among students (Cooper and Valentine, 2001). However, it can

also contribute to increased stress, reduced motivation, and limited free time for

extracurricular activities (Galloway et al., 2013). Parents may also feel pressure

to assist their children with homework (Pressman et al., 2015). Therefore, the

potential positive effects of homework on student achievement must be weighed

against these potential negative consequences.

A limitation of our study is that our investigation of homework was limited

to the effect of homework frequency and duration. Other characteristics of the

homework such as its quality and suitability for a given student’s ability level are

known to be important, however. Dettmers et al. (2010), for example, found that

students who perceived their homework to be well selected for them had higher

levels of motivation to complete their homework. In the same study it was also

found that students reporting their homework to be challenging put less effort

into their homework than students who found the difficulty more manageable,

thus highlighting the importance of homework being well aligned with a student’s

ability level to be most beneficial. One possibility for addressing this additional

factor may be to combine each student’s version of the homework report, with that

of their teacher, in order to identify students who spend much more or less time on

homework than expected. Investigating how these discrepancies in expected and

actual time spent on homework may impact achievement is an intriguing area for

future work.

An important ethical consideration arising from this study concerns the broader

implications of promoting homework as a means to improve academic achieve-

ment. While socioeconomic status (SES) was treated as a confounding variable,

given its potential to influence the likelihood of students receiving homework, this

methodological decision may inadvertently obscure deeper structural inequalities

that shape students’ educational experiences. Moreover, although our findings

support the effectiveness of frequent, short homework assignments, it is essen-

tial to recognise that students’ capacity to benefit from homework is not equally

distributed. Factors such as access to a quiet study environment, availability of
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parental support, and freedom from household responsibilities can significantly in-

fluence a student’s ability to engage with homework meaningfully. Although our

analysis did not identify differential effects of homework based on SES, this absence

of evidence should not be taken as evidence of equality in homework conditions.

On the contrary, the strong positive effects identified in this study underscore

the need for future research to explore how homework practices might be better

adapted to support all students, particularly those facing structural disadvantages,

in order to ensure that the benefits of homework are equitably distributed.

A second important limitation is that the BCF model employed in this study

makes a number of important assumptions. Notably, the model assumes that

we are able to account for all possible sources of confounding. Whilst we have

endeavoured to control for as many potential sources of confounding as possible

in our model, it is certainly possible that there may be some unaccounted for

confounding variables that were not controlled for or not collected as part of the

TIMSS study.

Another limitation of our study is that the model specification does not explic-

itly acknowledge the potential for interaction effects between the different levels

of homework frequency and duration that we have investigated. For example, it

may be possible that the effect of homework duration may be dependent upon the

frequency at which homework is given, but such effects are not estimated by the

model we have used. Including additional parts in the model which would capture

these interaction effects is possible, but would come with a significant overhead

of increased computational demand, both in terms of running time and memory

usage, so we decided to maintain a simpler model for this study. Therefore, inves-

tigating interaction effects between homework frequency and duration remains an

interesting area for future research.

Finally, our results are limited to an eighth grade sample of mathematics and

science students from Ireland. As demonstrated by our results, however, the ef-

fect of homework is different in mathematics and science, and therefore effect size

differences in other subjects such as English or foreign languages can be expected.

Grade level differences are also known to be very important, with homework ef-

fects typically found to be more positive for older students than younger students

(Cooper, 1989; Cooper et al., 2006). Furthermore, education policy in different
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countries can have a significant effect on homework and student achievement. Fan

et al. (2017), for example, found that the positive effects of homework were greater

in the US than in East Asian countries, despite the students in Asia often having

higher motivation and a better attitude towards homework. Future work could

therefore include an application of a similar method to ours to data from differ-

ent subjects, grade levels, or other countries to improve the generalisability of our

findings. Notably, as TIMSS provides data on many countries, many of which

also teach science as part of an integrated curriculum as is the case in Ireland, an

application of our methodology to countries such as Singapore, the US, England,

or others would be of interest.

5.5 Conclusion

This study investigated the impact of homework frequency and duration in both

mathematics and science, employing a new modelling approach specifically de-

signed to address the research questions of our study. Our results demonstrate a

clear positive effect of increasing homework frequency, but not homework duration.

We therefore recommend that frequent homework assignments of short duration

may be most effective for improving student outcomes. This strategy can help to

promote academic achievement whilst avoiding the potential drawbacks associated

with many hours spent on homework (Zhao et al., 2024; Galloway et al., 2013).

Our second research finding was that students from disadvantaged socioeconomic

backgrounds did not benefit less from homework than their peers. This has impor-

tant implications for homework policy, as it challenges the suggestion from some

researchers that homework may contribute to widening achievement gaps across

socioeconomic groups. As a result, we also recommend that homework should

continue to play an important role in the learning process, as we find no evidence

of disparate impacts across socioeconomic groups. Finally, given our results per-

tain only to eighth grade students studying mathematics and science in Ireland,

we strongly advocate for additional studies focused on data from other countries,

subjects, or grade levels.
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6
Bayesian Causal Forests for Longitudinal

Data: Assessing the Impact of Part-Time

Work on Growth in High School

Mathematics Achievement

6.1 Introduction

For many high school students, part-time jobs have become an integral part of

their daily routine, just as important as homework, studying, and completing as-

signments (Singh and Ozturk, 2000). The reasons for seeking part-time work can

vary widely among students. Some work to support their families financially, oth-

ers to develop their character, gain maturity, or simply to earn spending money

(Kablaoui and Pautler, 1991). Regardless of the reasons for students choosing to

work part-time, however, this work can have a significant impact on their edu-

cational journey (Bachman and Schulenberg, 2014). Our study introduces a new

approach for modelling individual level growth in student achievement, and ex-

plores the causal effect of intensive part-time work on this growth, where intensive

part-time work is defined as upwards of 20 hours of work per week during the

school year (Lee and Staff, 2007).

Estimating causal effects from longitudinal data is a challenging but essen-

tial task. Established methods include inverse probability weighting (Hogan and
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Lancaster, 2004), two-way fixed effects (Imai and Kim, 2021), and difference-in-

differences (DiD, Donald and Lang, 2007). A key limitation of many of these ap-

proaches is that they often rely on strong assumptions that may not be appropriate

for the target data. The parallel trend assumption of the difference-in-differences

method, for example, assumes that the treatment group would have followed a

similar trajectory to the control group had they not received treatment (Roth

et al., 2023). This can easily be violated in practice, as confounding variables may

influence both the probability of receiving treatment and the trajectories in the

outcome of interest. Students who self select into part-time work, for example,

may experience less growth than their peers even without part-time work (Mon-

ahan et al., 2011). Some work has been conducted to tackle this limitation by

relaxing the assumption of parallel trends conditional on covariates (Abadie, 2005;

Callaway and Sant’Anna, 2021), but important limitations remain.

Other methods rooted in structural equation modelling such as G-estimation

(Robins, 1997), and longitudinal extensions of targeted minimum loss based esti-

mation (Lendle et al., 2017) excel in estimating causal effects from longitudinal

data when faced with challenges such as drop-out, time varying covariates, and

dynamic treatment regimes. A weakness of these methods, however, is that they

are often restricted to estimating average causal effects, without the ability to ex-

plore individual level variations or heterogeneity in responses to treatment. This

is an important limitation, especially in the context of part-time work, as there is

research to show that the effects of part-time employment can vary significantly

depending on factors such as gender, motivations for working part-time, and so-

cioeconomic backgrounds (Entwisle et al., 2000).

When understanding heterogeneity in causal effects is important, Bayesian non-

parametric methods based on Bayesian Additive Regression Trees (Hill, 2011;

Chipman et al., 2010) and Bayesian Causal Forests (Hahn et al., 2020) have

emerged as leading approaches. The default implementations of these methods

are only applicable to single time point observational data, however, precluding

the study of trends in educational outcomes over time. Our study extends BART

and BCF to the setting of longitudinal data. By combining the flexibility of these

methods with the highly interpretable structure of the difference-in-differences

model, we simultaneously relax the parallel trend assumption of the DiD methods,
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while also allowing for the study of individual level variations in the growth curves

of student achievement, and the heterogeneous impact of part-time work on this

growth.

While other studies (Wang et al., 2024) have also introduced longitudinal ex-

tensions of BART and BCF, with a focus on situations where there is a staggered

adoption of treatment, our proposed model assumes a very different structure,

and includes three important features targeted specifically at our motivating data.

First, our model places separate priors directly over the growth trajectories and the

effects of treatment on this growth. This allows us to inform the model with prior

information, and comes with the added advantage of allowing the incorporation

of model explainability tools, and variable importance metrics directly associated

with the parameters of interest (Inglis et al., 2022a,b). The model structure also

accommodates time varying covariates, such as evolving levels of student motiva-

tion which are common in education studies. Finally, while not the main focus of

the present study, an additional feature not included in BCF models before is the

ability to handle missing data in the covariates or the treatment assignment. We

tackle this issue with a feature borrowed from Kapelner and Bleich (2015), and a

novel update step for the treatment status indicator.

The remainder of this chapter is structured as follows: In Section 6.2 we de-

scribe our motivating dataset, the High School Longitudinal Study of 2009 (HSLS),

and outline some key features of the data. Section 6.3 introduces the proposed

model, and shows how we extend BART and BCF to provide a foundation for esti-

mating growth curves of student achievement and heterogeneous treatment effects

of part-time work. To further support the credibility of our proposed methodology,

Section 6.4 applies our model to simulated data designed to mirror the characteris-

tics of the HSLS dataset. We benchmark our performance against other potential

candidate models, showcasing the unique capabilities of our model in overcoming

challenges that remain difficult for existing approaches. In Section 6.5, we deploy

our model to the HSLS data and present the results of our study. Finally, we

conclude this chapter in Section 6.6 with a discussion of our findings, implications

for policy, and areas for future work.
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6.2 Data

The High School Longitudinal Study of 2009 (Ingels et al., 2011) is an ongoing

study of a nationally representative sample of high school students in the US. It

is the most recent of a series of five longitudinal studies launched by the National

Center for Education Statistics. The first wave of data collection for HSLS took

place in the fall of 2009 at the start of the academic year when the students were

in the ninth grade. More than 20,000 high school students took part in this part

of the study. A follow up of these students then took place in the spring of 2012

when the students were in the eleventh grade. Further follow ups have also taken

place in 2013, 2016, and 2017 to discover how the students are progressing in the

years after high school, but did not involve mathematics achievement tests so we

will focus solely on the first two waves of the data. Due to some students dropping

out of high school, some schools closing, and others disagreeing to continue their

participation in the study, the second wave of data collection involved just under

19,000 of the original Wave 1 sample.

Data collection during HSLS followed a similar procedure during both waves

of the study. Mathematics achievement was assessed during both waves using a

computer delivered assessment with questions designed to measure the algebraic

reasoning abilities of the students. The resulting achievement estimates assigned

to the students were calculated using Item Response Theory (Cai et al., 2016). The

contextual data gathered as part of the study was based on a survey answered by

the students, a parent, school administrators, and school teachers. Information

collected from the student survey includes characteristics such as sex, age, eth-

nicity, self concept in mathematics, sense of school belonging, and other details

such as participation in activities like part-time work. Data from the parent sur-

vey includes important socioeconomic variables such as family income, parental

employment and education. School related data includes information such as the

administrator’s perception of the overall climate within the school, and the level

of expectations of student academic success.

To ensure a representative sample of students, a stratified, two-stage random

sampling design was employed by the study organisers. This involved first ap-

proaching eligible high schools, 944 of which agreed to participate in the study,
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and then randomly sampling students from each of those schools, leading to a to-

tal sample of 21,444 participating students. Sampling weights resulting from this

design are provided in the dataset to account for non-participation bias and were

used to appropriately weight the results discussed later in the chapter. Table D.1

of the supplementary material provides weighted summary statistics for a subset

of the categorical variables from the base year (Wave 1), and also provides mean

achievement levels from both waves of the study.

Our study uses the public-use version of the HSLS data. Some of the data in

this public use version of the dataset has been obfuscated or removed in order to

maintain the anonymity of the students and the schools who took part in the study.

Therefore, a school identifier indicating which students attend the same school is

not available in this version of the dataset, precluding a hierarchical modelling

strategy. The restricted use version of the dataset does include this information

but is only available with strict controls in place. This is a limitation of our study,

but ensures our results are more easily reproducible without requiring a restricted

use version of the dataset. Furthermore, there is evidence to suggest that part-time

work is more likely to be influenced by student and family related variables than

school related variables (Howieson et al., 2012), partially mitigating the potential

for unmeasured confounders to bias our results.

6.3 Methodology

6.3.1 The Model

Our motivating dataset consists of two waves, but for the sake of generality in this

section we will describe how the model applies to datasets of up to T waves of

student data. We are interested in modelling trajectories of student achievement

where we have data on n1 students participating in an initial base year assessment,

and subsequent follow-ups on n2 . . . nT of the same students during waves 2 to T .

We allow for the possibility of drop-out, whereby nT ≤ nT−1 ≤ . . . ≤ n1. We will

represent the contextual data associated with student i up to time t by xi,t, where

t = 1 indicates the data is from the base year (Wave 1), and subsequent values of

t indicate the data encompasses extra information collected up to and including
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Wave t. We will not distinguish between data from different surveys or question-

naires, so xi,t captures all of the student, parent, and school level data associated

with student i up to time t. Given the accumulation of information on students

over time as they complete more surveys from additional waves, the number of

columns in xi,t will be less than the number of columns in xi,t+1. To distinguish

between students who do and do not work part-time, we will let Zi,t+1 be a binary

indicator of length nt+1 which indicates for each student if they reported having a

part-time job which involved them working on average 20 hours or more per week

during the period between Waves t and t + 1. For the achievement data, let yi,t

denote the observed mathematics achievement of student i recorded at time t.

Our research questions concern two quantities of interest. The first is related to

the growth in mathematics achievement between Waves t and t+1, which we will

denote by Gi,t+1 = yi,t+1 − yi,t. The second concerns the impact of part-time work

on this growth. To understand this impact, we adopt the Neyman-Rubin causal

model (Splawa-Neyman et al., 1990; Sekhon, 2008), and postulate that for each

individual i, there are two potential growth values. One that would be observed if

the student worked part-time, Gi,t+1(Zi,t+1 = 1), and one that would be observed if

the student did not, Gi,t+1(Zi,t+1 = 0). With these quantities defined, the impact

of part-time work on the growth in student achievement during this period is

captured by τi,t+1 = Gi,t+1(Zi,t+1 = 1) − Gi,t+1(Zi,t+1 = 0). Of course, we only

ever observe one of these potential growth values, namely Gi,t+1 = Gi,t+1(Zi,t+1 =

1)Zi,t+1 +Gi,t+1(Zi,t+1 = 0)(1− Zi,t+1), so we make the following assumptions:

Assumption 1: The Stable Unit Treatment Value Assumption. We as-

sume that the potential growth values of every student i

between periods t and t+1 are independent of whether or

not any other student j worked part-time in any period.

We also assume that the treatment, part-time work, is

consistently defined for all individuals.

Assumption 2: The Sequential Ignorability Assumption. We assume that

conditional on their observed characteristics and treat-

ment history up to the period of interest, the potential

growth values of student i are independent of whether or
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not they worked part-time. Notationally, we assume that

Gi,t+1(Zi,t+1 = 0), Gi,t+1(Zi,t+1 = 1) ⊥ Zi,t+1|xi,t+1, Zi,t.

Assumption 3: The Overlap Assumption. We assume that for every ob-

served covariate and treatment history, there is a non-zero

probability of working, or not working part-time during

any period of interest: 0 < P (Zi,t+1 = 1|xi,t+1, Zi,t) < 1.

If these conditions hold (Angrist et al., 1996; Kurz, 2022; Myint, 2024; Hernán and

Robins, 2020), then we may write that

E[Gi,t+1(Zi,t+1)|xi,t+1] = E[Gi,t+1|Zi,t+1, xi,t+1].

Our model for student achievement across all waves of data then becomes:

yi,t = µ(xi,1) +
T−1∑
w=1

Gw+1(xi,w+1, yi,1 . . . yi,w, π̂i,w+1)I(t > w) + ϵi,t

where

Gw+1() = δw+1(xi,w+1, yi,1 . . . yi,w, π̂i,w+1) + τw+1(xi,w+1, yi,1 . . . yi,w)Zi,w+1

The different parts of the model work together in a cumulative fashion to predict

different parts of a student’s mathematics achievement. Predictions for achieve-

ment at Wave 1 are given by µ(), while achievement at any subsequent Wave t is

given by adding this to a cumulative sum of achievement growths, Gw+1(). Within

each time period, δw+1() and τw+1() represent the growth that would have been

realised without part-time work, and the expected impact of part-time work on

this growth respectively.

Using standard terminology from the literature, we can say that τw+1(xw+1, y1 . . . yw)

represents the conditional average treatment effect (CATE) of the intervention be-

tween waves w and wave w+1 for observations with covariates xw+1 and outcome

history y1 . . . yw at wave w + 1. While, δw+1(xw+1, y1 . . . yw, π̂w+1) represents what

we will call a conditional average growth effect (CAGE) of the growth between

waves w and wave w+1 for observations with covariates xw+1 and outcome history

140



6.3. METHODOLOGY

y1 . . . yw at wave w + 1. Calculating the average of the CATEs over a population

yields what Li et al. (2023) refer to as a mixed average treatment effect (MATE).

Analogously, we will say that the average of the CAGEs is a mixed average growth

effect (MAGE):

MATEw+1 =
1

nw+1

N∑
i=1

τw+1(xi,w+1, yi,1 . . . yi,w)

MAGEw+1 =
1

nw+1

N∑
i=1

δw+1(xi,w+1, yi,1 . . . yi,w, π̂i,w+1)

The additional covariate π̂i,w+1 included in the δw+1() part of the model is a

propensity score, which estimates the probability of observation i receiving treat-

ment during this period conditional on their covariates. This inclusion follows the

advice of Hahn et al. (2020), who demonstrated that incorporating this “clever

covariate” can help mitigate the issue of regularisation-induced confounding. Fi-

nally, ϵi,t represents the error term for student i at time t, which we assume to be

normally distributed with mean 0 and variance σ2, ϵi,t ∼ N(0, σ2).

In our model, the contributions made by µ() and each of δw+1() and τw+1() come

from ensembles of nµ, nδ, and nτ regression trees based on the BART model of

Chipman et al. (2010). For ease of exposition as we discuss the Bayesian backfitting

MCMC algorithm by which the regression trees fit to the data, let us consider the

simplest scenario where nµ = nδ = nτ = 1 and T = 2, leaving the general case

for the supplementary material. The MCMC sampler begins with each of µ(),

δ2(), and τ2() initialised as stumps (decision trees where the root is also the sole

terminal node, and the terminal node parameter of each tree is set to zero). Next,

each iteration starts by selecting at random one of four possible operations (grow,

prune, change, or swap) to apply to the µ() tree in order to propose a new tree

structure. This proposal is then accepted or rejected with a Metropolis-Hastings

step before the terminal node (or now possibly nodes) of the µ() tree are updated

via a Gibbs sampling step which attempts to explain any leftover variation in the

partial residual yi,t less the contribution from δ2() and τ2(). Analogous operations

are then applied to the δ2() and τ2() trees before the residual variance parameter

is also updated via Gibbs sampling. This cycle repeats for a specified number of
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iterations, providing a desired number of posterior draws for the tree structure and

terminal node parameters of µ(), δ2(), and τ2(), as well as the residual variance

parameter σ2.

Overfitting is prevented through the use of the tree prior from Chipman et al.

(2010) which specifies that the probability of any node at depth d being non-

terminal is given by α(1 + d)−β. Therefore, for a tree T with terminal nodes

h1...hK , and non-terminal nodes b1...bL, we have that:

P (T ) =
K∏
k=1

α(1 + d(hk))
−β

L∏
l=1

[1− α(1 + d(bl))
−β]

The strength of this prior can be adjusted through setting different values for α

and β. For the µ() and δ() trees we adopt the default prior from Chipman et al.

(2010), of α = 0.95, β = 2, while for the τ() trees we impose stronger regularisation

as we expect there to be less heterogeneity in the effects of part-time work than

in y itself, choosing α = 0.25, β = 3 as suggested by Hahn et al. (2020).

To ensure each tree contributes approximately equally to the overall prediction,

the terminal node parameters of each tree are given a normal prior. In each type

of tree, we have

µ ∼ N(0, σ2
µ), δ ∼ N(0, σ2

δ ), τ ∼ N(0, σ2
τ )

After scaling y to follow a standard normal distribution prior to fitting the model,

a sensible choice for σ2
µ is 1/nµ, ensuring the terminal mode parameters in the µ()

trees have adequate room to cover the range of the data. Similarly, we use a prior

of σ2
δ = 1/nδ, but given we expect the magnitude of the treatment effects to be

relatively small in comparison to y we set σ2
τ = 0.52/nτ . Finally, the conjugate

prior for σ2 is an inverse gamma distribution:

σ2 ∼ Inverse-Gamma(ν/2, νλ/2),

for which we have found a reliable default choice is to set ν = 3, and λ = 0.1.
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6.3.2 Special Features

Two challenges related to missing data required us to build some extra function-

ality into our model. The first challenge was related to missing data in the covari-

ates. Missing data in the covariates can arise for several reasons in the dataset.

For example, some questions may have been purposely skipped by students, their

parents, or teachers, and other times the answer to a particular question may not

have been known. On average, 1.9% of the data was missing, and the most data

missing for any particular variable was 19%. Common approaches for dealing with

missing data in the covariates include single or multiple imputation (Lin and Tsai,

2020), but an extra possibility specific to tree based models is the approach devel-

oped by Kapelner and Bleich (2015), which involves treating missing data as an

important feature of the data.

This approach differs from traditional imputation-based methods, which as-

sume missingness is Missing at Random (MAR) and explicitly estimate missing

values before modeling Y . Instead, the Kapelner and Bleich (2015) approach mod-

els E[Y |X,M ], where M is an indicator for missingness, allowing BART to learn

patterns of missingness non-parametrically. A key consideration is whether this

method imposes assumptions stricter than MAR. In standard multiple imputation

frameworks, MAR is assumed to hold so that missing values can be estimated us-

ing observed covariates. The Kapelner and Bleich (2015) method does not impose

stronger assumptions, rather, it allows missing values to be handled within the

model structure without requiring explicit imputation. In the context of causal

inference, an additional assumption regarding overlap is likely to be required, how-

ever. If missingness in a covariate X serves as a confounder affecting both the

treatment Z and the outcome Y , sufficient overlap must exist in the missingness

pattern to ensure comparability between treated and control groups.

The second challenge was related to missing data in the treatment Zi,2 it-

self, as not all students answered the question on how many hours they worked

part-time during school weeks. This type of missingness affected 3.4% of the ob-

servations in the data. Here we make the strong assumption of Missing at Random

(MAR), meaning the presence of missingness in Z is unrelated to the actual Z val-

ues themselves, or any other unobserved covariates, and introduce an additional
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Gibbs sampling step at the end of each iteration of the MCMC sampler, where

the missing Zi,2 values are themselves treated as parameters to be updated, with

prior probability pi, conditional on the rest of the data:

P (Zi,2 = 1|...) = 1

1 +
(

1−pi
pi

)(
e

1
2σ2 [(yi,2−µi−δi−τi)2−(yi,2−µi−δi)2]

) .
These two added features allowed us to keep a full representative sample of stu-

dents while accounting for the added uncertainty introduced into our results by

the presence of missing data. While novel, we note that there is precedence for im-

puting missing treatment indicators in causal analyses, and highlight Mitra (2023)

as an example.

One final challenge that is common when working with assessment data of

student achievement is the use of plausible values (Wu, 2005; Khorramdel et al.,

2020). In order to prevent the computer delivered assessment from taking unduly

long, it was only possible for HSLS to present each student with a limited number

of questions. This introduces some room for error in the achievement estimates of

the students, and as a result, HSLS provides researchers with five plausible values

of student achievement from the posterior of each student’s achievement estimate.

In line with best practice, we therefore ran five chains of our model, one applied

to each plausible value of student achievement, and pooled them together after

burn-in to appropriately handle this uncertainty.

6.3.3 Alternative Methodologies

Our work shares connections with several areas of Bayesian non-parametric mod-

elling, and longitudinal methods for causal inference. First there is the clear con-

nection to BART (Chipman et al., 2010), as this method provides a foundation

for the different parts of our model. BART based methods have become popu-

lar in the area of causal inference (Hill, 2011) and have demonstrated impressive

performance and reliable uncertainty quantification. A second strong connection

is with the Bayesian Causal Forest model developed by Hahn et al. (2020), which

also uses BART as a foundation for estimating causal effects. Both methods could

potentially be applied to our research questions but fall short of offering the same
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abilities in this context as our own model in several important ways which are

worth discussing.

The most natural way for BCF to be applied to our problem setting would be

to manually calculate the growth values Gi,t+1 for each student i, and each time

period t to t + 1. Applying the BCF model to a specific time period would then

yield the following, allowing us to recover what our model captures with the δt+1()

and τt+1() part of the model:

Gi,t+1 = δt+1(xi,t+1, yi,t, π̂i,t+1) + τt+1(xi,t+1, yi,t)Zi,t+1 + ϵi, ϵi ∼ N(0, σ2)

A key limitation of this approach is that it does not model the full data generating

process, only the growth between Waves t and t+1. This means that students who

participate in Wave t but not in Wave t+ 1 (and consequently have no calculable

Gi,t+1) are excluded from the model and are unable to inform the predictions made

by the model. Secondly, manually calculating the Gi,t+1 growth values (to be used

as the response variable in this approach), is likely to lead to a smaller signal to

noise ratio in the response as the error terms from yi,t and yi,t+1 combine, making

it more difficult for the model to detect the relationships it is trying to model.

A BART only approach could also be applied to the data in a similar way using

Gi,t+1 as the response, but this approach would share the same limitations. Of

course, if treatment effects were the only quantity of interest then it would also

be possible to apply BART or BCF directly to yi,t+1, but this would preclude any

inference on the growth values Gi,t+1, so would fail to address this aspect of our

study.

Researchers more familiar with difference-in-differences (Roth et al., 2023)

based approaches might like to think of our model as a Bayesian non-parametric

DiD model where our δt+1() trees model the difference for the control group (non

part-time workers), and our τt+1() trees model the difference in this difference ex-

perienced by the treatment group (the part-time workers). Crucially, our approach

handles this situation much more flexibly than traditional DiD based methods, as

the flexibility of the δt+1() trees means we can relax the assumption of parallel

trends conditional on the covariates of the students, and the τt+1() trees also allow

us to capture heterogeneity in the effects of part-time work which is often not pos-
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sible with DiD based methods. See the supplementary material for an illustration

of how our proposed model fits into this framework.

Finally, our method also shares similarities with causal methods applicable to

longitudinal data such as G-estimation (Tompsett et al., 2022), or longitudinal

extensions of targeted minimum loss based estimation (LTMLE, Lendle et al.,

2017). Both methods have gained popularity owing to their ability to handle

complex situations such as time varying confounding, situations where the primary

interest is in the causal effect of a series of sustained or irregular treatments, and

where the interest is in the lagged effects of a treatment. Our focus however, will

be on heterogeneity in the direct effect of a single period of part-time work on

the immediately following mathematics assessment, which is not achievable with

the available implementations of these methods. Additionally, our model will also

provide insights into the growth trajectories of student achievement, a feature that

is not modelled by these other approaches.

6.4 Simulation Studies

In this section, we assess our proposed model’s performance in a simulation study

designed to match the features of the motivating HSLS data. We also compare

our proposed model with alternative approaches in order to highlight the added

performance offered by our method. Our simulation study consists of two data

generating processes. DGP1 focuses on heterogeneity in treatment effects and

growth curves, making it well-suited to flexible approaches based on BART and

BCF. It features two waves of data to accommodate the alternative methods which

can not handle multiple time periods. DGP2 is inspired by a synthetic dataset

from the R package gesttools. This process includes more than two time points

and features time-varying covariates. It focuses on estimating the mixed average

treatment effect, enabling a fair comparison of our method with the gesttools and

ltmle packages, which do not support the estimation of heterogeneous treatment

effects, but are correctly specified for the features of this DGP.

146



6.4. SIMULATION STUDIES

6.4.1 Data Generating Process 1

Our first data generating process is based on a modified version of the first Fried-

man dataset (Friedman, 1991), a common benchmarking dataset featuring non

linear effects and interaction terms. We will use this dataset to assess how well

each of the flexible causal machine learning methods can capture heterogeneity in

the growth curves of student achievement, and the treatment effects themselves.

We simulate ten covariates measured at Wave 1: x1 . . . x10, and a second obser-

vation of each of these ten variables again at the final Wave 2: x11 . . . x20, where

the second observation of each variable is equal to the first plus a small amount

of random noise, e.g., x16 = x6 + r, with r a uniform random variable between 0

and 0.4. The structure of the simulated achievement level of each student is of the

form described earlier:

yi,t = µ(xi,1) + δ2(xi,2, yi,1, π̂i,2)I(t > 1) + τ2(xi,2, yi,1)Zi,t+1I(t > 1)︸ ︷︷ ︸
G(xi,2,yi,1,π̂i,2)

+ϵi,t

where µ(xi,1) = 10 sin(πx1x2)+20(x3−0.5)2+10x4+5x5, δ2() =
1

3
µ(xi,1)+3x2

11+

2x2
15, τ2() = −x4 − x2

14 − x3
15, σ

2 = 9, and , ϵi,t ∼ N(0, σ2). The true propensity

scores are given by pi = P (Zi,2 = 1|xi,2) = Plogis(µ∗
i + δ∗i ), where µ∗

i + δ∗i is a

normally scaled version of each of the original µi + δi values.

The compared methods are our longitudinal BCF model, BART using the

approach outlined in Hill (2011), a standard BCF model from Hahn et al. (2020),

and the causal Generalised Random Forest model (GRF) from Wager and Athey

(2018). The recently proposed BCF extension by Wang et al. (2024) would also

make an excellent method for comparison when a documented R package becomes

available.

As outlined earlier, given that the longitudinal BCF model is the only one

capable of directly modelling the growth curves, we will apply the other competing

methods to the transformed outcome yi,2−yi,1, the difference in outcomes between

Waves 1 and 2, to enable the prediction of growth using BART and BCF. For the

longitudinal BCF model, we use 100 trees in the µ() part of the model responsible

for predicting yi,1 at Wave 1, 70 trees in the δ() part of the model responsible for
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predicting the growth under control, and 30 trees in the τ() part of the model

responsible for predicting the heterogeneous treatment effects. For the standard

BCF approach, we use 170 trees in the prognostic part of the model which will

provide estimates for the growth under control, and 30 trees for estimating the

treatment effects. The BART and GRF approaches both use 200 trees in total.

Each simulation consists of 500 training observations, and 1000 test observations.

The Bayesian methods are run for 500 burn-in and 500 post burn-in iterations.

Satisfactory convergence was assessed via visual inspection of the posterior samples

for a small subset of the 1000 replications of the data generating process.

Table 6.1 summarises how the compared approaches perform when tasked with

predicting δi and τi across 1000 replications of the simulation. For δi, this per-

formance is evaluated using the average root mean squared error (RMSE) over

the 1000 simulations: RMSE =
√

1
N

∑N
i=1(δi − δ̂i)2. The equivalent metric used

for τi is the precision in estimating heterogeneous effects (PEHE): PEHE =√
1
N

∑N
i=1(τi − τ̂i)2, also averaged over the 1000 simulations. Mean coverage rates

of the 95% credible intervals, bias, and credible interval widths are also provided for

both δi and τi. A visual representation of these results can be found in Figure 6.1.

The clearest differences in Figure 6.1 relate to model performance predicting

the δi values, with our proposed LBCF model achieving much lower RMSE values.

Comparison with the GRF model was not possible here, as the GRF model output

only provides treatment effect estimates. In the right panel of Figure 6.1, the

differences are more subtle, but the proposed model performs marginally better

than the BART and BCF methods, which in turn both outperform the GRF based

approach.

Finally, the LBCF estimates are the least biased of all the compared methods,

and are accompanied by close to ideal coverage rates. The credible interval widths

from the LBCF estimator are similar to the competing methods when estimating

the treatment effects, but are considerably narrower than the competing methods

when estimating the growth values, offering a high degree of precision.
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Figure 6.1: Visualisation of RMSE and PEHE metrics evaluated over 1000 repli-
cations of DGP1 for the BART, BCF, GRF, and LBCF models. In the left panel,
which displays the RMSE of the δi predictions, the LBCF approach is clearly the
strongest performer, with considerably lower RMSE values. In the right panel,
which visualises the PEHE metrics, LBCF is again the strongest performer, but
by a narrower margin.

6.4.2 Data Generating Process 2

Our second data generating process comes from the R package gesttools (Tompsett

et al., 2022), which implements G-estimation for longitudinal data. Our focus here

is on estimating the mixed average treatment effect. As described in Tompsett

et al. (2022), the dataset includes:

• A baseline covariate U ∼ N(0, 1)

• Covariates Lt ∼ N(1 + Lt−1 + 0.5At−1 + U), t = 1, 2, 3, A0 = 0

• Exposure At ∼ Bin(1, expit(1 + 0.1Lt + 0.1At−1)), t = 1, 2, 3

• Time varying outcome Yt ∼ N(1 + At + γtAt−1 +
∑t

i=1 Lt + U, 1), t = 2, 3, 4

• Constants (γ1, γ2, γ3) = (0, 0.5, 0.5)
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δi predictions τi predictions

LBCF BART BCF LBCF BART BCF GRF

RMSE/PEHE 1.362 2.470 2.671 0.886 0.907 0.958 1.057
Mean Absolute Bias 0.265 0.311 0.303 0.324 0.424 0.424 0.604
95% Coverage 0.980 0.996 0.891 0.935 0.921 0.911 0.769
95% CI Width 6.559 14.306 8.624 3.409 3.343 3.515 2.654

Table 6.1: Summary of important metrics measured for δi and τi predictions,
averaged over 1000 simulations of DGP1. The proposed LBCF model performs
competitively, achieving a lower mean RMSE and PEHE than the alternative
models. Bias, coverage, and credible interval widths are also close to ideal. Best
results are highlighted in bold where a clear winner exists.

In this simulation study, the baseline covariate U remains fixed, while the time

varying covariates Lt change at each wave in response to the values of the preceding

covariates, and whether or not treatment was received. The likelihood of receiving

treatment also depends on previous covariates and treatments. Note that while

the time varying outcome depends on the treatment status at the current and

previous time points, we will only estimate the direct effect of treatment at time

t on yt.

The methods we will compare are G-estimation as implemented by gesttools,

longitudinal targeted minimum loss based estimation from the ltmle package, and

our proposed method. The gesttools and ltmle approaches will use the default

settings of the R packages, which make them the correctly specified models, while

our approach will use the same setup from the previous simulation study. As

before, we will run 1000 replications of the simulation study, but will evaluate

performance on the training sample of 500 observations (the ltmle and gesttools

packages can not make predictions on unseen data).

Figure 6.2 visualises the MATE estimates from the proposed approach, the

gesttools package, and the ltmle package. For the gesttools and ltmle results,

only one boxplot is shown. In the case of the gesttools results, this is because

the package assumes the treatment has the same effect at all time points. In this

simulation, this assumption is valid, but in general, the ability of our model to

provide separate estimates at each time point is likely to be valuable. With the
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Figure 6.2: Visualisation of bias in MATE estimates over 1000 replications of
DGP2 for the gesttools, LBCF, and ltmle models. The gesttools package,
which assumes a constant treatment effect at all time points shows minimal bias.
This strong performance is closely followed by the proposed LBCF model, which
provides estimates for the treatment applied between Waves 1 and 2, and 2 and
3. The ltmle estimates appear to be much more biased.

ltmle package, it is necessary to define a contrast in order to estimate the effect of

some sequence of treatments on the final observed outcome variable (in this case

Y3). For the simulation above, we tasked the ltmle package with estimating the

effect of the treatment sequence (A1 = 0, A2 = 0, A3 = 1) relative to (A1 = 0, A2 =

0, A3 = 0). This will recover the direct effect of A3 on Y3, which is equal to the

direct effect of At on yt, consistent across time. In contrast, our proposed LBCF

model is able to provide MATE estimates for both the effect of A2 on Y2, and the

effect of A3 on Y3, offering a more detailed and flexible analysis.

Figure 6.2 visualises the absolute bias in estimating the MATE for each of the

approaches over 1000 replications of DGP2. The gesttools package is the best

performer here, closely followed by the LBCF estimates which are consistently

accurate across both time periods. We note, however, that the gesttools package

assumes the treatment effect is the same at all time points, and this is unlikely

to always be valid. The bias of the ltmle package is consistently much higher,

151



6.4. SIMULATION STUDIES

Model/Metric gesttools LBCF Wave 1-2 LBCF Wave 2-3 ltmle

Mean Absolute Bias 0.077 0.097 0.107 0.476
95% Coverage 0.950 0.913 0.936 0.838
Mean 95% CI Width 0.384 0.438 0.502 1.688

Table 6.2: Absolute bias, coverage rates, and credible/confidence interval widths
averaged over 1000 replications of DGP2. Coverage rates are very good for
gesttools and LBCF, but less than ideal for ltmle. The gesttools package
provides the most precise estimates, with slightly narrower confidence interval
widths than LBCF. Best results are highlighted in bold where a clear winner ex-
ists.

indicating the model often struggled to identify the true MATE from the data.

A similar pattern is observed in Table 6.2, which provides additional informa-

tion on the coverage rates, and mean credible/confidence interval widths. Here, the

coverage achieved by the gesttools package and the two estimates provided by

the proposed LBCF model are very close to ideal. The ltmle package appears to

underestimate the uncertainty in its estimates, however, and only achieves 83.8%

coverage. The LBCF model’s credible interval widths at both time points are

slightly wider than those of the gesttools package but remain significantly nar-

rower than the ltmle package’s confidence interval widths.

In summary, the results from both data-generating processes in our simulation

study underscore the proposed model’s ability to provide flexible and accurate

predictions, even when confronted with highly non-linear growth patterns or het-

erogeneity in treatment effects. The model achieved near-ideal coverage rates,

exhibited minimal bias, and produced narrower credible intervals compared to

other non-parametric causal models. In the second data-generating process, where

the proposed model was benchmarked against a correctly specified G-estimation

model, the LBCF model matched its strong performance, without making the

same assumption that the treatment effect was consistent over time. Encouraged

by the robust performance of our proposed model, we proceed to the next section,

where we apply the longitudinal BCF method to the motivating HSLS dataset to

assess the impact of part-time work on student achievement.
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6.5 Application to High School Longitudinal Study

Recall that HSLS includes two waves of data, with student achievement and other

background characteristics measured at both time points. We are interested in

understanding the amount by which the mathematics achievement of the students

increases between these waves, how this growth depends on the characteristics of

the students, the effect of part-time work on this growth, and how this effect is

potentially moderated by other observed variables.

We apply our model to this dataset using the same model structure from the

simulation study, with the same number of trees, but run a larger number of burn-

in (3000) and post burn-in iterations (2000), to ensure satisfactory convergence.

As described in the methodology, missing data is handled internally by the model,

so there is no requirement for multiple imputation. The plausible values of student

achievement are appropriately accounted for by pooling 5 separate chains, each of

which were applied to one of the 5 sets of plausible values. Sampling weights are

also accounted for by appropriately weighting the mixed average treatment effect

results displayed below.

Our control variables in the δ() part of the model include potential confounders

measured between Waves one and two to mitigate bias in the estimated treatment

effects. However, since these variables were recorded at the same time as the treat-

ment, some may lie on the causal pathway between the treatment and the outcome,

potentially introducing over-control bias and attenuating the estimated effects. A

more conservative approach would be to restrict controls to time-invariant co-

variates or those measured unequivocally before treatment to minimise this risk.

Conversely, limiting controls to only time-invariant covariates could lead to omit-

ted variable bias if key confounders that influence both the treatment and the

outcome are excluded. Given this trade-off, in this case, we chose to control for

potential confounders measured between Waves one and two in attempt to capture

all potential sources of confounding.

Figure 6.3 shows the posterior distribution of the mixed average growth effect,

and a histogram of the individual δi estimates for each student present in Wave 2

of the dataset. The average growth is close to 0.63, and the majority of the growth

estimates are positive, indicating that most students are expected to increase their
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Figure 6.3: The left plot shows the posterior distribution of the mixed average
growth effect, while the one on the right displays a histogram of the individual δi
estimates. The solid line in the left plot shows the posterior mean, while the dashed
lines indicate a 95% credible interval. Substantial variability is present in the δi
values, indicating that some students are predicted to increase their achievement
by much more than others who may even experience a decrease in achievement.

mathematics achievement between Waves 1 and 2. Within the sample there is large

variation, however, with some students predicted to increase their mathematics

achievement by up to 2 units on the achievement scale, while for a small number

of students, mathematics achievement is actually predicted to decrease by a small

amount. For context, achievement at Wave 1 was normally distributed with a

mean of approximately 0, and a standard deviation of approximately 1. Therefore,

an increase in achievement by two units, or two standard deviations, is quite

significant.

To identify key moderating variables contributing to the variation in δi values,

variable importance measures were calculated for the δ() trees by counting how

often different variables were selected for the splitting rules used in this part of the

model. This investigation identified the achievement of the students measured at

Wave 1 as being highly influential. Prompted by this finding, we created Figure 6.4

which shows a scatter plot of the δi predictions versus the achievement of the
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Figure 6.4: Scatterplot of the relationship between Wave 1 achievement and pre-
dicted δi values. Students with initially high levels of academic achievement are
predicted to increase their achievement by higher amounts than their peers.

students measured at Wave 1. The very strong positive relationship between Wave

1 achievement and predicted growth indicates that students who initially perform

well in mathematics are predicted to increase their achievement by substantially

more than those with lower achievement levels. At the extremely high levels of

Wave 1 achievement, students are predicted to increase achievement by 1.5 units

on average, while for students at the opposite end of the spectrum, growth in

achievement is minimal. This observation points to a widening achievement gap

between students at the high and low ends of the achievement spectrum (McCall

et al., 2006; Rowley et al., 2020).

The posterior distribution of the mixed average treatment effect for working

part-time at an intensity of greater than 20 hours per week between Waves 1 and 2

is displayed in Figure 6.5. The posterior mean of the MATE is approximately -0.08,

with a 95% credible interval ranging from -0.050 to -0.110. This indicates that on

average, part-time work is expected to reduce the growth in student achievement

between Waves 1 and 2 by between 0.050 and 0.110 units. To contextualise this

effect size, note that the standard deviation of the δi growth values in achievement

is approximately 0.44. Thus, the observed effect size corresponds to a decrease in
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Figure 6.5: The posterior distribution for the Mixed Average Treatment Effect
(MATE) is shown on the left, and a histogram of the individual conditional average
treatment effects is provided on the right. The solid line shows the posterior mean,
while the dashed lines indicate a 95% credible interval. An interesting subgroup of
students on the right tail of the histogram are predicted to benefit from part-time
work.

achievement growth by nearly 0.2 standard deviations, which can be considered a

medium to large effect size (Kraft, 2020).

A histogram of the individual conditional average treatment effects (ICATEs)

for each of the students in the sample can be found in Figure 6.5. The majority of

the ICATEs are centered quite close to the MATE of -0.08, but there are also signs

of heterogeneity. Notably, there is an interesting tail of the histogram stretching

across into a positive area where the effect of part-time work is actually predicted

to have a positive effect on achievement growth. To explore this finding further,

we calculated variable importance metrics for the τ() trees in our model to identify

any variables that might strongly moderate the treatment effect. Variables such

as socioeconomic status (SES) and prior academic achievement were considered

in this analysis. Although prior achievement at Wave 1 demonstrated a strong

relationship with overall growth in mathematics achievement, it did not show a

similarly strong association with variation in the effects of part-time work. In-
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Figure 6.6: Scatterplot of the relationship between Wave 1 school belonging and
the effect of working part-time. The effect of part-time work is negative for most
students, but for a subgroup of students with low sense of school belonging the
predicted effect is positive.

stead, the most influential effect moderator emerging from this investigation was

students’ sense of school belonging at Wave 1. Figure 6.6 visualises this variable’s

relationship with the ICATEs from the model. The results suggest that the stu-

dents predicted to experience a positive effect from part-time work are those with

an initially low sense of school belonging.

This interesting finding, which might initially appear quite strange, aligns well

with some ‘traditional’ views that part-time work can benefit students. Early

research has suggested, for example, that part-time employment can provide stu-

dents with greater time management skills (Robotham, 2012), and other benefits

such as a sense of purpose and responsibility. These benefits can be especially pro-

nounced among students with low achievement or a diminished sense of belonging

in school (King et al., 1989; Steinberg et al., 1982). This sense of purpose and

responsibility acquired through part-time work could serve to re-focus students,

leading to spillover effects benefiting their academic performance (Zimmerman and

Kitsantas, 2005). Therefore, while part-time work may be associated with nega-

tive outcomes for the majority of students, there may be certain subgroups, such
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as students experiencing a low sense of belonging in school, who may experience

positive effects from employment.

In summary, this section presented two key findings from the analysis of the

HSLS data. Firstly, substantial variation was observed in the extent to which

students improved their achievement between Waves 1 and 2. Further analysis

showed that this variation was driven primarily by the baseline achievement lev-

els of the students, with initially high performing students showing much higher

growth than their peers. These students, starting from a solid foundation of high

achievement may find it easier to build upon their academic progress, as they are

in a better place to acquire and digest new knowledge in class. The second key

finding was that on average, part-time work had a modest, but negative effect on

the growth of student achievement. This supports the “zero-sum” argument that

part-time work detracts from study time, homework completion, and rest, hinder-

ing academic progress as a result. A notable exception was that students with

initially low school belonging might actually benefit from part-time work, high-

lighting the ability of our model to capture complex relationships between student

performance and employment.

6.6 Discussion

Drawing on longitudinal data from the High School Longitudinal Study of 2009,

our study introduced an innovative method for modelling growth in student achieve-

ment. Our model also estimates the causal impact of interventions such as part-

time work on this growth. By extending Bayesian Additive Regression Trees (Chip-

man et al., 2010) and Bayesian Causal Forests (Hahn et al., 2020), the primary

strength of our model lies in its ability to flexibly capture both individual growth

trajectories in student achievement and the potentially heterogeneous treatment

effects of part-time work, which may be influenced by various covariates. This

approach contrasts with many existing methods that either lack the flexibility to

model individual variations or are confined to single time-point observational data,

precluding an analysis of achievement growth over time.

Our model was also equipped with two special features that allowed it to han-

dle missing data in the covariates and the treatment status indicator. Simulation
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study results from Section 6.4 provide strong support for the impressive predic-

tive performance of the model, which demonstrated clear advantages over three

competing methods when tasked with predicting growth values at the individual

student level, and heterogeneous treatment effects. Close to ideal coverage rates

were also achieved. The proposed model also showed strong performance in a sec-

ond simulation study, matching the performance of two correctly specified models

designed specifically for use with longitudinal datasets.

The results from our model application to the motivating HSLS data produced

some interesting findings. First, the model was able to reveal a large disparity in

the predicted growth values among students with initially high and low levels of

academic achievement. This finding of a widening achievement gap underscores

the importance of early interventions in schools and academic institutions. By

addressing achievement gaps at the elementary and middle school levels, policy

decisions can prevent these disparities from becoming entrenched. This is espe-

cially important given previous research which indicates that it becomes much

more challenging to effectively remedy these gaps by the ninth or eleventh grade

(Morgan et al., 2016).

On average, part-time work was found to have a negative effect on student

achievement, with the 95% credible interval for the MATE ranging from -0.050 to

-0.110. This is important, as we calculated nearly 50% of students in our sample

participated in some level of part-time work during high school, and more than 15%

of students participated in intensive part-time work, requiring upwards of 20 hours

of work a week. Large amounts of heterogeneity were apparent in the ICATEs,

however, and an analysis of the variable importance metrics from the model iden-

tified sense of school belonging during Wave 1 as a significant contributor to this

variation. The finding that students with a low sense of school belonging may

actually be benefiting slightly from part-time work ties in with previous findings

that show students can benefit from the routine, sense of purpose and responsibil-

ity that part-time work can provide (Robotham, 2012; King et al., 1989; Steinberg

et al., 1982). From a policy perspective, however, we do not recommend that

students beginning to disengage from the school system should take on intensive

part-time work. Instead, we suggest that further research is needed to explore

how disengaging students can be encouraged to find a sense of purpose or rou-

159



6.6. DISCUSSION

tine through other activities such as sports or youth programmes. Alternatively,

part-time work with moderate hours may be a more balanced approach.

An important ethical consideration arising from this work concerns the treat-

ment of ethnicity as a control variable. Ethnic background is often connected with

systemic factors such as unequal access to academic support, employment oppor-

tunities, and safe working conditions. These are factors that may influence both

participation in part-time work and academic outcomes. By adjusting for ethnic-

ity, we aim to isolate the effect of part-time work from these broader systemic

influences. However, it is still important to acknowledge that this does not erase

the reality of these structural disadvantages. The experiences of students from dif-

ferent backgrounds may differ not only in their access to work opportunities but

also in the quality of those experiences and their potential academic consequences.

Findings from this study should therefore be interpreted within the wider context

of educational and work inequalities, acknowledging that the variables analysed

here such as part-time work may act as surface-level indicators of deeper social

and structural disparities.

A limitation of the model proposed in our study is that owing to the fact

each growth period and associated treatment effect is dedicated a separate BART

model, the computational cost of running the model may become quite large in

settings with many waves of data. Replacing the BART models with more efficient

XBART models as in He and Hahn (2023) and Krantsevich et al. (2023) would

therefore make a promising area for future work, widening the applicability of the

proposed method.

A second limitation of the proposed model is that it is currently designed to

estimate only the direct effect of a treatment on the outcome measured in the

immediately following time period. The key challenge in extending the model to

later outcomes is that treatment effects may propagate not only through direct

causal pathways but also indirectly by influencing control variables measured after

the intervention. Since our approach adjusts for these control variables to estimate

causal effects, failing to account for these indirect pathways could introduce post-

treatment bias. Adapting the method in order to accommodate the estimation of

longer-term effects is therefore a promising avenue for future work.

Another challenge in applying the proposed model to datasets with multiple
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growth periods would be in ensuring sufficient overlap in covariate distributions

across treatment groups over time. Evaluating this assumption is more challeng-

ing with extra growth periods, as the overlap assumption must be assessed for

each period, conditional on prior covariate histories. In cases where the overlap

assumption is only met for a subset of the growth periods of interest, this may

preclude a full exploration of the effects of treatment between certain periods,

limiting analysis to time periods where the assumption does hold.

Given the flexibility and widely adopted nature of the underlying BART frame-

work, a natural extension of the longitudinal causal model adopted in our study

might be to survival data (Sparapani et al., 2016). Other natural extensions could

include allowing multivariate (McJames et al., 2024, Chapter 4) or multinomial

outcomes (Murray, 2021), or the incorporation of random effects (Wundervald

et al., 2022; Yeager et al., 2022). Additionally, given the specificity of our results

to a representative sample of ninth to eleventh grade high school students from the

US, an application of a similar model to other countries or grade levels would be

of interest. More generally, we expect that the model’s flexibility will allow it to

be applied to a wide variety of datasets across diverse fields and application areas.
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7
Conclusion

This thesis has focused on the development of new extensions of Bayesian non-

parametric causal inference machine learning methods, and their application to

large scale education datasets to investigate important issues related to education

policy in Ireland and internationally. In this concluding chapter, we summarise

the contribution made by each of the research chapters of this thesis, consider the

limitations of our research, and identify promising areas for future work.

7.1 Chapter Summaries

Chapter 3 of this thesis focuses on the application of Bayesian Additive Regression

Trees to data from the Teaching and Learning International Survey (TALIS 2018)

in order to investigate factors affecting teacher job satisfaction - an important

research question given the high levels of teacher turnover and teacher shortages

currently facing many countries. Ours is not the first study to investigate this

problem of international interest, but the adoption of the BART based approach

for causal inference outlined in Hill (2011) makes a significant contribution. This

methodology allowed us to address the problem with a flexible causal inference

approach, demonstrating the potential for advanced statistical methods in educa-

tion research. Additionally, our focus in Chapter 3 on specific and implementable

factors, such as mentoring schemes and continual professional development, helps

to increase the relevance and value of our findings. These factors can be more

readily incorporated into policy updates compared to less easily modified aspects,
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such as the overall sense of safety and orderliness within a school.

Motivated by data from the Trends in International Mathematics and Science

Study (TIMSS 2019) which includes data on student achievement in both math-

ematics and science, Chapter 4 of this thesis introduced a multivariate extension

of Bayesian Causal Forests. This multivariate extension allows for the identifica-

tion of the heterogeneous treatment effects of an intervention on multiple outcome

variables simultaneously. The key advantage of this approach is that we allow the

structures and decision rules of the trees to benefit from the correlation and shared

information across all outcome variables. This allows us to achieve more accurate

and more precise treatment effect estimates than similar univariate approaches,

while achieving excellent coverage and minimal bias. As demonstrated by the sim-

ulation study contained in the chapter, the method was also robust to violations

of the model assumptions affecting only one of the outcome variables of interest.

With this approach, we were able to identify the effect of different home re-

lated factors on student achievement in both mathematics and science. Our find-

ings indicate that having access to a study desk at home can positively impact

mathematics achievement, while often feeling hungry upon arriving at school and

frequent absences can have negative consequences in both subjects. These re-

sults have important implications for government policies such as free school meal

schemes, which can provide healthy meals to students at school, and also highlight

the potential to inform parents of the importance of students having access to

dedicated study spaces at home.

Chapter 5 is based on the use of the multivariate BCF model from Chapter 4 to

investigate the effects of homework on student achievement, again using data from

TIMSS 2019. An important contribution made by this chapter is separating the

effects of homework frequency and duration in order to identify the optimal distri-

bution of homework throughout the week. Additionally, the use of the multivariate

model from Chapter 4 to investigate the effects of homework in both mathemat-

ics and science makes a valuable contribution, as subject specific differences are

relatively under explored in this area. Indeed, subject specific differences were

identified from our investigation, showing that daily homework benefited math-

ematics achievement the most, while three to four days per week was the most

beneficial frequency in science. A finding that was common across both subjects,
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however, was that short homework assignments lasting up to 15 minutes each time

were equally as beneficial as longer ones.

While not emphasised in Chapter 5, this was only achievable with an important

multi-treatment extension of BCF that allows for the consideration of multiple in-

terventions, or variations of a single intervention simultaneously. This simple yet

powerful extension, closely related to the “no multiple versions of treatment” as-

pect of the stable unit treatment value assumption, is likely to be equally as useful

in many other settings. It is easy to imagine, for example, a medical study in which

two different drugs, or versions of the same drug are being tested simultaneously

on the same target population.

The final research chapter of this thesis, Chapter 6, extends BCF to longi-

tudinal data in order to investigate the effect of part-time work on the growth

in high school mathematics achievement between grades 9 and 11, by using data

from the High School Longitudinal Study of 2009. Some might like to think of the

model described in Chapter 6 as a flexible Bayesian non-parametric difference-in-

differences model. Crucially, however, by using the flexible BART and BCF as

a foundation for the model, we were able to relax the restrictive parallel trends

assumption of the standard difference-in-differences approach. Additionally, the

intuitive parameterisation which models the outcome variable as a cumulative sum

of growths and treatment effects from consecutive time periods, meant we were

able to place separate priors on the growth in student achievement and the effects

of part-time work on this growth.

With this model we were able to identify a small but negative effect of part-time

work on student achievement. Interestingly, owing to the flexible BART and BCF

foundation, we were also able to identify heterogeneity in the predicted growth in

student achievement, and the estimated effects of part-time work. These results

pointed to a widening achievement gap, as well as potential benefits of part-time

work for students with an initially low sense of school belonging. These results have

policy implications, by highlighting the need for early interventions in school, in

order to help prevent large achievement gaps from developing before they are given

a chance to widen. They also highlight the need for policy makers to remain vigi-

lant of the negative effects that part-time work can have on student achievement,

and potentially tighten regulations surrounding young labour, especially intensive
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work requiring greater than 20 hours of work per week. Lastly, the finding that

students with an initially low sense of school belonging may be benefiting from

part-time work highlights an opportunity to explore other ways in which students

disengaging from school may be encouraged to engage in school again.

7.2 Limitations and Future Work

The research carried out in Chapter 3 is primarily motivated by high rates of

teacher turnover and attrition, as well as teacher shortages. However a limitation of

Chapter 3 is that the measure of job satisfaction used as an outcome variable does

not measure those outcomes directly. Other research shows that job satisfaction

is an important predictor of teacher intentions to remain teaching, but in order to

provide a direct link to teacher shortages and attrition, our study would have had to

use a direct measure of these outcomes, which were not available in the TALIS data.

As such, external factors could weaken the strength of the relationship between

job satisfaction and actual turnover behavior, meaning that job satisfaction may

not consistently serve as a reliable proxy for predicting turnover and attrition.

Therefore, future work could include the application of a similar method to ours

to a dataset with direct measurements of teacher turnover rates, if such data

sources become publicly available. Alternatively, future work which examines the

mediating role of teacher job satisfaction on turnover or other outcomes of interest

could help to strengthen the link between our findings and rates of attrition by

demonstrating a causal link between job satisfaction and rates of teacher turnover

etc.

A limitation of the multivariate shared tree structure adopted in Chapter 4

is that in situations where the outcome variables of interest may experience the

influence of different predictor variables in substantially different ways, such as

through distinct interaction terms, or possibly even distinct sets of covariates, the

tree structure adopted in Chapter 4 which uses the same tree structure and decision

rules for all outcome variables may be inappropriate. In fact, the simulation study

included in Chapter 4, which incorporates three different data generating processes

with differing levels of suitability for a shared tree structure, provides evidence of

this potential drawback. An additional limitation of the shared tree structure
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used by all outcome variables, is that model interpretability and explainability

tools will not easily be able to untangle the separate variable importance metrics

and interaction terms associated with each outcome individually. Instead, variable

importance metrics based on the multivariate BCF model can only be interpreted

as the overall effect of the predictor variables on all outcome variables.

To address the above issues related to shared tree structures not being ideal

in certain circumstances, an interesting avenue for future work would be to allow

separate ensembles of decision trees to independently focus on unique outcome vari-

ables, while maintaining a shared tree structure ensemble focused on all outcome

variables. This would allow the model to benefit from any shared information

across all outcome variables, while also providing added flexibility in situations

where separate tree structures would be preferred. This may also allow a deeper

understanding of how the covariates jointly and separately influence the outcome

variables of interest. Since publishing Chapter 4, other researchers have already

begun work independently on a similar extension applied to BART (Esser et al.,

2024), but a similar extension applied to BCF would also likely be very useful.

An important limitation of Chapter 5 is that by only considering an academic

outcome variable - student achievement, it is not possible to directly weigh the pros

and cons of assigning homework to students, as the potentially negative effects of

homework on non-academic outcomes such as stress levels, and the necessarily

reduced time available for important extracurricular activities such as sport and

recreation were not considered. Furthermore, simply assigning homework with

the identified optimal frequency and duration is unlikely to be beneficial without

also ensuring the homework is well suited to the ability of the students, and of

a sufficiently high quality. Therefore, a promising area for future work would be

to apply the multivariate BCF model to any available non-academic measures

of student welfare and well-being, while also examining the moderating role of

homework quality and appropriateness for the ability levels of the students, in

order to more accurately evaluate the benefits and drawbacks of homework in

different levels of quality.

A limitation of Chapter 6 is that as separate BART ensembles are devoted

to each of the growth and treatment effect estimates from every time period, the

computational burden of the model is likely to become very large when applied
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to datasets with many waves of data, unless a small number of trees is used. To

tackle this issue, a very useful area for future work would be to incorporate the

accelerated Bayesian Additive Regression Tree (XBART) model of He et al. (2019)

into the longitudinal BCF framework, thus improving computational efficiency,

and possibly allowing the LBCF model to larger datasets without the need to

sacrifice on number of trees or posterior samples.

A general limitation that applies to all chapters of this thesis, is that each of the

models employed rely on a number of important assumptions. Notably, the ignor-

ability assumption requires that we have controlled for all sources of confounding.

While we have endeavoured to do so in our analyses by controlling for all variables

available to us that we believe may act as confounders, it would be irresponsible

to disregard the possibility that some important confounding variables may have

been missing from the data sources employed during the writing of this thesis.

As a result, extending the models developed in this thesis to include ideas from

Bargagli-Stoffi et al. (2019), who develop an instrumental variable version of BCF

would make a significant contribution, by helping to relax the strong ignorability

assumption.

A further limitation that applies to all chapters of this thesis is that the results

are always specific to data from one country or grade level. A replication of the

studies conducted in this thesis, performed with data from other countries and

grade levels would therefore be necessary to further generalise the results reported

in this thesis.

Given the many BART and BCF extensions developed by other researchers, an

area of future work that would be applicable to all chapters of this thesis is incor-

porating these extensions into the models we have developed to further improve

their applicability to a wider selection of datasets. For example, the shrinkage

BCF extension by Caron et al. (2022b) could be incorporated into our work in

order to improve performance in high dimensional settings, the work by Starling

et al. (2021) could be incorporated to allow for the investigation of treatment ef-

fects that are expected to exhibit smooth variations across a covariate, or the work

by Prado et al. (2021a) could be incorporated to take advantage of local linearities

present among the relationships in the data.

Finally, while code is available online at https://github.com/Nathan-McJames
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for reproducing the results, and fitting the models developed in this thesis, a dedi-

cated R package that combines these BCF extensions in one user friendly package

would be an excellent avenue for future work, enabling other researchers from other

disciplines to more easily benefit from the valuable contributions developed in this

thesis. An early version of such a package, implementing the multivariate BCF

model, is now available at https://nathan-mcjames.github.io/mvbcf/.
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Burić, I. and Kim, L. E. (2021). Job satisfaction predicts teacher self-efficacy

and the association is invariant: Examinations using TALIS 2018 data and

longitudinal Croatian data. Teaching and Teacher Education, 105.

Cai, L., Choi, K., Hansen, M., and Harrell, L. (2016). Item response theory.

Annual Review of Statistics and Its Application, 3(1):297–321.

Callaway, B. and Sant’Anna, P. H. (2021). Difference-in-differences with multiple

time periods. Journal of Econometrics, 225(2):200–230.

Capone, V. and Petrillo, G. (2020). Mental health in teachers: Relationships with

job satisfaction, efficacy beliefs, burnout and depression. Current Psychology,

39(5):1757–1766.

Carnegie, N., Dorie, V., and Hill, J. L. (2019). Examining treatment effect het-

erogeneity using BART. Observational Studies, 5(2):52–70.

170



BIBLIOGRAPHY

Caron, A., Baio, G., and Manolopoulou, I. (2022a). Estimating individual treat-

ment effects using non-parametric regression models: A review. Journal of the

Royal Statistical Society Series A: Statistics in Society, 185(3):1115–1149.

Caron, A., Baio, G., and Manolopoulou, I. (2022b). Shrinkage Bayesian causal

forests for heterogeneous treatment effects estimation. Journal of Computational

and Graphical Statistics, 31(4):1202–1214.

Chen, X. (2022). The effects of individual-and class-level achievement on attitudes

towards mathematics: An analysis of Hong Kong students using TIMSS 2019.

Studies in Educational Evaluation, 72:101113.

Chipman, H. A., George, E. I., and McCulloch, R. E. (1998). Bayesian CART

model search. Journal of the American Statistical Association, 93(443):935–948.

Chipman, H. A., George, E. I., and McCulloch, R. E. (2010). BART: Bayesian

additive regression trees. The Annals of Applied Statistics, 4(1):266–298.

Coldwell, M. (2017). Exploring the influence of professional development on

teacher careers: A path model approach. Teaching and Teacher Education,

61:189–198.

Cooper, H. (1989). Homework. Longman.

Cooper, H., Robinson, J. C., and Patall, E. A. (2006). Does homework improve

academic achievement? A synthesis of research, 1987–2003. Review of Educa-

tional Research, 76(1):1–62.

Cooper, H. and Valentine, J. C. (2001). Using research to answer practical ques-

tions about homework. Educational Psychologist, 36(3):143–153.

Corno, L. (1996). Homework is a complicated thing. Educational Researcher,

25(8):27–30.

Corral, D. and Yang, M. (2024). An introduction to the difference-in-differences

design in education policy research. Asia Pacific Education Review, pages 1–10.

171



BIBLIOGRAPHY

Dahler-Larsen, P. and Foged, S. K. (2018). Job satisfaction in public and private

schools: Competition is key. Social Policy & Administration, 52(5):1084–1105.

Daly, C., Gandolfi, H., Pillinger, C., Glegg, P., Hardman, M., Stiasny, B., and

Taylor, B. (2021). The early career framework–a guide for mentors and early

career teachers. www.ucl.ac.uk/ioe-cttr.

Daw, J. (2012). Parental income and the fruits of labor: Variability in home-

work efficacy in secondary school. Research in Social Stratification and Mobility,

30(3):246–264.

Dee, T. S. and Cohodes, S. R. (2008). Out-of-field teachers and student achieve-

ment: Evidence from matched-pairs comparisons. Public Finance Review,

36(1):7–32.

Delahunty, T. (2024). The convergence of late neoliberalism and post-pandemic

scientific optimism in the configuration of scientistic learnification. Educational

Review, pages 1–23.

Department for Education (2019). Early career framework. https:

//assets.publishing.service.gov.uk/government/uploads/system/uploads/

attachment data/file/978358/Early-Career Framework April 2021.pdf.

Department of Social Protection (2023). School meals scheme. Available at: https:

//www.gov.ie/en/service/29a3ff-school-meals-scheme/.
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Teachers’ occupational well-being and quality of instruction: The important role

of self-regulatory patterns. Journal of Educational Psychology, 100(3):702.

Kohn, A. (2006). Abusing research: The study of homework and other examples.

Phi Delta Kappan, 88(1):9–22.

König, C. and van de Schoot, R. (2018). Bayesian statistics in educational research:

A look at the current state of affairs. Educational Review, 70(4):486–509.

Kraft, M. A. (2020). Interpreting effect sizes of education interventions. Educa-

tional Researcher, 49(4):241–253.

Krantsevich, N., He, J., and Hahn, P. R. (2023). Stochastic tree ensembles for

estimating heterogeneous effects. In International Conference on Artificial In-

telligence and Statistics, pages 6120–6131. PMLR.

179



BIBLIOGRAPHY
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A
Appendix for Chapter 3

A.1 Definitions of Key Terms Given in TALIS Ques-

tionnaire

Key Term Definition
CPD In this section, ‘professional development’ is defined as activities

that aim to develop an individual’s skills, knowledge, expertise and
other characteristics as a teacher.

Induction ‘Induction activities’ are designed to support new teachers’ intro-
duction into the teaching profession and to support experienced
teachers who are new to a school, and they are either organised in
formal, structured programmes or informally arranged as separate
activities.

Mentoring ‘Mentoring’ is defined as a support structure in schools where more
experienced teachers support less experienced teachers. This struc-
ture might involve all teachers in the school or only new teachers.
It does not include mentoring of student teachers doing teaching
practice at this school.

Public School This is a school managed by a public education authority, govern-
ment agency, municipality, or governing board appointed by gov-
ernment or elected by public franchise.

Private School This is a school managed by a non-government organisation; e.g. a
church, trade union, business or other private institution.
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A.2. QUESTIONS USED TO DEFINE TREATMENT GROUPS

A.2 Questions Used to Define Treatment Groups

Treatment Question Condition
CPD During the last 12 months, did

you participate in any of the fol-
lowing professional development
activities?

Teachers who responded “yes” to
any 4 of the 10 available options.

Induction Did you take part in any induc-
tion activities?

Teachers who responded “yes” to
either taking part in a formal or
informal induction programme at
their current school.

Observing On average, how often do you do
the following in this school?

Teachers who did not respond
“never” to the option “Observe
other teachers’ classes and pro-
vide feedback.”

Team Teaching On average, how often do you do
the following in this school?

Teachers who did not respond
“never” to the option “Teach
jointly as a team in the same
class.”

Has Mentor Are you currently involved in
any mentoring activities as part
of a formal arrangement at this
school?

Teachers who responded “yes” to
having a mentor.

Is Mentor Are you currently involved in
any mentoring activities as part
of a formal arrangement at this
school?

Teachers who responded “yes” to
being a mentor.

Public Is this school publicly or
privately-managed?

Teachers with a principal who in-
dicated their school is publicly-
managed.

30+ Students How many students are currently
enrolled in this class?

Teachers who answered 30 or
more students.

Out-of-field Were the following subject cate-
gories included in your formal ed-
ucation or training, and do you
teach them during the current
school year to any students in this
school?

Teachers who indicated that at
least one option given was not
included in their education, but
that they do currently teach it.

Part-Time What is your current employment
status as a teacher, in terms of
working hours?

Teachers who indicated they do
not have a full time contract at
their current school.
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A.3. LIST OF POTENTIAL CONFOUNDERS USED

A.3 List of Potential Confounders Used

TALIS Variable
Code

Description Removed from X for
treatment

IDCNTPOP Primary/Secondary School.
TT3G01 Gender.
TT3G03 Highest level of formal education completed.
TT3G04 How did you receive your first teaching qualification?
TT3G05 Year of Qualification.
TT3G08 Was teaching your first choice as a career?
TT3G09 Permanent/Fixed-Term Contract.
TT3G10A Working hours at this school. Part-Time Contract.
TT3G10B Working hours altogether. Part-Time Contract.
TC3G12 School publicly/privately managed Public School.
TT3G11A Year(s) working as a teacher at this school.
TT3G11B Year(s) working as a teacher in total.
TT3G11C Year(s) working in other education roles.
TT3G11D Year(s) working in non education roles.
TT3G12 Do you currently work as a teacher at another school?
TT3G14 Number of students in class with special needs.
TT3G37 Subject taught.
TT3G38 Number of students in class. 30+ Students.
TT3G39A % of time spent on administrative tasks.
TT3G39B % of time spent keeping order in classroom.
TT3G39C % of time actually spent teaching.
T3STBEH Student behaviour stress.
T3CLAIN Clarity of instruction.
T3CLASM Classroom management.
T3COGAC Cognitive activation.
T3COLES Professional collaboration in lessons among teachers.
T3EFFPD Effective professional development.
T3EXCH Exchange and co-ordination among teachers.
T3PDBAR Professional development barriers.
T3DISC Teachers’ perceived disciplinary climate.
T3PERUT Personal utility motivation to teach.
T3PDIV Needs for professional development for teaching for diversity.
T3PDPED Needs for professional development in subject matter and pedagogy.
T3VALP Perceptions of value and policy influence.
T3SATAT Satisfaction with target class autonomy.
T3SECLS Self-efficacy in classroom management.
T3SEINS Self-efficacy in instruction.
T3SEENG Self-efficacy in student engagement.
T3SEFE Self-related efficacy in multicultural classrooms.
T3SOCUT Social utility value.
T3STAKE Participation among stakeholders, teachers.
T3TEAM Team innovativeness.
T3STUD Teacher-student relations.
T3WELS Workplace well-being and stress.
T3WLOAD Workload stress.
T3TPRA Teaching practices, overall.
T3COOP Teacher cooperation.
T3SELF Teacher self-efficacy.
T3DIVP Diversity practices.
T3JOBSA Overall job satisfaction. All.
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B
Appendix for Chapter 4

B.1 Multivariate BCF Updates

B.1.1 Log-Likelihood of a µ Tree

Let Tj denote the jth µ tree in the ensemble with partial residuals Rj . Also suppose that

tree Tj has K terminal nodes hj,1...hj,K , and L non-terminal nodes bj,1...bj,L. Furthermore, let

Rj,k,1...Rj,k,nk
denote the partial residuals which fall into the kth terminal node of tree Tj . Then

given the residual covariance matrix Σ, the tree priors α and β, and the prior covariance matrix

Σµ for terminal node parameters, we have that:

ℓ(Tj |Rj ,Σ) = ℓ(Rj |Tj ,Σ) + ℓ(Tj) + C

ℓ(Tj) =

K∑
k=1

log
(
1− α(1 + d(hj,k))

−β
)
+

L∑
l=1

log(α)− β log(1 + d(bj,l))

ℓ(Rj |Tj ,Σ) =

K∑
k=1

ℓ(Rj,k,1, . . . , Rj,k,nk
|Tj ,Σ)

=

K∑
k=1

{
−nk

2
log (|Σ|)− 1

2
log (|Σµ|) +

1

2
log (|Σk,0|)−

1

2

nk∑
i=1

(
RT

j,k,iΣ
−1Rj,k,i − µT

k,0Σ
−1
k,0µk,0

)}
+C

where

Σ−1
k,0 = nkΣ

−1 +Σ−1
µ

and

µk,0 = Σk,0Σ
−1

(
nk∑
i=1

Rj,k,i

)
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B.1. MULTIVARIATE BCF UPDATES

B.1.2 Posterior Distribution of Terminal Node Parameters in a µ Tree

For the kth terminal node of any tree Tj , the posterior distribution of the terminal node parameter

µj,k with prior mean µ0 is given by:

µj,k| . . . ∼ N (µn,Σn)

where

µn =
(
Σ−1

µ + nkΣ
−1
)−1 (

Σ−1
µ µ0 + nkΣ

−1R
)

and

Σn =
(
Σ−1

µ + nkΣ
−1
)−1

B.1.3 Log-Likelihood of a τ Tree

Given the prior covariance matrix for terminal node parameters Στ , and vector Zk which holds

the treatment status of each observation in terminal node k, we obtain:

ℓ(Tj |Rj ,Σ) = ℓ(Rj |Tj ,Σ) + ℓ(Tj) + C

ℓ(Tj) =

K∑
k=1

log
(
1− α(1 + d(hj,k))

−β
)
+

L∑
l=1

log(α)− β log(1 + d(bj,l))

ℓ(Rj |Tj ,Σ) =

K∑
k=1

ℓ(Rj,k,1, . . . , Rj,k,nk
|Tj ,Σ)

=

K∑
k=1

{
−nk

2
log (|Σ|)− 1

2
log (|Στ |) +

1

2
log (|Σk,0|)−

1

2

nk∑
i=1

(
RT

j,k,iΣ
−1Rj,k,i − τTk,0Σ

−1
k,0τk,0

)}
+C

where

Σ−1
k,0 =

nk∑
i=1

Zj,k,iΣ
−1 +Σ−1

τ

τk,0 = Σk,0Σ
−1

(
nk∑
i=1

Rj,k,iZj,k,i

)

B.1.4 Posterior Distribution of Terminal Node Parameters in a τ Tree

Analogously to the terminal node parameters in a µ tree, the posterior distribution of the terminal

node parameter τj,k in the kth leaf of the jth τ tree Tj , with prior mean τ0 is:

τj,k| . . . ∼ N (τn,Σn)
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B.1. MULTIVARIATE BCF UPDATES

where

τn =

(
Σ−1

τ +

nk∑
i=1

Zj,k,iΣ
−1

)−1(
Σ−1

τ τ0 +Σ−1
nk∑
i=1

Rj,k,iZj,k,i

)
and

Σn =

(
Σ−1

τ +

nk∑
i=1

Zj,k,iΣ
−1

)−1

B.1.5 Posterior Distribution of Residual Covariance Parameter Σ

Given observed and predicted values y and ŷ, the posterior distribution of the covariance matrix

Σ for the n residuals, with prior scale matrix Σ0 and ν0 degrees of freedom is given by:

Σ| . . . ∼ W−1
(
ν0 + n, [S0 + Sθ]

−1
)

where

Sθ =

n∑
i=1

(yi − ŷi)
TΣ−1(yi − ŷi).
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B.2. TIMSS VARIABLES USED IN STUDY

B.2 TIMSS Variables Used in Study

TIMSS Variable Codes
Variable Code Obtained From Description
BSDAGE Student Questionnaire Student Age
BSBG01 Student Questionnaire Student Gender
BSBG03 Student Questionnaire How often student speaks English at home
BSBG04 Student Questionnaire Number of books at home
BSBG07 Student Questionnaire How far in education student expects to go
BSBG08A Student Questionnaire Was parent/guardian A born in Ireland
BSBG08B Student Questionnaire Was parent/guardian B born in Ireland
BSBG09A Student Questionnaire Was student born in Ireland
BSBG10 Student Questionnaire How often student is absent
BSBG11A Student Questionnaire How often student feels hungry when arriving at school
BSBG11B Student Questionnaire How often student feels tired when arriving at school
BSDGEDUP Student Questionnaire Parent’s highest education level
BSBGHER Student Questionnaire Number of home educational resources
BSBGSSB Student Questionnaire Sense of school belonging
BSBGSB Student Questionnaire School bullying
BSBGSCM/BSBGSCS Student Questionnaire Confidence in mathematics/science
BSBGSVM/BSBGSVS Student Questionnaire Student values mathematics/science
BSBGICM/BSBGICS Student Questionnaire Instructional clarity in mathematics/science
BSBG05A Student Questionnaire Has computer/tablet at home
BSBG05B Student Questionnaire Has study desk at home
BSBG05C Student Questionnaire Has own bedroom
BSBG05D Student Questionnaire Has home internet connection
BSBG05E Student Questionnaire Has own mobile phone
BSBG05F Student Questionnaire Has gaming system
BSBG05G Student Questionnaire Home TV has “premium” TV channels
BTBG01 Teacher Questionnaire Number of years teaching
BTBG02 Teacher Questionnaire Teacher gender
BTBG03 Teacher Questionnaire Teacher age
BTBG10 Teacher Questionnaire Number of students in class
BTBGTJS Teacher Questionnaire Teacher job satisfaction
BTBGSOS Teacher Questionnaire Safe and orderly school
BTBGLSN Teacher Questionnaire Teaching is limited by students not ready for instruction
BTBGEAS Teacher Questionnaire Emphasis on academic success
BTDMME Teacher Questionnaire Type of degree
BCBGDAS Principal Questionnaire School discipline
BCBGEAS Principal Questionnaire Emphasis on academic success
BCBGMRS/BCBGSRS Principal Questionnaire Resource shortages in mathematics/science
BCDGSBC Principal Questionnaire School average socioeconomic background

Table B.1: Variable codes for the treatment variables and control variables used
from the TIMSS 2019 data. The same control variables and treatment effect
moderators are used in all three models. Of the control variables used, only home
resources, parental education, school average socioeconomic status, and school
resources were examined as potential effect moderators.
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B.3. SENSITIVITY TO σµ AND στ

B.3 Sensitivity to σµ and στ

The plots below visualise the sensitivity of the model performance as measured by the Precision

in Estimating Heterogeneous Effects (PEHE) to the specific choice of σµ and στ . This was

accomplished by completing many simulations from Data Generating Process 1 (DGP1), with a

sample size of 500, and varying the values of σµ and στ in order to build a picture of how these

choices affect model performance. In the upper plot which visualises the sensitivity of the PEHE

to σµ, the value for στ was fixed at 3
8
√
Jτ

, where Jτ is the number of τ trees used in the ensemble,

while the value for σµ was chosen uniformly at random from between 1

100
√

Jµ

and 3√
Jµ

in each

unique simulation. In the lower plot which visualises the sensitivity of the PEHE to στ , the value

for σµ was fixed at 1√
Jµ

, while the value for στ was chosen uniformly at random from between

1
100

√
Jτ

and 3√
Jτ

in each unique simulation. In both cases, the performance is quite insensitive

to the specific values of σµ and στ , except for very low values which impose excessively strong

regularisation on the terminal node parameters.
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Figure B.1: Investigation of model sensitivity to σµ and στ .
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B.4 Simulation Study Results For All Sample Sizes
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Figure B.2: Simulation study results for all sample sizes.
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B.4. SIMULATION STUDY RESULTS FOR ALL SAMPLE SIZES
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C
Appendix for Chapter 5

C.1 Technical Details

C.1.1 Mathematical Description of BART, BCF, and MVBCF

BART

Given an outcome variable y of length n, and a covariate matrix X consisting of n observations

of d variables, the BART model (Chipman et al., 2010) can be written as follows:

yi =

J∑
j=1

g(Tj ,Mj , xi) + ϵi, ϵi ∼ N(0, σ2)

In the equation above, the function g() calculates the individual contribution of each tree, Tj ,

out of a total of J trees. The parameters Mj represent the terminal nodes associated with the

j-th tree, Tj . The residuals, ϵi, are assumed to follow a normal distribution with a mean of 0

and a variance of σ2. Since the BART model is Bayesian, appropriate priors need to be specified

for Tj , Mj , and σ2.

BCF

BCF (Hahn et al., 2020) expresses the outcome y as:

yi = µ(xi, π̂i) + τ(xi)Zi + ϵi

In the equation above, µ() and τ() are both BART ensembles that work together to estimate

two distinct components of y: a prognostic effect, µ, which represents the expected outcome

under control when the treatment variable Z is coded as 1 for treatment and 0 for control, and a
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C.1. TECHNICAL DETAILS

treatment effect, τ , which indicates the impact on y resulting from receiving the treatment. The

additional covariate, π̂i, included in the µ() part of the model, is called the propensity score. This

propensity score, denoted as π̂i = P (Zi = 1), represents the estimated probability of individual

i receiving treatment. The propensity score can be estimated using logistic regression, BART,

or any other appropriate classification model capable of providing estimated probabilities.

Multivariate BCF

In the case of multiple outcomes, the MVBCF model (McJames et al., 2024, Chapter 4) specifi-

cation becomes:

Y i = µi + τ i ◦Zi + ϵi

In the equation above, Y i represents a vector of length p, denoting the ith observation of the p-

dimensional outcome variable Y . µi and τ i correspond to the ith predictions from the functions

µ(xi) and τ (xi), respectively. ϵi represents the i
th residual, and ◦ denotes the Hadamard product

operator. This formulation can be extended to incorporate multiple treatment groups, such as

different frequencies or durations of homework, by including additional τ components in the

model.

207



C.1. TECHNICAL DETAILS

C.1.2 Log-Likelihood and Posterior Distribution of MVBCF Model Parameters

Log-Likelihood of a µ Tree

Let Tj denote the jth µ tree in the ensemble with partial residuals Rj . Also suppose that

tree Tj has K terminal nodes hj,1...hj,K , and L non-terminal nodes bj,1...bj,L. Furthermore, let

Rj,k,1...Rj,k,nk
denote the partial residuals which fall into the kth terminal node of tree Tj . Then

given the residual covariance matrix Σ, the tree priors α and β, and the prior covariance matrix

Σµ for terminal node parameters, we have that:

ℓ(Tj |Rj ,Σ) = ℓ(Rj |Tj ,Σ) + ℓ(Tj) + C

ℓ(Tj) =

K∑
k=1

log
(
1− α(1 + d(hj,k))

−β
)
+

L∑
l=1

[log(α)− β log(1 + d(bj,l))]

ℓ(Rj |Tj ,Σ) =

K∑
k=1

ℓ(Rj,k,1, . . . , Rj,k,nk
|Tj ,Σ)

=

K∑
k=1

{
−nk

2
log (|Σ|)− 1

2
log (|Σµ|) +

1

2
log (|Σk,0|)−

1

2

nk∑
i=1

(
RT

j,k,iΣ
−1Rj,k,i − µT

k,0Σ
−1
k,0µk,0

)}
+C

where

Σ−1
k,0 = nkΣ

−1 +Σ−1
µ

and

µk,0 = Σk,0Σ
−1

(
nk∑
i=1

Rj,k,i

)

Posterior Distribution of Terminal Node Parameters in a µ Tree

For the kth terminal node of any tree Tj , the posterior distribution of the terminal node parameter

µj,k with prior mean µ0 is given by:

µj,k| . . . ∼ N (µn,Σn)

where

µn =
(
Σ−1

µ + nkΣ
−1
)−1 (

Σ−1
µ µ0 + nkΣ

−1R
)

and

Σn =
(
Σ−1

µ + nkΣ
−1
)−1
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Log-Likelihood of a τ Tree

Given the prior covariance matrix for terminal node parameters Στ , and nk ×p matrix Zk which

holds the treatment status of each observation in terminal node k, who’s transposed ith row we

denote by Zk,i, we obtain:

ℓ(Tj |Rj ,Σ) = ℓ(Rj |Tj ,Σ) + ℓ(Tj) + C

ℓ(Tj) =

K∑
k=1

log
(
1− α(1 + d(hj,k))

−β
)
+

L∑
l=1

log(α)− β log(1 + d(bj,l))

ℓ(Rj |Tj ,Σ) =

K∑
k=1

ℓ(Rj,k,1, . . . , Rj,k,nk
|Tj ,Σ)

=

K∑
k=1

{
−nk

2
log (|Σ|)− 1

2
log (|Στ |) +

1

2
log (|Σk,0|)−

1

2

nk∑
i=1

(
RT

j,k,iΣ
−1Rj,k,i − τTk,0Σ

−1
k,0τk,0

)}
+C

where

Σ−1
k,0 = ZT

j,kZj,kΣ
−1 +Σ−1

τ

and

τk,0 = Σk,0

nk∑
i=1

Zj,k,i ◦ Σ−1Rj,k,i

Posterior Distribution of Terminal Node Parameters in a τ Tree

Analogously to the terminal node parameters in a µ tree, the posterior distribution of the terminal

node parameter τj,k in the kth leaf of the jth τ tree Tj , with prior mean τ0 is:

τj,k| . . . ∼ N (τn,Σn)

where

τn =
(
Σ−1

τ + ZT
j,kZj,k ◦ Σ−1

)−1

(
Σ−1

τ τ0 +

nk∑
i=1

Zj,k,i ◦ Σ−1Rj,k,i

)
and

Σn =
(
Σ−1

τ + ZT
j,kZj,k ◦ Σ−1

)−1
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Posterior Distribution of Residual Covariance Parameter Σ

Given observed and predicted values y and ŷ, the posterior distribution of the covariance matrix

Σ for the n residuals, with prior scale matrix Σ0 and ν0 degrees of freedom is given by:

Σ| . . . ∼ W−1
(
ν0 + n, [S0 + Sθ]

−1
)

where

Sθ =

n∑
i=1

(yi − ŷi)
TΣ−1(yi − ŷi).

C.1.3 Computation of Results

The model in the paper uses multivariate BART and BCF as a foundation to estimate the effect

of different levels of homework frequency and duration as follows:

yi,j = µj(xi) + τj,1(xi)Zi,j,1 + τj,2(xi)Zi,j,2 + τj,3(xi)Zi,j,3 + τj,4(xi)Zi,j,4 + αclass,i,j + ϵi,j

where yi,j is the achievement of student i in subject j (j = 1 for mathematics or j = 2 for

science). For a student who receives homework up to one or two times per week with a duration

of up to fifteen minutes, their achievement in subject j is given by µj(xi), where xi denotes

the characteristics associated with student i. Students who receive homework with a greater

frequency or duration belong to the treatment groups Zi,j,1 . . . Zi,j,4:

- Frequency of three or four times per week → Zi,j,1 = 1,

- Frequency of every day → Zi,j,2 = 1,

- Duration of fifteen to thirty minutes → Zi,j,3 = 1,

- Duration of greater than thirty minutes → Zi,j,4 = 1.

The causal effect of belonging to these groups is given by τj,k(xi), where k = 1 . . . 4 as above. To

account for the hierarchical nature of the data, αclass,i,j is a random intercept which captures

the between classroom variation in the data for student i and subject j. The remaining variation

is represented by the error term for student i in subject j, denoted as ϵi,j .

For the random intercept term, we assume that each αclass comes from a multivariate nor-

mal distribution with a population mean µα and population covariance matrix Σα: αclass ∼
N(µα,Σα), where the prior on µα and Σα is: µα ∼ N(m = 0, s = 0.01I), and Σα ∼ W−1(a =

1,Ω0 = 0.1I).

In the µ part of the model, 50 trees were used to estimate the expected achievement of

students in mathematics and science if they only receive homework up to one or two times per

week, at a duration of up to fifteen minutes each time. In each of the τ parts of the model
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which are responsible for estimating the treatment effects of receiving homework with a greater

frequency and/or duration, 20 trees were used. We ran a total of 5000 iterations of a statistical

method called Markov Chain Monte Carlo (MCMC), which allowed our model to gradually

update its estimates in a step by step manner. In line with best practice, we discarded the

results from the first 3000 of these iterations, as these were considered “burn-in” samples.

(1) Five MVBCF models were fitted to the TIMSS data, each corresponding to one of the five

available plausible values for student achievement: Model one used mathematics plausible

values from BSMMAT01, and science plausible values from BSSSCI01, while Model 2 used

BSMMAT02 and BSSSCI02 etc.

(2) Each model used 50 trees for the µ component of the model, and 20 trees in each of the

τ treatment effect ensembles.

(3) All models used the same treatment indicator Z, to indicate if student i received treatment

k in subject j.

(4) Each model ran for 3000 burn in iterations and 2000 post burn in iterations. Thinning

was used to save memory, so every second post burn in sample was saved, leading to 1000

posterior samples for each parameter of interest.

(5) Upon collection of the posterior samples from each of the five models, the posterior samples

from all five models were pooled together to reflect the uncertainty in the plausible values

of student achievement.

(6) Satisfactory convergence was assessed via visual inspection of the resulting MCMC chains,

and metrics including RMSE were calculated to ensure model accuracy.
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C.1.4 Variance Explained By Model

The table below summarises the total variance explained by the model, how much of this ex-

plained variance is due to the class specific random intercepts, and the Intraclass Correlation

Coefficients (ICCs) for both mathematics and science. The residual variance for each subject is

the posterior mean from the relevant diagonal entry of the residual covariance matrix Σ. The

explained variance refers to the variance of the predictive mean values of mathematics and sci-

ence achievement, and the random intercept variance refers to the posterior mean of the relevant

diagonal entry from Σα, the covariance matrix of the class effects. The R2 for mathematics is

0.636, indicating that 63.6% of the variation in mathematics achievement is explained by the

model. Similarly, the R2 for science indicates the model has explained 61.7% of the variation

in science achievement. The ICC measures what proportion of the variation explained by the

model that is attributable to the class specific random intercept terms. In mathematics, the ICC

is 0.230, indicating that 23.0% of the variation explained by the model is due to these random

intercept terms, while in science the figure is 21.8%.

Variance Explained By Model

Variance/Subject Mathematics Science
Residual Variance (σ2) 1831.2 2515.6
Residual Standard Deviation (σ) 42.8 50.2
Explained Variance (σ2

ŷ) 3202.7 4055.3
Standard Deviation of Predictive Means (σŷ) 56.6 63.7
Random Intercept Variance (σ2

α) 547.8 702.4
Random Intercept Standard Deviation (σα) 23.4 26.5

R2 = Explained Variance
Explained Variance + Residual Variance

0.636 0.617

ICC = Random Intercept Variance
Random Intercept Variance + Residual Variance

0.230 0.218

Table C.1: A summary of the variance explained by model. The model explains
63.6% of the variation in mathematics achievement, and 61.7% of the variation
in science achievement. Of this variation, 23.0% is attributable to the classroom
specific random effects in mathematics, while in science the classroom specific
random effects account for 21.8% of this variation.
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C.2 Complete Case Version of Results

As mentioned in the main paper, an alternative to imputing missing data is to use the complete

cases, removing rows with missing data. Our preference in the main paper was to use the

imputation based approach which maintained a nationally representative dataset. The results

below show the estimated effects of homework frequency and duration using complete cases only.

Once again, the optimal frequency in mathematics appears to be every day (albeit with some

greater uncertainty), and the optimal frequency in science is identified as three or four times

per week. Similarly to the imputation based approach, increasing homework duration beyond 15

minutes each time is not identified as yielding significant improvements.

Mathematics (Mean = 524, SD = 73) Science (Mean = 523, SD = 83)
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Figure C.1: Effect of homework frequency on student achievement using the com-
plete cases of the dataset only. Every day is the best frequency in mathematics,
but with more uncertainty than the results from the imputation based approach.
Once again, three or four times per week is the best frequency in science.
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Mathematics (Mean = 524, SD = 73) Science (Mean = 523, SD = 83)
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Figure C.2: Effect of homework duration on student achievement using the com-
plete cases of the dataset only. The results show that increasing the duration of
homework assignments beyond 15 minutes does not yield significant improvements
in achievement. This agrees with the results from the imputation based approach.
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C.3 TIMSS Variables Used

TIMSS Variables Used
Variable Code Obtained From Description
BSDAGE Student Questionnaire Student Age
BSBG01 Student Questionnaire Student Gender
BSBG03 Student Questionnaire How often student speaks English at home
BSBG04 Student Questionnaire Number of books at home
BSBG07 Student Questionnaire How far in education student expects to go
BSBG08A Student Questionnaire Was parent/guardian A born in Ireland
BSBG08B Student Questionnaire Was parent/guardian B born in Ireland
BSBG09A Student Questionnaire Was student born in Ireland
BSBG10 Student Questionnaire How often student is absent
BSBG11A Student Questionnaire How often student feels hungry when arriving at school
BSBG11B Student Questionnaire How often student feels tired when arriving at school
BSDGEDUP Student Questionnaire Parent’s highest education level
BSBGHER Student Questionnaire Number of home educational resources
BSBGSSB Student Questionnaire Sense of school belonging
BSBGSB Student Questionnaire School bullying
BSBGSCM/BSBGSCS Student Questionnaire Confidence in mathematics/science
BSBGSVM/BSBGSVS Student Questionnaire Student values mathematics/science
BSBGICM/BSBGICS Student Questionnaire Instructional clarity in mathematics/science
BSBG05A Student Questionnaire Has computer/tablet at home
BSBG05B Student Questionnaire Has study desk at home
BSBG05C Student Questionnaire Has own bedroom
BSBG05D Student Questionnaire Has home internet connection
BSBG05E Student Questionnaire Has own mobile phone
BSBG05F Student Questionnaire Has gaming system
BSBG05G Student Questionnaire Home TV has “premium” TV channels
BTBG01 Teacher Questionnaire Number of years teaching
BTBG02 Teacher Questionnaire Teacher gender
BTBG03 Teacher Questionnaire Teacher age
BTBG10 Teacher Questionnaire Number of students in class
BTBM14/BTBS14 Teacher Questionnaire Instructional time with class per week
BTBGTJS Teacher Questionnaire Teacher job satisfaction
BTBGSOS Teacher Questionnaire Safe and orderly school
BTBGLSN Teacher Questionnaire Teaching is limited by students not ready for instruction
BTBGEAS Teacher Questionnaire Emphasis on academic success
BTDMME Teacher Questionnaire Type of degree
BCBGDAS Principal Questionnaire School discipline
BCBGEAS Principal Questionnaire Emphasis on academic success
BCBGMRS/BCBGSRS Principal Questionnaire Resource shortages in mathematics/science
BCDGSBC Principal Questionnaire School average socioeconomic background

Table C.2: Variable codes of potential confounders controlled for as part of the
study. All variables listed were used in both the µ and τ parts of the multivariate
BCF model.
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Appendix for Chapter 6

D.1 Table of Summary Statistics

Variable Proportion
Wave 1

Achievement
Wave 1

Achievement
Wave 2

Student Gender
Male 50.3% -0.08 0.63
Female 49.7% -0.06 0.60

First Language
English Only 82.3% -0.05 0.63
English and Other 6.1% -0.15 0.58
Other 11.5% -0.16 0.58

Family Setup
Live With Both Biological Parents 43.2% 0.21 0.93
Other Arrangement 32.9% 0.02 0.71
No Response 23.9% -0.38 0.25

Parent Education Level
Less Than Bachelor’s Degree 47.7% -0.23 0.39
Bachelor’s Degree or Higher 28.4% 0.45 1.23
No Response 23.9% -0.38 0.25

Student Future Expectations
Less Than Bachelor’s Degree 21.5% -0.56 0.05
Bachelor’s Degree or Higher 56.8% 0.18 0.89
Student Not Sure 21.7% -0.25 0.41

School Type
Public 92.8% -0.11 0.57
Catholic or Private 7.2% 0.35 1.21

Table D.1: Summary statistics for categorical variables. The proportion column
provides the proportion of students belonging to each category in Wave 1, while
the achievement columns provide the mean achievement level within each group.
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D.2 LBCF Diagram

𝜇

𝜏

𝛿

Figure D.1: Diagram of how the proposed LBCF model fits into the framework
of the difference-in-differences approach. Two observations are shown for the pur-
poses of illustration - one from an imaginary control group, and one from a corre-
sponding treatment group. The solid lines indicate the realised achievement tra-
jectories, while the dashed line in red indicates a counterfactual trajectory for the
treated unit had it actually not received treatment. Initial achievement estimates
at Wave 1 are provided by µ. The expected growth (difference) in achievement
without treatment is provided by δ, while the effect of treatment on this growth
(the difference-in-differences) is captured by τ . Note that while only one µ value
is indicated in the diagram to avoid overprinting, the model does in fact provide
individual µ estimates for every observation. Similarly, individual estimates are
provided for each of the δ and τ estimates as well.
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D.3 LBCF Algorithm

Algorithm 2 LBCF MCMC Algorithm

Require: Outcome variable yi,t (response for individual i at time t of T time periods), Time
varying covariates xi,t (covariates collected on individual i up to time t), Treatment variable
Zi,t+1 (to indicate if individual i received treatment between periods t and t+1: 1 for treatment,
0 for control)

Ensure: Posterior list of trees, values of σ2, fitted values µ̂i, δ̂i,t, and τ̂i,t
Initialise hyper-parameter values of αµ, βµ, αδ, βδ, ατ , βτ , σ

2
µ, σ

2
δ , σ

2
τ , ν, λ, Number of µ

trees nµ, Number of δ trees nδ, Number of τ trees nτ , Number of iterations N , Initial value
σ2 = 1, Set µ trees Tj ; j = 1, . . . , nµ to stumps, Set δ trees Tj ; j = 1, . . . , nδ to stumps, Set
τ trees Tj ; j = 1, . . . , nτ to stumps, Set terminal node parameters of all µ, δ, and τ trees to 0
for iterations i from 1 to N do

for µ trees j from 1 to nµ do Compute partial residuals from y minus predictions of all trees
except µ tree j, Grow a new tree Tnew

j based on grow/prune/change/swap, Accept/Reject

tree structure with Metropolis-Hastings step using P (Tµ,j |Rµ,j , σ
2) ∝ P (Tµ,j)P (Rµ,j |Tµ,j , σ

2),
Sample µ values from normal distribution using P (Mµ,j |Tµ,j , Rµ,j , σ

2)
end for
for Time periods t from 2 to T do

for δt trees j from 1 to nδ do Compute partial residuals from y mi-
nus predictions of all trees except δt tree j, Grow a new tree Tnew

j based on
grow/prune/change/swap, Accept/Reject tree structure with Metropolis-Hastings step us-
ing P (Tδt,j |Rδt,j , σ

2) ∝ P (Tδt,j)P (Rδt,j |Tδt,j , σ
2), Sample δt values from normal distribution

using P (Mδt,j |Tδt,j , Rδt,j , σ
2)

end for
for τt trees j from 1 to nτ do Compute partial residuals from y mi-

nus predictions of all trees except τt tree j Grow a new tree Tnew
j based on

grow/prune/change/swap Accept/Reject tree structure with Metropolis-Hastings step using
P (Tτt,j |Rτt,j , σ

2) ∝ P (Tτt,j)P (Rτt,j |Tτt,j , σ
2) Sample τt values from normal distribution using

P (Mτt,j |Tτt,j , Rτt,j , σ
2)

end for
end for
Get predictions ŷ from all trees, Update σ2 with Inverse-Gamma distribution using

P (σ2|ŷ)
end for
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