
An Evaluation of FNV Non-Cryptographic Hash
Functions

Catherine Hayes
Department of Mathematics and Statistics,

Maynooth University,
Kildare, Ireland.

David Malone
Hamilton Institute / Department of Mathematics and Statistics,

Maynooth University,
Kildare, Ireland.

Abstract—We conduct an examination of the FNV family
of non-cryptographic hash functions, with comparison to peer
functions, across the standard suite of tests combined with
commonly-used hash tables. The results obtained raise some
interesting questions about evaluation and application of hash
functions when considered alongside input type, goals and output
distribution. In particular, we review the literature supporting
the Avalanche criterion for assessing non-cryptographic hashes
to understand why it is frequently referenced.

Index Terms—hash functions; hash table; distribution; colli-
sions; avalanche criterion

I. INTRODUCTION TO FNV

FNV [1] are a family of non-cryptographic hash functions,
of which the current versions are FNV-1 and FNV-1a. The
original version of this algorithm was created by Fowler, Noll
and Vo in around 1991. The hash family is currently the subject
of a draft RFC by the Internet Engineering Taskforce [2]. They
were designed to be fast to run, while keeping collision rates
low. They have extensive real-world uses including in DNS
servers, the Twitter platform, database indexing hashes, major
web search / indexing engines, anti-spam filters and more.
One search we conducted on GitHub in 2023 found 215,669
instances of a constant associated with the 32-bit version FNV
appearing in hosted code. Given this widespread use of FNV,
we are interested in evaluating its behaviour, particularly in
comparison to hash functions of a similar class.

FNV-1 has a simple structure:
• The hash value, h, is initialised to a constant, known as

the “FNV Offset Basis”, acting as an Initialisation Vector.
• For each byte of input, bi, h is multiplied by the “FNV

Prime” and then XORed with the input byte bi.
FNV-1a has the same structure, but with the multiplication
and XOR steps done in reverse order. For a given bit-size,
the FNV specification describes both how the FNV Prime and
Offset Basis are chosen.

In this paper we are going to test the performance of FNV on
a number of data sets in comparison to a selection of other non-
cryptographic hash functions in a similar class, particularly
with respect to collisions arising in hash tables with different
data sets.

In Section II, we will describe the test framework used to
assess the hashes, including input data sets. In Section III we

describe the metrics and performance criteria that we will
use. The results of our tests are laid out in Section IV and
then discussed in more detail in Section V. We summarise
our conclusions in Section VI.

II. TEST FRAMEWORK

In order to test the performance of the FNV hash functions,
we need to design a framework for testing, and choose some
peer hash functions to which we can compare. As one of the
most common uses of non-cryptographic hash functions, our
chosen input data will be used as keys for a hash table, which
will distribute the resulting hash outputs into “buckets”. We
therefore also need to consider appropriate hash table sizes.

A. Input Data

First, we will need input data to be hashed. We choose 4
different styles of data in order to test various aspects of the
hash functions’ performance:

1) Real Text: “Baby Names”
The top 1,000 Irish baby names for 2021, as per the
Central Statistics Office. Each input is just one name,
with lengths ranging from 3 to 11 bytes.

2) Synthetic Text: “Common Words”
One thousand distinct strings of varying length each
composed of 20 of the most commonly used English
words.

3) Real Bitstring: “IP Addresses”
One thousand 32-bit strings consisting of unique IPv4
addresses that had accessed a server during 2015, in
chronological order.

4) Synthetic Bitstring: “Bias”
All strings comprising 999 0xfe bytes (11111110 in
binary) with one 0xff byte that moves along the
input string by one place each time. This results in
1000 distinct inputs heavily biased towards 1-bits, with
significant repeating patterns.

Note that words and IP addresses were considered as pos-
sible inputs when designing FNV. Repetitive strings differing
in only a small number of bits can be difficult for hashes, so
our synthetic bitstring input provides a challenging test.979-8-3503-5298-6/24/$31.00 ©2024 IEEE

20
24

 3
5t

h
Iri

sh
 S

ig
na

ls
an

d
Sy

st
em

s C
on

fe
re

nc
e

(IS
SC

) |
 9

79
-8

-3
50

3-
52

98
-6

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
SC

61
95

3.
20

24
.1

06
03

13
9

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 02,2025 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

B. Chosen Hash Functions

We will hash this data using 4 different functions to calcu-
late a 32-bit hash.

1) We will use FNV-1a as this is the generally recom-
mended version of FNV.

2) We will also test FNV-1.
3) As a comparison, we will test DJBX33A [3], one of

the simplest hash functions available. This function was
created by Daniel J. Bernstein and the name stands for
“Daniel J. Bernstein, Times 33 with Addition”. As the
name would suggest, the hash simply takes the previous
hash value, multiplies it by 33 and then adds in the input
byte.

4) Finally, the Murmur2 [4] 32-bit hash, created by Austin
Appleby in 2008, is widely used and well known for its
avalanche properties1. Murmur2 pulls in 4 bytes of input
at a time, which are then multiplied by another 32-bit
constant, m, XORed with a shift by an integer, and then
multiplied by m again. A 32-bit initialisation vector is
then combined with this data using multiplication and
XOR again. After the final bytes are read in, there is a
further mixing step with XOR, shifts and multiplication.

C. Hash Tables

Once the input data has been hashed, it will be distributed
and stored in a hash table, by assigning each hashed output
to one of a number of buckets via modulo arithmetic, i.e. the
bucket chosen is h mod M where h is our hash output and
M is the number of buckets.

Each of our data sets comprises 1,000 lines of input. We
decided to use a Load Factor of approximately 2, meaning
that we would distribute the output among approximately 500
buckets. More precisely, we wished to examine any potential
difference in performance which may arise depending upon the
chosen number of buckets. Common recommendations include
that M should be either a power of two or a prime number
[5]. Since hashes are usually calculated, at least implicitly,
modulo a power of two is is unclear if the mixing effect of
assigning modulo a prime number is more valuable than the
simplicity of selecting a number of output bits by working
modulo power-of-two.

We will therefore consider each of the following number of
buckets: 500 buckets (to achieve a load factor of exactly 2),
499 buckets (to measure any benefit of using a prime number),
and 512 buckets (to measure the performance when combined
with a power-of-two number of buckets). The variation in load
factor is less than 0.05, so we expect minimal performance
changes to arise from the change in load.

III. PERFORMANCE CRITERIA

Evaluation of the speed of a hash function is a common
performance criterion and has been studied in other works
(e.g. [6], [7]). Here, we wished to focus on the quality of the
hash output, to examine collisions, study why certain patterns

1We will discuss the Avalanche criterion in Section III-C.

are seen and consider the output distribution. Hence we focus
on the following measures of hash performance [8].

A. Collisions

As we have chosen a load factor of more than 1, we can
be confident that we will see collisions in our hash table, i.e.
more than one output being mapped to the same bucket. These
collisions will be managed using Separate Chaining, whereby
any colliding entries are chained together into a single linked
list of key-value pairs which can then be searched. Naturally, a
smaller number of collisions is better, as it means there is less
searching required. We measure both the number of buckets
with two entries or more and the number of empty buckets as
summary indicators of the collisions.

If we consider the process of assigning input to buckets
to be comparable with balls being thrown randomly and
independently into bins, we can use the Poisson distribution
[9] to predict what we might see. A Poisson Distribution is a
discrete probability distribution that expresses the probability
of a given number of events occurring in a fixed interval, if
these events occur independently, with a known constant mean
rate. In the case of 500 buckets, for example, our expected
mean rate with 1,000 input lines is 2.

We can use this to estimate the probability of each bucket
ending up with k inputs, where k = 0, 1, 2, ..., and find,

P(X = 0) = 0.135

P(X = 1) = 0.27

P(X = 2) = 0.27

P(X ≥ 2) = 1− P(X = 0)− P(X = 1) = 0.59

Based on 500 buckets, we therefore expect 68 buckets (13.5%)
to be empty, 135 buckets (27%) to have one entry, and 297
buckets (59%) to have collisions of two or more entries.

B. Distribution

It is possible to show that distributing the output uniformly
is optimal for hash tables in a number of senses (e.g. average
search time [8]). Thus, a statistical measure of the performance
of the hash function would be to assess how uniformly the
outputs are distributed among the available buckets. We assess
this using the chi-squared test, comparing the distribution of
outputs amongst the buckets of a hash table to a uniform
distribution.

χ2 =

∑
(Oi − Ei)

2

Ei
,

where Oi = observed number of outputs in bucket i and Ei =
expected number of outputs in bucket i. We may also convert
this χ2 statistic to a p-value.

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 02,2025 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

C. Avalanche

A good avalanche effect means that for every change to
an input bit i, every output bit j should change with 50%
probability. The rationale is that if each hash output was
assigned independently and randomly of other outputs, then
this criterion would hold. This is mooted as being important
to create a more random-looking output where similar inputs
are not mapped to similar outputs. This is assessed by flipping
input bits and noting how often each output bit changes [7].

The avalanche effect differs from Distribution and Collision
Resistance in that it is traditionally measured independently
of the underlying data. This makes sense as the measure does
not particularly care about the actual output, rather it focuses
on how the output changes when input bits are changed. We
will therefore use a random 4-byte input when measuring this
metric.

Based on the work done by Bret Mulvey [10], we build
an avalanche matrix for the hash function. Each entry of this
(i× j) matrix will be visualised using colour:

• Green =⇒ toggling input bit i resultes in a change to
output bit j approximately 50% of the time. This is the
ideal.

• Red =⇒ the effect of toggling input bit i changes output
bit j either 0% or 100% of the time. This is the worst
case scenario.

• Yellow =⇒ a change roughly 25% or 75% of the time.
The statistics were gathered over 10,000 trials of randomly
selected inputs.

IV. TEST RESULTS

A. Collisions

The level of collisions measured by the number of buckets
seeing more than one entry are shown in Figure 1. Each line
represents one of our input data sets, with each point showing
the result for one of the hash functions.

First, looking at the graph of 500 buckets, we can see
that three of the data sets (Baby Names, Common Words
and IP Addresses) have quite similar results with collisions
averaging around 300, and staying within a range of 15 either
side of this. Note, this corresponds well with our predicted
number of around 297 buckets seeing collisions. However,
the Bias data set shows a lower number of colliding buckets,
especially when combined with the DJBX33A hash function.
A similar, but even more pronounced, pattern is apparent when
we distribute the hash outputs among 512 buckets. However,
when we use a prime number, 499, all data sets performed
equally well.

While one might expect a lower number of collisions to
be a good thing, it needs to be considered in conjunction
with the number of buckets that have been left empty; see
Figure 2. The majority of the results cluster around 65 empty
buckets, again corresponding well with our predicted number
of empty buckets. As before, the Bias data set again shows
some significant outliers. Again, using 499 buckets produces
the most consistent output.

B. Distribution

As described in Section III-B, we used the chi-squared test
to measure the distribution of our functions within the hash
tables. In Figure 3, the distribution is assessed by the chi-
squared p-value, which can be thought of as the probability of
obtaining a chi-squared value as large as observed if the null
hypothesis were true, i.e. the probability of obtaining these
results assuming the assignments to buckets were uniform.

As p-values are a probability, values will be between zero
and one. A high probability is supportive of the null hypoth-
esis, which is that the output follows a uniform distribution.

We can see that there is far more variation in results than
observed for Collisions and Empty Buckets. However, the
Bias data set continues to cause most of the problems. For
example, we see zero p-values for each of FNV-1a, FNV-1 and
DJBX33A when combined with either 500 or 512 buckets.

If we omit the Bias data set from our results and look at
the distribution of the remaining p-values, we find that they
are distributed as expected. Thus, we fail to reject the null
hypothesis for each of these data sets. However, we can safely
say that the outputs from the Bias data set do not appear to
be uniformly distributed.

C. Avalanche

Figure 4 shows the avalanche results for our hash functions.
Remember that this is based on changes to random inputs,
rather than a specific input data set. What is immediately
apparent is the excellent performance of Murmur2, especially
when compared to the poor performance of DJBX33A.

As briefly described in Section II-B, Murmur2 applies a
number of “mixing steps” (multiplication, XOR and shifts) to
the data before it is ever combined with the hash value. This
creates an input that appears more randomised, which ties in
with what the Avalanche criterion is trying to achieve. In fact,
if we were to remove the input mixing steps from the Murmur2
algorithm, its avalanche graph would look quite different: see
Figure 5. This opens the possibility of taking, say, our Bias
data set and applying the inverse of mixing to it, resulting in
a set of inputs that offer challenges to Murmur2.

V. DISCUSSION

A. Number of Buckets

As we mentioned, a long-standing question concerning non-
cryptographic hashes and hash tables is whether the table size
should be a prime number or a power-of-two. Supporters of the
prime number argument say that a prime number will ensure
better distribution, whereas those who prefer to use a power
of two argue for its greater speed and efficiency; the operation
mod 2x can be ignored and one would instead just deal with
the least significant x bits of the output.

Our graphs in Section IV-A and IV-B indicate that, for the
majority of input sets, the number of buckets is largely irrele-
vant to distribution and collision. However, for trickier inputs,
such as the Bias data set, the hashes all performed better when
combined with 499 buckets. But then we questioned: Is this

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 02,2025 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Number of Collisions Observed for 500, 499 and 512 buckets.

Fig. 2. Empty Buckets Observed for 500, 499 and 512 buckets.

Fig. 3. P-values for the χ2 test comparing the resulting distribution to uniform for 500, 499 and 512 buckets.

due to the fact that 499 is a prime number or, in fact, is it
simply that it is odd?

To check, we looked at an expanded sample set of all
numbers of buckets between 488 and 522. Using the FNV-
1a hash combined with the Bias data set, we examined the
number of empty buckets found, along with the p-values for
each. See Figure 6 for results.

The number of empty buckets (blue line, axis on right hand
side) bounces very regularly between a minimum of 60 and a
maximum of 271. The Poisson Model would suggest that the
number of empty buckets should range from 66 (for 488 total
buckets) to 75 (for 522 total buckets). In general, however,
when the number of buckets is an even number, only even-
numbered buckets are filled, meaning that half are left empty.
Therefore using an even number of buckets results in between
227 and 271 buckets being left empty, while an odd number
of buckets sees much better results of 60 to 81 empty buckets.

P-values (grey line, axis on left) tell a far more interesting
story. What is fascinating is that the highest p-values (i.e. the
most supportive of the null hypothesis of uniform distribution)
are observed when using 507 or 513 buckets, both of which are

composite numbers. Furthermore, two of the lowest p-values
are seen when using 499 and 509 buckets, both of which are
prime numbers!

Overall, the average p-value observed for prime numbers
(circled in red) in the sample was 0.38, while the average for
composite odd numbers was 0.42. Although we had wondered
if composite odd numbers might perform as well as primes,
we had not expected to see them outperform. Perhaps, after all
this time, the debate over prime number versus power-of-two
could be reduced to a simple even versus odd question.

B. Empty Buckets for DJBX33A

As the most obviously troubling / interesting result, let’s
take a look at the performance of DJBX33A when combined
with the Bias data set distributed among 512 buckets, to un-
derstand why the poor distrubution occurs. This combination
results in just 16 collisions, while there are 496 buckets left
empty. Therefore, all of the hash function outputs are being
mapped only to these 16 buckets, sending 62/63 results to each
and leaving gaps of 32 empty buckets between each filled one.

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 02,2025 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

FNV-1a FNV-1

Murmur2 DJBX33A

Fig. 4. Avalanche 32x32 matrix for each hash function.

Fig. 5. Murmur2 Avalanche with mixing step removed.

Fig. 6. Performance of FNV-1a using Bias data set across 488–522 Buckets.

What is causing this pattern? When we consider the me-
chanics of DJBX33A, the main operation is multiplication by
33. Multiplying a byte of input by 33 is the equivalent of
shifting it 5 places to the left, and adding the original byte
(33 in binary is 00100001). This means that the bottom 5 bits
are preserved through each run of the algorithm.

In the Bias data set, every byte of input is identical apart
from one. So everything below the shifted byte is simply the
addition of the final 5 bits of 999 fe’s and 1 ff for every
input line. Hence the bottom 5 bits will be identical for each
hash, which is why only every 32nd (or 25) bucket is filled.
This is an example of where a prime number of buckets would
improve performance dramatically. The lack of a common
denominator between 499 and 32 has meant that the pattern
is not maintained into the hash table distribution when using
499 buckets. Similarly, we can see that when 500 buckets
are used, we have 125 collisions combined with 375 empty
buckets: hitting every fourth bucket, as gcd(500,32) = 4.

C. Uniform Distribution of IP address Outputs

As an interesting side-note, note the consistently high p-
values achieved for the IP Addresses data set, particularly
when combined with FNV-1a, FNV-1 and DJBX33A. This
was an unexpected result and one which warranted further
exploration. When examining the data set more closely, we
noticed quite a high frequency of sequential inputs.

When examining these IP addresses, it became clear that
these accesses were, in fact, web crawlers, probably a cluster
of machines. Could this sequential nature of the input have
an impact on the hash output? Even without the example of

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 02,2025 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXAMPLE OF SEQUENTIAL INPUT LINES FROM IP ADDRESSES DATA SET.

IP Address FNV-1a Hash Murmur2 Hash

220.181.108.80 0xe49a38c6 0x162466a3
220.181.108.81 0xe59a3a59 0x8e1d95f7
220.181.108.82 0xe29a35a0 0x527f6193
220.181.108.83 0xe39a3733 0x845d8035
220.181.108.84 0xe89a3f12 0x5dc18a76
220.181.108.85 0xe99a40a5 0x04774fe3
220.181.108.86 0xe69a3bec 0xbc9bd96c
220.181.108.87 0xe79a3d7f 0x98c35aa7
220.181.108.88 0xec9a455e 0xffa835df
220.181.108.89 0xed9a46f1 0x2f46efde
220.181.108.90 0xea9a4238 0x10e3332b
220.181.108.91 0xeb9a43cb 0x8c6beb04
220.181.108.92 0xf09a4baa 0x0cfb95d6
220.181.108.93 0xf19a4d3d 0x1b446648
220.181.108.94 0xee9a4884 0xcf9bf437
220.181.108.95 0xef9a4a17 0xb95ebde4

web crawlers, the structure of IP addresses would mean that
it could indeed be common to have the higher bits repeating
regularly. These inputs would represent a real-world example
of where hash functions need to deal with inputs differing by
only a small number of bits.

Assuming FNV-1a, the intermediate hash value at each step
can be described as follows:

hi+1 = (hi ∧ bi) ∗ p

where h = intermediate hash value, bi = the ith byte and
p = FNV Prime. The operations are XOR (∧) and integer
multiplication modulo 232 (∗). Following the four steps, the
final hash output, h4 can be represented as

h4 = (h3 ∧ b4) ∗ p

Each of these operations are invertible, hence we can say that

h3 = (h4 ∗ p−1) ∧ b4

We know from set theory that a function is invertible iff it
is bijective, and if a function f is a bijection f : X → Y ,
then for each element of X there is exactly one element of
Y . Considering that the initialisation vector and the first three
input bytes were all identical, then h3 (as the intermediate hash
value following the input of the 3rd byte) will show identical
output for each line.

If we know that h3 is identical for each line, the only way
that h4 could also be identical is if b4, the fourth input byte,
was non-distinct. As we know that each of b4 are distinct,
each h4 as the final hash output must be too. Additionally,
the sequential pattern of the input is not well dispersed by
the FNV-1a hash. In each sequence, input lines ending in odd
numbers correspond to hash outputs ending in odd numbers.
Hence, as each sequence switches between even and odd on
each line, the output does too, hence improving distribution.

D. Murmur2, Avalanche and Background Literature

In Figure 4 we clearly saw that Murmur2 has superior
avalanche properties compared to the other hashes that we
considered. However, is it interesting that there was no clear
indication in our earlier tests of a notably stronger performance
either in terms of collisions or distribution. In fact, there is very
little to choose between any of our functions when distribution
and collisions are measured using the more “real life” data sets
(i.e. excluding Bias). Why, therefore, do the avalanche results
paint such a different picture?

If we know that the Avalanche criterion is targeting ran-
domisation, is it actually a relevant metric when considered in
terms of hash tables and other non-cryptographic uses? The
importance of a good avalanche effect is more obvious for
cryptographic hash functions. As an example, refer to Table I
showing the hash outputs of some of the sequential input lines
from the IP Addresses data set. The repeating patterns in the
FNV-1a hash would make it relatively easy for an attacker to
gain some knowledge of the input, whereas the Murmur2 hash
outputs are much more random and so potentially relatively
more secure.

However, the similarity of performance when measuring
distribution and collisions caused us to question if avalanche
is actually a good indicator of high quality non-cryptographic
hash functions, or has it migrated from the cryptographic
world, and just been generally accepted without critical assess-
ment? We reviewed the literature to find where the Avalanche
criterion for non-cryptographic hashes may have originated.

1) The paper “Novel Non-cryptographic Hash Functions
for Networking and Security Applications on FPGA”
[11] states that “Non-cryptographic hashes for applica-
tions such as Bloom filters, hash tables, and sketches must
be fast, uniformly distributed and must have excellent
avalanche properties” They cite two papers in support of
this ([12] & [13]) but, strangely, neither paper actually
mentions “avalanche”.

2) In the paper “Performance of the most common non-
cryptographic hash functions” [7], the authors state that
“According to the hashing literature, the most important
quality criteria for NCHF are collision resistance, distri-
bution of outputs, avalanche effect, and speed”. They go
on to say that: “Avalanche effect....is very important for
NCHF. A hash with a good avalanche level can dissipate
the statistical patterns of the inputs into larger structures
of the output, thus generating high levels of disorder and
preventing clustering problems.”
There are three sources cited for the latter statement.

a) The first source is a book self-published by Val-
loud: “Hashing in Smalltalk: Theory and Practice”
[14], which discusses in detail the process used
to assess various hash functions for use in the
Smalltalk language. Valloud says the following in
relation to Avalanche. “Although the avalanche test
is quite popular, note that . . . it says nothing of the
distribution of the actual hash values. In particular,

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 02,2025 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

it is quite possible to construct hash functions of
horrific quality that nevertheless effortlessly achieve
general avalanche” and “This leads to an extremely
important conclusion: employing a scheme which
produces seemingly random bits does not necessar-
ily imply nor guarantee that such output will be of
good quality when used as hash values”

b) The second source referenced is a paper called
“Empirical Evaluation of Hash Functions for Mul-
tipoint Measurements” [15]. While this paper does
emphasise the importance of a good avalanche
effect, the paper itself is attempting to find which
hash functions are specifically suitable for hash-
based packet selection.

c) The third source, “Hashing Concepts and the
Java Programming Language” [16], does state
that “Two criteria weed out most candidates for a
satisfactory Java language library hash function” .
The first of these is given as “Adequate mixing
test: The algorithm must guarantee that a change in
any single bit of a key should result in an equally
probable change to every bit of the hash value”.
This is clearly the Avalanche criterion, but possibly
before it is commonly called such. However, the
author then goes on to make an important dis-
tinction and again comes back to a search for a
randomised result: “A proposal for hash search
was described by Hans Peter Luhn in an IBM
technical memorandum in 1953. What he wanted
was a function that would deliberately abuse keys
producing practically the equivalent of the math-
ematical concept of uniformly distributed random
variables. Luhn’s goal for producing uniform ran-
doms is one approach, but often in computer science
the goal of getting a completely even distribution
has been substituted for it. The change in goal is
significant and leads to two completely different
lines of research both of which are commonly called
‘hashing’. Creating even distributions can only be
done by considering the structure of the keys, so the
method can never be ‘general’. However creating
random uniform distributions can be done without
respect to the structure of the key, and so it can be
provided as a standard part of a language library.
The word ‘hashing’, as used in this paper, refers
only to the goal of producing a uniform random
distribution of a key set.”
This presents a very interesting view, albeit one
from 1996. It differentiates clearly between two
separate aims that can be achieved by hashing:
creating a randomised output, or a well distributed
output for a set of keys. Again, avalanche is vital
only for those in search of a random result.

3) In the third paper we found, entitled “An Enhanced
Non-Cryptographic Hash Function” [17], it says that

“The most essential features of non-cryptographic hash
functions is its % distribution, number of collisions,
performance, % avalanche and quality.” and that “The
criteria for optimization is based on the assertion that,
with hash functions, there should be equal probability
with the generation of each output and a little change in
inputs, must result in a huge change in outputs.” The
paper referenced in support of this [18] is written by the
same authors as of “Performance of the most common
non-cryptographic hash functions” referenced in point
2 above, with the same supporting sources.

Another early reference (1996) to avalanche is “Applied
Cryptography” by Bruce Schneier [19]. These early references
to avalanche for cryptographic purposes seem to describe
a slightly different effect to what we understand today for
non-cryptographic hash functions. Here, when describing the
DES (Data Encryption Standard) system, Schneier referencing
DES’s “expansion permutation” says that it “expands the right
half of the data, Ri from 32 bits to 48 bits”. The cryptographic
benefit of this is described as follows: “By allowing one bit
to affect two substitutions, the dependency of the output bits on
the input bits spreads faster. This is called an avalanche effect.
DES is designed to reach the condition of having every bit of
the ciphertext depend on every bit of the plaintext and every bit
of the key as quickly as possible”

Based on the above sample of evidence, it would seem
that avalanche is an important criterion, but perhaps only
for hashing which specifically targets randomisation rather
than distribution. The references that are cited in support of
avalanche being an important metric for non-cryptographic
hash analysis actually either state the opposite (such as Val-
loud’s book [14]) or only apply to specific requirements (e.g.
Robert Uzgalis’ paper [16])

VI. CONCLUSION

In conclusion, we can say that, for the majority of “real
world” data sets, the distribution and collision performance of
all four hash functions tested are perfectly acceptable. When
a difficult data set, such as the Bias set, is introduced, then
considerations such as number of buckets become important:
a prime, or indeed an odd, number of buckets is needed to
break the patterns of the input data. Indeed, when combining
the Bias data set with the FNV-1a hash function, we found that
an odd number of buckets actually produced better distribution
patterns than a prime number, for a small sample size of
buckets.

Of most interest, however, was the fact that the avalanche
performance of the various hash functions seemed to have little
relation to their collision resistance or distribution. Murmur2’s
excellent avalanche graph compared to the poor performance
of DJBX33A on page 5 does not translate into better dis-
tribution in a hash table, which is one of the main uses of
non-cryptographic hash functions. This led us to ask if perhaps
avalanche is not the correct metric to measure when evaluating
non-cryptographic functions. We researched papers which had

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 02,2025 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

supported its use, but found quite a contrasting and more
nuanced message within these references.

REFERENCES

[1] L. C. Noll, “FNV hash,” http://www.isthe.com/chongo/tech/comp/fnv/.
[2] G. Fowler, L. C. Noll, K.-P. Vo, Donald E. Eastlake 3rd, and T. Hansen,

“The FNV non-cryptographic hash algorithm,” https://datatracker.ietf.
org/doc/draft-eastlake-fnv/.

[3] C. Torek and D. Bernstein, “Open conversation on comp.lang.c be-
tween Chris Torek and Dan Bernstein among others.” https://groups.
google.com/g/comp.lang.c/c/lSKWXiuNOAk, 1991, contributions from
C. Torek on 18 Jun 1991 and 21 Jun 1991 with D. Bernstein on 25 Jun
1991.

[4] A. Appleby, “MurmurHash source code for the (slower) endian-neutral
implementation,” https://github.com/aappleby/smhasher/blob/master/src/
MurmurHash2.cpp, 2015.

[5] D. Knuth, The Art of Computer Programming. Addison-Wesley, 1998,
ch. 6.4: Hashing.

[6] “Use fast data algorithms,” https://jolynch.github.io/posts/use fast data
algorithms/, 2021.

[7] C. Estébanez Tascón, Y. Sáez Achaerandio, G. Recio,
and P. Isasi, “Performance of the most common non-
cryptographic hash functions,” https://e-archivo.uc3m.es/bitstream/
handle/10016/30764/performance JSPE 2014 ps.pdf;jsessionid=
1D3EDF84B573A8BD2594268650E9B223?sequence=2, 2014.

[8] C. Hayes, “Non-Cryptographic Hash Functions: Focus on FNV,”
https://mural.maynoothuniversity.ie/18141/1/Final%20thesis%
20submission%20to%20examination%20office%20Jan%202024.pdf,
2023.

[9] M. Mitzenmacher and E. Upfal, Probability and Computing. Cambridge
University Press, 2017, ch. 5.3 The Poisson Distribution.

[10] B. Mulvey, “The Pluto Scarab,” https://web.archive.org/web/
20230603152138/https://papa.bretmulvey.com/post/124027987928/
hash-functions.

[11] T. Claesen, A. Sateesan, J. Vliegen, and N. Mentens, “Novel
non-cryptographic hash functions for networking and security ap-
plications on FPGA,” https://www.esat.kuleuven.be/cosic/publications/
article-3374.pdf, 2021.

[12] Burton H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” https://dl.acm.org/doi/pdf/10.1145/362686.362692, 1970.

[13] Graham Cormode and S.Muthukrishnan, “An improved data stream sum-
mary: The count-min sketch and its applications,” https://dsf.berkeley.
edu/cs286/papers/countmin-latin2004.pdf, 2005.

[14] A. Valloud, “Hashing in Smalltalk: Theory and practice,” self-published
(www.lulu.com), 2008.

[15] C. Henke, C. Schmoll, and T. Zseby, “Empirical evaluation of hash
functions for multipoint measurements,” http://ccr.sigcomm.org/online/
files/p41-v38n3i-henkeA.pdf, 2008.

[16] R. Uzgalis, “Hashing concepts and the Java programming language,”
http://www.serve.net/buz/hash.adt/java.000.html, 1996.

[17] V. Akoto-Adjepong, M. Asante, and S. Okyere-Gyamfi, “An enhanced
non-cryptographic hash function,” https://www.ijcaonline.org/archives/
volume176/number15/akotoadjepong-2020-ijca-920014.pdf, 2020.

[18] C. ESTEBANEZ, Y. SAEZ, G. RECIO, and P. ISASI, “Auto-
matic design of noncryptographic hash functions using genetic
programming,” https://e-archivo.uc3m.es/bitstream/handle/10016/30762/
automatic CI 2014 ps.pdf, 2014.

[19] B. Schneier, Applied Cryptography, Second Edition: Protocols, Algo-
rthms, and Source Code in C. John Wiley and Sons, Inc, 1996, ch.
12.2 Description of DES.

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 02,2025 at 10:01:11 UTC from IEEE Xplore. Restrictions apply.

