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A B S T R A C T   

This paper presents an algorithm to solve the multi-objective transmission expansion planning (TEP) problem 
including the investment and reliability criteria. The reliability is considered by using the Expected energy not 
supplied (EENS) index. The main contribution consists on handling the reliability criterion in the optimization 
process, which tends to provide solutions with better trade-off between the mentioned criteria. For that purpose, 
a novel probabilistic algorithm called non-dominated Monte Carlo simulation (ND-MCS) is proposed to allow 
solving the multi-objective TEP problem with suitable computational effort and efficacy even considering the 
probabilistic feature of reliability in the optimization. In addition, a Support Vector Machine (SVM) network is 
applied embedded within the ND-MCS. The proposed methodology integrates the Pareto dominance method as a 
convergence criterion to MCS and a fuzzy criterion to support the decision making. The effectiveness of the 
proposed approach is tested in three systems, including a practical Brazilian network.   

1. Introduction 

Transmission expansion planning (TEP) seeks to determine re-
inforcements to be added to a power system to supply the load demand 
and meet the operational and reliability constraints at a minimum 
overall cost. Nevertheless, the TEP problem is a complex optimization 
task due to the dimensions and features of the power systems. The 
reliability is an important metric for TEP [1] and the N-1 criterion is 
commonly used to solve this problem with security constraints. How-
ever, in many cases, this criterion can lead to overinvestment [2,3]. 

On the other hand, although the use of probabilistic methods as the 
Monte Carlo Simulation (MCS) can be an option for avoiding over-
investment, it may be impracticable due to the high computational effort 
required [3]. Thus, there are optimization algorithms that obtain 
expansion plans based on other criteria, as the investment cost, and 
evaluate the system reliability after the optimization process to select 
the best option [4]. However, this procedure does not ensure obtaining 
optimal plans under the reliability criterion. 

Therefore, evaluating the reliability together with the steps of a 
multi-objective optimization algorithm (a priori) tends to provide 
optimal plans even under the reliability standpoint. However, the 

application of probabilistic frameworks in this case to avoid over-
investments can be prohibitive due to the inherent huge computational 
requirement. This dilemma is the focus of the present paper that pro-
poses a framework that allows a priori probabilistic reliability evaluation 
with reasonable computational effort. A review of the literature is pro-
vided hereinafter. 

1.1. The application of reliability indexes in the TEP problem 

Metrics derived by the domain experts can be applied for the reli-
ability assessment in power systems. However, the increase of these 
systems in both size and complexity due to, for instance, new generation 
and load technologies adds uncertainties that lead to unexpected 
behavior, which requires more expert models as those based on proba-
bility distribution. It can be verified from several works that apply 
reliability indexes based on probability distribution functions to the TEP 
problem [4–13], which depend on predictions of transition rates. 

1.2. The N-1 criterion in the TEP problem 

The N-1 criterion establishes that the transmission system operation 
must be feasible for the normal condition and for all single outages of 
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equipment. In practice, a selected and reduced list of contingencies is 
commonly considered [2], which must be relevant, that is, must have 
high impact for the system condition. Thus, planning the system to 
support these events considering that they will necessarily occur (100% 
probability) can imply overinvestment. 

Even in the case of the outages’ probabilities are considered in the N- 
1 criterion for calculating reliability indexes, the plans obtained by 
probabilistic methods as the MCS can reduce the required investment 
while maintaining a good reliability level. According to [3], although 
the N-1 criterion has been adopted by most electric power companies, 
the best strategy seems to be to ensure this practice only in the most vital 
system areas, since a high investment would be needed if the whole 
system had to ensure the N-1 criterion [3]. 

Despite the aforementioned issue, the N-1 approach has been applied 
to the TEP problem [5,7-12]. In [5], this is used to obtain the loss of load 
cost (LOLC) index that is incorporated into the objective function. In 
[7–12], the minimization of the expected energy not supplied (EENS) is 
considered in the TEP objective with the aid of the N-1 criterion. 

1.3. MCS in the TEP problem 

A framework based on Benders decomposition is proposed in [6] to 
solve the TEP problem considering wind power, where the first-level 
subproblem makes the investment decision and the second level per-
forms the reliability assessments by using MCS. A similar procedure is 
done in [13]. In both [6] and [13], a reliability-constrained TEP is 
formulated, that is, the reliability criterion is considered as a constraint 
where a minimum pre-established level must be ensured. However, due 
to the conflicting relationship between investment and reliability, this 
kind of approach may neglect more reliable solutions, which would be 
overcame by the development of a multi-objective framework. 

1.4. Developments to improve the probabilistic reliability analysis 

Due to the required time to assess the system reliability, some works 
have adopted techniques to make probabilistic methods more efficient 
[14–18], such as the variance reduction technique [14] and state space 
pruning [15]. Moreover, classification techniques are developed to 
reduce the computational effort in the reliability assessment, as artificial 
neural network (ANN) [16,19], polynomial network [17] and support 
vector machine (SVM) [18]. However, none of the previous works 
proposes reliability analysis within the context of the TEP problem. 

1.5. Multi-objective frameworks for the TEP problem 

Multi-objective approaches can establish a tradeoff between con-
flicting objectives. In this context, evolutionary algorithms (EA) have 
been used together with the Pareto method because they can identify 
multiple attractive solutions [20]. In addition, EA can be quickly built 
through simple codes even for complex tasks as the TEP problem. A 
bi-level optimization with genetic algorithm is proposed in [21] for TEP 
considering N-1 and probable N-2 outages. gray wolf optimization is 
applied to solve the TEP problem in [5] considering the N-1 criterion. 
However, none of the found multi-objective frameworks uses MCS to 
avoid overinvestment in the complex task of obtaining optimal plans 
under the cost and reliability criteria, due to the MCS computational 
requirement. 

1.6. Paper contributions 

The present work proposes a novel efficient approach for the multi- 
objective TEP that allows considering the reliability criterion in this 
probabilistic feature together with an optimization process with 
reasonable computational effort. The TEP problem is formulated as a 
mixed integer optimization programming based on the investment and 
reliability criteria, where a new method called Non-dominated Monte 
Carlo Simulation (ND-MCS) is proposed to efficiently assess the reli-
ability together with the steps of an optimization algorithm, aiming at 
providing solutions with good trade-off between the criteria. 

Moreover, the proposed approach has advantages over deterministic 
methods due to the proper consideration of the probabilistic feature of 
the problem at hand, which offers an option to avoid overinvestment in 
expansion plans that can be alternative to the procedure commonly used 
in the traditional N-1 practice to define an effective list of events. It can 
be highlighted that the proposed framework can be applied to obtain the 
same reliability indexes commonly used in literature [4–13], but with 
feasible computational requirement even by using MCS in a 
multi-objective approach. 

Candidate plans are obtained by the MOGWO metaheuristic [22] and 
the SVM is embedded within the ND-MCS. From the final set of 
non-dominated solutions, a fuzzy decision method [23] is applied to 
point to a plan based on the planning requirements. Finally, discussions 
are carried out on the IEEE-RTS 24-bus system and a practical Brazilian 
network. The tests show the feasibility and effectiveness of the proposed 
framework in avoiding overinvestment in comparison with the tradi-
tional N-1 approach. Therefore, the main contributions are: 

Nomenclature 

Subscripts and sets 
i System bus 
ij Transmission line 
ΩB Set of system buses 
ΩC, ΩE Sets of candidate and existing lines 

Variables 
pgi, rdi Active power generation and load shedding at bus i (MW) 
θij Angular difference between buses i and j (rad) 
fE
ij , fC

ij Active power flows of existing and candidate lines ij (MW) 
Φi Active power flow from bus i (MW) 
xij Expansion decision (binary variable) for candidate line ij 

EENS Expected energy not supplied (MWh) 

Parameters 
pgi Active power generation capacity at bus i (MW) 
di Active load demand at bus i (MW) 

bij, gij Susceptance and conductance of line ij (℧) 

fE
ij, f

C
ij Active power flow limits of existing and candidate lines ij 

(MW) 
ceij Investment cost of candidate line ij ($) 

cd Penalty for load shedding at the planning level ($/MW) 
cint Unit interruption cost ($/MWh) 
Dp Absolute value in each dimension of a MOGWO solution 

vector 
Xp Position vector of prey in MOGWO 

X Position vector of an individual (candidate plan) of 
MOGWO 

η,n Population size and number of variables of MOGWO 
Ψ Size of the repository of MOGWO non-dominated solutions 
α,β Grid inflation and leader selection pressure of MOGWO 
nGrid Number of grids per hypercube of MOGWO 
t, tmax Iteration index and maximum number of iterations of 

MOGWO  
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• A novel multi-objective TEP approach that allows calculating reli-
ability index by using MCS together with the steps of the proposed 
optimization algorithm, aiming at providing more reliable plans in 
relation to methods that assess the reliability only after obtaining a 
limited set of candidate plans; 

• The proposed approach allows properly representing the probabi-
listic feature of the reliability criterion in the multi-objective TEP 
problem through MCS, aiming at avoiding overinvestment while 
optimizing a well-known reliability index commonly used for TEP;  

• The proposed framework offers an alternative to the criterion 
commonly used in the traditional N-1 security analysis that can 
provide less-cost solutions by considering the probabilities of events 
in the security criteria decision-making, which is a practical aspect;  

• The proposed ND-MCS leads to a more targeted and efficient search 
in the solution space of the TEP problem. 

The remaining sections are outlined as follows: Section 2 presents the 
background material; Section 3 presents the proposed framework; a 
tutorial case is presented in Section 4; Section 5 provides the numerical 
results for the tested systems; and finally, some concluding remarks are 
given in Section 6. 

2. Background material 

2.1. Multi-objective TEP formulation 

The present work uses the DC load flow model, which is the most 
adequate way to allow TEP formulation with the incorporation of un-
certainty and probabilistic models [1]. The proposal is to determine the 
number of new lines to be added to the system, aiming at minimizing 
two expansion costs: (f1) minimum investment cost; (f2) minimum 
reliability index – EENS. The objective functions are modelled in (1) and 
(2) and subject to the network and planning constraints of (3)-(12). 

Min(f 1) =
∑

ij∈ ΩC

ceij⋅xij +
∑

i∈ ΩB

cd⋅rdi (1)  

Min(f 2) = EENS (2)  

f E
ij = − bijθij + gij

θ(v)
ij ⋅θ(v− 1)

ij

2
, ∀ ij ∈ ΩE (3)  

f C
ij = xij

(

− bijθij + gij
θ(v)

ij ⋅θ(v− 1)
ij

2

)

,∀ ij ∈ ΩC (4)  

Φi =
∑

ij ∈ ΩE
i

f E
ij +

∑

ij ∈ ΩC
i

f C
ij ,∀ i ∈ B (5)  

pgi − Φi = di, ∀ i ∈ B (6)  

⃒
⃒
⃒f E

ij

⃒
⃒
⃒ ≤ f E

ij , ∀ ij ∈ ΩE (7)  

⃒
⃒
⃒f C

ij

⃒
⃒
⃒ ≤ f C

ij , ∀ ij ∈ ΩC (8)  

0 ≤ pgi ≤ pgi (9)  

0 ≤ rdi ≤ di (10)  

xij binary, ∀ ij ∈ ΩC (11)  

EENS = EPNS × 8760 (hours) (12) 

The objective f 1 minimizes the investment cost in new lines, avoiding 
the load shedding at the planning level by using a high cd value. The 
objective f2, in turn, refers to the reliability criterion. The active power 
flow in existing and candidate lines is calculated by (3) and (4), 

respectively. An iterative modified power flow is considered to avoid the 
nonlinearities caused by the calculation of active losses. The procedure 
consists on multiplying the variable θ(v)

ij of the current iteration v by its 

value from the previous iteration θ(v− 1)
ij , which results in an iterative 

process. The power balance at bus i related to the Kirchhoff’s first law is 
modelled in (5)-(6). Limits for variables are formulated in (7)-(10). The 
constraint in (11) models the investment decision variable for every 
candidate line. The energy interruption index is formulated in (12). 

2.2. SVM-based Monte Carlo simulation 

The Monte Carlo Simulation is a suitable probabilistic method to 
assess the reliability of power systems [4]. However, MCS has in general 
high computational requirement. Thus, classification techniques can be 
applied to reduce the computational effort in the reliability assessment, 
as the support vector machine [18], which can open a lack of possibil-
ities for the application of MCS to planning studies. 

Therefore, in the present work, the EENS index is obtained by an 
SVM-based MCS to increase the computational efficiency of the TEP 
problem. The SVM neural network is trained to distinguish success and 
failure system states, based on the pattern association between a 
sampled state and the system variables. The SVM algorithm can be ob-
tained in [18]. 

It can be highlighted that indexes such as EENS are based on prob-
ability distribution functions that depend on transition rates, such as 
failure rates since the probability of failure is a function of such rates. 
Although the transition rates can vary, mainly for long-term planning 
studies, probabilistic approaches must have predictions from historical 
data to estimate reliability indexes. Thus, in case of an increase in failure 
rates, for instance, the planning investment may be insufficient in the 
long-term horizon. On the other hand, in case of failure rates decrease, 
the planning will be sufficient. Often in the literature, predetermined 
stochastic data are used in security assessment and planning studies [7, 
8,10-13], or even data available in test systems, as in [3] and [24]. 

Despite the mentioned risk, several approaches [4–13] use reliability 
indexes based on probability distribution functions in the TEP problem. 
Moreover, methods based on the N-1 criterion that provide reliability 
indexes [5,7-12] are also subject to the same risk, since these methods 
depend on probabilities that, in turn, are given by transition rates. 
However, the N-1 approach can imply overinvestment [2,3] as previ-
ously described (Section 1). 

2.3. Fuzzy satisfying method 

The fuzzy technique is used to choose the final solution in the present 
work due to its similarity to human reasoning in making choices among 
options. The membership function in (13) [23], from 0 to 1, is assigned 
to each objective and its value indicates to what extent a solution sat-
isfies objective f i. As the problem at hand seeks to minimize the objec-
tive functions, the degree is ‘1′ for the minimum objective value 
(desired) and ‘0′ at the maximum objective value. In other words, the 
decision maker is fully satisfied in terms of f i if μf i

(X) = 1 (reminding 
that X is a solution plan). 

After defining the membership functions, the decision maker must 
choose the desirable level (μri) of every objective, and the suggested 
solution is obtained by using the ‘minmax’ decision method of (14) [23] 
that represents the behavior of a decision maker. 

μfi
(X)= {

0, f i(X) > f max
i

f max
i − f i(X)

f max
i − f min

i
, f min

i < f i(X) ≤ f max
i

1, f i(X) ≤ f min
i

(13)  
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min
X∈Φ

(

max
i

⃒
⃒μri − μfi(X)

⃒
⃒

)

(14)  

2.4. Multi-objective gray wolf optimizer 

The MOGWO algorithm [22] is the multi-objective version of the 
gray wolf optimizer (GWO) that is inspired by the social hierarchy and 
hunting behavior of gray wolves in search spaces. In the mathematical 
model of GWO, the best solution is considered as the alpha (α) indi-
vidual, according to the social hierarchy of wolves. The second and third 
best solutions are called beta (β) and delta (δ) wolves, respectively. 
Details on MOGWO can be found in [22] and its algorithm is provided in 
the Appendix. 

3. Proposed framework 

The proposed framework is a multi-objective optimization algorithm 
for the TEP problem that allows evaluating the system reliability 
through MCS together with the steps of the algorithm, aiming at 
providing a good tradeoff between the investment and reliability criteria 
with reasonable computational requirement. The use of a proper prob-
abilistic method as MCS is proposed to avoid overinvestment [2–4] and 
SVM is used to enhance the MCS computational efficiency [18]. How-
ever, even the original SVM-based MCS [18] spends computational 
times that make the multi-objective TEP with the reliability assessment 
together with the optimization steps impractical, in terms of providing 
multiple plans in suitable times for the planners’ analyses. 

The fundamental of the proposed framework is that most solutions 
found by a multi-objective meta-heuristic, as MOGWO, for the TEP 
problem over the convergence process are dominated (in the concept of 
the Pareto dominance) under the objective functions (investment and 
reliability) standpoints. Therefore, the main idea of the proposed 
approach is to stop the probabilistic evaluation of the reliability index 
for a given solution when this solution is identified as dominated by 
another one in the candidate set. Thus, aiming at stopping the SVM- 
based MCS for dominated solutions and, at the same time, ensuring an 
accurate estimation for non-dominated solutions, the integration of the 
Pareto dominance requirements is proposed as part of the convergence 
process, as follows: 

Definition 1. Pareto Dominance 
Supposing two solutions, X and Y, X dominates Y (denoted as X ≻ Y) 

if 

[fk(X) ≥ fk(Y)] ∀k ∈ [1, 2] (15) 

Definition 2. Pareto Optimality 
A solution X is called Pareto-optimal if  

(16) 

In the previous equations, k ∈ [1, 2] because there are two objective 
functions: f1 and f2. A set containing the Pareto optimal solutions is 
called Pareto optimal front. Thus, the present paper proposes the Non- 
dominated MCS (ND-MCS) that is based on adding the Pareto domi-
nance criterion to the SVM-based MCS convergence criteria. For that 
purpose, a dominance test function FDOM is evaluated together with the 
test functions of the system performance indexes (LOLP, EPNS). Func-
tion FDOM, formulated in (17), is updated every iteration and accurately 
estimates the probability that a solution will be dominated by another 
one in the candidate set. The expected value of FDOM for a solution X is 
given by (18). 

FDOM(X)= {
0, if X is non − dominated

1, if X is dominated (17)  

Ẽ(FDOM(X)) =
1

NS(X)
∑NS(X)

s=1
FDOM,s(X) (18)  

Where FDOM,s(X) is the estimated value of FDOM(X) for state s and NS(X)

is the number of sampled system states s. Note that the EENS index is 
obtained similarly to (18) by using FEENS (EENS test function) instead of 
FDOM [25]. The uncertainty over the estimate is given by the variance of 
the test function FDOM (V(X)) and the variation coefficient (βDOM(X))

[25] as: 

V(X) =
V(FDOM(X))

NS(X)
(19)  

βDOM(X) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V(Ẽ(FDOM(X)))

√

Ẽ(FDOM(X))
× 100% (20)  

If the βDOM(X) criterion is not reached, that is, if the solution is 
considered as not dominated, the ND-MCS converges based on the 
traditional criteria related to the system performance indexes (βLOLP, 
βEPNS). Thus, only non-dominated solutions that integrate the Pareto 
front have their reliability indexes estimated, avoiding unnecessary 
analyses by MCS. 

3.1. Proposed algorithm 

The proposed algorithm is presented in Fig. 1 and explained next. 
The ND-MCS is highlighted in the dashed line. The maximum number of 
MOGWO iterations is the convergence criterion. In addition to 
increasing the computational efficiency in evaluating the EENS index, 
the ND-MCS search strategy even tends to improve the quality of the 
final solutions because it allows filtering the non-dominated ones and, 
therefore, allows a more targeted and efficient search in the solution 
space.  

1) Input the system data (deterministic and stochastic parameters).  
2) Generate a first random population of gray wolves. Initialize the 

MOGWO parameters.  
3) For all individuals in the population (candidate plans), calculate f1. 

Fig. 1. Flowchart of proposed framework.  
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4) Initialize the reliability assessment through the SVM-based MCS for 
all individuals.  

5) Update the estimate for f2 and the dominance probability for every 
solution (Ẽ(FDOM)).  

6) Based on Steps 3) and 5), verify the dominance criterion. If a solution 
is dominated, end the ND-MCS and go to Step 8). Otherwise, go to 
Step 7).  

7) If the EENS index does not converge, return to Step 4); otherwise, 
store the plan in the set of non-dominated solutions and go to Step 8).  

8) Apply the MOGWO steps described in the Appendix. If the maximum 
number of iterations is not reached, return to Step 3) to evaluate the 
fitness of every updated gray wolf. Otherwise, end MOGWO and plot 
the Pareto front. 

After the convergence of the proposed algorithm of Fig. 1 and 
determining the final set of non-dominated solutions, a decision must be 
made by the planner. This decision making must represent a trade-off 
between different objectives based on the planner’s preferences [23]. 
According to the fuzzy method of Section 2.3, the investment criterion is 
fully satisfied for a given plan X if μf1

(X) = 1, that is, the investment of X 
is the minimal from the non-dominated Pareto front in this case, which 
implies the maximum EENS and μf2

(X) = 0. On the other hand, the 
investment and EENS are the highest and lowest from the Pareto front, 
respectively, for a solution X that has μf1

(X) = 0 and μf2
(X) = 1. 

Finally, it should be highlighted that the proposed framework does 
not necessarily provide the optimum expansion plan for the TEP prob-
lem, but high-quality plans within acceptable CPU time. 

4. Tutorial case: Garver test system 

This section presents a tutorial case to exemplify the application of 
the proposed approach to the well-known Garver 6-bus test system. The 
data of the existing and candidate lines of the system can be found in 
[26]. The failure rate (λ) and repair time (MTTR) of the transmission 
lines are 0.0781/mile.year and 10 h, respectively, as in [3]. As in [3], the 
EENS index is obtained for the peak load that is available in [26]. 

The MOWGO parameters are [22]: tmax= 100; η = 25; Ψ = 50; α =
0.1; β = 4; nGrid = 10. The algorithm was implemented in MATLAB®, in 
a 2.2 GHz Intel® Core™ i5–5200. The CPLEX 12.9.0 (Copyright© IBM 
Corp.) optimization package was used to solve the DC–OPF to verify the 
system constraints for the MCS samples, by using the Primal-Dual 
Interior Point method. 

Table 1 presents the results found in literature for single-objective 
studies focused on investment cost, without any security criteria and 
considering peak load and power loss. This table provides the re-
inforcements – ‘number of added lines’ (branch) – and the investment 
cost f1. Notation ‘3′(4–6), for instance, means the investment in three 
lines at branch (4–6). Table 2 presents the non-dominated solutions of 
the Pareto front obtained by the proposed framework. 

Note that the plans of Table 1 are among those of the Pareto front 
obtained by the proposed algorithm - P1 and P2 in Table 2. This proves 
that the proposed approach can find good quality solutions, including 
those already found in the literature for only minimum investment cost. 
In relation to the non-dominance concept, solution P1 does not domi-
nate P2, since although P1 has f1 smaller than P2, P1 has the greatest f2 
value. This means that P1 is better than P2 in terms of investment, but P2 
has the best reliability. The same reasoning can be extended to the other 
Pareto front solutions. The overall run time was 10 min. 

The solutions of Table 2 show the conflicting relation between the 
investment and reliability index. This means that the increase of the 
investment in transmission lines decreases the EENS due to improve-
ment in the system security [29]. From the portfolio of non-dominated 
solutions, the decision-making applies the fuzzy satisfying technique 
[29], by setting the minimum and maximum objective functions at the 
respective limits from Table 2, that is: fmin

1 = 130.00 and fmax
1 = 160.00; 

fmin
2 = 0 and fmax

2 = 5126.00. Other limits can be defined for f1 and f2 
according to the planning requirements. In relation to the references μr1 
and μr2 that also depend on the planning criteria, the following cases 
were evaluated: μr1 = μr2 = 0.8; μr1 = 0.8 and μr2 = 0.6; μr1 = 0.6 and μr2 
= 0.8, and the selected plan was P2 in every case. 

In order to assess the statistical meaningfulness of the obtained 
result, 50 runs of the proposed algorithm were done for μr1 = μr2 = 0.8 
and the results are given in Table 3. It can be observed that P2 is ob-
tained in 94% of the runs, which shows that the proposed study has 
statistical relevance. Fig. 2 illustrates the summary statistics of Table 3 
by using the toolbox boxplot of MATLAB®, which shows the values 
obtained for f1 and f2 in most of the runs, represented by horizontal lines, 
as well as the other values represented by crosses. 

5. Results and discussion 

The proposed framework is applied for two other systems: 24-bus 
IEEE-RTS and Brazilian Southern systems. As in [3], the peak load is 
considered to estimate the EENS index and the MOGWO parameters are 
the same as the tutorial case. Every candidate branch can receive a 
maximum of three lines. For the fuzzy decision-making criterion, the 
minimax satisfying method is used and μr1 = μr2 = 0.8. To assess the 
proposed approach, the following analyses are performed:  

i) MOGWOND− MCS – Consists on the proposed framework where the 
novel ND-MCS approach is applied to acquire the EENS index; 

ii) MOGWOMCS – Consists on the application of the MOGWO algo-
rithm associated with the original or crude MCS to obtain the 
EENS index, that is, in this analysis the MCS is used without the 
improvement proposed in the present work; 

iii) MOGWON-1 – Consists on the application of the MOGWO algo-
rithm associated with the N-1 criterion to calculate the EENS 
index;  

iv) MOCSAN-1 – Consists of the method proposed in [30] that applies 
the multi-objective algorithm named crow search (MOCSA), 
associated with the N-1 criterion to obtain the EENS index;  

v) MOGWOND− MCS5 – Consists on the proposed framework, as in 
analysis i), but with an increase of 5% in the failure rate of all 
lines. 

It can be highlighted that analyses ii), iii) and iv) seek to provide a 
basis for comparison to the proposed MOGWOND− MCS approach. 

Table 1 
Results from literature for the Garver system.  

Reference Reinforcements f1 (106 US$) 

[27] ‘3′(4–6), ‘1′(2–3), ‘1′(3–5) 130.00 
[28] ‘2′(4–6), ‘2′(2–6), ‘1′(3–5) 140.00  

Table 2 
Proposed non-dominated solutions (Pareto front) for the Garver system.  

Plan Reinforcements f1 (106 US$) f2 (MWh) 

P1 ‘3′(4–6), ‘1′(2–3), ‘1′(3–5) 130.00 5126.0 
P2 ‘2′(4–6), ‘2′(2–6), ‘1′(3–5) 140.00 4176.3 
P3 ‘3′(4–6), ‘1′(2–3), ‘2′(3–5) 150.00 3706.6 
P4 ‘3′(4–6), ‘1′(2–6), ‘2′(3–5) 160.00 0  

Table 3 
Statistical analysis.  

No. of occurrences Plan f1 (106 US$) f2 (MWh) 

47 (94%) P2 140.00 4176.3 
1 (2%) P3 150.00 3706.6 
2 (4%) P4 160.00 0  
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Analysis v), in turn, seeks to evaluate the impact of a variation in the 
failure rates on the proposed final plan. The N-1 criterion considers the 
single outage of each transmission line in the system. 

5.1. IEEE-RTS 24-bus system 

The IEEE-RTS system has 24 buses and 34 branches containing 
existing and candidate lines. The data on lines’ parameters, system to-
pology and nodal loads can be found in [24]. The peak load is 8550 MW 
and the maximum generation capacity is 10,215 MW. The failure rate 
and repair time of the transmission lines are also in [24]. The system is 
commonly modified in the literature by doubling its demand and gen-
eration capacity to make it less reliable and increase the TEP difficulty 
[31]. The best single-objective solution from the literature [30,32] 
focused on only investment has a cost of US$ 152.00 × 106. Fig. 3.a) and 
3.b) show the set of non-dominated plans from the proposed MOG-
WOND− MCS algorithm, together with those from the previously defined 
MOGWOMCS and MOCSAN-1. Table 4 presents the final plans chosen 
after the application of the fuzzy criterion to the MOGWOND− MCS and 
MOGWOMCS Pareto fronts. 

From Fig. 3.a), it can be observed that the Pareto front from MOG-
WOND− MCS is very close to the MOGWOMCS front, which shows that the 
proposed ND-MCS approach can maintain the features of the original or 
crude MCS, but with a substantial reduction in the computational time. 
This advantage can be ascertained in Table 4 by the reduction of 82% 
from the proposed MOGWOND− MCS in relation to the MOGWOMCS so-
lution. In addition, Fig. 3.a) shows that the points of the MOGWOND− MCS 
front tend to be below those from MOGWOMCS, which means that the 
quality of the proposed solutions tends to be better, since the objective is 
to minimize both objective functions. This occurs because the proposed 
ND-MCS leads to a more targeted and efficient search in the TEP solution 
space, due to the filtering of non-dominated points over the optimization 
steps. 

The previous behavior can also be verified in Fig. 3.b), that is, the 
proposed Pareto front is better (below) the MOCSAN-1 front, which can 
also indicate that the ND-MCS approach can avoid overinvestments, due 
to the lower investment cost of the MOGWOND− MCS points in the figure, 

in relation to the N-1 criterion. 
About the planning criteria, Table 4 shows that the proposed 

MOGWOND− MCS increases the investment cost in US$ 3.00 × 106 

(1.08%) and decreases EENS in 1823.10 MWh (16.47%). These solutions 
differ by only one line - ‘1′(1–2) - that is added in the proposed approach, 
increasing the investment and improving the reliability. Table 5: Com-
parison among the proposed analyses, IEEE 24-bus system summarizes 
the results for the planning objectives in all the previously defined an-
alyses. For each objective, the percentual of 100% was addressed to the 
largest value among the analyses. 

In terms of the investment cost (f1), although the MOGWOMCS 
analysis leads to the best value, the difference from the proposed 
MOGWOND− MCS plan is of 1.08%, whereas the proposed plan has an 
EENS better than the MOGWOMCS analysis, with a difference of 16.47%, 
as previously stated. In terms of reliability (f2), in turn, the best EENS is 
from the MOGWON-1 analysis. However, this solution has the highest 
investment cost, with a difference of around 14.5% in relation to the 
proposed MCS-based framework, which indicates that the N-1 criterion 
can imply in overinvestment. Moreover, these results point out that the 
proposed framework can obtain a better trade-off between the planning 
criteria. 

Finally, Table 5: Comparison among the proposed analyses, IEEE 24- 
bus system shows also the MOGWOND− MCS5 solution, which considers an 
increase of 5% in all failure rates. It can be verified that even under this 
increase, the investment cost of the MOGWOND− MCS5 plan is lower than 
the MOGWON-1 cost from the N-1 criterion. This analysis shows that 
although the transition rates’ prediction has impact on the final plan, the 
N-1 practice tends to be more conservative in terms of reinforcements 
and thus can lead to overinvestment, as previously pointed out by [2–4]. 

Table 6 presents the ‘R’ and ‘L’ solutions for the MOGWOND− MCS, 
MOGWON-1, MOCSAN-1 and MOGWOND− MCS5 analyses, where ‘R’ is the 
extreme solution having the lowest f1 and highest f2 found in each 
analysis, and ‘L’ has the highest f1 and lowest f2. The ‘R’ solution is the 
same for all analyses and corresponds to the plan found in the literature 
focused on only investment cost (single-objective) [30,32]. 

On the other hand, all the ‘L’-solutions have the EENS index equal to 
zero. Thus, the investment cost must be used in this case to define the 
dominance among these plans. The conclusion is that the proposed ‘L’- 
solution (LMOGWOND− MCS ) dominates the others ‘L’-solutions for having the 
smallest investment cost (f1). As the ‘R’-solutions are all the same, it can 
be concluded that the proposed MOGWOND− MCS Pareto front dominates 
the Pareto fronts from the other analyses, showing that the proposed 
framework is a potential option to support the TEP effort by providing 
good quality alternative plans. 

5.2. The Brazilian Southern system 

The Brazilian Southern system (BSS) has data, including grid topol-
ogy, lines’ parameters, nodal loads, existing and candidate lines, avail-
able in [33]. For the reliability analysis, practical and still current 

Fig. 2. Summary statistics.  

Fig. 3. a): MOGWOND− MCS × MOGWOMCS, 3.b): MOGWOND− MCS × MOCSAN-1, c): Solutions for the BSS system.  
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probabilistic data from the Brazilian National System Operator (ONS) 
are used for transmission lines (λ = 0.02542/miles.year and MTTR =
2.958 h for 138 kV lines; λ = 0.00707/miles.year and MTTR = 1.521 h 
for 500 kV lines). According to the literature, the best single-objective 
solution for BSS focused on investment has cost of US$ 75.90 × 106 [31]. 

Fig. 3.c) presents the obtained non-dominated solutions, where it can 
be observed that the proposed MOGWOND− MCS Pareto front has better 
behavior than the MOGWOMCS front, that is, the proposed front is below 
the other in the figure. Therefore, the proposed non-dominated set has 
cheaper and more reliable plans in relation to the other set used for 
comparison. As in the previous systems, the non-dominated plans from 
the proposed approach comprise the single-objective solution from the 
literature [31]. 

Table 7 shows the final plans obtained by the proposed algorithm 
and the fuzzy decision-making criterion. Some branches are in all 
analysis - (18–20), (20–23), (20–21), (42–43), (46–6) and (5–6) - indi-
cating their relevance. The investment costs from [27] and [31] 
considering the N-1 criterion are US$ 153.10 × 106 and US$ 189.50 ×
106, respectively. Thus, the proposed MOGWOND− MCS algorithm ach-
ieves a smaller cost, US$ 146.31 × 106, reinforcing that the improved 
MCS-based approach can avoid overinvestment by a proper represen-
tation of the probabilistic feature of equipment’ outages. 

From Table 7, the MOGWOND− MCS solution is cheaper than the 

MOGWOMCS plan by 62.33% (f1). In addition, the MOGWOND− MCS plan 
has the EENS value (f2) lower than MOGWOMCS by 14.85%. Finally, The 
CPU time decreases significantly from MOGWOMCS to MOGWOND− MCS 
(69%), which proves the effectiveness and computational efficiency of 
the proposed framework. 

Still on the computational requirement, it can be highlighted that the 
proposed framework can be a potential tool to be applied to large-scale 
systems, which is supported by the fact that the MCS efficiency depends 
more on the equipment availability than the grid size, according to [34]. 
In particular, the more reliable the system, the higher is the MCS effort 
[34]. Thus, as the proposed framework is based on an efficient MCS 
procedure (ND-MCS), the computational requirement will depend more 
on the system reliability than the grid size, which will be explored in 
future developments. 

Finally, it can be pointed out that in practical cases, the decision 
maker should run a detailed analysis with different satisfying methods to 
find the best trade-off among the non-dominated solutions. The pro-
posed framework allows the planner to adopt criteria more flexible to 
meet the stakeholders’ exigences. For instance, if the chosen solution 
does not satisfy dynamic constraints, short circuit levels or any condition 
that leaves the system to load shedding, the planner can simply change 
to other plans in the neighborhood of the first one having similar per-
formances with respect to the objectives [29]. 

6. Conclusions 

This paper proposed a novel approach to allow solving the TEP 
problem with the reliability criterion considered in this probabilistic 
feature and a priori, i.e., over the optimization procedure. The advantage 
is that the final obtained plans can represent a better trade-off between 
the reliability and economic criteria, since the optimization is carried 
out also under the reliability standpoint over the steps of the proposed 
algorithm. Another advantage is that it is possible to avoid over-
investment by considering the probabilistic feature of the equipment’ 
outages. The results obtained by the introduced case studies showed this 
expected benefit. It can be highlighted that the major challenge to 

Table 4 
Final plans for the IEEE 24-bus system.  

Analysis Reinforcements f1 (106 US$) f2 (MWh) CPU time 

Proposed MOGWOND_MCS ‘1′(1–2), ‘1′(1–5), ‘1′(3–24), ‘2′(6–10), ‘2′(7–8), ‘1′(10–12), ‘1′(14–16), ‘1′(16–17) 279.00  9240.90 2 h. 10 min. 
(18%) 

MOGWOMCS ‘1′(1–5), ‘1′(3–24), ‘2′(6–10), ‘2′(7–8), ‘1′(10–12), ‘1′(14–16), ‘1′(16–17)  276.00 11,064.00 12 h. 15 min. 
(100%)  

Table 5 
Comparison among the proposed analyses, IEEE 24-bus system.  

Analysis f1 (106 US$) f2 (MWh) 

Proposed MOGWOND− MCS 279.00 (85.58%) 9240.90 (59.73%) 
MOGWOMCS 276.00 (84.66%) 11,064.00 (71.52%) 
MOGWON-1 326.00 (100%) 5673.9 (36.67%) 
MOGWOND− MCS5 306.00 (93.86%) 9294.50 (60.08%) 
MOCSAN-1 286.00 (87.73%) 15,470.00 (100%)  

Table 6 
R and L solutions for the 24-bus system.  

Analysis Reinforcements f1 (106 

US$) 
f2 (MWh) 

RMOGWON− 1 , 
RMOCSAN− 1 , 
RMOGWOND− MCS , 
RMOGWOND− MCS5 

‘1′(6–10), ‘2′(7–8), ‘1′(10–12), ‘1′

(14–16) 
152.00 31,264.00 

LMOGWON− 1 ‘1′(1–2), ‘1′(1–5), ‘1′

(2–6),’1’(3–24), ‘1′(4–9), ‘3′

(6–10), ‘2′(7–8), ‘1′(9–11), ‘1′

(10–12), ‘1′(11–13), ‘1′(14–16), 
‘1′(15–24), ‘1′(16–17) 

560.00 0 

LMOGWOND− MCS ‘1′(3–24), ‘2′(6–10), ‘2′(7–8), ‘1′

(10–11), ‘1′(10–12), ‘1′(11–13), 
‘1′(14–16), ‘1′(15–24), ‘1′(16–17) 

442.0 0 

LMOCSAN− 1 ‘1′(1–2), ‘1′(1–5), ‘1′

(2–4),’1’(3–24), ‘2′(6–10), ‘2′

(7–8), ‘1′(9–12), ‘1′(10–12), ‘1′

(12–13), ‘1′(14–16), ‘1′(15–21), 
‘1′(15–24), ‘1′(20–23) 

562.00 0 

LMOGWOND− MCS5 ‘1′(1–2), ‘1′(1–5), ‘1′

(3–9),’1’(3–24), ‘2′(6–10), ‘2′

(7–8), ‘1′(9–11), ‘1′(10–11), ‘1′

(10–12), ‘1′(11–13), ‘1′(14–16), 
‘1′(16–17), ‘1′(17–18), ‘1′(20–23) 

526.00 0  

Table 7 
Final plans for the BSS system.  

Analysis Reinforcements f1 (106 US 
$) 

f2 (MWh) CPU 
time 

MOGWOND− MCS ‘1′(12–14), ‘1′(18–20), 
‘1′(19–21), ‘1′(14–22), 
‘1′(20–23), ‘1′(24–34), 
‘2′(20–21), ‘2′(42–43), 
‘1′(46–6), ‘1′(29–30), 
‘2′(5–6) 

146.31 20,173.00 2 h. 33 
min. 
(31%) 

MOGWOMCS ‘1′(2–5), ‘1′(9–14), ‘1′

(12–14), ‘1′(13–18), ‘1′

(18–20), ‘1′(14–22), ‘1′

(20–23), ‘1′(36–37), ‘1′

(34–35), ‘1′(37–39), ‘1′

(37–42), ‘1′(39–42), ‘2′

(38–42), ‘1′(32–43), ‘1′

(19–32), ‘1′(46–16), ‘3′

(20–21), ‘2′(42–43), ‘1′

(46–6), ‘1′(16–32), ‘1′

(28–43), ‘1′(41–43), ‘1′

(29–30), ‘1′(2–3), ‘3′(5–6) 

388.42 23,692.00 6 h. 39 
min. 
(100%)  
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consider the reliability criterion a priori in a probabilistic manner is the 
high and prohibitive computational effort mainly for practical electrical 
transmission systems. In this sense, the proposed ND-MCS probabilistic 
framework can meet the computational requirement due to its efficiency 
in obtaining the reliability index over the optimization process, as 
shown in the case studies. In addition, the proposed algorithm allows a 
better search in the solution space due to its capacity of identifying non- 
dominated and, thus, attractive candidate solutions over the optimiza-
tion steps. As a future development, it can be suggested the investigation 
of how the prediction of transition rates, as failure and repair rates, 
impacts on the planning problem. Another suggestion is to investigate 
and quantify how the system size and equipment availability impact on 
the computational requirement to solve the problem through the 
improved MCS-based approach. 
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Appendix 

The pseudo-code of the MOGWO algorithm to solve the proposed multi-objective TEP problem is given hereinafter [22]:   

1 begin 
2 Initialize gray wolf population Xi(i = 1,2,…,η)
3 Initialize a, A and C 
4 Compute objective functions f1 and f2 of each gray wolf 
5 Find non-dominated solutions based on f1 and f2, and initialize the repository with them 
6 (Xα,Xβ,Xδ)← select leaders from repository 
7 t←1 
8 while t < tmax do 
9 for each gray wolf do 
10 Update its position by Eq. (13) 
11 Update a, A and C 
12 Compute objective functions f1 and f2 of each gray wolf 
13 Find non-dominated solutions based on f1 and f2, and initialize the repository with them 
14 if repository is full then 
15 Run the grid mechanism to remove one of the current members and add the new solutions to the repository 
16 if any of the new solutions added to the repository is located outside the hypercubes then 
17 Update the grids to cover new solutions 
18 (Xα,Xβ,Xδ)← select leaders from repository 
19 t←+ 1 
20 return repository  
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