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1. NOTATION AND STATEMENT OF RESULTS

Throughout G' will be a finite group and F' will be a finite field of char-
acteristic p > 0, although we are mainly interested in the case p = 2. For
convenience we assume that F' is a splitting field for all subgroups of G. We
let Z,) denote the localization of the integers Z at the prime ideal pZ. If
T € Zy), then z* will denote its image modulo the unique maximal ideal of
Zp). We regard z* as lying in the prime field GF(p) of F.

The elements of G may be identified with the members of a distinguished
basis of the group algebra F'G. Thus each x € FG is of the form x =
deGﬁ(:c,g)g, where B(z,g) € F, for g € G. We define the element z° of
FGasz° =3 B(x,97')g. The map x — z° is an anti-isomorphism of
FG, and its restriction to the centre Z of F'G is an involutary isomorphism.

We use Xt to denote the sum of the elements in a G-conjugacy class X in F'G.
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The set of all such class sums forms an F-basis for Z. If x € Z and g € K, we
will use S(z, X*) in place of §(z, g).

By a p-block B of G we mean a direct F-algebra summands of FFG. Asso-
ciated with B there is a primitive idempotent e € Z, and an F-epimorphism
w : Z — F. We indicate these associations by B <> e <+ w, and call e the block
idempotent, and w the central character, of B. Set B° := {x € FG |z° € B}
and w°(z) := w(z°). Then B° <> €° <> w° is a p-block of G. We say that B is
a real block of G if B = B°.

R. Brauer showed how to associate with B a G-conjugation family of p-
groups, which he called the defect groups of B. Let D be a defect group of B.
Then D is not arbitrarily embedded in G. For instance Brauer proved that D is
the largest normal p-subgroup of its normalizer N (D). J. A. Green [5] showed
that there exists ¢ € GG and a Sylow p-subgroup S of GG, such that SNS9 = D,
and M. F. O’Reilly [9] showed that g could be chosen to be p-regular with
defect group D. Here a defect group of g means a Sylow p-subgroup of the
centralizer C(g) of g in G.

Let ep denote the sum of the block idempotents associated with the p-blocks
of G' which have defect group D, and let 8yl denote the collection of Sylow

p-subgroups of G. We prove the following partial converse to these results:

Theorem 2.9. Let p = 2 and let g € G be 2-reqular with defect group D.
Then B(ep,g9) = {P € 8yl|PNPI=D,PgP = Pg 'P}|1p.

Now G has a 2-block with defect group D if and only if 8(ep,g) # 0 for
some 2-regular element g with defect group D. So 2.9 furnishes a necessary

and sufficient condition for G' to have a 2-block with defect group D.



If g € G, set C*(g9) := {z € G|g* € {g9,97'}}. We call the Sylow 2-
subgroups of C*(g) the extended defect groups of g. Let K be the conjugacy
class of G. The extended defect groups of the elements of K form a single
G-orbit. which we call the ezrtended defect groups of K. If E is an extended
defect group of g, then D := Cg(g) is a group of g which is contained in
E, and |E : D| < 2. We call (D, E) a defect pair for g. The defect pairs
of the elements of X form a single G-orbit. We call g a real element if it is

G-conjugate to g !. Theorem 2.9 can be refined for real elements as follows:

Theorem 3.1. Let p =2 and let g € G be real and 2-regular with defect pair
(D,E). Then B(ep,g9) = {P€8yl|PNPI=D,E <P} 1p.

We use this theorem to give an alternative proof of Theorem 4.8 of [4] and
also to provide a self-contained treatment of some results of M. Herzog.

Let K be a conjugacy class of G. We call X a real class if it coincides with
its inverse class K° := {g € G| g~ € K}. We call a real class X properly real
if g2 # 1 for g € K.

Suppose that K and £ are conjugacy classes of G. We write

K<L,

if each defect group of X is contained in some defect group of L. Suppose in

addition that X is properly real and that £ is real. We write
(1.1) K<L,
if for each defect pair (D, E) of X, there exists [ € L such that D < C(/) and
E < C*(1),but E £ C() if I* # 1.

Let B <> e <> w be a 2-block of G. It is well-known that there exists a
2-regular class £ of G such that (e, L7) # 0 and w(L™) # 0. Any such L is



called a defect class for B. The min-max theorem [7, 15.31] states that

(1.2) for each class K of G.
Ble,XT) #0 = K<L,

Suppose that B is a real 2-block of G. R. Gow showed in [3] that B has a
defect class K which is real. Let (D, E) be a defect pair for X. Gow proved
that the extended defect groups of the real defect classes of B are G-conjugate
to E. For this reason he referred to the G-conjugates of E as the extended
defect groups of B. We call (D, E) a defect pair for B. Theorem 2.1 of [3] can

be extended in the following way:

Theorem 4.3 (Min-Max for Real 2-Blocks). Let B <> e <+ w be a real non-
principal 2-block of G and let L be a real defect class of B. Then
w40 = L <X,
for each real class X of G.
Ble,Xt)#0 = K <L,

Throughout the paper S will be a fixed Sylow 2-subgroup of G. Let D < E
be subgroups of S with |E : D| = 2. Let S\G/S denote a set of representatives
for the double cosets of S in G. If z,y € G lie in the same (5, S)-double coset,
then the groups S N S® and S N SY are S-conjugate. We say that S¢S is a
self-dual double coset if SgS = Sg='S. Lemma 5.1 furnishes a 2-subgroup
(SN S9)* of G which contains SN SY as a subgroup of index 2, whenever S¢S
is self-dual and distinct from S. Moreover, if z,y € S¢S, then (SN S¥)* and
(SN SY)* are conjugate in S.

If H and K are subgroups of G, we write H =g K if some G-conjugate of
H equals K, and we write H < K if some G-conjugate of H is contained in

K. We let 3.7 denote a sum which ranges over those elements x of S\G/S



for which SN S* =¢ D, and let Zfzm_l denote the restriction of this sum to
the self-dual double cosets.

Suppose that {K,...,X,} is a complete list of the real 2-regular classes
of G which have defect pair (D, E). We call a self-dual double coset S¢S a
(D, E)-double coset if there exists € Sg which simultaneously satisfies:

D) zeX U---UXKsy;

(2) (SN SY, (SN SY)*) is a defect pair for .

Let x1,...,Z, be a (possibly empty) set of representatives for the (D, E)-
double cosets of S. Suppose that w # 0. We define an v X w integer matrix N
by setting the ¢, j-th entry of N to be the number N;; of y; in X; N Sx; such
that (SN .S%, (SN S%)*) is a defect pair for y;. When p = 2, Theorem A of

[11] can be refined as follows:

Theorem 5.2. The number of real 2-blocks of G which have defect pair (D, E)
is zero, if w = 0, and is the 2-rank of the matriz N - NT, if w # 0.

2. SYLOW INTERSECTIONS AND 2-BLOCKS

Our starting point is Proposition 3.1 of [4]:

Lemma 2.1. Let B < e <+ w be a p-block of G which has defect group D
and let K be a p-reqular class of G which has defect group D. Then
dim(B)\"
bte. ) = (g ) e
G| K]

Let JZ denote the Jacobson radical of Z and let EZ denote the F-span of

the idempotents in Z. Then JZ is an ideal of Z, EZ is a direct sum of copies
of F' (as an F-algebra) and Z = JZ EZ as F-algebras. The Robinson
map is the natural F'-algebra projection € : Z — EZ with respect to this



decomposition. Let z € Z and let n be a positive integer such that ¢*" = 1,
for each p-element g of G, and \P" = ), for each A € F. Then e(z) = 2". We

also have
(2.2) €(z) = Zw(z)e,

where B <> e <> w ranges over the p-blocks of G. See [12] for further details.
For the rest of the paper we take p = 2 and Char(F') = 2. Recall that ep
denotes the sum of the block idempotents in Z which have defect group D.

We combine Lemma 2.1 and (2.2) as follows:

Corollary 2.3. Let X be a 2-regular class of G which has defect group D.
Then B(ep, K*) = B(e(XKT), XT).

Proof. 1t follows from (1.2) and (2.2) that
Ble(K), KY) = D w(XKH)Be, XT),
B

where B <> e <> w ranges over the 2-blocks of G which have defect group D.
Also (dim(B)/|G||X|)* = 1, for each such B. Thus

Be(X°T),KT) = Zﬁ(e, K*t)?,  using Lemma 2.1
= (Z B(e,X))?, as F has characteristic 2
= 5(6D7 JC+)2

= Blep,XKT), as B(ep, XT) € GF(2).

If K and L are 2-regular classes which have defect group D then

D
(2.4) Ble(XT), L) = ) 1K N Sz||LN Sz 1p,



using 1.3.3 and 1.3.4 of [12]. This allows us to prove:

Proposition 2.5. Let X be a 2-reqular class with defect group D. Then
D
Blep, Xt) = > |KNSz|lp.

r=z1

Proof. By Corollary 2.3 and (2.4) we have
D
(2.6) Blep, XT) = Y |X°N Sz||X N Sz| 1.

Let z € G. The map sz <> (sx)~%, for s € S, establishes a bijection between
the sets XN Sz and K° NSz~ So

(2.7) KNSz =|K°n Sz™1.
Suppose SzS # Sz~!S. Then the contribution of these cosets to (2.6) is
| K°NSz| | KNSz|1p+|K°NSz || KNSz Hl1p = 2-|K°NSz||KNSz|1p = Op.

It follows that

D
(2.8) Blep, XT) = Y |X°NSz||KNSz|1p.

r=x—1

Suppose that SzS = Sz~'S. Then
KN Sz|=|K°NSx !, as Sz~! and Sz are S-conjugate
= KNSz, by (2.7).

We conclude from (2.8) and the fact that the prime field of F' is GF(2) that

D D
Blep, XT) = Y |XNSzP1lp = Y |KNSz|lp.



Proof of Theorem 2.9. Recall that g is a 2-regular element of G' with defect
group D. Let X be the class of G which contains g. We shall compute
{(k, P) € X x 8yl | PkP = Pk~'P, PN P* =g D}| in two different ways. On
the one hand it equals |X||u(g)|, where

u(g) == {P € 8yl| PgP = Pg 'P,PN P? =g D}.

On the other hand it equals [Syl| 32", _ 1 |XNSzS|. The double coset SzS is
a union of |S : SNS*| right cosets of S, and each of these is S-conjugate to Sz.
It follows that KN SzS| =15 :SNS*|KNSz|. Also |[S:SNS* =|S: D,
whenever S N S* is G-conjugate to D. But |Syl| is odd, by Sylow’s Theorem.
Thus

S:D| &
uol e = S22 SN 5 sa 1,
|j<| =z~
D
= Z KN Sz|1p, as X has defect group D

= B(ep,g), by Proposition 2.5.

We claim that D acts by conjugation on u(g). For, suppose that P € u(g)
and d € D. Then dg = gd. So P¢N P¥ = (PN P9)% =; D, and PlgP?¢ =
(PgP)4 = (Pg'P)? = Plg~'P? Thus P?% € u(g), which proves our claim.

Each D-orbit in u(g) has 2-power order, and P is stabilized by D if and
only if D < P. But D < P implies that D < PN PY. Since PN P9 = D, it
follows that P is stabilized by D if and only if PN P9 = D. We conclude that

\u(g)| = [{P € 8yl| PN PI=D,PgP = Pg~' P} (mod2),

from which the theorem follows.



Theorem 2.9 has no obvious analogue for odd primes. For instance, if P
is a Sylow 3-subgroup of PSL3(2) and g is an element of order 4, the set
{P € 8yl| PN PY = {1}, PgP = Pg~'P} has cardinality 4. However, g has
3-defect zero and appears with zero multiplicity in the sum of the 3-block
idempotents of defect zero.

We indicate how our methods may be used to sharpen Corollary 2 of [11]:

Theorem 2.10. Let g be a 2-reqular element of G which has defect group D.
Suppose that PN P9 = D, for each Sylow 2-subgroup P of G which contains
D. Then g lies in a defect class of some real 2-block of G. In particular, G
has a real 2-block with defect group D.

Proof. Let rp denote the sum of the real 2-block idempotents of G which have
defect group D, and let X be the conjugacy class of G which contains g. We

can show that
Blrp, X) = Be(KT),XT),

by modifying the proof of Corollary 2.3. We can then adapt the proofs of
Proposition 2.5 and Theorem 2.9 to show that

(2.11) B(rp,g) = |[{P € Syl| PN P9 = D}|1p.

The number of Sylow 2-subgroups of G which contain D is odd, by a well
known generalization of Sylow’s Theorem. It then follows from our hypothesis,
and (2.11), that 8(rp,g) = 1p. So G has a real 2-block B <+ e <> w which has
defect group D, and B(e, X1) = (e, g) # 0p. Also w(XT) = w(K°") # 0O,
by Lemma 2.1. This completes the proof.

]



3. REAL 2-REGULAR CLASSES AND 2-BLOCKS

In this section we prove Theorem 3.1 and give a number of applications.

Proof of Theorem 3.1. Recall that g is a 2-regular element of G' with defect
pair (D, E). Note that if E < P, then PgP = Pg~'P.

We claim that E acts on the set ¢(g) := {P € Syl|PN P9 = D,PgP =
Pg~'P} by conjugation. For, suppose that P € ¢(g). Then D normalizes
P. If e € E\D then ¢¢ = g'. So P¢gP¢ = (Pg 'P)¢ = (PgP)¢ = P¢g 'P°.
Moreover eg = g~ 'e normalizes D. Thus PENP® = (PINP)9 ¢ = D9 ¢ = D.
This shows that P¢ € ¢(g), which proves our claim.

Each E-orbit on ¢(g) has cardinality 1 or 2. Since P is a Sylow 2-subgroup
of G, it is stablized by E if and only if £ < P. We conclude that

l6(g)| = {P € Syl|PNPY =D, E < P}| (mod2).

The result now follows from Theorem 2.9.

In our first application of Theorem 3.1, we give another proof of [4, 4.8].

Theorem 3.2. Let D be a 2-subgroup of G. Suppose that no subgroup of
N(D)/D is isomorphic to a dihedral group of order 8. Then B(ep,g) = 1,
for each real 2-reqular element g of G which has defect group D. In particular,

the following are equivalent:

(a). G has a real 2-reqular element with defect group D;
(b). G has a 2-block with defect group D;
(¢). G has a real 2-block with defect group D.

Proof. The implications (¢) = (b) = (a) follow as in [4, 4.8].



Suppose that D is a Sylow 2-subgroup of G. Then the principal 2-block
By <> ey <> wy is the only real block with defect group D, and the identity class
is the only real 2-regular class with defect group D. Also B(e,11) = B(e’, 11),
for each non-real 2-block idempotent. It follows that S(ep,17) = B(eg, 17) =
wo(17) = 1, using Lemma 2.1 (this also follows from a theorem of R. Brauer).

Suppose that D is not a Sylow 2-subgroup of G. Let g be a real 2-regular
element with defect pair (D, E). The first statement and the implication
(a) = (c) will follow from Theorem 3.1, if we can show that PN P9 = D,
whenever P is a Sylow 2-subgroup of G which contains F.

Assume for the sake of contradiction that there exists P € Syl with £ < P
and PNP9 > D. Let x € F\D, and set y := 27 'g = g7'2=!. Then y € N(D),
since x € E < N(D) and g € C(D). Also y € N(P N PY), since (PN PY9)Y =
PN P =PINP.

The 2-group (y) acts on the nontrivial 2-group Npnps(D)/D. So we can
choose n € Npnps(D)\D such that n?> € D and [n,y] € D. Our hypothesis on
N(D)/D forces [n, z] € D. Therefore [n, g] = [n, zy] = [n,z][n, y]* " lies in D.
It follows that g centralizes (D, n), since (g) is a 2’-group which acts trivially
on every factor of 1 < D < (D, n). This contradicts the fact that D is a defect
group of g. The theorem follows.

]

In our next application we give self contained proofs of a number of results
on extremal 2-blocks which are due to M. Herzog [6]. We call G a CI-group
if every intersection of distinct Sylow 2-subgroups of G is centralized by some
Sylow 2-subgroup of GG. It is straightforward to show that every subgroup and
factor group of a Cl-group is a Cl-group. Let S and T be Sylow 2-subgroups
of G. We say that SN T is a mazimal Sylow intersection in G if S # T and



whenever SNT < PN Q, where P # ( are Sylow 2-subgroups of G, then
SNT=PNQ.

Lemma 3.3. Let G be a Cl-group. Suppose that S # T are Sylow 2-subgroups
of G. Then SNT is centralized by every 2-group which contains it.

Proof. Let R be a 2-subgroup of G which contains S N7T. Since S # T, we
may assume that R # T. Then RNT > SNT. It is no loss to assume that
R = S and moreover that SN 7T is a maximal Sylow intersection in G.

Now Z(S) < C(SNT). So we can find a Sylow 2-subgroup X of G which
centralizes S N7 and contains Z(S). Then SNT < X, since X normalizes
SNT. It follows that SNT < SNX. If S =X we are done. So assume
that S # X. Then SNT = SN X, as SN T is a maximal Sylow intersection.
In particular Z(S) < SNT. But SNT < Z(X) and |Z(S)| = |Z(X)|. So
Z(S)=SNnT =17Z(X).

Here is our main result:

Theorem 3.4. Let G be a Cl-group. Then S(ep,g) = 1, for each real 2-
reqular element g € G which has defect group D. In particular, the statements

(a), (b) and (c) of Theorem 3.2 are equivalent.

Proof. The implications (¢) = (b) == (a) follow as in Theorem 4.8 of [4].
Let g be a real 2-regular element of G which has defect pair (D, E'). Choose
s € F\D and set t := sg. Then s and t are 2-elements which invert g and
s? =t? lies in D. Let S be a Sylow 2-subgroup of G which contains E. Then
t € N(SN.SY) since (SNS9)E = S58NS9 = S9N ST = S9NS. So (SN SY, ) is

a 2-group which contains SNSY. We deduce from Lemma 3.3 that ¢ centralizes



SNS9. Also s € S also centralizes SN SY, again using Lemma 3.3. So SN SY
is a 2-subgroup of C(g). It follows that SNSY = D, as D < SNSY% and D is a
Sylow 2-subgroup of C(g). The first statement and the implication (a) = (c)
now follow as in Theorem 3.2.

O
We can now prove:

Proposition 3.5. Let G be a Cl-group and let D be a maximal Sylow inter-
section in G. Then G has a real 2-block with defect group D.

Proof. Note that D is the largest normal 2-subgroup of N(D), and also that
it is not a Sylow 2-subgroup of N(D).

We claim that N(D) has a nonidentity real 2-regular element. For sup-
pose otherwise. Then N(D)/D has no nonidentity real 2-regular elements. It
follows from the Baer-Suzuki theorem that N(D)/D has a nontrivial normal
2-subgroup, which contradicts the first paragraph.

Theorem 3.4 now shows that N(D) has a real 2-block b with non-maximal
defect. But b has a defect group which contains D, by a theorem of R. Brauer.
It follows that D is a defect group of b. The proposition now follows from
Brauer’s first main theorem.

0
Theorems 1 and 2 of [6] are consequences of the following corollaries:

Corollary 3.6. Let G be a finite group. Then G has a normal Sylow 2-
subgroup if and only if G is a Cl-group with no real non-principal 2-blocks.

Proof. The ‘only if’ part is straightforward.



Suppose that G' is a Cl-group which has no real non-principal 2-blocks.
Proposition 3.5 implies that G has no maximal Sylow intersections. So G has

a normal Sylow 2-subgroup.

O

We call G a TI-group if every pair of distinct Sylow 2-subgroups of G inter-
sect in the identity.

Corollary 3.7. Let G be a finite group. Then G is a TI-group if and only if
G is a Cl-group and all real non-principal 2-blocks of G have defect 0.

Proof. The ‘only if’ part is straightforward.

Suppose that G is a Cl-group and all real non-principal 2-blocks of G have
defect 0. We may assume that G does not have a normal Sylow 2-subgroup.
Let D be a maximal Sylow intersection in G. Then G has a real 2-block
with defect group D, by Proposition 3.5. It follows from the hypothesis that
D = {1}. So G is a TI-group.

]

4. EXTENDED DEFECT GROUPS FOR REAL 2-BLOCKS

In this section we introduce the notion of defect pairs for real 2-blocks. We
defined the relation < in (1.1). Now < is almost a partial order, in the sense

that if I and L are properly real classes and if M is a real class, then
X<L and LM = KM
Also

(41) X<L and L <K == XK and L have the same defect pairs.



Set [K] := K U XK, for each class K of G, and let
z* =Y FIX]',

where K ranges over the classes of G. Then Z* is a subalgebra of Z, as it
coincides with the set of fixed points of the involutary automorphism x — x°
of Z. Fach real 2-block idempotent of F'G lies in Z*. By inspecting the proof

of Theorem 2.1 of [3], we see that the following is true:

Proposition 4.2. Suppose that L is a real class of G and that X is a properly
real class which lies in the ideal of Z* generated by Lt. Then X < L.

R. Gow showed in [3, 1.2] that if B <> e <> w is a real 2-block of G, then there
exists a real 2-regular class X of G such that B(e,X*) # 0 and w(X™) # 0.
He called any such class a real defect class for B. We will call the defect pairs

of the real defect classes of B the defect pairs of B.

Proof of Theorem 4.3. Suppose that w(X*) # 0. Then e = w(KT)te(KT)e.
Also €(KT) = (K*)?", for some integer n > 0, as in Section 2. So e lies in
the ideal of Z* which is generated by X*. But (e, L) # 0. So L < X, by
Proposition 4.2.
Suppose that G(e,Xt) # 0. Then, using the fact that w(L1) # 0, the
argument of the previous paragraph shows that K < L.
]

Let P,Q, R and S be subgroups of G. We say that the pairs (P, Q) and
(R, S) are conjugate in G if there exists g € G such that R = P9 and S = Q°.

Our corollary is an immediate consequence of (4.1) and Theorem 4.3:

Corollary 4.4. The defect pairs of a real 2-block are conjugate in G.



5. THE NUMBER OF REAL 2-BLOCKS WITH A GIVEN DEFECT PAIR

We begin this section with a result which associates a certain S-orbit of

2-groups to each self-dual (5, .S)-double coset.

Lemma 5.1. Suppose that x € G\S and that SzS = Sz~!S. Set (SNSI)* :=
(SNS9)U(SgngtS), for each g € SxS. Then (S N S9)* is a 2-subgroup
of G which contains SN SY as a subgroup of index 2. Moroever the (S N SY9)*
forms a single S-conjugation orbit, and Sg N g='S coincides with the set {y €

Sg|y? € SN S}

Proof. First we show that Sg N ¢~'S is nonempty. We may write ¢g~! = sgt,
for certain s,t € S. Then sg = g 't is an element of SgN g 1S.

We claim that Sg N g 1S is a right (S N S9)-coset. Let a = b9 € SN SY,
where a,b € S, and let cg = g7'd € SgnN ¢g~'S, where ¢,d € S. Then (cg)a
also lies in Sg N ¢g~'S since g7'(da) = (cg)a = (cb)g. Also (cg)(sg)™" lies in
SN SY since cs™! = (cg)(g71s7!) = (¢7'd)(t7tg) = (dt~1)9. This proves our
claim.

Now sg € N(S N S9), since (SN S9)% =S5%9NS"=59NS. It follows from
this and the previous paragraphs that (S N .S9)* is a subgroup of G, which
contains S N SY as a subgroup of index 2.

Write g = uzv, where u,v € S. Then it is clear that (SN .S9)* = (SN S*)*.
So the 2-groups (SN S9)* form a single S-orbit of subgroups of G.

Finally, suppose that y = zg, for z € S. If y> € SNSY, then y? = u9, for some
u € S. Thusy = (g7 ug)(g712) = g7luz liesin SgNg~1S. Conversely, suppose
that y € SgN g 'S. Then y = g v, for some v € S. Hence zv = y* = (vz)?
lies in S N SY9. This proves the last statement of the lemma.

O



The subgroups (S N S9)* have appeared in the literature on self-inverse
double cosets. See for example 12.13.(ii) of [2].

Let K and £ be 2-regular conjugacy classes of GG, which have defect groups
D and @ respectively. Let = be any element of G. The 2-group S N S* acts
by conjugation on X NSz and on L N Sz. So | KN Sz| = |C(K,z)| (mod2),
where C(X,z) := XN Sz N C(SNS*). Let O(L,x) denote the set of those
orbits of S N S* on L N Sz which have a representative [ such that S N S*
contains a Sylow 2-subgroup of C(I). Now [L N Sz| = >SN S%: Csns=(1)].
So (|Q] |[£NSz|/|SNS*|) is an integer which has the same parity as |O(L, z)|.

We will use Z§<D denote a sum which ranges over those double cosets Sx.S
for which QQ <g SN S* <; D, and Zf;D,l to denote the restriction of this
sum to the self-dual double cosets. These sums are empty unless Q) <g D. It

follows from [12, 1.3.3 and 1.3.4], and the fact that Char(F") = 2, that

Q<D

(5-2) Ble(XH),£7) = Y [C(X,2)| |O(L, )| 1r.

Let C*(X,z) denote the set of elements of C(X,z) which are inverted by
some element of (SN S®)*, and let O*(L, z) denote the set of orbits in O(L, )

whose elements are inverted by some element of (S N S®)*.

Proposition 5.3. Suppose that X and L are real 2-regular classes of G, with
defect groups D and @) respectively. Then

Q<D

Ble(I),L7) = Y [C(K,2)||0°(L, )| 1F.

r=z~1



Proof. By pairing each double coset in (5.2) with its dual, as in the proof of

Proposition 2.5, we see that

Q<D

Ble(X),L7) = Y |C(K,x)[|0(L,2)|1r.

z=x~1

Suppose that SzS = Sz~1S, where z € G. Let sz € Sz and tx = 2 'u €
Sz Nz'S, where s,t,u € S. Then (sz)™%® = (v™'z)(x 's7!)(tz) = v stz
also lies in Sx. Set
Yz, if z € SN S7
(y=1)?, if z € (SN S%)*\(S N ST).

for each y € Sz and z € (SN S%)*. It is straightforward to show that this
defines an action of the 2-group (S N S*)* on Sz.

Now (S N S%)* stabilizes C(X, z), and also each S N S*-orbit in O(L, ).
Since (S N S¥)* is a 2-group, this implies that

|IC(K,z)| = |C(K,x)| (mod2) and |O(L,z)| = |O*(L, )| (mod2).

The proposition follows from this.

Proof of Theorem 5.2. Recall the notation established in Section 1.
Let By <> e; <> wy, ..., By > e, > wy, be a complete list of the (real)

2-blocks of G which have defect pair (D, E). Suppose that 1 <4, j < u. Then

(5.5) b = wj(e;) = Zﬁ(ei,ﬂc+)wj(f]c+),

where K runs through the conjugacy classes of G. Suppose that K # K°.
Then the contribution of X and X° to (5.5) is

ﬁ(ej,ﬂﬁ)wi(iK*) + ﬁ(ej,iK"+)wi(JC"+) =2 ﬁ(ej,ﬂco+)wi(ﬂco+) = 0.



Also any real class which occurs with non-zero multiplicity in (5.5) is 2-regular
and is not the trivial class. So any such class is properly real. It follows from
Theorem 4.3 that
(5.6) 8 = Y Bles, Kw; (X))
k=1

Form the u X v-matrices A and B by setting the 4, j-th entry of A as A;; =
B(es, K) and the i, j-th entry of B as Bj; = w;(X]). Then AB” is the u x u
identity matrix, by (5.6). It follows that the v x v-matrix B” A has rank u.

Suppose that B <+ e <> w is a non-real 2-block of G and that 1 < 4,5 <
v. Then, since X; = X7 and X; = X%, the contribution of e and e° to
Be(K), XT) is

w(I)Be, K7) + w(K)B(e?, KT) = 2+ w(K)B(e, K7) = 0.

4 J

Thus

Ble(). %) = B (Do wXe X)) = 3 w(®)Ble, X]),

where B <> e <+ w runs through the real 2-blocks of G. So by Theorem 4.3 we

have
B(e(K Zwk Blex, X5).

The sum on the right hand side is the 4, j-th entry of the matrix BTA. We
conclude that the v x v matrix M with i, j-th entry My; = 8(e(X), X has
rank u.

It now follows from Proposition 5.3 that v = 0 if w = 0, and

w

Z UCZ,xk fKJ,.’L'k)



if w > 0. But C*(X;,zx) = Ny and C*(X;,zx) = Nj,. We conclude that
M = N - NT, which completes the proof.
U
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