REAL 2-REGULAR CLASSES AND 2-BLOCKS

RODERICK GOW
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ABSTRACT. Suppose that G is a finite group. We show that every 2-block of
G has a defect class which is real.

As a partial converse, we show that if G has a real 2-regular class with
defect group D and if N(D)/D has no dihedral subgroup of order 8, then G
has a real 2-block with defect group D.

More generally, we show that every 2-block of G which is weakly regular
relative to some normal subgroup N has a defect class which is real and con-
tained in N. We give several applications of these results and also investigate
some consequences of the existence of non-real 2-blocks.

1. INTRODUCTION

Let G be a finite group and let p be a prime divisor of |G|. If B is a p-block of
G, then the complex conjugates of the irreducible characters in B form another
p-block, B?, of G. We say that B is a real p-block if B = B°. In the case that
the prime p is 2, it is easy to prove that a real 2-block has at least one real defect
class. One of the main results of this paper, Theorem 3.5, shows that in fact an
arbitrary 2-block has a real defect class. As a consequence, in order for G to have
a 2-block with defect group D, it must have at least one real 2-regular class with
defect group D.

The converse of this last statement is false. For instance, the symmetric group
Sy has a real 2-regular class of defect zero, yet it has no 2-blocks of defect zero.
However, Theorem 4.8 establishes the following partial converse: Let D be a 2-
subgroup of G and let N(D) denote its normalizer in G. Suppose that N(D)/D
has no dihedral subgroups of order 8. Then G has a 2-block with defect group D if
and only if G has a real 2-regular class with defect group D. We conclude Section
4 with a number of examples illustrating the use of this theorem.

In Section 5, we investigate blocks in relation to a normal subgroup N. Our main
result is that each 2-block of G which is weakly regular relative to N has a real
defect class which is contained in N. If N has odd order, this gives the following
purely group-theoretic consequence: N contains a conjugacy class of G with a given
defect group if and only if N contains a real conjugacy class of G with the same
defect group.

2. PRELIMINARIES

Much of our notation comes from [NT89]. In particular, we fix a p-modular system
(K,Q, F) for G and assume that K contains a primitive |G|-th root of unity. (For
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much of this paper, the prime p will be 2, although a number of our results hold
for any prime p.) We use P to denote the unique maximal ideal in O. If V is an
O-module, and v is an element of V, then v* will denote the image of v in the
F-module V/PV.

If K is a conjugacy class of G, then X° will denote the conjugacy class whose
members are the inverses of the elements of K. We say that X is a real class if
K = K°. We use C(g) to denote the centralizer, and C*(g) the extended centralizer,
of an element g of G. In particular C*(g) is the stabilizer of the set {g,g~'} in G.
The Sylow p-subgroups of the centralizers of the elements of a conjugacy class K
are called the defect groups of X. When p = 2, and X is a non-identity real class
of G, we call the Sylow 2-subgroups of the extended centralizers of the elements of
X the extended defect groups of XK.

The elements of G form a basis for the group algebra F'G. So every element of
FG is of the form z = 37 B(z,9)g, where the 3(z,g) are elements of F. We
define the element z° € FG by 2° = Y 8(z,97!)g. Let ST denote the sum of the
elements of a subset S of G in FG. The elements KT, where X is a conjugacy class
of G, form a basis for the centre ZFG of FG. If z € ZFG, we use 3(z,Xt) to
denote the coefficient of XT in z.

The p-blocks of G correspond in a one-to-one manner with the primitive idem-
potents of ZFG and also with the F-algebra epimorphisms ZFG — F. If B is a
p-block of G with associated primitive idempotent e and F-algebra epimorphism
w, then we will express this association by B < e < w.

Let x be an irreducible K-character of G. The central character of x is the
map wy : ZOG — O, given by wy(z) := x(x)/x(lg), for each x € ZOG. The
irreducible K-characters of G are partitioned into blocks, with x belonging to the
block determined by B <> e > w if and only if

W(KY) = wy (KT,

for each conjugacy class X of G. Set w°(z) := w(2°), for 2 € ZFG. Then w° is
an F-algebra epimorphism, and it is clear that B® < e° < w? is the associated
p-block. Moreover, the complex conjugate x° of x belongs to B°.

The defect group of a block is defined in Section 3.6 of [NT89]. We collect a
number of well-known results about p-blocks in the following lemma.

Lemma 2.1. Suppose that B < e > w is a p-block of G, with defect group D. Let
X be a conjugacy class of G. Then w(X+) = Op, unless some defect group of X
contains D, and B(e,Xt) = Or, unless X is p-reqular and some defect group of X
is contained in D.

We note that, given a p-block B < e <> w, there exists at least one class £ such
that B(e, L) # 0 and w(L1) # 0F. Any such L is called a defect class for B.

In later sections, we will be concerned with showing the existence of real 2-blocks
with a given defect group. For this purpose, the proof of Lemma 1.2 of [G88] may
be adapted to show the following result.

Lemma 2.2. Suppose that G has a 2-block with defect group D and let ep denote
the sum of the 2-block idempotents of FG with defect group D. Then G has a real
2-block with defect group D if and only if there exists a real 2-regular class X with
defect group D for which 8(ep,Xt) # Op.
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3. REAL DEFECT CLASSES

Brauer Characters and Principal Indecomposable Characters are defined in Sec-
tion 6.3 of [NT89]. If B is a p-block of G, with defect group D, and if x is an
irreducible K-character in B, then x(1)/|G : D| is an element of 0. Moreover,
there exists at least one irreducible K-character 6 in B for which §(1)/|G : D| is a
unit in O. We say that any such 8 has height zero. The following result is collected
from [O66]:

Proposition 3.1. Suppose that B <> e <> w is a p-block of G with defect group
D. Let X be a p-regular class with defect group D. Then

Ble,X*) = (dim(B)/|G||X])" w(%).

Proof. Let § be an irreducible K-character in B which has height zero. Then
x(1)/|X| and x(1)/6(1) are elements of O, for each irreducible K-character x in B.
Also wy (K) = wp(K*) mod P. Thus, given any element k in X, we have

x(1) 1X|

x(h) = 2
1X] 6(1)
x(1)
= 20k d
a1 (k) mod P

If ¢ is an irreducible Brauer character of G in B then ¥ will denote the cor-
responding principal indecomposable character. Now 1 is a Z-linear combination
of the restrictions of the ordinary irreducible K-characters in B to the p-regular
elements of G. So there exist integers r, , such that ¢) = Y7, 4 x on p-regular
elements, where x ranges over the irreducible K-characters in B. Thus

(5 Y g = (PO e
v = (ZB " 0(1)> oty = (1) ot
Now ¥, cp x(Dx(k 1) = ¥y P00k, So

e, XT) = -1 -1 *z (1) (-1
Ble, X) (|G| 3 x()x(k )) > (L) v

XEB YEB

6(k) mod P

taking into account the fact that ¥(1), > |G|, for each ¥. Thus

*

(5 200 e (B, e
Aex = 2 Totam | O = (fetac) 20

The Proposition now follows from the fact that (k)" = w(X°t) (6(1)/|K|)*.
O

Corollary 3.2. Suppose that B <> e < w is a 2-block of G with defect group D
and that X is a 2-regular class with defect group D. Then B(e,KT) = w(XK°T).

Proof. This follows from Proposition 3.1 and the fact that 1 is the only non-zero
element in the prime field of F'. O

We note in passing that Proposition 3.1 implies the following result of R. Brauer,
[B76].
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Corollary 3.3. Suppose that B < e < w is a p-block of G with defect group D.
Set |G|, = p* and |D| = p®. Then the p-part of dim(B) equals p?*~<.

Proof. Tt follows from the existence of a defect class (see the note after Lemma 2.1)
and Proposition 3.1 that dim(B)/|G||G : D] is a unit in O.
O

Proposition 3.4. Suppose that B < e &> w is a 2-block of G with defect group D
and let Rp denote the union of the real 2-regular classes of G which have defect
group D Then w(Rf) =1r and Y. B(e,X+) = 1.

KCRp
Proof. Let Xy, ..., X, denote all the real 2-regular classes of G with defect group
D and let L, Lf, ..., L;, L7 denote all the non-real 2-regular classes of G with

defect group D. Taking into account Lemma 2.1, we have
s
= Ble, XK w(K) + Z (e, L) w(L]) + Ble, LI w(L5T)) .
i=1

Then using Corollary 3.2, we get

s t
wle) =Y w(EK)? + D (wEiN wl;t) + wEl)wksh),
i=1 j=1
= (Z w(XF))", as F has characteristic 2
i=1
= w(R}H)>.

Thus 1r = w(e) = w(R})?, which in turn implies that w(R}) = 1p. The second
equation now follows from Corollary 3.2.
|

We now present the main result of this section.
Theorem 3.5. Every 2-block has a real defect class.

Proof. Let B > e <> w be a 2-block of G which has defect group D. It follows from
the previous theorem that there exists a real 2-regular class X of G, with defect
group D, such that w(X+) # 0p. But B(e,X+) # O, using Proposition 3.1. So X
is a real defect class for B. The result follows.

([l

Our corollary furnishes a necessary condition for the existence of 2-blocks which
seems to have been overlooked until now.

Corollary 3.6. Suppose that G has a 2-block with defect group D. Then G has a
real 2-regular conjugacy class with defect group D.

Example 3.7. Let n > 1 be an odd integer and let ¢ be a power of an odd prime
p. Suppose that n is relatively prime to ¢ — 1. Consideration of rational canonical
forms shows that the only real 2-regular class of defect zero in the simple group
SL,(g) is that containing a regular unipotent element, whose minimal polynomial
is (x — 1)™. Tt is known that SL,(q) has 2-blocks of defect 0, so the class of regular
unipotent elements is the only real defect class for such blocks. Taking n = 3 and
ged(3,g—1) = 1, we find that the number of 2-blocks of defect 0 is g(¢+1)/3. Each
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of these blocks contains a unique irreducible character of degree (¢ — 1)?(q + 1),
which is not real-valued, and they all have the same real defect class, consisting of
elements of order p.

Let B < e ¢ w be a real 2-block of G with defect group D. Suppose that
w(KT) # 0F and w(LT) # OF, where K and L are real classes of G and X has
defect group D. The first author showed [G88, 2.1] that each extended defect group
of X is contained in some extended defect group of L, thus refining Lemma 2.1.
This need not hold when B is non-real, as the following example shows:

Example 3.8. Let 8, (A,) denote the symmetric (alternating) group of degree
n. Suppose that n = m(m + 1)/2 is a triangular number, where m > 0. Then
8, has a 2-block of defect zero, containing the irreducible character corresponding
to the triangular partition [m,...,3,2,1]. Let x be an irreducible constituent of
the restriction of this character to A,. Then x lies in a 2-block B of defect zero.
Now suppose that m is even and greater than 2. The classes of cycle type [(2m —
3)2,2m—9,2m —13,2m—17,...], and [2m —1,2m - 3,2m —5,...,7,13],if m = 2
mod 4, of §,, form single classes X and L of A,. Moreover both have defect 0, and
are real in A,, elements being inverted by involutions of cycle type

[2(711/2)2]7 for K, if m = 0 mod 4;

[2(m/2)2+1], for X, if m = 2 mod 4;

[Q(m/2)2—1]7 for L, if m = 2 mod 4.
By repeated applications of the Murnaghan-Nakayama formula, it can be shown
that x takes the value £1 on elements of X or L. So X, and £ if m = 2 mod

4, are real defect classes for B. However, X and L are inverted by non-conjugate
involutions.

4. EXISTENCE OF REAL 2-BLOCKS

Given a p-subgroup D of G, we will write ep = ep(G) for the sum of the block
idempotents of F'G with defect group D. In the case that D is the trivial subgroup
of G, we will write eg = eg(G) for the sum of the block idempotents of defect 0.
Similar notation will be used for subgroups of G. We will also write Ry = Ro(G)
for the union of the real p-regular classes which have trivial defect group. Set
W :=N(D)/D, and let 7 : FN(D) — FW be the F-algebra epimorphism induced
by the natural group epimorphism 7 : N(D) — W.

Lemma 4.1. Suppose that k is a p-regular element of G with p-defect group D.
Then B(ep(G), k) = Blea(W),w(k)).

Proof. Let B <> e < w be a p-block of G with defect group D. Brauer’s First
Main Theorem establishes a bijection between the p-blocks of G with defect group
D and the p-blocks of N(D) with defect group D. Let B & <> & correspond to
B + e <> w under this bijection. It follows from Theorem 5.2.15 of [NT89] that

(4.2) Ble, k) = B(E, k).
Suppose that k lies in the class K of N(D) and that (k) lies in the class £ of

W. Then X is p-regular with p-defect group D. So by Lemma 5.8.9 of [NT89], we
have w(K*) = L. Tt follows that

(4.3) B(&,X*) = B(n(e),LT).
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Theorem 5.8.7.(ii) of [NT89] implies that m(€) is a sum of p-blocks of W with
trivial defect group. Hence

(4.4) mw(€) = w(€)eg(W).

Suppose that By <> ey <> wyw is a p-block of W, with trivial defect group, such
that B(ew,LT) # 0. Then wy o : ZFN(D) — F is an F-algebra epimorphism.
Let By ¢ en > wn be the associated p-block of N (D). Then

W (KT) = wwy o T(K°F) = w (L°F)
= X-fB(ew,L™T), where X # 0F, by Proposition 3.1 and Corollary 3.3
#0r, asfB(ew,Lt) #0p.

It follows from Lemma 2.1 that some defect group of By is contained in D, the
unique p-defect group of X°. But D is a normal p-subgroup of N(D). So every
defect group of By contains D. We deduce that By is a p-block with defect group
D. Also wny(m(ew)) = ww(ew) = 1p. So ew = e w(en). The result now follows
from (4.2), (4.3) and (4.4). O

We take p to be 2 for the rest of this section and for each positive integer n, we
set Q, = Q,(G) :={g € G| g has order n}.

Lemma 4.5. ¢g = R[)" + 9Ff + 9fof.
Proof. This follows from the following equalities:
(1g + 9F)> =Rd, by Proposition 4.1 of [M99]
g+ 93 +9F) (1 +QF) = ey, by Corollary 5.9 of [M99].
([l

If g is a real element of G of defect zero, then it is well known that there exists
an involution ¢ which inverts g. So s := gt is also an involution which inverts g.
Moreover, if g = uv, where v and v are involutions, then both u and v invert g.
Any two involutions which invert g are conjugate in C*(g), and hence come from a
single conjugacy class of involutions in G.

We will use Dg to denote a dihedral group of order 8 and K4 to denote an
elementary abelian group of order 4.

Proposition 4.6. Suppose that g is a real element of G which has trivial defect
group. Let s and t be involutions such that g = st. Then

Bleo,9) = 1p + |[{u€ Qa| <s,u>= Dg, <u,t >= K4 }|1p.
Proof. It follows from Lemma 4.5 that
Bleo,9) = 1r + |®1(9)[1F,

where ®1(g) := {(z,y) € Q4 x Qo [zy = g}
Define (z,y)! := (z7%,4t), for (z,y) € ®1(g). We check that (z,y)! € ®1(g)
and that ((m,y)t)t = (z,y). In this way we get an action of the 2-group < ¢t > on

®1(g)-
Each orbit of < t > on ®;(g) has size 1 or 2. So

(4.7) B(eo,9) = 1r + |®2(9)[1F,
where ®5(g) := {(2,y) € Qs x Qo |zy =g,z =27,y =y'}.
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Set ®3(g) := {u € Q2| < s,u >= Dg, < u,t >= Ky}. Suppose that (z,y) €
®y(g) and u € P3(g). We check that yt € ®3(g) and (su,ut) € P2(g). Moreover
the maps ®2(g) — P3(g), (z,y) — yt and P3(g9) = P2(g), u — (su,ut) are inverses
of each other. Thus |®2(g)| = |®5(g)|- The proposition now follows from (4.7).

O

In a similar fashion we can show, with the notation above, that
Bleo,9) =1p +[{u € Q2| < s,u >=< u,t >=2 Dg }1p
=1+ [{ (u,v) € Q2 X Q2| < s,u > u,v >= v,t >= Ky }1p.

The next result, which uses Proposition 4.6 in a crucial way, gives a partial
converse to Corollary 3.6 and also generalizes Theorem 2 of [T71].

Theorem 4.8. Suppose that no subgroup of W := N(D)/D is isomorphic to Ds.
Then B(ep(G),g) = 1r, for each real 2-regular element g with defect group D. In
particular, the following are equivalent:

(a). G has a real 2-regular element with defect group D;
(b). G has a 2-block with defect group D;
(¢c). G has a real 2-block with defect group D.

Proof. We have

Blen(G),g9) = Bleo(W),m(g)), by Lemma 4.1
= 1, using the hypothesis and Proposition 4.6.

This proves the first assertion.

Suppose that G has a real 2-regular element g with defect group D. Then
B(en(G),g) = 1p. So G has a real 2-block with defect group D, by Lemma 2.2.
Thus (a) = (c).

The implication (¢) => (b) is trivial.

The implication (b) = (a) follows from Corollary 3.6. This completes the
proof. O

In the situation of Theorem 4.8, we can sometimes guarantee the existence of
more than one block with defect group D.

Corollary 4.9. Suppose that no subgroup of W := N(D)/D is isomorphic to Dsg.
Suppose further that G has r real 2-reqular classes, X1, ...,XK,, with defect group
D, which have non-conjugate extended defect groups. Then G has at least r distinct
real 2-blocks with defect group D.

Proof. 1t follows from Theorem 4.8 that B(ep(G),X]) = 1r, for i = 1,...,r.
Corollary 3.2 implies that if 1 < ¢ < r, then G has a 2-block B; + ¢; < w; with
defect group D such that w;(X;) # Or. Moreover, as in the proof of Lemma 2.2,
we may choose each B; to be real.

As the principal 2-block is the only real 2-block with maximal defect, and the
trivial class is the only real class with maximal defect, we may assume that D is not
a Sylow 2-subgroup of G. It then follows from Corollary 2.2 of [G88] that B; # B;,
for all distinct ¢, j from {1,...,7}. This completes the proof.

O

Note 4.10. The condition that no subgroup of W is isomorphic to Dg is equivalent
to the condition that all the involutions in a Sylow 2-subgroup of W commute with
each other and thus generate an elementary abelian 2-subgroup of W. Corollary



8 RODERICK GOW JOHN MURRAY*

1 of [GL74], taken in conjunction with later work of Bombieri and Thompson on
the classification of groups of Ree type, implies that if G is a simple group with no
subgroup isomorphic to Dg, G is isomorphic either to a group of Lie type of rank 1
over a field of even characteristic, or to PSLa(g), where ¢ = 3,5 mod 8 and q > 3,
or to the Janko group Ji, or to a Ree group 2G2(32"*!). Excluding the group
PSL3(22) which is isomorphic to PSL2(5), the groups of Lie type of rank 1 over a
field of even characteristic are PSLy(27), n > 3, Sz(22"+1), n > 1, and PSU3(2"),
n > 2, and each of these groups has a unique 2-block of defect 0, which contains
the Steinberg character.

We say that D is a mazximal Sylow 2-intersection in G if D = SN T, where
S # T are Sylow 2-subgroups of G, and if D < PN @, where P # @ are Sylow
2-subgroups of G, then D = PN Q. The following is a special case of Theorem 4.8.

Corollary 4.11. Suppose that D is a mazximal Sylow 2-intersection in G. Then
the conditions (a), (b) and (c¢) of Theorem 4.8 are equivalent for G.

Proof. The hypothesis implies that W = N(D)/D has a trivial intersection Sylow
2-subgroup. An elementary argument (due to M. Suzuki) shows that W has no

subgroups isomorphic to Dg. The result now follows from Theorem 4.8.
O

Our next corollary can also be proved using the Brauer-Suzuki theorem, but the
methods developed in this section provide a self-contained approach.

Corollary 4.12. Suppose that a Sylow 2-subgroup of G is generalized quaternion
or cyclic. Then either G has a unique involution or it has a real 2-block of defect
0.

Proof. Suppose that G has two different involutions s and ¢. Consider their product
st. This is not the identity. We claim that st has odd order. For if this is not
the case, there exists an involution 4 which commutes with both s and ¢. This
contradicts the fact that G contains no elementary abelian subgroup of order 4.
Thus st has odd order. Also st is real, since it is inverted by ¢.

Let S be a Sylow 2-subgroup of the extended centralizer C*(st) of st which
contains ¢. Then t is the unique involution in S, but ¢ ¢ C(st). Since C(st) N S
is a Sylow 2-subgroup of C(st), it follows that this latter group has odd order. In
particular st has defect zero.

Finally, as a Sylow 2-subgroup contains no dihedral subgroup of order 8, it follows
from Theorem 4.8 that G has a real 2-block of defect 0.

([l

The Brauer-Suzuki theorem gives the more precise information that any real
defect zero element of G lies in O« (G). This strengthens Proposition 5 of [T74].

Corollary 4.13. Suppose that G does not possess subgroups H and K with H< K
and K/H = Dg. Then all 2-blocks of G have mazimal defect if and only if G has
a normal Sylow 2-subgroup.

Proof. Let S be a Sylow 2-subgroup of G. We may suppose that |S| > 1. Theorem
4.8 implies that all 2-blocks of G have maximal defect if and only if G has no
non-identity real 2-regular elements. Now if S is normal in G, it is elementary to
check that G has no non-identity real 2-regular elements. Conversely, suppose that
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G has no non-identity real 2-regular elements. Then G := G/O2(G) also has no
non-identity real 2-regular elements. We claim that G has odd order. For let s an
t be involutions in G. Then s inverts every element in < st > and hence st has
2-power order. It follows from the hypothesis on the subgroups of G that (st)? = 1.
In particular s and ¢ commute. So the involutions in G form a normal 2-subgroup.
We conclude that G has no involutions, which proves our claim.

O

The following result, which generalizes [H68], is a special case of the previous
corollary.

Theorem 4.14. Suppose that a Sylow 2-subgroup S of G is abelian, or is a direct
product of a quaternion group of order 8 with an elementary abelian 2-group. Then
all 2-blocks of G have maximal defect if and only if S is normal in G.

The groups S in the theorem above are precisely the Dedekind 2-groups, i.e.
those 2-groups all of whose subgroups are normal.

5. BLOCKS AND NORMAL SUBGROUPS

Let N be a normal subgroup of G. We say that a p-block B < e <> w of G covers
a p-block b <> e <> wp of N if the restriction of some irreducible character in B
has an irreducible constituent in b. It can be shown that each block of G covers
a G-orbit of blocks of N. More precisely B covers b if and only if e =ee{, where
e$’ denotes the sum of the distinct G-conjugates of e, in G. We will use BI(G|b) to
denote the set of blocks of G which cover b.

Suppose now that B covers b. We say that B is weakly regular (relative to
N) if it has maximal defect among the blocks of G which cover b. It follows from
Theorem 5.5.16 of [NT89] that the weakly regular blocks in BI(G|b) have a common
defect group, D say. Moreover, D N N is a defect group of b and DN/N is a Sylow
p-subgroup of I(b)/N, where I(b) is the inertial subgroup of b in G. We call D a
defect group of b in G. Those blocks in BI(G|b) which are not weakly regular have
defect groups strictly contained in D. We now specialize to p = 2.

Lemma 5.1. Suppose that b <> ey <> wp is a 2-block of N. Then the number of
weakly regular blocks which cover b is odd and

Bleg, KT) = w(KT),

for each 2-block B <> e <> w of G which covers b and each 2-reqular class X of G
which is contained in N and which has defect group D.

Proof. Let B; ¢+ ¢; ¢ w;, 1 < i < s, be a complete list of the blocks of G which

cover b, ordered so that By, ..., By are all the weakly regular blocks. It follows from
Theorem 5.5.5 of [NT89] that
(5.2) w;i(KF) = w; (XF),

for each class X of G which is contained in N, and each pair 4,5 € {1,...,s}. So
we can assume, and we do, that B is weakly regular.
We may write

(5.3) e1t- e =ef =) Blef, KK,
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where X ranges over the 2-regular classes of G which are contained in N. Since B
covers b, we have

(5.4) Lr = w(e) = w(ef) = 3 Blef, XHw(XT).
It follows that there is at least one 2-regular class L contained in N with
Bled,L*) #0r and w(LT) #Op.

As B has defect group D, we deduce from Lemma 2.1 that D is contained in a
defect group of L. Furthermore, it follows from (5.3) that there is an index j, with
1 < j <s, such that 8(e;, L) # 0p. Since B; has a defect group contained in D,
Lemma 2.1 implies that so too does L. We conclude that £ has defect group D.

Now B; has defect group D, for 1 < i < t, and B; has a defect group strictly
contained in D, for t < i <s. So

Bles, L+) = wi(LoT), for 1 <i<t, by Proposition 3.1,
v n OF, fort<i<s, by Lemma 2.1.

It follows that

¢
Bled, Lt) = Zwi(L°+) = t*w(L°"), using (5.3) and (5.2).
i=1
In particular, ¢ is odd. Finally, if X is any 2-regular class of G with defect group D

that is contained in N, identical arguments now show that B(ef, X+) = w(K°F).
O

Easy examples show that the following corollary is false when p # 2.

Corollary 5.5. Suppose that b <> e, > wp is a 2-block of N. Then b is G-conjugate
to b° if and only if some real weakly regular 2-block of G covers b.

Proof. The ‘if’ part of this statement is straightforward.
Suppose that b is G-conjugate to b°, and that B < e < w is a 2-block of G
which covers b. Then B covers b°. So

W (XF) = w(X) = wf (K°F) = wy (X)),

for each class X of G which is contained in N, using Theorem 5.5.5 of [NT89]. It
follows that B° covers b, again using Theorem 5.5.5 of [NT89]. Now B is weakly
regular if and only if B® is weakly regular. So the number of non-real weakly
regular blocks in BI(G|b) is even. We deduce from Lemma 5.1 that there are an
odd number of real weakly regular blocks in BI(G|b), proving the ‘only if’ part.

O

We let RY denote the union of the real 2-regular classes of G which have defect
group D and which are contained in N. The following result generalizes Proposition
3.4:

Proposition 5.6. Suppose that b <> e, <> wy is a 2-block of N with defect group

D inG. Then Y. pB(e§,Xt) = 1p. Also w(RN') = 1p, for each 2-block
XCRY

B & e & w of G which covers b.
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Proof. We have
]-F = Z/B evagC+ w(jc+)7 by (54)7
=) w(X ") w(X"), by Lemma 5.1,

where X ranges over the 2-regular classes of G which have defect group D and
which are contained in N. The proof now proceeds along the same lines as that of
Proposition 3.4.

O

We can now prove the following generalization of Theorem 3.5:

Theorem 5.7. Every 2-block of G which is weakly regular relative to N has a real
defect class which is contained in N.

Proof. This follows immediately from Propositions 3.1 and 5.6.
O

The aim of the remainder of this section is to prove Theorem 5.10. This result,
which is concerned with the reality of elements in a non-trivial normal subgroup of
odd order, does not appear to have a purely group-theoretic proof. The basic idea
for the next lemma goes back to Theorem 5E of [BF55] and was also used in our
context by [W77].

Lemma 5.8. Let N be a normal subgroup of odd order in G. FEvery conjugacy
class of G which is contained in N is a defect class for some real weakly regular

2-block of G.

Proof. Let X be a conjugacy class of G which is contained in N, and let k& be an
element of K. We define a class function 8 of G by

0= wy (KN (k),
Y
where 1) ranges over the K-irreducible characters of G. Let P be a Sylow 2-subgroup
of G and let g be a non-identity element of P. Since no conjugate of g can be
expressed as a product of elements of N, it follows that 6(g) = 0. See, for example,
Problem 3.9 of [194]. Also (1) = |G|. So

1
IG:P|= |§3|) (0p,1p) szp (KH)g(k) (Yp, 1p),
where 1p denotes the restriction of ¢ to P, and 1p denotes the principal character
of P. Also wy(KH)Y(k) = wye (KT)Y°(k) and (¢p,1p) = (¥$,1p), for each 1,
where ¢° denotes the complex conjugate of 1/1 It follows that

IG: P| =) wy(KF)ip(k)(bp, 1p) mod P,

where 1 ranges over the real K-irreducible characters of G. Since |G : P| is
odd, there must be a real-valued irreducible K-character x with x(k) Z 0 mod P,
wy (K°F) #Z 0mod P, and (x,1p)p an odd integer.

Let B < e <> w be the, necessarily real, 2-block of G which contains x. Since
x(k) # 0mod P and w,(K°t) # 0mod P, it follows that X is a defect class for
B. So B is weakly regular, using the definition of weak regularity given in Section
5.5 of [NT89].

O
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The following corollary is a straightforward application of a result of P. Fong.

Corollary 5.9. Suppose that G is solvable. Then G has a 2-block of non-mazimal
defect if and only if G has a real non-principal 2-block.

Proof. Any real non-principal 2-block necessarily has non-maximal defect.

On the other hand, suppose that G has a 2-block of non-maximal defect. Then
the 2-regular core Oa (G) of G contains a class X of non-maximal defect, by Theo-
rem (1G)(ii) of [F62]. Thus G has a real 2-block of non-maximal defect, using the
previous lemma.

([l

We note that Corollary 5.9 need not hold for a group that is not solvable. For
example, the Mathieu group Mj; has exactly three 2-blocks, namely, the principal
block and two non-real blocks of defect 0. Theorem 6.6 of this paper shows that
this phenomenon can only occur in a group whose Sylow 2-subgroup has order at
least 16 (the Sylow 2-subgroup of Mj; has order 16).

We now prove our main result on the existence of real elements in normal sub-
groups of odd order.

Theorem 5.10. Let N be a normal subgroup of G which has odd order, and let
D be a 2-subgroup of G. Then G has a conjugacy class with defect group D which
is contained in N if and only if G has a real conjugacy class with defect group D
which is contained in N.

Proof. Suppose that G has a conjugacy class which is contained in N and which
has defect group D. Then G has areal 2-block B which is weakly regular and which
also has defect group D, using Lemma 5.8. So N contains a real defect class for B,
by Theorem 5.7. This class has defect group D. The result follows.

O

6. NON-REAL 2-BLOCKS

Let Gp denote the union of the 2-regular classes of G which have defect group
D. The following result is similar to Proposition 3.4:

Proposition 6.1. Suppose that B < e < w is a 2-block of G with defect group

1 if w=w?
+\ F, )
D. Then w(GD)—{ Op  if w b

Proof. We have
w(e?) = Y B, X w(K),

where X ranges over the 2-regular classes with defect group D. Using Corollary
3.2, we have

w(e?) = Y w(X)? = (Zw(x+))2 = w(GhH)%

1 — 0.
1p, if w=w%

The proposition follows from the fact that w(e®) = { 0 if w £ o
F .
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This result can be used to gain additional group-theoretic information when G
has a non-real 2-block whose defect group is not a Sylow 2-subgroup of G. Let Ga
denote the set of 2-regular elements of G. We begin with the proof of a result that
is quite well known.

Lemma 6.2. Suppose that B < e < w is a non-principal 2-block of G. Then
W(G;—,) = OF.

Proof. Let x be an irreducible K-character in B, and let d be the defect of B. We
define a class function § on G by setting

— 2dX(g)7 if g € G2’;
6(9) '—{ 0, ifgeG\Ga.

It is known that € is an integral combination of the irreducible K-characters in B.
See, for example Lemma 3.6.33 (i) of [NT89]. Since B is not the principal block,
(0,1G) = 0, where 15 is the principal character of G. Tt follows that x(G3,) = 0,
and hence that wy(G4,) = 0. The result follows.

O

We proceed to the main result of this section.

Theorem 6.3. Suppose that B < e <> w is a non-real 2-block of G whose defect
group D is not a Sylow 2-subgroup of G. Then there exists a non-identity 2-reqular
class X of G, whose defect group strictly contains D, such that w(Xt) # OF.

Proof. Certainly B is not the principal block of G (as B # B°). So w(G4,) = O,
by the previous lemma. Now w(XT) = Op, if a defect group of a class X does
not contain D, using Lemma 2.1. Moreover, w(G},) = O, by Proposition 6.1, and
w(lg) = 1. Since D is not a Sylow 2-subgroup of G, it follows that Y w(X*) = 1,
where X ranges over the non-identity 2-regular conjugacy classes of G that have a
defect group which strictly contains D. The result follows.

([l

Theorem 4.8 shows that, in certain circumstances, the existence of a non-real
2-block with defect group D implies the existence of a real 2-block with the same
defect group. We end this section by considering an extension of this idea.

The proof of the following result relies on transfer techniques. We omit the
details, which are well known.

Lemma 6.4. Suppose that the finite group G has o dihedral Sylow 2-subgroup. Let
t be an involution in G. Then C(t) has a normal 2-complement.

While we are primarily interested in the prime 2, the next result, giving a suf-
ficient condition for the existence of a non-principal p-block, holds for any prime

p.
Proposition 6.5. Let D be a p-subgroup of G and let E be a p-subgroup of N(D)
which is not a Sylow p-subgroup of N(D). Set W := N(D)/D. Suppose that G has a

p-regular class with defect group E and that Nw (E/D) has a normal p-complement.
Then G has a non-principal p-block Bg which has a defect group containing E.

Proof. Recall that 7 : FN(D) — FW is the F-algebra epimorphism induced by
the natural group epimorphism 7 : N(D) — W. Let k be a p-regular element of
G which has defect group E, let X be the conjugacy class of N(D) which contains
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k, and let £ be the conjugacy class of W which contains 7(k). Then, as in Lemma
4.1, the class £ has defect group J := E/D in W and n(Xt) = L.

Set H = Ny (J). Now L N Cw(J) is a p-regular class of H which has defect
group J, and by hypothesis H has a normal p-complement. Using Theorem 1. of
[T77], we see that H has a p-block By + wg, with defect group J, such that
wr((L N Cyw(J))T) # 0F. Brauer’s first main theorem then implies that W has a
p-block By > ww, with defect group J, such that wy (L1) # Op.

Let By ¢ wn be the unique p-block of N(D) which dominates By, and let
R be a defect group of By. Then R contains D, by a theorem of Brauer, and J
is conjugate in W to a subgroup of R/D, by Theorem 5.8.7 (ii) of [NT89]. Since
E/D = J, this implies that F is conjugate in N(D) to a subgroup of R. Also
wn(KF) = ww o (K1) = ww (L) # 0p. So some conjugate of R is contained in
E, the defect group of L. It follows that By has defect group E.

Since EC(E) < N(D), Corollary 5.3.7 of [NT89] guarantees that the induced
block Bg := B§ is defined. But By is not the principal p-block of N (D), since
E is not a Sylow p-subgroup of N(D). So Bg is not the principal p-block of G,
by Brauer’s third main theorem (see Theorem 5.6.1 of [NT89]). Finally, it is a
standard fact that some defect group of Bg contains E.

([l

Theorem 6.6. Suppose that G has a non-real 2-block with defect group D, such
that a Sylow 2-subgroup of W := N(D)/D has order 8. Then G either has a real 2-
block with defect group D or it has a non-principal 2-block with defect group strictly
containing D.

Proof. Proposition 4.6 implies G has a real 2-block with defect group D unless
possibly W has a dihedral Sylow 2-subgroup. We may therefore suppose that W
has a dihedral Sylow 2-subgroup of order 8. Now Theorem 6.3 implies that N(D)
has a non-trivial 2-regular element g with defect group E strictly containing D.

If E is a Sylow 2-subgroup of N(D), then N(D) and hence G has a non-principal
2-block with defect group strictly containing D. If E has defect 1 less than maxi-
mal, then a standard argument shows that N(D) has a non-principal 2-block with
defect group E, and hence G has a non-principal 2-block with defect group strictly
containing D.

If [E : D] = 2, then Ny (E/D) has a normal 2-complement, using Lemma
6.4. So N(D) has a real non-principal 2-block whose defect group contains E, by
Proposition 6.5. It follows that G has a real non-principal 2-block with a defect
group which strictly contains D.

([l
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