BLOCKS OF DEFECT ZERO AND PRODUCTS OF ELEMENTS
OF ORDER p

JOHN C. MURRAY

ABSTRACT. Suppose that G is a finite group and that F' is a field of charac-
teristic p > 0 which is a splitting field for all subgroups of G. Let eg be the
sum of the block idempotents of defect zero in F'G, and let © be the set of
solutions to g = 1 in G. We show that eg = (Q21)2, when p is odd, and
eo = (21)3, when p = 2. In the latter case (21)2 = R, where R is the
set of real elements of 2-defect zero. So eg = QTR+ = (R1T)2. We also show
that eg = Q1tQf = (2F)2, when p = 2, where Q4 is the set of solutions to
g* = 1. These results give us various criteria for the existence of p-blocks of
defect zero.

1. INTRODUCTION

Let G be a finite group, and let F' be a field of characteristic p > 0, which is a
splitting field for all subgroups of G. Identify g € G with its image in the group
algebra FG. If X C G, then X* := % _+ x is the sum of the elements of X in
F@G, and Q(X) := {x € X | 2P = 1g}. For convenience, we will use Q in place of
Q(G). Let ey be the sum of the block idempotents in F'G of defect zero, and let G,
(Gp) denote the set of p-elements (p-regular elements) of G. In [T71], Y. Tsushima
proves that

(1.1) eo = (Gf)*.

The motivation for this paper comes from this theorem and a result of R. Knorr
[Kn89, 2.9]. It is a theorem of R. Brauer that an irreducible character x of G lies
in a p-block of defect zero if and only if x vanishes on the non-trivial elements
of Gp. Knorr’s result shows that one need only consider whether x vanishes on
the non-trivial elements of 2. We reprove a version of this result in Corollary 2.3
below. Lemma, 2.1 is crucial to our proof, and indeed to the rest of the paper. The
idea behind this lemma came from a proof of Knorr’s result due to G. R. Robinson
[R89]. An immediate consequence is Proposition 2.4, which shows that eg = (Q2)3.

At this point the theory diverges, depending on whether p is odd or even. Using
a fomula of B. Kiilshammer, we prove in Theorem 3.7 that e = (21)2, when p # 2.
When p = 2, we use an old idea of Brauer and Fowler to show that (21)2 = R,
where R is the set of real elements of G of 2-defect zero. A proof is given in
Proposition 4.1. This result, together with Example 7.4, shows that Theorem 3.7
is false when p = 2.

Section 5 gives more general consequences of Lemma, 2.1, using a chain of ideals
defined by Kiilshammer in [K91]. One such consequence is Corollary 5.9, where it
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is shown that eg = QTQf = (Qf)2, when p = 2, where (U4 is the set of solutions to
z* =15 in G.

In Proposition 6.3, we show that the number of p-blocks of defect zero is the
rank of a certain square matrix, refining a result of Robinson [R83]. Section 7
summarizes our results and presents some simple examples.

We now give some notation which will be used throughout the paper.

Let Cl be the collection of conjugacy classes of G, and let Clg be the subcollection
of classes of p-defect zero. Choose a fixed element go € C, for each C' € Cl. The
centre of the ring F'G will be denoted by Z. Let

Zo= Y FC*
CeClg

be the ideal of Z spanned by the class sums of p-defect zero. Since Z is a commu-
tative ring, the nilpotent elements form an ideal which coincides with the Jacobson
Radical J(Z).

Let Bl denote the set of block (or central primitive) idempotents in FG, and
let Bly denote the subset of block idempotents of defect zero. If e € BI, then
Ze is a local ring with Jacobson Radical J(Ze) of codimension 1. So the map
Ae: 2z = ze mod J(Ze), for z € Z, is a linear character of Z. Set

E:= ZF@, E, := Z Fe.
e€Bl e€Bly

Then E is the maximal semi-simple subalgebra of Z, and Ey = E N Zj is the ideal
of E spanned by the idempotents of defect zero. Also Z = E P J(Z) as F-algebras.
We note that

(1.2) Zo3(Z) = Ora,

since it follows from [F82, V1.4.6] that Zg C Soc(FG) := {z € FG | 2 J(FG) =
Org}, and it is certainly true that J(Z) C J(F'GQ). Furthermore,

(1.3) Ey = Z3,

by [IWT73, Lemma 2].
If X CQG, set

CX)={9geG| 29 =xforall z € X}.

We will use C(g) in place of C({g}), whenever g is an element of G.
If n is an integer then n will denote its residue modulo p.

2. PROPERTIES OF QF
We first prove a basic result about Q.
Lemma 2.1. (Q1)2 € Z,.

Proof. We may write
(2.2) @)’ =120l 9,
9€G

where ®(g) = {(a,b) € Q@ x Q| ab = g}, for each g € G. Clearly |®(g)| is a class
function of G.
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Fix an element g of G, and a Sylow p-subgroup P of C(g). The group P acts by
conjugation on the set ®(g). So

1®(g)| = |2p(9),
where ®p(g) = {(a,b) € Q(C(P)) x Q(C(P)) | ab = g}.

Now Q(Z(P)) acts freely on ®p(g) via (a,b)z := (az,z"1b), for a,b € ®p(g)
and z € Q(Z(P)). So |UZ(P))| divides |®p(g)|. Thus |®p(g)] = Op, unless
P =< 1g >. We conclude that

@)= 3 [e@lg= ) [2c)l C*.

gEG CeCly
p/IC(9)l

This proves the lemma. O

The next result was first noted by Knorr in [Kn89, 2.9].
Corollary 2.3. Let e € Bl. Then

A (QF) = 1p, if e has defect zero;
€ “ | Or, if e has positive defect.

Proof. Suppose that e has defect zero. Then )\, vanishes on all p-singular class
sums, by [NT89, 4.7.4]. In particular, A.(QF) = X\ (1g) = 1F.

Suppose that e has positive defect. Then A, vanishes on Zg, by [NT89, 3.6.27].
Hence

Ae(Q1))? = X ((27)?) = Op.
We conclude that A.(Q7) = 0. O

Note that eg is supported on the classes of defect zero i.e. ey € Zy. The following
result will be improved in Theorem 3.7, for p # 2.

Proposition 2.4. ¢y = (7)), for n > 3.

Proof. Suppose that e € Bl. If e € Bly, then Qte € ker()\.)e C J(Z) by Corollary

2.3, and (21)? € Zg by Lemma 2.1. So Opg = (21)3%e = (Q1)%e = ..., using (1.2).

If e € Blp, then Q*e = e by Corollary 2.3. So e = (27)% = (27)3e = .... Hence

Q= S (QN)"e= > e=e, forn>3. O
e€Bl e€Bly

3. THE p-POWER MAP

Suppose that O is a commutative associative ring with identity 1p. We can
define a form ( , ) on OG by setting

o 10, if Ty = lg,
(z,y) = { 0o, if Ty £ g, for all z,y € G,
and extending O-bilinearly to OG. It is readily established that ( , ) is an associa-
tive non-degenerate symmetric bilinear form on OG. i.e. for all a,b,c € OG we
have

(ab,c) = (a,be),
(3.1) (a,z) =0p, forallz € OG = a=00gq,
' (a,b)  =(b,a),
(Aa,b) = Aa,b), forall A €O,
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We note that
a= Z(a,g_l)g, for all a € OG,
9€eG

and in particular

ATBT = Y " (A*Btg) C*, forall A,B € Cl.

cecl
The O-elements (A*BY, ;') are called the class multiplication constants of Z(OG).
It is clear that the class multiplication constants for F'G are obtained by reducing
the corresponding constants for ZG modulo p.
Let
K =KFG:=F{ab—ba|a,bec FG}

be the commutator subspace of FG. It is straightforward to show that
(3.2) K=27":={k€FG|(z,k) =0p, for all z € Z}

is the dual space of Z with respect to the bilinear form ( , ). In fact, this holds for
any finite dimensional algebra which possesses a non-degenerate associative bilinear
form. The following well-known result is due to Brauer.

Lemma 3.3. If a,b € FG, then

(a+bP = a?+ b mod K;
aeK = da’ckK.
Proof. See [F82, 1.16.3(ii)]. O

For g € G and z € Z, we define g”_1 to be the unique p-regular element whose
p* power is g. In [K91, (49),(55)], Kiilshammer gives an expression for 2P when
z € Z. We need, and prove, only the following special case of this result.

Lemma 3.4. Suppose that z € Z and g € G,y. Then (27, 9) = (Q+z,g”_1)p.
Proof. We have

(z7.9) = (lg,2"9), by 31)
= (1g, (297 )P), as z and g commute
=(1g, 3 (mfl,zg”_l)pxp), by Lemma 3.3 and (3.2)
zeG
= (X (=", 297 )", as F has characteristic p
z€EQ
= (O, 29" )7, by (3.1)
= (@tz,077), by (3.1).

O

Suppose that C € Cl and that e € Bl. It is a result of K. Iizuka [I61], that
eCtT € FS(C), where S(C) is the p-section of G containing C. It follows that

B 0p, for all g € G\Gyp,
(3.5) (e,9) = { (et,g), forall g€ G,y

The next result seems to have been originally proved by M. Osima [055].

Corollary 3.6. Suppose that e is an idempotent in Z. Then (e,g) = (e,g”)”_l,
forall g € G
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Proof. Let g be a p-regular element of G. Then

(679) = (GQ+,g), L by (35)
= (eP,gP)P by Lemma 3.4
= (e,g?)? ", as e is an idempotent.

O
We can apply the previous two results most effectively when p is an odd prime.
Theorem 3.7. ey = ()%, if p #2.
Proof. Suppose that g € G,». Then

(e0,9) = (eo,g’])’J_l, . by Corollary 3.6
= ((Q7)?,gP)P ", using the fact that p > 2 and Proposition 2.4
= ((Q+)2,g), by Lemma 3.4.

Suppose that g € G\Gp. Then
(e0,9) =0F = ((27)%,9), by (3.5) and Lemma 2.1.

4. REAL CONJUGACY CLASSES AND 2-BLOCKS OF DEFECT ZERO

In this section we let p = 2. Recall that R is the set of real elements of 2-defect
zero in G.

Suppose that H < G. Set I(H) := Q(H)\{1g}. So I(H) is the set of involutions
in H. We note that |I(H)| is odd, by Sylow’s theorem, provided 2 | |H|. Let
C(9)*:={z €G|g°€{g,97}} be the extended centralizer of g in G.

Proposition 4.1. (Q1)2 = RT. Hence eg = QT RT = (R1)2.

Proof. If |G| is odd, the result is trivial, since Q@ = {1g} = R. So we will assume
that 2 | |G|.

If a,b € Q, then ab is real, since a~!(ab)a = ba = (ab)~!. Thus, by Lemma 2.1,
(2%)? is a linear combination of real elements of 2-defect zero.

Suppose that g is a real element of 2-defect zero. Using the notation of Lemma
2.1, the map (a,b) — a, for (a,b) € ®(g), yields a bijection between ®(g) and
I(C(g)*)- But |I(C(g)*)] is odd, since 2 | | C(g)*|- This completes the proof. O

Note 4.2. Using this proposition, it is straightforward to show that every 2-block
of defect zero has a real defect class. This generalizes [G88, 1.2].

Note 4.3. It is easy to generate examples where the number of 2-blocks of defect
zero exceeds the number of real classes of 2-defect zero. See Example 7.5. However,
the number of real 2-blocks of defect zero does not exceed the number of real classes
of 2-defect zero, by [G88, 3.1].

We can obtain the equality e = (R*)? directly using an idea in [KM97]. If
CeClsetC®:={g~" |geC}. Ifx € Irr(G), let ey := |G| x(1a) X e x(971)g
be the corresponding primitive idempotent of Z(CG). Kellersch and Meyberg study
the Casimir Element C, given by the equation

(4.4) > ( 1G] > ey = C = Y %cm”, in Z(CQ).

xE€Irr(G) X(lG) CecCl
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Let ¢ be a |G|t"-root of unity in C, and let O be the localization of the algebraic
integers of Q(¢) at some prime ideal containing 2. Then O is a local principal
ideal domain with a unique maximal ideal J(O). The residue field O/J(0O) is
a splitting field for all subgroups of G, of characteristic 2. If x € Irr(G), then
|G|X(IG)_16X € 0 and |G|x(1g)™" € J(O) unless x has 2-defect zero. If C € Cl,
then |G|/|C| € J(O) unless C € Cly. Reducing (4.4) modulo J(0O), and abusing
notation slightly, we obtain

Y ctet = C = e
CeCly
If C € Cly, then CtC°T + C°TCt = 0. So the contribution of C to C is zero
unless C is a real class. If C' is real, then its contribution is C+tC°t = (C*)2. We
conclude that
eo=C= Y (CT)?=(R">

CeCINR

5. KULSHAMMER’S IDEALS

In this section we prove results about certain ideals of Z studied by Kiilshammer
in [K91].

Let n be an integer > 1. For X C G, set Qn (G, X) :={g € G | g*" € X}. For
convenience we will use Q,» in place of Q,» (G, {1g}). Let pV be the exponent of
a Sylow p-subgroup of G. Note that Q,» = G}, whenever n > N.

Set T,FG = T, := {x € FG | 2" € K}. Then T, is a Z-submodule of FG
which contains K = Z+. Hence its dual, T}, is an ideal of Z. By [K91, (36),(38)]
we have

T+ = F{Q,.(G,C)" | C e C1}.
Moreover,
ZDOTEDTsD---DTx =Soc(FG)N Z,

by [K91, (36),(37)].
The proofs of Lemma 2.1, Corollary 2.3 and Proposition 2.4 can be adapted,
without difficulty, to show the following three results.

Lemma 5.1. (T.1)? C Z.
Corollary 5.2. Suppose that C € Cl and e € Bl. Then

MO @0 = Vi@ 0nG) i « e st v
In particular, Qpn (G,C)+ € J(Z2), if C is a p-singular conjugacy class. Hence
(5.3) Qf = QF mod J(TH).
Proposition 5.4. J(T;-)? = 0. In particular, eg = ()™, if m > 3.

For g € Gp, let gP~" denote the unique p-regular element of G' whose p"t" power

is g. We can adapt the proof of Lemma 3.4 to show:

n n

Lemma 5.5. Suppose that z€Z and g € G . Then (27" ,g) = (Qfz,g? " )P".

The next result gives a description of J(T;1).
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Proposition 5.6. Suppose that m > 1. Then
{z€T) | Umz=0}={2z €T, | 27" =0},

Hence
when p=2 and m > 2;

J(Tj):{ZET;_'QZmz:O} { when p# 2 and m > 1.

Proof. Let z € T;-. Lemma 5.1 implies that both Q. z and 2P lie in FG,,. Also
(Qpnz,9) = (27,97 )P, forall g€ Gy,

by Lemma 5.5. But g — g?" is a bijective map on G. Thus Q. z = 0 if and only
if 22" = 0.
The last statement follows from Proposition 5.4. O

This allows us to prove:

Theorem 5.7.
when p =2 and m > 2;

— 0t Ot
eo = Lpm O, {whenp7é2 and m > 1.

Proof. It follows from Proposition 2.4 and (5.3) that Q. = eo mod J(T7"). Suppose
that p = 2 and m > 2, or that p # 2 and m > 1. Then Qf. Qf. = Q. e, using
Proposition 5.6. But Proposition 5.4 implies that Q;fm eo = eg. This completes the
proof. O

The following corollary is Tsushima’s result (1.1).
Corollary 5.8. ¢y = (G})*.
Proof. This follows from Theorem 5.7, once we note that G = ,~+2. O
Corollary 5.9. Suppose that p= 2. Then eq = QTQf = (Qf)2.
Proof. This is just Theorem 5.7 with p =2, m =2 and n =1 or 2. O
Let *v/1g denote the set of elements of G of order p™.

Corollary 5.10. Suppose that n > 2. Then
Q+PW+} —0 {ifpzZandm23;
g ig R if p#2 and m > 2.
Proof. Suppose that p =2 and m > 3, or p # 2 and m > 2. Then
ot *Vig" = Q. - QF.)
=¢ey9 — ey, by Theorem 5.7
= 0frg-

Also,
Vg VG

(O = Q) — 0%
=eyp—ey— ey +eg, by Theorem 5.7

=0pg-

Finally, we note the following;:
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Proposition 5.11. Suppose that p = 2. Then e = RT if and only if ({‘/1<;+)2 =
Org.

Proof. We have (¢/Ig")? = (QF —0%)% = (Qf)2—(Q*)? = ey—R™, using Corollary
5.9 and Proposition 4.1. The result follows. O

6. THE NUMBER OF p-BLOCKS OF DEFECT ZERO

In this section we prove a result which is really a corollary to Proposition 2.4.

Let C1,...,C, be a full list of the conjugacy classes of G of p-defect zero. So
Cf,...,CF is an F-basis for Z. Let Z(, denote the localization of the ring of
integers Z at the prime ideal pZ. We will use T to denote the image of z € Z,
modulo the ideal pZ ().

Suppose that S is a fixed Sylow p-subgroup of G. For 1 <4, j <r, define

Qi; ={(u,v) €C; xCj|uv™ € Q}

Q7 = {(u,v) € C; x Cj |uv~t € Q(S)}.
Both |€; ;]/|C;| and |Q;9’J|/|CJ| lie in Z,), because S acts fixed point free on € ;
and 7. Let A be the r x r matrix whose i, j""-entry is

0ty = ai; = |93;|/1Cjl.
Lemma 6.1. Suppose that 1 <i,j <r.
(6.2) 19751/1C5] = 194,51/IC5l,  modpZy).
Hence a; j 1s the coefficient of gc; in C;"Q‘h

Proof. Let Syl denote the set of Sylow p-subgroups of G' and let Syl, denote the set
of Sylow p-subgroups which contain a fixed s € Gp. Then [Syl,| =1 mod p, by a
well-known generalization of Sylow’s Theorem. Hence

1:51/ICi1 = D 195;1/1C51,  modpZy.
SEeSyl
But [27,]/|C;| = [9F;]/|Cjl, for all S, T € Syl. Sylow’s Theorem now gives (6.2).
Also
(CfCpr,at)

0, 1/1C;] =
| J|/| J| |CJ|
_(arch, o)
(&
The last statement of the lemma follows from (6.2). O

The main result of this section is the following refinement of a result in [R83].
Proposition 6.3. The number of p-blocks of G of defect zero is the p-rank of A.

Proof. Suppose that z € Zy and that e € Bl. Then A.(2) = O, unless e has defect
zero. So Zy = Ey @ J(Zy) as F-algebras. Also eg acts as the identity on Ep, and
€9 J(Z()) = OFG by (1.2). Thus

(64) €0Z0 = eoEO = E[).
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Now QF = eg + j, for some j € J(Z), by Proposition 2.4. So QTC; = e,C;t +
JjC; =eoCit, for i =1,...,r, using (1.2). Hence
(65) €0Z0 = Q+Z0.

The proposition follows from (6.4), (6.5) and Lemma 6.1. O

7. EXISTENCE OF p-BLOCKS OF DEFECT ZERO AND EXAMPLES

For g € G set
() = {(u,v,w) € GXx G xG|u?=0v?=w?=lg,uvw =g}, ifp=2
’ {(u,v) € G x G |uP =P =1g,uv = g}, if p#2.
We collect the results of Sections 2, 3, 4 and 5 in the following theorem. This refines
Corollary 1 of [T71].
Theorem 7.1. G has a p-block of defect zero if and only if G has an element g
for which ®(g) Z 0 mod p. Any such g is of p-defect zero. Moreover,
(1) forn >1, m > 2 and p = 2 we have
®(g) = {(u,v) € G x G| u?=1g, v real of 2-defect zero, uv = g}|
= |{(u,v) € G x G| u,v real of 2-defect zero, uv = g}|
= {(u,v) € G x G| v*'=v>"=1g, uv = g}|;
(2) forn>1, m>1 and p # 2 we have
®(g9) = {(u,v) €EGx G| uP'=v""=1g, wv = g}|.
Proof. The group G has a p-block of defect zero if and only if ey # Org. But
e =Y (9)g,
9€G

by Proposition 2.4 and Theorem 3.7. This proves the first statement.
The equalities in (1) follow from Proposition 4.1 and Theorem 5.7.
The equality in (2) follows from Theorem 5.7. O

Cox:ollary 7.2. Let L be a simple group of Lie type and odd characteristic p, and
let L be the associated universal covering group. Then
:|:|L|;,1 mod p, if g € L has p-defect zero;
d(g) = +1 mod p, if p }/|IA/|/|L| and g € L has p-defect zero;
0 mod p, if g€ L or g € L, and g has positive p-defect.

In particular, every element of p-defect zero is a product of two elements of order
p.

Proof. By Theorem 8.6.1 and the discussion on pp. 197-199 of [Ca72], the p'-part
of |L| is congruent to =1 mod p. By Theorem 8.2 of [S63], the Steinberg Character
x is the only character of L that lies in a p-block of defect zero, and Theorem 8.4

of that paper shows that x(1) = |L|,, while x(g) = £1, for all g of p-defect zero.
Hence

A =1 _
x(WIL] 3 x(gzhHot
CeCly

LI > +Ct = Y +Ct.

CeClo CeClo
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We can use a similar argument for L. The result follows from Theorem 3.7. |

The last conclusion of this corollary is false when p = 2. For example, the
group A3z (2) = Ag has non-real elements of 2-defect zero. None of these elements
is expressible as a product of two involutions.

We use the notation of [Co85] for the following examples.

Example 7.3. The Mathieu group Mo has no real classes of 2-defect zero, and
two non-real classes, 11A,11B, of 2-defect zero. In particular, by Proposition 4.1
it cannot have any 2-blocks of defect zero.

Many of the other sporadic simple groups which lack a 2-block of defect zero do
have real classes of 2-defect zero, as the following example illustrates.

Example 7.4. The Mathieu group My has one real class, 5A, and four non-real
classes, TA,7B,11A,11B, of 2-defect zero. It has no 2-blocks of defect zero. In
particular, Theorem 3.7 is false when p = 2.

The last example shows that the number of 2-blocks of defect zero may exceed
the number of real classes of 2-defect zero.

Example 7.5. The group Us(3) has two real classes 3D,5A, and six non-real
classes TA,7TB,9A,9B,9C,9D, of 2-defect zero. It has one real irreducible charac-
ter, x20, of 2-defect zero, and two non-real irreducible characters, x17 and x1s, of
2-defect zero.
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