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Abstract
While, many of the machine learning (ML) and artificial intelligence (AI) meth-
ods that are now commonly being used to answer questions across scientific disci-
plines have been around for some time, their widespread application to spatial data 
and spatially-explicit research questions is much more recent. The large number of 
excellent review papers and special issues in leading journals published in the last 
few years—which this issue of the Journal of Geographical Systems takes its place 
among—attest to the growing interest in the application and development of cutting-
edge methodologies for spatial data. This editorial begins by proposing a new inclu-
sive  definition for spatial ML,  then provides a brief overview of each of the six 
papers in this special issue, and ends with a suggestion of several possible directions 
for future research in spatial ML.

Keywords Spatial machine learning · Spatial data · Spatially-explicit models · 
GeoAI · Random forest
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1  Background

While many of the machine learning (ML) and artificial intelligence (AI) meth-
ods that are now commonly being used to answer questions across scientific disci-
plines have been around for some time (Rosenblatt 1958; Amari 1967; Openshaw 
and Openshaw 1997; Breiman 2001), their widespread application to spatial data 
and spatially-explicit research questions is much more recent. The large number of 
excellent review papers and special issues in leading GIScience journals published 
in the last few years (e.g., Janowicz et al. 2019; Nikparvar and Thill 2021; Kopcze-
wska 2022; Papadakis et al. 2022)—which this issue of the Journal of Geographical 
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Systems takes its place among—attest to the growing interest in the application and 
development of cutting-edge methodologies for spatial data. This is of course in part 
due to the increasing volume, velocity, and variety of spatial data available for anal-
ysis, which require more powerful computation tools to analyse (Kitchin and McAr-
dle 2016); it is also likely due to the demonstrated improvement in predictive perfor-
mance for these methods compared to traditional statistical techniques (Hagenauer 
et al. 2019; Yoshida and Seya 2021; Credit 2022).

2  Defining spatial machine learning

However, despite (or, perhaps, due to) the increasing attention paid to new methods 
in the literature, we lack a coherent conceptual paradigm for discussing or defining 
what we mean when we talk about spatial machine learning: in other words, what 
methods and domains are included (and excluded)? How is spatial machine learning 
different than (or the same as) non-spatial ML or geographic artificial intelligence 
(GeoAI)? While, others have already effectively traced the history of the develop-
ment of AI and ML methods in a spatial context (Janowicz et  al. 2019; Hu et  al. 
2024) and classified and categorised the use of existing ML and AI methods for 
analysing spatial data (Nikparvar and Thill 2021; Kopczewska 2022), there is still 
a need to develop a cohesive and inclusive definition for “spatial machine learning” 
that provides a framework for describing the wide range of new methodological 
work in GIScience and allied fields, and, more specifically, the content and goals of 
this special issue.

To provide a useful definition of spatial ML, several terms need to be disentan-
gled. First, machine learning vs. artificial intelligence: in common technical par-
lance, “artificial intelligence” refers to the very broad domain of developing “artifi-
cial system[s]…[that can] successfully achieve a novel goal through computational 
algorithms” (Gignac and Szodorai 2024), while “machine learning” is typically 
understood as a subset of AI that specifically deals with the “technologies and algo-
rithms that enable systems to identify patterns, make decisions, and improve them-
selves through experience and data” (Columbia Engineering 2024). In other words, 
ML concerns the development and use of statistical methods and algorithms that 
contribute to making machines “intelligent” or helping us better identify and explain 
patterns in data.

Of course, this definition for ML is exceptionally broad, and basically applies to 
all kinds of traditional statistical and econometric techniques. Indeed, in this con-
text, ML has been famously referred to by statistician Robert Tibshirani as “glorified 
statistics,” and the boundaries between these two disciplines are certainly fluid and, 
in many cases, overlapping (Hastie et al. 2016; Bennett et al. 2022). Undoubtedly, 
some of the ostensible distinction between machine learning and statistics is due 
more to contrasting perspectives rather than substance. These include semantic dif-
ferences—in referring to, e.g., “labels,” “algorithms,” and “learning” as opposed to 
“dependent variables”, “models”, and “fitting”—and disciplinary perspectives, as 
packages for the implementation of ML are often designed by computer scientists 
(rather than statisticians) and intended to be used on particular types of problems—a 
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difference which can still be readily felt when assessing the output of, e.g., a linear 
regression in Python vs. R.

In addition to these somewhat stylistic differences, we can also categorise the 
methods themselves along two primary dimensions, which I believe capture the 
meaning of “machine learning” in the way the phrase is most commonly used in 
the literature and professional practice: recency and specification: recency relating 
to when each particular method was first developed and/or moved into widespread 
use (i.e., pre- and post-1990), and specification relating to the role that statistical 
assumptions about data distributions and other (embedded) parameters play in the 
method (i.e., parametric and non-parametric). In this case, “non-parametric” does 
not refer to a complete lack of parameters or assumptions in a model, as every sta-
tistical/ML model must make particular assumptions and specify parameters (or 
hyperparameters), often with very important implications for the results. It also is 
not a direct proxy for unsupervised learning methods. Instead, it is meant to cap-
ture methods that don’t require a strong prior assumption about the distribution of 
the data (e.g., normality), which then strongly informs the patterns of prediction. 
Table  1 shows a rough categorisation of existing methods according to this two-
dimensional typology, with primary methods employed by papers in this special 
issue marked in bold.

While, some may (rightfully) quibble with this typology (for instance, it ignores 
Bayesian approaches, as they can be applied to many of these methods) and my spe-
cific classification of the recency and specification for certain methods, I believe it pro-
vides a useful starting point for developing a framework for differentiating ML from 

Table 1  Typology of statistical and machine learning methods. Primary methods used by papers in this 
special issue marked in bold

Recency

Pre-1990 Post-1990

Specification Parametric Linear regression
Principle Com-

ponents Analy-
sis (PCA)

Logistic regres-
sion

Spatial econo-
metric methods

LASSO regression
Geographically-weighted regression (GWR)

Non-parametric k-nearest neigh-
bours

Decision trees
Hierarchical 

clustering
Self-Organising 

Map (SOM)
k-means cluster-

ing
Early artificial 

neural net-
works (ANN)

Convolutional Neural Networks (CNN)
Support Vector Machines (SVM)
Random forest
Contemporary deep learning approaches
XGBoost
Geographically-weighted ANN (GWANN)
word2vec and contemporary natural lan-

guage processing (NLP) methods
Geographical random forest (GRF)
(Spatial) Meta-learners
Causal forest
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“traditional” statistics. Based on the way the terms tend to be used, I would confidently 
associate the top left-hand quadrant with “traditional” statistics or econometrics, i.e., 
those methods developed primarily before 1990 with strong parametric and distribu-
tional assumptions. The bottom left-hand and top right-hand quadrants, then, can per-
haps be thought of as methods working at the boundaries of ML, while the bottom 
right-hand quadrant contains “core” ML approaches, i.e., recently-developed non-para-
metric statistical methods or algorithms.

The final question, then, is what makes a particular ML method spatial? In this case, 
Kopczewska (2022) provides a useful distinction between approaches that use standard 
ML approaches on spatial data and new, spatially-explicit methods that are expressly 
designed to deal with the unique properties of spatial data. I am inclined to provide 
a similarly inclusive definition of spatial ML that includes, essentially, any kind of 
approach that explicitly considers (in the data or methodological design) spatial loca-
tion, spatial relationships (operationalised, e.g., through the spatial weights matrix or 
other forms), or other properties inherent to spatial data such as spatial dependence and 
heterogeneity. This includes—as demonstrated by several contributions to this special 
issue—methods that incorporate spatial diagnostics and/or accuracy testing to account 
for, or measure, the influence of the unique properties of spatial data (e.g., spatial 
dependence). In this way, spatiality can be viewed as an additional layer on top of the 
typology displayed in Table 1: while, spatially-explicit methods have their own entries 
(and thus could be grouped together in a third dimension), any of these methods could 
be used on spatial data or with spatially-engineered features, which, in my view—as 
long as proper consideration and care is made for the unique properties of these data—
equally constitutes a “spatial” model or analysis approach. In fact, as Kolak & Anselin 
(2020) importantly point out, in terms of understanding the true nature of spatial pro-
cesses and effects, it can often be more useful to go “beyond the uncritical implementa-
tion of spatial tools or methods…[to] consider the inherently spatially and temporally 
dynamic, interactive nature of the populations being studied [with spatial data], and, as 
such, inform the initial design of the model” (p. 132), even if that involves using “sim-
pler,” “older,” or “exploratory” methodological approaches. Thus we should not dis-
count “standard” or “non-spatial” methods if they are applied in thoughtful (and novel) 
ways to spatial data, i.e., by leveraging the spatial dimension of the data explicitly in 
some way.

Thus, we can now come to the final definition which frames the purpose for this spe-
cial issue: spatial machine learning approaches are statistical methods or algorithms for 
analysing patterns in spatial data that explicitly incorporate or leverage location, spatial 
relationships, spatial diagnostics/testing procedures, or other features inherent to spatial 
data—such as spatial dependence and heterogeneity. These ML approaches tend to be 
recently-developed (post-1990) and non-parametric (i.e., do not rely on strong assump-
tions about the distribution of the data).
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3  Overview of the special issue

The idea for this special issue originated at the 2021 and 2022 Meetings of the 
North American Regional Science Council (NARSC), in special sessions co-
organised by the author on “Machine Learning in Regional Science: Perspectives, 
Methods, and Applications,” which form part of an ongoing series (co-)organised 
by the author at NARSC from 2020 to 2024, and, beginning in 2024, the Euro-
pean Regional Science Association (ERSA). We received a number of high-qual-
ity submissions to the special issue, several of which originated in these NARSC 
sessions, including Carruthers and Wei’s “What Drives Urban Redevelopment 
Activity? Evidence from Machine Learning and Econometric Analysis in Three 
American Cities” (current issue), Credit and Lehnert’s “A structured comparison 
of causal machine learning methods to assess heterogeneous treatment effects in 
spatial data” (2023), and Tepe’s “A random forests-based hedonic price model 
accounting for spatial autocorrelation” (2024). In addition to these papers, three 
additional submissions were included in this special issue: Kim et al.’s “Beyond 
visual inspection: capturing neighbourhood dynamics with historical Google 
Street View and deep learning-based semantic segmentation” (2023), Lotfata and 
Georganos’s “Spatial machine learning for predicting physical inactivity preva-
lence from socioecological determinants in Chicago, Illinois, USA” (2023), and 
Kilic et al.’s “Unveiling the impact of machine learning algorithms on the quality 
of online geocoding services: a case study using COVID-19 data” (2024).

Interestingly, all of the papers in this issue are, at some level, focused on test-
ing the performance of spatial ML approaches by comparing them to “tradi-
tional” statistical, spatial, or non-spatial ML methods. This includes (1) exam-
ining extensions to existing methods to incorporate ML estimation procedures 
and account for the unique properties of spatial data (Lotfata and Georganos 
2023; Credit and Lehnert 2023), (2) the evaluation of spatially-informed valida-
tion measures (Tepe 2024), and (3) applications of “non-spatial” ML methods to 
spatial data in novel contexts (Kim et al. 2023; Carruthers and Wei 2024; Kilic 
et al. 2024). Taken as a whole, the results of the papers in this issue point to high 
levels of performance and potential usefulness for spatial ML approaches when 
compared to “traditional” approaches. In addition, these papers provide useful 
empirical results on a range of topics, including the social and environmental 
determinants of health, the effect of public transport infrastructure on reducing 
emissions, hedonic house price analysis, urban redevelopment, and geocoding for 
COVID-19 patient locations.

In the first paper, Lotfata and Georganos (2023) apply the newly-developed 
geographical random forest (GRF) method to census tract-level data related to 
physical inactivity and its social and environmental determinants in Chicago. The 
GRF works in a similar fashion to geographically-weighted regression (GWR), 
estimating a local random forest (RF) model at each tract based on an optimal 
kernel, and thus provides a window into spatially-heterogeneous relationships, 
while leveraging the (non-linear) estimation characteristics of the RF. Most 
importantly, the paper demonstrates the usefulness of the GRF approach when 
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analysing urban areal data compared to other methods: the GRF provides a higher 
overall predictive performance than multiscale GWR (MGWR) and RF while, 
nearly reaching the accuracy of the geographically-weighted artificial neural net-
work (GWANN)—however, in terms of interpretability, the GRF surpasses the 
GWANN in that it produces local feature importances and goodness-of-fit meas-
ures, which can help researchers understand the specific nature of the spatial het-
erogeneity in their data.

The second paper, by Credit and Lehnert (2023), is similar in that it spatial-
izes existing ML approaches and tests their performance against traditional and 
non-spatial methods. In this case, the focus is on creating and examining spatially-
informed approaches to causal inference using ML. The paper develops the “spa-
tial” T-learner (STL) and causal forest (CF) methods by including spatial lags of the 
dependent and independent variables, i.e., ML approximations of traditional spatial 
econometric specifications, and tests their performance against non-spatial versions 
of ordinary least squares (OLS) regression, CF, and the T-learner. Performance in 
this case means the ability of the model to ascertain the overall average treatment 
effect and the individual unit-level treatment effects of some urban intervention; 
however, since these effects are not directly observed in empirical data, the paper 
develops a unique method for simulating spatially-realistic data, where the treatment 
(and confounding) effects are known. Using this framework, the spatial ML methods 
generally outperform the others, with the spatial “Durbin” CF performing the best. 
This specification is then applied to the case of estimating the treatment effects from 
building a new light rail line on neighbourhood-level  CO2 emissions, finding a sub-
stantial and spatially-varying effect—which is then further explained by regressing 
the unit-level treatment effects against the independent variables—demonstrating 
the usefulness of the spatial CF for understanding fine-grained spatial causal effects.

The third paper, from Tepe (2024), focuses expressly on the application of spa-
tial validation procedures for ML methods. The problem posed by the paper—in the 
context of using an RF model for hedonic house price analysis at the parcel level in 
Miami-Dade County, FL—is that standard cross-validation metrics provide overly-
optimistic estimates of model performance when spatial dependence is present in 
the data. This has prompted the development and use of spatial cross-validation 
approaches such as the spatial blocking k-fold and spatial “leave-one-out.” However, 
as the paper importantly demonstrates, these approaches need to be paired with a 
model specification that explicitly accounts for spatial dependence (again, when it 
is present in the data), e.g., by including the spatial lag of the dependent variable, 
to improve the accuracy and stability of the predictions provided by spatial cross-
validation measures. In other words, non-spatial cross-validation measures are too 
optimistic when spatial dependence is present, but spatial cross-validation measures 
are not optimistic enough—with high variance—when spatial dependence is present 
but unaccounted for in the model.

In the fourth paper, Kim et al. (2023) test the accuracy of a deep learning-based 
semantic segmentation approach for classifying changes in the built environment 
from historical Google Street View (GSV) imagery. This paper uses the Deep-
labv3 + CNN model, which has been pre-trained to identify the number of pixels 
associated with a number of urban environmental features, including buildings, 
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sky, pavement, vegetation, etc. It then applies this model to GSV images of areas 
in Santa Ana, CA in which buildings have been newly constructed or demolished 
(i.e., substantially changed), collecting a pre- to post-construction % change in 
building pixels and comparing that to the same pre- to post-construction time period 
in various control areas, where buildings were not constructed or demolished. The 
paper finds that the method—with a particular set of input parameters—is generally 
pretty good at identifying built environment changes (75% true positive rate), there 
remains room to improve, particularly when it comes to false positive identification. 
Beyond this specific finding, this paper is particularly valuable for its novel applica-
tion to spatialized imagery data, i.e., built environment change detection using GSV, 
and its development of a systematic, spatially-grounded accuracy testing procedure 
that provides more useful conclusions than true positive/false negative alone.

Continuing an interest in identifying and measuring urban redevelopment activ-
ity, Carruthers and Wei (2024) compare the predictive performance and explana-
tory information provided by ML models—including k-nearest neighbours (KNN), 
RF, and a cost-sensitive RF—and a traditional probit model for predicting changes 
in parcel boundaries in Seattle, Chicago, and Boston. In general, the results indi-
cate that the ML models (in particular, the cost-sensitive RF) slightly outperform 
the probit model, especially in terms of recall; however, the probit model produces 
regression coefficients and statistical significances that are the useful in interpreting 
the direction of the relationship between individual covariates and the dependent 
variable, and thus in explaining and understanding the processes that drive urban 
redevelopment in the three cities. For this reason, the authors suggest combining 
these methodological approaches—along with theoretical knowledge of the drivers 
of urban redevelopment processes—in future research.

Finally, Kilic et  al. (2024) evaluate the effectiveness of using ML techniques 
for enhancing the accuracy of geocoding results in Turkey. This paper takes a very 
interesting approach by training a range of ML models (e.g., RF, support vector 
machines, XGBoost, and others) using a selection of text-matching metrics (e.g., 
character-based, term-based, and hybrid-based) on a set of known addresses for 
COVID-19 patients in order to predict address matches (coded as a dummy variable, 
with 1 = an exact match for neighbourhood, street name, number, district, and prov-
ince name). The results indicate that the ML classifiers in general—and, in particu-
lar, the RF model with every type of text feature included—increased the accuracy 
of conventional geocoders substantially, from 79 to 86%, 52 to 91%, 80 to 82%, and 
83 to 85% for ArcGIS Online, Bing Maps, Google Maps, and HERE maps, respec-
tively (based on mean area under the curve scores).

4  Looking to the future

Spatial ML is a rapidly-growing field with significant avenues for continued 
development by researchers across the geographically-aligned sciences. Fun-
damentally, as the articles in this special issue attest, these methods appear to 
offer, at the very least, incremental—and in some cases, truly substantial—
improvements in predictive performance compared to “traditional” statistical and 



458 K. Credit 

“non-spatial” ML methods across a wide range of spatially-informed applica-
tions, data, and contexts. This potential to improve existing quantitative analy-
sis of social, economic, and physical phenomena—and, through that, foster more 
equitable and sustainable decision-making—should drive continued interest in 
creating, extending, and using these approaches for both explanatory and predic-
tive purposes. At the same time, many of the most cutting-edge methods, includ-
ing large language models (LLM) and other recent AI approaches, are mostly 
being developed and applied outside of a spatially-explicit context or awareness, 
despite the inherently spatial nature of many of the world’s most pressing scien-
tific concerns (and the data used to study them). This presents a remarkable—and 
consequential—opportunity for geographers, regional scientists, urban planners, 
and other spatially-aligned researchers to contribute to the development of new 
state-of-the-art tools that explicitly integrate spatial features and spatial ways of 
thinking. This opportunity also calls for an increase in cross-disciplinary part-
nerships with computer science and other disciplines, as the field of spatial ML 
has an inherently interconnected and symbiotic relationship with the development 
and application of “core” ML. There is certainly much to be gained from such 
collaborations—in both directions—including better integrating spatial ways of 
thinking into the design of new methods (from the outset), and better contextual-
ising research questions and applications with spatially-embedded critical, theo-
retical, and substantive knowledge.

While, the range of topics for future research related to spatial ML is vast—and 
advancing so quickly that any list is likely to be outdated in a short time—I will 
end this editorial by providing a sample of some general possible future directions 
for research related to spatial ML from across the methodological and disciplinary 
spectrum:

• The integration of spatial data and approaches into natural language processing 
(NLP) and large language models (LLM), including for enhanced spatial query-
ing, mapping, and geocoding;

• New methods for optimizing spatial pattern prediction and spatial transfer learn-
ing to improve prediction accuracy, particularly in situations with little existing 
context for a particular pattern (e.g., prediction of climate change induced-flood-
ing and land use change in places with little previous history of flooding);

• Further development and use of graph embedding approaches for understanding 
and analysing spatial linkages, relationships, and networks;

• Development of new indicators of spatial association;
• Further development of explanatory ML metrics in a spatial context, e.g., Local 

Interpretable Model-agnostic Explanation (LIME) and Shapley Additive Expla-
nations (SHAP);

• Further development of visualization methods for non-linear relationships in ML 
models, e.g., partial dependence (PD) and accumulated local effects (ALE) plots; 
and

• Further development of causal and explanatory spatial ML methods, e.g., causal 
forests (CF), meta-learners, deep gravity models, and feature representation 
learning approaches.
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