SYLOW INTERSECTIONS, DOUBLE COSETS, AND 2-BLOCKS

J. Murray*

Mathematics Department,
University College Dublin,
Belfield Dublin 4,
Ireland.

1. NOTATION AND STATEMENT OF RESULTS

Throughout G will be a finite group and F will be a finite field of characteristic p > 0, although we are mainly interested in the case p = 2. For convenience we assume that F is a splitting field for all subgroups of G. We let $\mathbb{Z}_{(p)}$ denote the localization of the integers \mathbb{Z} at the prime ideal $p\mathbb{Z}$. If $x \in \mathbb{Z}_{(p)}$, then x^* will denote its image modulo the unique maximal ideal of $\mathbb{Z}_{(p)}$. We regard x^* as lying in the prime field GF(p) of F.

The elements of G may be identified with the members of a distinguished basis of the group algebra FG. Thus each $x \in FG$ is of the form $x = \sum_{g \in G} \beta(x, g)g$, where $\beta(x, g) \in F$, for $g \in G$. We define the element x^o of FG as $x^o := \sum_{g \in G} \beta(x, g^{-1})g$. The map $x \to x^o$ is an anti-isomorphism of FG, and its restriction to the centre Z of FG is an involutary isomorphism. We use \mathcal{K}^+ to denote the sum of the elements in a G-conjugacy class \mathcal{K} in FG.

 $^{1991\} Mathematics\ Subject\ Classification.\ 20C20.$

^{*}The author was supported by an Enterprise Ireland research grant while writing this paper.

The set of all such class sums forms an F-basis for Z. If $x \in Z$ and $g \in \mathcal{K}$, we will use $\beta(x, \mathcal{K}^+)$ in place of $\beta(x, g)$.

By a p-block B of G we mean a direct F-algebra summands of FG. Associated with B there is a primitive idempotent $e \in Z$, and an F-epimorphism $\omega: Z \to F$. We indicate these associations by $B \leftrightarrow e \leftrightarrow \omega$, and call e the block idempotent, and ω the central character, of B. Set $B^o := \{x \in FG \mid x^o \in B\}$ and $\omega^o(x) := \omega(x^o)$. Then $B^o \leftrightarrow e^o \leftrightarrow \omega^o$ is a p-block of G. We say that B is a real block of G if $B = B^o$.

R. Brauer showed how to associate with B a G-conjugation family of p-groups, which he called the $defect\ groups$ of B. Let D be a defect group of B. Then D is not arbitrarily embedded in G. For instance Brauer proved that D is the largest normal p-subgroup of its normalizer $\mathbf{N}(D)$. J. A. Green [5] showed that there exists $g \in G$ and a Sylow p-subgroup S of G, such that $S \cap S^g = D$, and M. F. O'Reilly [9] showed that g could be chosen to be g-regular with defect group G. Here a defect group of G means a Sylow G-subgroup of the centralizer G of G in G.

Let e_D denote the sum of the block idempotents associated with the p-blocks of G which have defect group D, and let Syl denote the collection of Sylow p-subgroups of G. We prove the following partial converse to these results:

Theorem 2.9. Let p=2 and let $g \in G$ be 2-regular with defect group D. Then $\beta(e_D,g)=|\{P \in \operatorname{Syl} | P \cap P^g=D, PgP=Pg^{-1}P\}| 1_F$.

Now G has a 2-block with defect group D if and only if $\beta(e_D, g) \neq 0$ for some 2-regular element g with defect group D. So 2.9 furnishes a necessary and sufficient condition for G to have a 2-block with defect group D.

If $g \in G$, set $\mathbf{C}^*(g) := \{x \in G \mid g^x \in \{g, g^{-1}\}\}$. We call the Sylow 2-subgroups of $\mathbf{C}^*(g)$ the extended defect groups of g. Let \mathcal{K} be the conjugacy class of G. The extended defect groups of the elements of \mathcal{K} form a single G-orbit, which we call the extended defect groups of \mathcal{K} . If E is an extended defect group of g, then $D := \mathbf{C}_E(g)$ is a group of g which is contained in E, and $|E:D| \leq 2$. We call (D,E) a defect pair for g. The defect pairs of the elements of \mathcal{K} form a single G-orbit. We call g a real element if it is G-conjugate to g^{-1} . Theorem 2.9 can be refined for real elements as follows:

Theorem 3.1. Let p=2 and let $g \in G$ be real and 2-regular with defect pair (D, E). Then $\beta(e_D, g) = |\{P \in Syl \mid P \cap P^g = D, E \leq P\}| 1_F$.

We use this theorem to give an alternative proof of Theorem 4.8 of [4] and also to provide a self-contained treatment of some results of M. Herzog.

Let \mathcal{K} be a conjugacy class of G. We call \mathcal{K} a real class if it coincides with its inverse class $\mathcal{K}^o := \{g \in G \mid g^{-1} \in \mathcal{K}\}$. We call a real class \mathcal{K} properly real if $g^2 \neq 1$ for $g \in \mathcal{K}$.

Suppose that \mathcal{K} and \mathcal{L} are conjugacy classes of G. We write

$$\mathcal{K} < \mathcal{L}$$
,

if each defect group of \mathcal{K} is contained in some defect group of \mathcal{L} . Suppose in addition that \mathcal{K} is properly real and that \mathcal{L} is real. We write

$$(1.1) \mathcal{K} \prec \mathcal{L},$$

if for each defect pair (D, E) of \mathcal{K} , there exists $l \in \mathcal{L}$ such that $D \leq \mathbf{C}(l)$ and $E \leq \mathbf{C}^*(l)$, but $E \not\leq \mathbf{C}(l)$ if $l^2 \neq 1$.

Let $B \leftrightarrow e \leftrightarrow \omega$ be a 2-block of G. It is well-known that there exists a 2-regular class \mathcal{L} of G such that $\beta(e, \mathcal{L}^+) \neq 0$ and $\omega(\mathcal{L}^+) \neq 0$. Any such \mathcal{L} is

called a defect class for B. The min-max theorem [7, 15.31] states that

(1.2)
$$\omega(\mathcal{K}^+) \neq 0 \implies \mathcal{L} \leq \mathcal{K},$$
 for each class \mathcal{K} of G .
$$\beta(e, \mathcal{K}^+) \neq 0 \implies \mathcal{K} \leq \mathcal{L},$$

Suppose that B is a real 2-block of G. R. Gow showed in [3] that B has a defect class \mathcal{K} which is real. Let (D, E) be a defect pair for \mathcal{K} . Gow proved that the extended defect groups of the real defect classes of B are G-conjugate to E. For this reason he referred to the G-conjugates of E as the extended defect groups of E. We call (D, E) a defect pair for E. Theorem 2.1 of [3] can be extended in the following way:

Theorem 4.3 (Min-Max for Real 2-Blocks). Let $B \leftrightarrow e \leftrightarrow \omega$ be a real non-principal 2-block of G and let \mathcal{L} be a real defect class of B. Then

$$\begin{split} \omega(\mathcal{K}^+) \neq 0 &\implies \mathcal{L} \preceq \mathcal{K}, \\ \beta(e,\mathcal{K}^+) \neq 0 &\implies \mathcal{K} \preceq \mathcal{L}, \end{split} \qquad \textit{for each real class } \mathcal{K} \textit{ of } G. \end{split}$$

Throughout the paper S will be a fixed Sylow 2-subgroup of G. Let $D \leq E$ be subgroups of S with |E:D|=2. Let $S\backslash G/S$ denote a set of representatives for the double cosets of S in G. If $x,y\in G$ lie in the same (S,S)-double coset, then the groups $S\cap S^x$ and $S\cap S^y$ are S-conjugate. We say that SgS is a self-dual double coset if $SgS=Sg^{-1}S$. Lemma 5.1 furnishes a 2-subgroup $(S\cap S^g)^*$ of G which contains $S\cap S^g$ as a subgroup of index 2, whenever SgS is self-dual and distinct from S. Moreover, if $x,y\in SgS$, then $(S\cap S^x)^*$ and $(S\cap S^y)^*$ are conjugate in S.

If H and K are subgroups of G, we write $H =_G K$ if some G-conjugate of H equals K, and we write $H \leq_G K$ if some G-conjugate of H is contained in K. We let \sum_x^D denote a sum which ranges over those elements x of $S \setminus G/S$

for which $S \cap S^x =_G D$, and let $\sum_{x \equiv x^{-1}}^{D}$ denote the restriction of this sum to the self-dual double cosets.

Suppose that $\{\mathcal{K}_1, \ldots, \mathcal{K}_v\}$ is a complete list of the real 2-regular classes of G which have defect pair (D, E). We call a self-dual double coset SgS a (D, E)-double coset if there exists $x \in Sg$ which simultaneously satisfies:

- (1) $x \in \mathcal{K}_1 \bigcup \cdots \bigcup \mathcal{K}_v$;
- (2) $(S \cap S^g, (S \cap S^g)^*)$ is a defect pair for x.

Let x_1, \ldots, x_w be a (possibly empty) set of representatives for the (D, E)double cosets of S. Suppose that $w \neq 0$. We define an $v \times w$ integer matrix Nby setting the i, j-th entry of N to be the number N_{ij} of y_i in $\mathcal{K}_i \cap Sx_j$ such
that $(S \cap S^{x_j}, (S \cap S^{x_j})^*)$ is a defect pair for y_i . When p = 2, Theorem A of
[11] can be refined as follows:

Theorem 5.2. The number of real 2-blocks of G which have defect pair (D, E) is zero, if w = 0, and is the 2-rank of the matrix $N \cdot N^T$, if $w \neq 0$.

2. Sylow intersections and 2-blocks

Our starting point is Proposition 3.1 of [4]:

Lemma 2.1. Let $B \leftrightarrow e \leftrightarrow \omega$ be a p-block of G which has defect group D and let K be a p-regular class of G which has defect group D. Then

$$\beta(e, \mathcal{K}^+) = \left(\frac{\dim(B)}{|G||\mathcal{K}|}\right)^* \omega(\mathcal{K}^{o+}).$$

Let JZ denote the Jacobson radical of Z and let EZ denote the F-span of the idempotents in Z. Then JZ is an ideal of Z, EZ is a direct sum of copies of F (as an F-algebra) and $Z = JZ \bigoplus EZ$ as F-algebras. The Robinson map is the natural F-algebra projection $\epsilon: Z \to EZ$ with respect to this

decomposition. Let $z \in Z$ and let n be a positive integer such that $g^{p^n} = 1_G$, for each p-element g of G, and $\lambda^{p^n} = \lambda$, for each $\lambda \in F$. Then $\epsilon(z) = z^{p^n}$. We also have

(2.2)
$$\epsilon(z) = \sum_{R} \omega(z)e,$$

where $B \leftrightarrow e \leftrightarrow \omega$ ranges over the p-blocks of G. See [12] for further details.

For the rest of the paper we take p = 2 and Char(F) = 2. Recall that e_D denotes the sum of the block idempotents in Z which have defect group D. We combine Lemma 2.1 and (2.2) as follows:

Corollary 2.3. Let \mathcal{K} be a 2-regular class of G which has defect group D. Then $\beta(e_D, \mathcal{K}^+) = \beta(\epsilon(\mathcal{K}^{o+}), \mathcal{K}^+)$.

Proof. It follows from (1.2) and (2.2) that

$$\beta(\epsilon(\mathfrak{K}^{o+}), \mathfrak{K}^+) = \sum_{P} \omega(\mathfrak{K}^{o+}) \beta(e, \mathfrak{K}^+),$$

where $B \leftrightarrow e \leftrightarrow \omega$ ranges over the 2-blocks of G which have defect group D. Also $(\dim(B)/|G||\mathcal{K}|)^* = 1_F$, for each such B. Thus

$$\begin{split} \beta(\epsilon(\mathcal{K}^{o+}),\mathcal{K}^+) &= \sum \beta(e,\mathcal{K}^+)^2, & \text{using Lemma 2.1} \\ &= (\sum \beta(e,\mathcal{K}^+))^2, & \text{as } F \text{ has characteristic 2} \\ &= \beta(e_D,\mathcal{K}^+)^2 \\ &= \beta(e_D,\mathcal{K}^+), & \text{as } \beta(e_D,\mathcal{K}^+) \in \mathrm{GF}(2). \end{split}$$

If \mathcal{K} and \mathcal{L} are 2-regular classes which have defect group D then

(2.4)
$$\beta(\epsilon(\mathcal{K}^+), \mathcal{L}^+) = \sum_{x}^{D} |\mathcal{K} \cap Sx| |\mathcal{L} \cap Sx| 1_F,$$

using 1.3.3 and 1.3.4 of [12]. This allows us to prove:

Proposition 2.5. Let \mathcal{K} be a 2-regular class with defect group D. Then $\beta(e_D, \mathcal{K}^+) = \sum_{x=x^{-1}}^{D} |\mathcal{K} \cap Sx| 1_F$.

Proof. By Corollary 2.3 and (2.4) we have

(2.6)
$$\beta(e_D, \mathcal{K}^+) = \sum_{x}^{D} |\mathcal{K}^o \cap Sx| |\mathcal{K} \cap Sx| 1_F.$$

Let $x \in G$. The map $sx \leftrightarrow (sx)^{-s}$, for $s \in S$, establishes a bijection between the sets $\mathcal{K} \cap Sx$ and $\mathcal{K}^o \cap Sx^{-1}$. So

$$(2.7) |\mathcal{K} \cap Sx| = |\mathcal{K}^o \cap Sx^{-1}|.$$

Suppose $SxS \neq Sx^{-1}S$. Then the contribution of these cosets to (2.6) is

$$|\mathcal{K}^o \cap Sx| \; |\mathcal{K} \cap Sx| \mathbf{1}_F + |\mathcal{K}^o \cap Sx^{-1}| \; |\mathcal{K} \cap Sx^{-1}| \mathbf{1}_F \; = \; 2 \cdot |\mathcal{K}^o \cap Sx| \; |\mathcal{K} \cap Sx| \mathbf{1}_F \; = \; 0_F.$$

It follows that

(2.8)
$$\beta(e_D, \mathcal{K}^+) = \sum_{x \equiv x^{-1}}^D |\mathcal{K}^o \cap Sx| |\mathcal{K} \cap Sx| 1_F.$$

Suppose that $SxS = Sx^{-1}S$. Then

$$|\mathcal{K}^o \cap Sx| = |\mathcal{K}^o \cap Sx^{-1}|$$
, as Sx^{-1} and Sx are S-conjugate $= |\mathcal{K} \cap Sx|$, by (2.7).

We conclude from (2.8) and the fact that the prime field of F is GF(2) that

$$\beta(e_D, \mathcal{K}^+) = \sum_{x \equiv x^{-1}}^D |\mathcal{K} \cap Sx|^2 1_F = \sum_{x \equiv x^{-1}}^D |\mathcal{K} \cap Sx| 1_F.$$

Proof of Theorem 2.9. Recall that g is a 2-regular element of G with defect group D. Let \mathcal{K} be the class of G which contains g. We shall compute $|\{(k,P)\in\mathcal{K}\times \mathbb{S}yl\ |\ PkP=Pk^{-1}P,P\cap P^k=_GD\}|$ in two different ways. On the one hand it equals $|\mathcal{K}|\ |\mu(g)|$, where

$$\mu(g) := \{ P \in \$yl \mid PgP = Pg^{-1}P, P \cap P^g =_G D \}.$$

On the other hand it equals $|\Im yl| \sum_{x\equiv x^{-1}}^{D} |\mathcal{K} \cap SxS|$. The double coset SxS is a union of $|S:S\cap S^x|$ right cosets of S, and each of these is S-conjugate to Sx. It follows that $|\mathcal{K} \cap SxS| = |S:S\cap S^x||\mathcal{K} \cap Sx|$. Also $|S:S\cap S^x| = |S:D|$, whenever $S\cap S^x$ is G-conjugate to D. But $|\Im yl|$ is odd, by Sylow's Theorem. Thus

$$|\mu(g)| 1_F = \frac{|S:D|}{|\mathcal{K}|} \sum_{x\equiv x^{-1}}^{D} |\mathcal{K} \cap Sx| 1_F$$

$$= \sum_{x\equiv x^{-1}}^{D} |\mathcal{K} \cap Sx| 1_F, \quad \text{as } \mathcal{K} \text{ has defect group } D$$

$$= \beta(e_D, g), \quad \text{by Proposition 2.5.}$$

We claim that D acts by conjugation on $\mu(g)$. For, suppose that $P \in \mu(g)$ and $d \in D$. Then dg = gd. So $P^d \cap P^{dg} = (P \cap P^g)^d =_G D$, and $P^d g P^d = (PgP)^d = (Pg^{-1}P)^d = P^d g^{-1} P^d$. Thus $P^d \in \mu(g)$, which proves our claim.

Each D-orbit in $\mu(g)$ has 2-power order, and P is stabilized by D if and only if $D \leq P$. But $D \leq P$ implies that $D \leq P \cap P^g$. Since $P \cap P^g =_G D$, it follows that P is stabilized by D if and only if $P \cap P^g = D$. We conclude that

$$|\mu(g)| \equiv |\{P \in \$yl \,|\, P \cap P^g = D, PgP = Pg^{-1}P\}| \, (\bmod 2),$$

from which the theorem follows.

Theorem 2.9 has no obvious analogue for odd primes. For instance, if P is a Sylow 3-subgroup of $PSL_3(2)$ and g is an element of order 4, the set $\{P \in Syl \mid P \cap P^g = \{1\}, PgP = Pg^{-1}P\}$ has cardinality 4. However, g has 3-defect zero and appears with zero multiplicity in the sum of the 3-block idempotents of defect zero.

We indicate how our methods may be used to sharpen Corollary 2 of [11]:

Theorem 2.10. Let g be a 2-regular element of G which has defect group D. Suppose that $P \cap P^g = D$, for each Sylow 2-subgroup P of G which contains D. Then g lies in a defect class of some real 2-block of G. In particular, G has a real 2-block with defect group D.

Proof. Let r_D denote the sum of the real 2-block idempotents of G which have defect group D, and let \mathcal{K} be the conjugacy class of G which contains g. We can show that

$$\beta(r_D, \mathcal{K}^+) = \beta(\epsilon(\mathcal{K}^+), \mathcal{K}^+),$$

by modifying the proof of Corollary 2.3. We can then adapt the proofs of Proposition 2.5 and Theorem 2.9 to show that

(2.11)
$$\beta(r_D, g) = |\{P \in Syl \mid P \cap P^g = D\}| 1_F.$$

The number of Sylow 2-subgroups of G which contain D is odd, by a well known generalization of Sylow's Theorem. It then follows from our hypothesis, and (2.11), that $\beta(r_D, g) = 1_F$. So G has a real 2-block $B \leftrightarrow e \leftrightarrow \omega$ which has defect group D, and $\beta(e, \mathcal{K}^+) = \beta(e, g) \neq 0_F$. Also $\omega(\mathcal{K}^+) = \omega(\mathcal{K}^{o+}) \neq 0_F$, by Lemma 2.1. This completes the proof.

3. Real 2-regular classes and 2-blocks

In this section we prove Theorem 3.1 and give a number of applications.

Proof of Theorem 3.1. Recall that g is a 2-regular element of G with defect pair (D, E). Note that if $E \leq P$, then $PgP = Pg^{-1}P$.

We claim that E acts on the set $\phi(g):=\{P\in \mathbb{S}yl\,|\, P\cap P^g=D, PgP=Pg^{-1}P\}$ by conjugation. For, suppose that $P\in \phi(g)$. Then D normalizes P. If $e\in E\backslash D$ then $g^e=g^{-1}$. So $P^egP^e=(Pg^{-1}P)^e=(PgP)^e=P^eg^{-1}P^e$. Moreover $eg=g^{-1}e$ normalizes D. Thus $P^e\cap P^{eg}=(P^g\cap P)^{g^{-1}e}=D^{g^{-1}e}=D$. This shows that $P^e\in \phi(g)$, which proves our claim.

Each E-orbit on $\phi(g)$ has cardinality 1 or 2. Since P is a Sylow 2-subgroup of G, it is stablized by E if and only if $E \leq P$. We conclude that

$$|\phi(g)| \equiv |\{P \in Syl \mid P \cap P^g = D, E \leq P\}| \pmod{2}.$$

The result now follows from Theorem 2.9.

In our first application of Theorem 3.1, we give another proof of [4, 4.8].

Theorem 3.2. Let D be a 2-subgroup of G. Suppose that no subgroup of $\mathbf{N}(D)/D$ is isomorphic to a dihedral group of order 8. Then $\beta(e_D, g) = 1_F$, for each real 2-regular element g of G which has defect group D. In particular, the following are equivalent:

- (a). G has a real 2-regular element with defect group D;
- (b). G has a 2-block with defect group D;
- (c). G has a real 2-block with defect group D.

Proof. The implications (c) \Longrightarrow (b) \Longrightarrow (a) follow as in [4, 4.8].

Suppose that D is a Sylow 2-subgroup of G. Then the principal 2-block $B_0 \leftrightarrow e_0 \leftrightarrow \omega_0$ is the only real block with defect group D, and the identity class is the only real 2-regular class with defect group D. Also $\beta(e, 1^+) = \beta(e^o, 1^+)$, for each non-real 2-block idempotent. It follows that $\beta(e_D, 1^+) = \beta(e_0, 1^+) = \omega_0(1^+) = 1_F$, using Lemma 2.1 (this also follows from a theorem of R. Brauer).

Suppose that D is not a Sylow 2-subgroup of G. Let g be a real 2-regular element with defect pair (D, E). The first statement and the implication (a) \Longrightarrow (c) will follow from Theorem 3.1, if we can show that $P \cap P^g = D$, whenever P is a Sylow 2-subgroup of G which contains E.

Assume for the sake of contradiction that there exists $P \in \mathbb{S}yl$ with $E \leq P$ and $P \cap P^g > D$. Let $x \in E \setminus D$, and set $y := x^{-1}g = g^{-1}x^{-1}$. Then $y \in \mathbf{N}(D)$, since $x \in E \leq \mathbf{N}(D)$ and $g \in \mathbf{C}(D)$. Also $y \in \mathbf{N}(P \cap P^g)$, since $(P \cap P^g)^y = P^{x^{-1}g} \cap P^{x^{-1}} = P^g \cap P$.

The 2-group $\langle y \rangle$ acts on the nontrivial 2-group $\mathbf{N}_{P \cap P^g}(D)/D$. So we can choose $n \in \mathbf{N}_{P \cap P^g}(D)\backslash D$ such that $n^2 \in D$ and $[n,y] \in D$. Our hypothesis on $\mathbf{N}(D)/D$ forces $[n,x] \in D$. Therefore $[n,g] = [n,xy] = [n,x][n,y]^{x^{-1}}$ lies in D. It follows that g centralizes $\langle D,n \rangle$, since $\langle g \rangle$ is a 2'-group which acts trivially on every factor of $1 \leq D < \langle D,n \rangle$. This contradicts the fact that D is a defect group of g. The theorem follows.

In our next application we give self contained proofs of a number of results on extremal 2-blocks which are due to M. Herzog [6]. We call G a CI-group if every intersection of distinct Sylow 2-subgroups of G is centralized by some Sylow 2-subgroup of G. It is straightforward to show that every subgroup and factor group of a CI-group is a CI-group. Let S and T be Sylow 2-subgroups of G. We say that $S \cap T$ is a maximal Sylow intersection in G if $S \neq T$ and

whenever $S \cap T \leq P \cap Q$, where $P \neq Q$ are Sylow 2-subgroups of G, then $S \cap T = P \cap Q$.

Lemma 3.3. Let G be a CI-group. Suppose that $S \neq T$ are Sylow 2-subgroups of G. Then $S \cap T$ is centralized by every 2-group which contains it.

Proof. Let R be a 2-subgroup of G which contains $S \cap T$. Since $S \neq T$, we may assume that $R \neq T$. Then $R \cap T \geq S \cap T$. It is no loss to assume that R = S and moreover that $S \cap T$ is a maximal Sylow intersection in G.

Now $\mathbf{Z}(S) \leq \mathbf{C}(S \cap T)$. So we can find a Sylow 2-subgroup X of G which centralizes $S \cap T$ and contains $\mathbf{Z}(S)$. Then $S \cap T \leq X$, since X normalizes $S \cap T$. It follows that $S \cap T \leq S \cap X$. If S = X we are done. So assume that $S \neq X$. Then $S \cap T = S \cap X$, as $S \cap T$ is a maximal Sylow intersection. In particular $\mathbf{Z}(S) \leq S \cap T$. But $S \cap T \leq \mathbf{Z}(X)$ and $|\mathbf{Z}(S)| = |\mathbf{Z}(X)|$. So $\mathbf{Z}(S) = S \cap T = \mathbf{Z}(X)$.

Here is our main result:

Theorem 3.4. Let G be a CI-group. Then $\beta(e_D, g) = 1_F$, for each real 2-regular element $g \in G$ which has defect group D. In particular, the statements (a), (b) and (c) of Theorem 3.2 are equivalent.

Proof. The implications (c) \Longrightarrow (b) \Longrightarrow (a) follow as in Theorem 4.8 of [4]. Let g be a real 2-regular element of G which has defect pair (D, E). Choose $s \in E \setminus D$ and set t := sg. Then s and t are 2-elements which invert g and $s^2 = t^2$ lies in D. Let S be a Sylow 2-subgroup of G which contains E. Then $t \in N(S \cap S^g)$ since $(S \cap S^g)^t = S^{st} \cap S^{sgt} = S^g \cap S^{t^2} = S^g \cap S$. So $(S \cap S^g, t)$ is a 2-group which contains $S \cap S^g$. We deduce from Lemma 3.3 that t centralizes $S \cap S^g$. Also $s \in S$ also centralizes $S \cap S^g$, again using Lemma 3.3. So $S \cap S^g$ is a 2-subgroup of $\mathbf{C}(g)$. It follows that $S \cap S^g = D$, as $D \leq S \cap S^g$ and D is a Sylow 2-subgroup of $\mathbf{C}(g)$. The first statement and the implication (a) \Longrightarrow (c) now follow as in Theorem 3.2.

We can now prove:

Proposition 3.5. Let G be a CI-group and let D be a maximal Sylow intersection in G. Then G has a real 2-block with defect group D.

Proof. Note that D is the largest normal 2-subgroup of $\mathbf{N}(D)$, and also that it is not a Sylow 2-subgroup of $\mathbf{N}(D)$.

We claim that $\mathbf{N}(D)$ has a nonidentity real 2-regular element. For suppose otherwise. Then $\mathbf{N}(D)/D$ has no nonidentity real 2-regular elements. It follows from the Baer-Suzuki theorem that $\mathbf{N}(D)/D$ has a nontrivial normal 2-subgroup, which contradicts the first paragraph.

Theorem 3.4 now shows that $\mathbf{N}(D)$ has a real 2-block b with non-maximal defect. But b has a defect group which contains D, by a theorem of R. Brauer. It follows that D is a defect group of b. The proposition now follows from Brauer's first main theorem.

Theorems 1 and 2 of [6] are consequences of the following corollaries:

Corollary 3.6. Let G be a finite group. Then G has a normal Sylow 2-subgroup if and only if G is a CI-group with no real non-principal 2-blocks.

Proof. The 'only if' part is straightforward.

Suppose that G is a CI-group which has no real non-principal 2-blocks. Proposition 3.5 implies that G has no maximal Sylow intersections. So G has a normal Sylow 2-subgroup.

We call G a TI-group if every pair of distinct Sylow 2-subgroups of G intersect in the identity.

Corollary 3.7. Let G be a finite group. Then G is a TI-group if and only if G is a CI-group and all real non-principal 2-blocks of G have defect 0.

Proof. The 'only if' part is straightforward.

Suppose that G is a CI-group and all real non-principal 2-blocks of G have defect 0. We may assume that G does not have a normal Sylow 2-subgroup. Let D be a maximal Sylow intersection in G. Then G has a real 2-block with defect group D, by Proposition 3.5. It follows from the hypothesis that $D = \{1\}$. So G is a TI-group.

4. Extended defect groups for real 2-Blocks

In this section we introduce the notion of defect pairs for real 2-blocks. We defined the relation \leq in (1.1). Now \leq is almost a partial order, in the sense that if \mathcal{K} and \mathcal{L} are properly real classes and if \mathcal{M} is a real class, then

$$\mathcal{K} \leq \mathcal{L}$$
 and $\mathcal{L} \leq \mathcal{M} \implies \mathcal{K} \leq \mathcal{M}$.

Also

(4.1) $\mathcal{K} \leq \mathcal{L}$ and $\mathcal{L} \leq \mathcal{K} \implies \mathcal{K}$ and \mathcal{L} have the same defect pairs.

Set $[\mathcal{K}] := \mathcal{K} \cup \mathcal{K}^o$, for each class \mathcal{K} of G, and let

$$Z^* := \sum F[\mathfrak{K}]^+,$$

where \mathcal{K} ranges over the classes of G. Then Z^* is a subalgebra of Z, as it coincides with the set of fixed points of the involutary automorphism $x \to x^o$ of Z. Each real 2-block idempotent of FG lies in Z^* . By inspecting the proof of Theorem 2.1 of [3], we see that the following is true:

Proposition 4.2. Suppose that \mathcal{L} is a real class of G and that \mathcal{K}^+ is a properly real class which lies in the ideal of Z^* generated by \mathcal{L}^+ . Then $\mathcal{K} \preceq \mathcal{L}$.

R. Gow showed in [3, 1.2] that if $B \leftrightarrow e \leftrightarrow \omega$ is a real 2-block of G, then there exists a real 2-regular class \mathcal{K} of G such that $\beta(e, \mathcal{K}^+) \neq 0$ and $\omega(\mathcal{K}^+) \neq 0$. He called any such class a real defect class for B. We will call the defect pairs of the real defect classes of B the defect pairs of B.

Proof of Theorem 4.3. Suppose that $\omega(\mathcal{K}^+) \neq 0$. Then $e = \omega(\mathcal{K}^+)^{-1}\epsilon(\mathcal{K}^+)e$. Also $\epsilon(\mathcal{K}^+) = (\mathcal{K}^+)^{2^n}$, for some integer n > 0, as in Section 2. So e lies in the ideal of Z^* which is generated by \mathcal{K}^+ . But $\beta(e, \mathcal{L}^+) \neq 0$. So $\mathcal{L} \leq \mathcal{K}$, by Proposition 4.2.

Suppose that $\beta(e, \mathcal{K}^+) \neq 0$. Then, using the fact that $\omega(\mathcal{L}^+) \neq 0$, the argument of the previous paragraph shows that $\mathcal{K} \leq \mathcal{L}$.

Let P, Q, R and S be subgroups of G. We say that the pairs (P, Q) and (R, S) are *conjugate in* G if there exists $g \in G$ such that $R = P^g$ and $S = Q^g$. Our corollary is an immediate consequence of (4.1) and Theorem 4.3:

Corollary 4.4. The defect pairs of a real 2-block are conjugate in G.

5. The number of real 2-blocks with a given defect pair

We begin this section with a result which associates a certain S-orbit of 2-groups to each self-dual (S, S)-double coset.

Lemma 5.1. Suppose that $x \in G \setminus S$ and that $SxS = Sx^{-1}S$. Set $(S \cap S^g)^* := (S \cap S^g) \cup (Sg \cap g^{-1}S)$, for each $g \in SxS$. Then $(S \cap S^g)^*$ is a 2-subgroup of G which contains $S \cap S^g$ as a subgroup of index 2. Moroever the $(S \cap S^g)^*$ forms a single S-conjugation orbit, and $Sg \cap g^{-1}S$ coincides with the set $\{y \in Sg \mid y^2 \in S \cap S^g\}$.

Proof. First we show that $Sg \cap g^{-1}S$ is nonempty. We may write $g^{-1} = sgt$, for certain $s, t \in S$. Then $sg = g^{-1}t$ is an element of $Sg \cap g^{-1}S$.

We claim that $Sg \cap g^{-1}S$ is a right $(S \cap S^g)$ -coset. Let $a = b^g \in S \cap S^g$, where $a, b \in S$, and let $cg = g^{-1}d \in Sg \cap g^{-1}S$, where $c, d \in S$. Then (cg)a also lies in $Sg \cap g^{-1}S$ since $g^{-1}(da) = (cg)a = (cb)g$. Also $(cg)(sg)^{-1}$ lies in $S \cap S^g$ since $cs^{-1} = (cg)(g^{-1}s^{-1}) = (g^{-1}d)(t^{-1}g) = (dt^{-1})^g$. This proves our claim.

Now $sg \in \mathbf{N}(S \cap S^g)$, since $(S \cap S^g)^{sg} = S^{sg} \cap S^t = S^g \cap S$. It follows from this and the previous paragraphs that $(S \cap S^g)^*$ is a subgroup of G, which contains $S \cap S^g$ as a subgroup of index 2.

Write g = uxv, where $u, v \in S$. Then it is clear that $(S \cap S^g)^* = (S \cap S^x)^{*v}$. So the 2-groups $(S \cap S^g)^*$ form a single S-orbit of subgroups of G.

Finally, suppose that y=zg, for $z \in S$. If $y^2 \in S \cap S^g$, then $y^2=u^g$, for some $u \in S$. Thus $y=(g^{-1}ug)(g^{-1}z)=g^{-1}uz$ lies in $Sg \cap g^{-1}S$. Conversely, suppose that $y \in Sg \cap g^{-1}S$. Then $y=g^{-1}v$, for some $v \in S$. Hence $zv=y^2=(vz)^g$ lies in $S \cap S^g$. This proves the last statement of the lemma.

The subgroups $(S \cap S^g)^*$ have appeared in the literature on self-inverse double cosets. See for example 12.13.(ii) of [2].

Let \mathcal{K} and \mathcal{L} be 2-regular conjugacy classes of G, which have defect groups D and Q respectively. Let x be any element of G. The 2-group $S \cap S^x$ acts by conjugation on $\mathcal{K} \cap Sx$ and on $\mathcal{L} \cap Sx$. So $|\mathcal{K} \cap Sx| \equiv |\mathbf{C}(\mathcal{K}, x)| \pmod{2}$, where $\mathbf{C}(\mathcal{K}, x) := \mathcal{K} \cap Sx \cap \mathbf{C}(S \cap S^x)$. Let $\mathbf{O}(\mathcal{L}, x)$ denote the set of those orbits of $S \cap S^x$ on $\mathcal{L} \cap Sx$ which have a representative l such that $S \cap S^x$ contains a Sylow 2-subgroup of $\mathbf{C}(l)$. Now $|\mathcal{L} \cap Sx| = \sum |S \cap S^x| \cdot \mathbf{C}_{S \cap S^x}(l)|$. So $(|Q| |\mathcal{L} \cap Sx|/|S \cap S^x|)$ is an integer which has the same parity as $|\mathbf{O}(\mathcal{L}, x)|$.

We will use $\sum_{x}^{Q < D}$ denote a sum which ranges over those double cosets SxS for which $Q \leq_G S \cap S^x \leq_G D$, and $\sum_{x \equiv x^{-1}}^{Q < D}$ to denote the restriction of this sum to the self-dual double cosets. These sums are empty unless $Q \leq_G D$. It follows from [12, 1.3.3 and 1.3.4], and the fact that Char(F) = 2, that

(5.2)
$$\beta(\epsilon(\mathcal{K}^+), \mathcal{L}^+) = \sum_{x}^{Q < D} |\mathbf{C}(\mathcal{K}, x)| |\mathbf{O}(\mathcal{L}, x)| 1_F.$$

Let $\mathbf{C}^*(\mathcal{K}, x)$ denote the set of elements of $\mathbf{C}(\mathcal{K}, x)$ which are inverted by some element of $(S \cap S^x)^*$, and let $\mathbf{O}^*(\mathcal{L}, x)$ denote the set of orbits in $\mathbf{O}(\mathcal{L}, x)$ whose elements are inverted by some element of $(S \cap S^x)^*$.

Proposition 5.3. Suppose that K and L are real 2-regular classes of G, with defect groups D and Q respectively. Then

$$\beta(\epsilon(\mathcal{K}^+), \mathcal{L}^+) = \sum_{x \equiv x^{-1}}^{Q < D} |\mathbf{C}^*(\mathcal{K}, x)| |\mathbf{O}^*(\mathcal{L}, x)| 1_F.$$

Proof. By pairing each double coset in (5.2) with its dual, as in the proof of Proposition 2.5, we see that

$$\beta(\epsilon(\mathcal{K}^+), \mathcal{L}^+) = \sum_{x \equiv x^{-1}}^{Q < D} |\mathbf{C}(\mathcal{K}, x)| |\mathbf{O}(\mathcal{L}, x)| 1_F.$$

Suppose that $SxS = Sx^{-1}S$, where $x \in G$. Let $sx \in Sx$ and $tx = x^{-1}u \in Sx \cap x^{-1}S$, where $s, t, u \in S$. Then $(sx)^{-tx} = (u^{-1}x)(x^{-1}s^{-1})(tx) = u^{-1}s^{-1}tx$ also lies in Sx. Set

$$y \cdot z := \begin{cases} y^z, & \text{if } z \in S \cap S^x; \\ (y^{-1})^z, & \text{if } z \in (S \cap S^x)^* \setminus (S \cap S^x). \end{cases}$$

for each $y \in Sx$ and $z \in (S \cap S^x)^*$. It is straightforward to show that this defines an action of the 2-group $(S \cap S^x)^*$ on Sx.

Now $(S \cap S^x)^*$ stabilizes $\mathbf{C}(\mathcal{K}, x)$, and also each $S \cap S^x$ -orbit in $\mathbf{O}(\mathcal{L}, x)$. Since $(S \cap S^x)^*$ is a 2-group, this implies that

$$|\mathbf{C}(\mathcal{K}, x)| \equiv |\mathbf{C}^*(\mathcal{K}, x)| \pmod{2}$$
 and $|\mathbf{O}(\mathcal{L}, x)| \equiv |\mathbf{O}^*(\mathcal{L}, x)| \pmod{2}$.

The proposition follows from this.

Proof of Theorem 5.2. Recall the notation established in Section 1.

Let $B_1 \leftrightarrow e_1 \leftrightarrow \omega_1, \ldots, B_u \leftrightarrow e_u \leftrightarrow \omega_u$, be a complete list of the (real) 2-blocks of G which have defect pair (D, E). Suppose that $1 \leq i, j \leq u$. Then

(5.5)
$$\delta_{ij} = \omega_j(e_i) = \sum \beta(e_i, \mathcal{K}^+) \omega_j(\mathcal{K}^+),$$

where \mathcal{K} runs through the conjugacy classes of G. Suppose that $\mathcal{K} \neq \mathcal{K}^o$. Then the contribution of \mathcal{K} and \mathcal{K}^o to (5.5) is

$$\beta(e_i, \mathcal{K}^+)\omega_i(\mathcal{K}^+) + \beta(e_i, \mathcal{K}^{o+})\omega_i(\mathcal{K}^{o+}) = 2 \cdot \beta(e_i, \mathcal{K}^{o+})\omega_i(\mathcal{K}^{o+}) = 0.$$

Also any real class which occurs with non-zero multiplicity in (5.5) is 2-regular and is not the trivial class. So any such class is properly real. It follows from Theorem 4.3 that

(5.6)
$$\delta_{ij} = \sum_{k=1}^{v} \beta(e_i, \mathcal{K}_k^+) \omega_j(\mathcal{K}_k^+).$$

Form the $u \times v$ -matrices A and B by setting the i, j-th entry of A as $A_{ij} = \beta(e_i, \mathcal{K}_j^+)$ and the i, j-th entry of B as $B_{ij} = \omega_i(\mathcal{K}_j^+)$. Then AB^T is the $u \times u$ identity matrix, by (5.6). It follows that the $v \times v$ -matrix $B^T A$ has rank u.

Suppose that $B \leftrightarrow e \leftrightarrow \omega$ is a non-real 2-block of G and that $1 \leq i, j \leq v$. Then, since $\mathcal{K}_i = \mathcal{K}_i^o$ and $\mathcal{K}_j = \mathcal{K}_j^o$, the contribution of e and e^o to $\beta(\epsilon(\mathcal{K}_i^+), \mathcal{K}_j^+)$ is

$$\omega(\mathcal{K}_i^+)\beta(e,\mathcal{K}_j^+) + \omega^o(\mathcal{K}_i^+)\beta(e^o,\mathcal{K}_j^+) = 2 \cdot \omega(\mathcal{K}_i^+)\beta(e,\mathcal{K}_j^+) = 0.$$

Thus

$$\beta(\epsilon(\mathcal{K}_i^+), \mathcal{K}_j^+) = \beta\left(\sum \omega(\mathcal{K}_i^+)e, \mathcal{K}_j^+\right) = \sum \omega(\mathcal{K}_i^+)\beta(e, \mathcal{K}_j^+),$$

where $B \leftrightarrow e \leftrightarrow \omega$ runs through the real 2-blocks of G. So by Theorem 4.3 we have

$$\beta(\epsilon(\mathcal{K}_i^+), \mathcal{K}_j^+) = \sum_{k=1}^u \omega_k(\mathcal{K}_i^+) \beta(e_k, \mathcal{K}_j^+).$$

The sum on the right hand side is the i, j-th entry of the matrix $B^T A$. We conclude that the $v \times v$ matrix M with i, j-th entry $M_{ij} = \beta(\epsilon(\mathcal{K}_i^+), \mathcal{K}_j^+)$ has rank u.

It now follows from Proposition 5.3 that u = 0 if w = 0, and

$$M_{i,j} = \sum_{k=0}^{w} \mathbf{C}^*(\mathcal{K}_i, x_k) \mathbf{C}^*(\mathcal{K}_j, x_k),$$

if w > 0. But $\mathbf{C}^*(\mathcal{K}_i, x_k) = N_{ik}$ and $\mathbf{C}^*(\mathcal{K}_j, x_k) = N_{jk}$. We conclude that $M = N \cdot N^T$, which completes the proof.

REFERENCES

- [1] R. Brauer, On Blocks and Sections in Finite Groups I, Amer. J. Math. 89 (4) (1967), 1115–1136.
- [2] C. Curtis, I. Reiner, Methods of Representation Theory, I, John Wiley, New York, 1981.
- [3] R. Gow, Real 2-blocks of characters of finite groups, Osaka J. Math. 25 (1988), 135–147.
- [4] R. Gow, J. Murray, Real 2-regular classes and 2-blocks, to appear, J. Algebra.
- [5] J. A. Green, Blocks of modular representations, Math. Zeit. 79 (1962), 100–115.
- [6] M. Herzog, On groups with extremal blocks, Bull. Austral. Math. Soc. 14 (1976), 325–330.
- [7] I. M. Isaacs, Character Theory of Finite Groups, Dover Publ., Inc., New York (1994).
- [8] J. Murray, Blocks of defect zero and products of elements of order p, J. Algebra 214 (1999), 385–399.
- [9] M. F. O'Reilly, On a Theorem of J. A. Green, J. Austral. Math. Soc. 20 (Series A) (1975), 449–450.
- [10] M. Osima, On block idempotents of modular group rings, Nagoya Math. J. 27 (1966), 429–433.
- [11] G. R. Robinson, The Number of Blocks with a Given Defect Group, J. Algebra 84 (1983), 493–502.
- [12] G. R. Robinson, Double Cosets and Modular Representation Theory, Proc. Symp. Pure Math. 47 (1987), 249–258.