ON A CERTAIN IDEAL OF KULSHAMMER IN THE CENTRE
OF A GROUP ALGEBRA

JOHN MURRAY

ABSTRACT. Let G be a finite group and let F be a splitting field of character-
istic p > 0. We show that I? = Eg, where I is a certain ideal of the centre Z
of FG, and Ej is the span of the block idempotents of defect zero.

Let G be a finite group and let F be a field of characteristic p. We shall assume
that F is a splitting field for G. Let A denote the linear map FG — F', given by

)‘(Z agg) = ai,
9€G
for deGagg € FG. The map B: FG x FG — F,

B(a,b) = A\ab), fora,be FG,

is a nondegenerate symmetric bilinear form on F'G. In fact B is associative in the
sense that

B(ab,c) = B(a,bc), for a,b,c € FG.
If V is an F-subspace of FG, then V* will denote the dual space
V+ .= {a € FG | B(a,b) =0, for all b€ V'}.

If A is a subalgebra of FG, and V is a right A-module, then V= is a left A-module.
Let K := Z*, where Z is the centre of FG. Then by the above remarks, K is a
Z-submodule of F'G. Tt is clear that

(1) K = {Z agg | Z ay = 0, for all conjugacy classes K of G},

geG geK
as the class sums Kt := > gex 9 form an F-basis for Z. The following lemma is
due to R. Brauer [B56]:

Lemma 2.
a€ K = da? € K,

(a+bP = aP+ b mod K,
for all a,b € FG.
Set
N:={4’ %fp‘:2, .
p, if pis an odd prime,
and define

T :={xeFG|zN e K}.
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Then Lemma 2 implies that 7' is a subspace of F'G which contains K. An easy
argument shows that 7" is a Z-submodule of F'G. Since T' D K, it follows that

I:=7T"

is an ideal of Z.
For each conjugacy class K, set

QK) == {ge G| g"N ek}
So Q(K) is a union of conjugacy classes of G. We have the following (see (38) of
[K91)):
Lemma 3.
T = {Z agg | Z ag =0, for all classes K}.
9€G geEQ(K)

Thus {QK)* | K a conjugacy class of G, Q(K) # ¢} forms a basis for I.
Proof. Say a =}’ cqay,9 € FG. Then

aeT (Z ay9)"N € K, by definition of T

geqG

= Z aéVgN € K, using Lemma 2
geG

= Z aév =0, for all classes K, by (1)
gNek

= Z ag = 0, for all classes K, as F" has characteristic p.
9€Q(K)

The last statement now follows from the first. O
Proposition 4. Let z € Z and suppose that zN =0. Then Iz = zI = 0.

Proof. Let i € I and z € FG. It follows from the hypothesis that zz € T. Thus
B(iz,x) = B(i,zz) = 0. Since z € FG was arbitrary, the nondegeneracy of A
implies that iz = 0. |

Let Zy denote the F-subspace of Z spanned by the class sums of p-defect zero,
and let Eqy denote the F-subspace of Zy spanned by the block idempotents of defect
zero. Then Zj is an ideal of Z, using an argument due to R. Brauer. Moreover
Tizuka and Watanabe [IW73] have shown that

(5) (Zo)? = Ey,
and
(6) Zy J(FG) = 0,

where J(FQG) is the Jacobson radical of FG. See (1.E) of [080] also. A proof of
the following result was indicated in [M99]:

Lemma 7. I? C Z,.



Proof. Let K, L and M be classes of G. The coefficient of Mt in Q(K)TQ(L)* is
given as the cardinality, modulo p, of the set

(M) = {(k,1) € UK) x QL) | kl = m},

where m is a fixed element of M. Let D be a defect group of m. Then D acts by
conjugation on the pairs in ®(M). So |®(M)| = |®p(M)| mod p, where

Bp(M) := {(k,1) € (C(D) N QK)) x (C(D) NQL)) | Kl = m)}.

Now let Q(Z(D)) be the subgroup of Z(D) consisting of all z € Z(D) such that
N = 1. Then Q(Z(D)) acts freely on ®p(M) via

(k,1) = (kz,27 ), for (k,1) € ®p(K), and z € Q(Z(D)).
It follows that [®p(M)| = 0 mod p unless Q(Z (D)) = {1} <= D = {1} i.e. unless

M has p-defect zero. The lemma follows. O
Corollary 8. I(IN J(FQG)) =0 and hence (IN J(FG))? = 0.

Proof. Suppose that j € INJ(FG). Then j € J(FG) s I C Z. Also j2 € Zy, by
Lemma 7. So j® = j(j2) = 0, using (6). But then jV JN’?’j = 0. Proposition
4 now implies that I(I N J(FG)) = 0. The equality (I N J(FG))? = 0 follows
immediately. (|

We can now prove our main result.

Theorem 9. I? = Ej.

Proof. Let E denote the F-subspace of Z spanned by the block idempotents. Then
7Z = E®J,

as F-algebras, where J = Z N J(F'Q) is the Jacobson radical of Z. Now J is nil
and the map x — zP is an automorphism of F. It follows that there exists m > 0
such that e?” =e and j#" =0, foralle € E and j € J.
If 41,40 € I, write
ik = ek+jk7 (k:172)7
where e, € E and j;, € J. Then e}, = eﬁm +j,fm = igm € I. Tt follows that e, € I
and jy € INJ(FG). So

i1i2 = ejea + e1j2 + jiez + jij2 = e1ez,

using Corollary 8. Thus I? C EN Zy = Eyp, using Lemma 7.
The oppositite inequality I?> D Fy follows from I O Zy and (5). O

We also have:

Proposition 10. Let K be a p-singular class of G. Then Q(K)* € J(FG). In
particular, QK)TQ(L)T =0, for each class L of G.

Proof. Let B be a p-block of G, with associated central character w. If B has
positive defect, then w((Q(K)*)?) = 0, using Lemma 7, and so w(Q(K)T) = 0.
On the other hand, if B has defect zero, then w(2(K)T) = 0, as Q(K) is a union
of p-singular classes. We deduce that Q(K)t € J(FG). The last statement now
follows from Corollary 8. O



If g € G, we may write g = gpgp = gp' gp, for a unique p-element g, and a unique
p-regular element g,». We call g, the p-part of g and g, the p-regular part of g. Let
K be a p-regular class of G. The p-regular section S(K) of G which contains K is
defined as

S(K) ={9€G|gy €K}
Setting LN = {g"V | g € L}, for each class £ of G, we note that
Sy = [J M.
LCS(K)
The p-regular section sums S(K)* span an ideal R of Z, known as Reynolds
Ideal. We have the following chain of ideals of Z:
EoCZoCRCI.
Now R = J(FG)* N Z, by (39) of [K91]. It follows easily that
R2 = E().
So Theorem 9 is an improvement on this fact.

Corollary 11. Suppose that IKC, L are p-regular classes of G. Then
S(K)tS(L)T = kMo,

Proof. This follows from Proposition 10, and the fact that X and £ are the only
p-regular classes in S(K) and S(L£), respectively. O

The following extends results in [IW73] and [M99]:

Corollary 12. G has a p-block of defect zero if and only if there exists p-regular
classes K, L of G such that Q(K)TQ(L)T # 0, i.e. there exists g € G (necessarily
of p-defect zero) such that the cardinality of the set

{(3:79) eEGxG | xN € ’CayN € E,va = g}
s nonzero modulo p.

We now give some examples in the exceptional case where p = 2 and F has
characteristic 2. Set
T, = {z € FG |2*> € K}.
Then
I =T
is an ideal of Z, and has as F-basis {21 (K)*}, where K ranges over the conjugacy
classes of G, and
2 (K) == {ge G| g* €K}

Although Ey C I? C Zy, and our results can be extended to show that Eq = I3,
it is not generally true that Ey = (I;)2. For instance, if G = 87, the symmetric
group on 7-symbols, then 0 = Ey C I? = Zp, while if G = Ma3, the Mathieu
group of degree 23, then 0 C Ey C I? C Zp. On the other hand, if G = 83, then
Eo = I? = Z,.

Let R denote the set of elements of G which have 2-defect zero and which are
conjugate to their inverses. We showed in [M99] that

(2 (1e)")? =R".

It follows that Rt Z C I?. We have not found an example where RT Z # IZ.
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