ON A CERTAIN IDEAL OF KÜLSHAMMER IN THE CENTRE OF A GROUP ALGEBRA

JOHN MURRAY

ABSTRACT. Let G be a finite group and let F be a splitting field of characteristic p>0. We show that $I^2=E_0$, where I is a certain ideal of the centre Z of FG, and E_0 is the span of the block idempotents of defect zero.

Let G be a finite group and let F be a field of characteristic p. We shall assume that F is a splitting field for G. Let λ denote the linear map $FG \to F$, given by

$$\lambda(\sum_{g\in G} a_g g) = a_1,$$

for $\sum_{g \in G} a_g g \in FG$. The map $B : FG \times FG \to F$,

$$B(a,b) = \lambda(ab), \text{ for } a, b \in FG,$$

is a nondegenerate symmetric bilinear form on FG. In fact B is associative in the sense that

$$B(ab,c) = B(a,bc), \text{ for } a,b,c \in FG.$$

If V is an F-subspace of FG, then V^{\perp} will denote the dual space

$$V^{\perp} := \{ a \in FG \mid B(a, b) = 0, \text{ for all } b \in V \}.$$

If A is a subalgebra of FG, and V is a right A-module, then V^{\perp} is a left A-module. Let $K := Z^{\perp}$, where Z is the centre of FG. Then by the above remarks, K is a Z-submodule of FG. It is clear that

(1)
$$K = \{ \sum_{g \in G} a_g g \mid \sum_{g \in \mathcal{K}} a_g = 0, \text{ for all conjugacy classes } \mathcal{K} \text{ of } G \},$$

as the class sums $\mathcal{K}^+ := \sum_{g \in \mathcal{K}} g$ form an F-basis for Z. The following lemma is due to R. Brauer [B56]:

Lemma 2.

$$a \in K \implies a^p \in K,$$

$$(a+b)^p \equiv a^p + b^p \bmod K,$$

for all $a, b \in FG$.

Set

$$N := \left\{ \begin{array}{ll} 4, & \text{if } p = 2, \\ p, & \text{if } p \text{ is an odd prime,} \end{array} \right.$$

and define

$$T := \{ x \in FG \mid x^N \in K \}.$$

Date: Submitted February 1, Revised March 14, 2000. 1991 Mathematics Subject Classification. 20C20.

Then Lemma 2 implies that T is a subspace of FG which contains K. An easy argument shows that T is a Z-submodule of FG. Since $T \supset K$, it follows that

$$I := T^{\perp}$$

is an ideal of Z.

For each conjugacy class K, set

$$\Omega(\mathcal{K}) := \{ g \in G \mid g^N \in \mathcal{K} \}.$$

So $\Omega(\mathcal{K})$ is a union of conjugacy classes of G. We have the following (see (38) of [K91]):

Lemma 3.

$$T \ = \ \{ \sum_{g \in G} a_g g \mid \sum_{g \in \Omega(\mathcal{K})} a_g = 0, \ \textit{for all classes} \ \mathcal{K} \}.$$

Thus $\{\Omega(\mathcal{K})^+ \mid \mathcal{K} \text{ a conjugacy class of } G, \ \Omega(\mathcal{K}) \neq \emptyset \}$ forms a basis for I.

Proof. Say
$$a = \sum_{g \in G} a_g g \in FG$$
. Then

$$a \in T \iff (\sum_{g \in G} a_g g)^N \in K$$
, by definition of T

$$\iff \sum_{g \in G} a_g^N g^N \in K$$
, using Lemma 2
$$\iff \sum_{g^N \in \mathcal{K}} a_g^N = 0$$
, for all classes \mathcal{K} , by (1)
$$\iff \sum_{g \in \Omega(\mathcal{K})} a_g = 0$$
, for all classes \mathcal{K} , as F has characteristic p .

The last statement now follows from the first.

Proposition 4. Let $z \in Z$ and suppose that $z^N = 0$. Then Iz = zI = 0.

Proof. Let $i \in I$ and $x \in FG$. It follows from the hypothesis that $zx \in T$. Thus B(iz,x) = B(i,zx) = 0. Since $x \in FG$ was arbitrary, the nondegeneracy of λ implies that iz = 0.

Let Z_0 denote the F-subspace of Z spanned by the class sums of p-defect zero, and let E_0 denote the F-subspace of Z_0 spanned by the block idempotents of defect zero. Then Z_0 is an ideal of Z, using an argument due to R. Brauer. Moreover Iizuka and Watanabe [IW73] have shown that

$$(5) (Z_0)^2 = E_0,$$

and

$$(6) Z_0 J(FG) = 0,$$

where J(FG) is the Jacobson radical of FG. See (1.E) of [O80] also. A proof of the following result was indicated in [M99]:

Lemma 7. $I^2 \subseteq Z_0$.

Proof. Let \mathcal{K}, \mathcal{L} and \mathcal{M} be classes of G. The coefficient of \mathcal{M}^+ in $\Omega(\mathcal{K})^+\Omega(\mathcal{L})^+$ is given as the cardinality, modulo p, of the set

$$\Phi(\mathcal{M}) := \{ (k, l) \in \Omega(\mathcal{K}) \times \Omega(\mathcal{L}) \mid kl = m \},$$

where m is a fixed element of \mathcal{M} . Let D be a defect group of m. Then D acts by conjugation on the pairs in $\Phi(\mathcal{M})$. So $|\Phi(\mathcal{M})| \equiv |\Phi_D(\mathcal{M})| \mod p$, where

$$\Phi_D(\mathcal{M}) := \{ (k, l) \in (C(D) \cap \Omega(\mathcal{K})) \times (C(D) \cap \Omega(\mathcal{L})) \mid kl = m \}.$$

Now let $\Omega(Z(D))$ be the subgroup of Z(D) consisting of all $z \in Z(D)$ such that $z^N = 1$. Then $\Omega(Z(D))$ acts freely on $\Phi_D(\mathcal{M})$ via

$$(k,l) \to (kz,z^{-1}l)$$
, for $(k,l) \in \Phi_D(\mathcal{K})$, and $z \in \Omega(Z(D))$.

It follows that $|\Phi_D(\mathcal{M})| \equiv 0 \mod p$ unless $\Omega(Z(D)) = \{1\} \iff D = \{1\}$ i.e. unless \mathcal{M} has p-defect zero. The lemma follows.

Corollary 8. $I(I \cap J(FG)) = 0$ and hence $(I \cap J(FG))^2 = 0$.

Proof. Suppose that $j \in I \cap J(FG)$. Then $j \in J(FG)$, as $I \subseteq Z$. Also $j^2 \in Z_0$, by Lemma 7. So $j^3 = j(j^2) = 0$, using (6). But then $j^N = j^{N-3}j^3 = 0$. Proposition 4 now implies that $I(I \cap J(FG)) = 0$. The equality $(I \cap J(FG))^2 = 0$ follows immediately.

We can now prove our main result.

Theorem 9. $I^2 = E_0$.

Proof. Let E denote the F-subspace of Z spanned by the block idempotents. Then

$$Z = E \oplus J$$
,

as F-algebras, where $J=Z\cap J(FG)$ is the Jacobson radical of Z. Now J is nil and the map $x\to x^p$ is an automorphism of F. It follows that there exists $m\geq 0$ such that $e^{p^m}=e$ and $j^{p^m}=0$, for all $e\in E$ and $j\in J$.

If $i_1, i_2 \in I$, write

$$i_k = e_k + j_k, \quad (k = 1, 2),$$

where $e_k \in E$ and $j_k \in J$. Then $e_k = e_k^{p^m} + j_k^{p^m} = i_k^{p^m} \in I$. It follows that $e_k \in I$ and $j_k \in I \cap J(FG)$. So

$$i_1i_2 = e_1e_2 + e_1j_2 + j_1e_2 + j_1j_2 = e_1e_2,$$

using Corollary 8. Thus $I^2 \subseteq E \cap Z_0 = E_0$, using Lemma 7.

The oppositite inequality $I^2 \supseteq E_0$ follows from $I \supseteq Z_0$ and (5).

We also have:

Proposition 10. Let K be a p-singular class of G. Then $\Omega(K)^+ \in J(FG)$. In particular, $\Omega(K)^+\Omega(\mathcal{L})^+ = 0$, for each class \mathcal{L} of G.

Proof. Let B be a p-block of G, with associated central character ω . If B has positive defect, then $\omega((\Omega(\mathcal{K})^+)^2)=0$, using Lemma 7, and so $\omega(\Omega(\mathcal{K})^+)=0$. On the other hand, if B has defect zero, then $\omega(\Omega(\mathcal{K})^+)=0$, as $\Omega(\mathcal{K})$ is a union of p-singular classes. We deduce that $\Omega(\mathcal{K})^+ \in J(FG)$. The last statement now follows from Corollary 8.

If $g \in G$, we may write $g = g_p g_{p'} = g_{p'} g_p$, for a unique p-element g_p and a unique p-regular element $g_{p'}$. We call g_p the p-part of g and $g_{p'}$ the p-regular part of g. Let \mathcal{K} be a p-regular class of G. The p-regular section $S(\mathcal{K})$ of G which contains \mathcal{K} is defined as

$$S(\mathcal{K}) := \{ g \in G \mid g_{p'} \in \mathcal{K} \}.$$

Setting $\mathcal{L}^N = \{g^N \mid g \in \mathcal{L}\}$, for each class \mathcal{L} of G, we note that

$$S(\mathcal{K}) = \bigcup_{\mathcal{L} \subset S(\mathcal{K})} \Omega(\mathcal{L}^N).$$

The p-regular section sums $S(\mathcal{K})^+$ span an ideal R of Z, known as Reynolds Ideal. We have the following chain of ideals of Z:

$$E_0 \subseteq Z_0 \subseteq R \subseteq I$$
.

Now $R = J(FG)^{\perp} \cap Z$, by (39) of [K91]. It follows easily that

$$R^2 = E_0$$
.

So Theorem 9 is an improvement on this fact.

Corollary 11. Suppose that K, L are p-regular classes of G. Then

$$S(\mathcal{K})^+ S(\mathcal{L})^+ = \Omega(\mathcal{K}^N)^+ \Omega(\mathcal{L}^N)^+.$$

Proof. This follows from Proposition 10, and the fact that \mathcal{K} and \mathcal{L} are the only p-regular classes in $S(\mathcal{K})$ and $S(\mathcal{L})$, respectively.

The following extends results in [IW73] and [M99]:

Corollary 12. G has a p-block of defect zero if and only if there exists p-regular classes K, \mathcal{L} of G such that $\Omega(K)^+\Omega(\mathcal{L})^+ \neq 0$, i.e. there exists $g \in G$ (necessarily of p-defect zero) such that the cardinality of the set

$$\{(x,y) \in G \times G \mid x^N \in \mathcal{K}, y^N \in \mathcal{L}, xy = q\}$$

is nonzero modulo p.

We now give some examples in the exceptional case where p=2 and F has characteristic 2. Set

$$T_1 := \{ x \in FG \mid x^2 \in K \}.$$

Then

$$I_1 \,:=\, T_1^\perp$$

is an ideal of Z, and has as F-basis $\{\Omega_1(\mathcal{K})^+\}$, where \mathcal{K} ranges over the conjugacy classes of G, and

$$\Omega_1(\mathcal{K}) := \{ g \in G \mid g^2 \in \mathcal{K} \}.$$

Although $E_0 \subseteq I_1^2 \subseteq Z_0$, and our results can be extended to show that $E_0 = I_1^3$, it is not generally true that $E_0 = (I_1)^2$. For instance, if $G = \mathbb{S}_7$, the symmetric group on 7-symbols, then $0 = E_0 \subset I_1^2 = Z_0$, while if $G = M_{23}$, the Mathieu group of degree 23, then $0 \subset E_0 \subset I_1^2 \subset Z_0$. On the other hand, if $G = \mathbb{S}_3$, then $E_0 = I_1^2 = Z_0$.

Let \mathcal{R} denote the set of elements of G which have 2-defect zero and which are conjugate to their inverses. We showed in [M99] that

$$(\Omega_1(1_G)^+)^2 = \mathcal{R}^+.$$

It follows that $\mathcal{R}^+Z \subseteq I_1^2$. We have not found an example where $\mathcal{R}^+Z \neq I_1^2$.

REFERENCES

- [B56] Richard Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung Math. Zeit. 63 (1956), 406-444.
- [IW73] K. Iizuka, A. Watanabe, On the number of blocks of irreducible characters of a finite group with a given defect group, Kumamoto J. Sci. (Math.) 9 (1973), 55-61.
- [K91] Burkhard Külshammer, Group-theoretical descriptions of ring-theoretical invariants of
- group algebras, Progress in Math. 95 (1991), 425-442.
 [M99] John Murray, Blocks of defect zero and products of elements of order p, J. Algebra 214 (1999), 385-399.
- [O80] T. Okuyama, Some studies on group algebras, Hokkaido Mathematical J. 9 (1980), 217-221.

MATHEMATICS DEPARTMENT, UNIVERSITY COLLEGE DUBLIN, BELFIELD, DUBLIN 4, IRELAND $E ext{-}mail\ address: jcmurray@eircom.ie}$