
2024 10th International Conference on Control, Instrumentation and Automation (ICCIA) 

979-8-3315-0997-2/24/$31.00 ©2024 IEEE

Trajectory Tracking of Tractor-Trailer Wheeled Mobile 
Robots via Dynamic Feedback Linearization in 

Forward and Backward Motion 

Mohammad Olyai 

Advanced Service Robots (ASR) Laboratory, Department of 

Mechatronics Eng., School of Intelligent Systems Engineering, 

College of Interdisciplinary Science and Technology,  

University of Tehran 

Tehran, Iran 
m.olyai@ut.ac.ir

Bahram Tarvirdizadeh 

Advanced Service Robots (ASR) Laboratory, Department of 

Mechatronics Eng., School of Intelligent Systems Engineering, 

College of Interdisciplinary Science and Technology,  

University of Tehran 

Tehran, Iran 
bahram@ut.ac.ir  

Khalil Alipour 

Advanced Service Robots (ASR) Laboratory, Department of 

Mechatronics Eng., School of Intelligent Systems Engineering, 

College of Interdisciplinary Science and Technology,  

University of Tehran 

Tehran, Iran 
k.alipour@ut.ac.ir

Majid Sorouri 

Department of Electronic Engineering, Maynooth University, 

Maynooth, Co. Kildare, Ireland  

majidsorouri@gmail.com   
Department of Computer and Mechatronics Engineering, Science 

and Research Branch, Islamic Azad University, 

Tehran, Iran
majidsorouri@srbiau.ac.ir  

Mohammad Ghamari 

Electrical Engineering Department, 
California Polytechnic State University, 

San Luis Obispo, CA 93407, USA 
mghamari@calpoly.edu  

Abstract— One type of wheeled mobile robot widely used in 

public transportation and for carrying high payloads is the 

tractor-trailer wheeled robots (TTWRs). This study considers a 

differentially-driven tractor under pure rolling conditions, which 

is subject to nonholonomic constraints. Controlling a TTWR in 

both backward and forward motion is challenging due to inherent 

instability. To address this issue and achieve trajectory tracking 

control for these systems, this paper employs dynamic feedback 

linearization (DFL) to overcome the limitations of static feedback 

linearization (SFL). The system's response will be examined 

under various trajectories and initial conditions for both forward 

and backward motion. 

Keywords— Backward Motion – Dynamic Feedback 

Linearization – Tractor-Trailer – Trajectory Tracking – Wheeled 
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I. INTRODUCTION

Wheeled mobile robots are increasingly popular in industry 
due to their versatility. To enhance their payload capacity, a 
trailer is often attached to the primary motorized robot, known 
as the tractor [1]. Most research on TTWRs focuses on forward 
motion and motion planning, while studies on control, 
especially during backward motion, are limited. There is a need 
to explore and develop simple, effective, and practical methods 
for controlling these systems in backward movement. 

In academic discussions, three categories of N-trailers with 
fixed axles are identified. The first category, known as Standard 
N-Trailers (SNT), includes those with joints positioned directly
on the previous wheel-axles. The second category, called non-
Standard N-Trailers (nSNT), comprises those with joints
located off the previous wheel-axles. Lastly, the third category,
General N-Trailers (GNT), features a mix of on-axle and off-
axle hitches [2].

Most research on controlling TTWRs relies on the 
kinematic model of these systems. In [3], a full-state trajectory 
tracking controller is proposed to control a tractor-trailer system 
for the trajectory tracking problem. This controller, based on 
Lyapunov methods, is capable of following desired paths in 
both forward and backward motion. The study assumes non-
slip conditions for the wheels and uses a kinematic model for 
the control algorithm design. In [4], a robust adaptive controller 
is designed for a TTWR, using the kinematic model and non-
slip conditions to handle uncertainties and disturbances. In [5], 
a car-like robot is controlled with both SFL and DFL, though 
there is no mention of backward motion.  

In [6], a TTWR is considered with non-slip and non-holonomic 
constraints, and it is able to follow a path despite uncertainties 
using a Lyapunov-based controller combined with a neural 
network. In[7], a TTWR is controlled using the backstepping 
algorithm while considering wheel slip conditions. In [8],  a 
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robust Lyapunov-based controller is designed to estimate wheel 
slip and can control TTWRs in both backward and forward 
motion. Although this controller performs commendably, it is 
not based on the dynamic model of the TTWR. 

In [9], the dynamics modeling of a TTWR takes wheel slip 
into account, and a controller using the SFL control algorithm 
is developed to follow a desired path in forward motion. 
However, this study is unable to control the robot in backward 
motion and is unstable. 

The DFL method was applied to a wheeled mobile robot in 
[10], , where the researchers demonstrated that DFL eliminates 
internal dynamics, allowing for full-state linearization.  

The identified research gap reveals that DFL has yet to be 
applied to a TTWR. Previous studies highlight the challenges 
of controlling a TTWR in reverse motion due to its internal 
dynamics [11]. In this paper, we first provide a detailed system 
description of the TTWR, followed by its kinematic modeling. 
By selecting an appropriate output, we apply the DFL method. 
In the simulation section, we compare our proposed control 
method with two pivotal studies on trajectory tracking for a 
TTWR. 

II. SYSTEM DESCRIPTION

A. System Description

The wheeled mobile robot in this study consists of a
differentially-driven wheeled platform, called the tractor, and a 
passive wheeled platform, named the trailer. The system 
considered in this study features off-axle hitching. The tractor 
and trailer are connected with an inactive pin at point ��, which
is at the midpoint of the two active wheels of the tractor. 
Additionally, point �� is at the midpoint of the two passive
wheels of the trailer.  

In Fig. 1, the configuration of the tractor trailer system is 
described by � � ��, 	, 
�, 
��� in which 
�, 	� is the
coordinate vector of point ��. The orientation of the tractor with
respect to the inertial frame is shown by 
� and 
�, respectively
[12].  

B. Kinematics Modeling

The tractor-trailer system is subject to � nonholonomic
constraints, which in Pfaffian form are written as 

�
���� � �sin 
� � cos 
� �� cos

� � 
�� 0sin 
� � cos 
� 0 0� �� � 0
 (1) 

Kinematic equations of the mobile robot can be written as 

�� 
�� � �
��� (2) 

where � � 
��, � �� with �� being the linear velocity of
trailer at point �� and �  being the angular velocity of the
tractor. The matrix !
"� can be written as follows

�
��� � #cos 
� sin 
� �$ tan

� � 
�� 00 0 0 1( (3) 

Figure 1. Schematic illustration of a tractor trailer wheeled mobile 

robot 

The state equations can be derived as 

�� � )����� ��*��+, � ) ��	�
��
��, � ⎣⎢
⎢⎡ cos 
� 0sin 
� 0�$ tan

� � 
�� 00 1⎦⎥

⎥⎤ 3456 (4) 

It can be seen from (4) that there is a model singularity 

when 
� � 
� � 7 , which indicated that the tractor and trailer

would become jammed. This situation should be avoided. 

III. DYNAMIC FEEDBACK LINEARIZATION

In static feedback linearization, the outputs should be 
chosen such that their derivatives reveal all the inputs and the 
decoupling matrix is full rank. To ensure that all inputs appear 
for a tractor-trailer system, a look-ahead point is used for the 
outputs. In contrast, with dynamic feedback linearization, the 
outputs can be selected more flexibly by redefining the inputs. 
In this method, the first derivative of the outputs is computed. 
If all inputs are not present, the inputs that do appear are 
redefined as new states. The second derivative is then 
calculated, and this process continues until the decoupling 
matrix achieves full rank. This approach is also referred to as 
dynamic extension, as it extends the states by incorporating the 
inputs. Additionally, it is known as input redefinition [13]. 

For the tractor trailer system, DFL is applied by defining the 
outputs as follows 

8 � 3�	6 (5) 

Taking the first derivative of the outputs gives 

8� � ���	� � � �:� 0;� 0� 3456 (6) 

:�  denotes cos 
� and ;� denotes sin 
�.
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It is evident that the decoupling matrix is rank-deficient and 5 can not be derived from the equations. By considering input4 as a new state and adding it to the set of states, the second
derivative of the outputs is then taken. 

@� � 4, @�� � 4′ (7) 

8B � ��B	B � � C + E 34F56 � ��s�4
��:�4
�� � + �:� 0;� 0� 34F56 (8)

Clearly, the decoupling matrix E is rank-deficient, so 4F is
added to states.  

@ � 4F , @� � 4FF (9) 

Taking third derivative of 8 gives

8⃛ � ��⃛	⃛� � 3H�H 6 + I 34FF5 6 � 3J�J 6 (10) 

In which 

H� � � �$ K
�
��� sec 

� � 
�� 4 + tan

� �
�� 4FM;�4 � 
�� :�4 � 2
��;�4F (11) 

H � � �$ K
�
��� sec 

� � 
�� 4 + tan

� �
�� 4FM:�4 � 
�� ;�4 + 2
��:�4F (12) 

The decoupling matrix is written as 

O � P:� � �$ ;�4 sec 

� � 
��;� �$ :�4 sec 

� � 
�� Q, (13) 

And the determinant of decoupling matrix D is calculated 
as 

det
O� � ST$ UVW
XYZX[� (14) 

The matrix D is singular when 4 � 0 or 
� � 
� � 7 . By

avoiding these conditions, the new inputs can be calculated as 

34FF5 6 � # :�
J� � H�� + ;�
J � H �� �ST � :�� K;�
H� � ��� � :�
H � � �M(  (15)

In which J� and J  are the auxiliary inputs and are calculated
as 

3J�J 6 � �\�
�] � �� + \ 
��] � ��� + \*
�B] � �B� + �⃛]\+
	] � 	� + \^
	�] � 	�� + \_
	B] � 	B� + 	⃛] � (16)

It should be noticed, as in (14), 4 ≠ 0. By choosing a proper
initial condition for 4, the robot will move either backward or
forward. 

a4
0� > 0, cdJefJg hdijdk 4
0� < 0, Ef:\efJg hdijdk (17) 

The stability analysis of the proposed method is presented 
below. 

In the dynamic feedback linearization method, the original 
system has four states, and the dynamic controller introduces 
two additional states. Consequently, the sum of the relative 
degrees of the outputs matches the state space dimension, 
eliminating any internal dynamics. This results in a control law 
that achieves full-state linearization. 

The diffeomorphism m
�� is considered as below.

n � m
�� �
⎣⎢⎢
⎢⎢⎡
n�n n*n+n^n_⎦⎥⎥

⎥⎥⎤ �
⎣⎢⎢
⎢⎢⎢
⎡ℎ�ℎ��ℎB�ℎℎ�ℎB ⎦⎥⎥

⎥⎥⎥
⎤

�
⎣⎢⎢
⎢⎢⎡
����B		�	B ⎦⎥⎥

⎥⎥⎤ �
⎣⎢⎢
⎢⎢⎢
⎢⎡ �:�4� 1� ifk

� � 
�� ;�4 + :�4F 	;�41� ifk

� � 
�� :�4 + ;�4F ⎦⎥⎥

⎥⎥⎥
⎥⎤

(18) 

To verify that m
�� is a diffeomorphism we calculate its
Jacobian and observe that it has full rank. This confirms that m
�� is indeed a diffeomorphism. Additionally, since no extra
states need to be added, there are no internal dynamics, 
ensuring the system's dynamics remain intact. 

For the stability proof, the third derivative of the outputs 
are calculated as follows. �⃛ � \�
�] � �� + \ 
��] � ��� + \*
�B] � �B� + �⃛]	⃛ � \+
	] � 	� + \^
	�] � 	�� + \_
	B] � 	B� + 	⃛]

Obviously 

p⃛� + \*pB� + \ p�� + \�p� � 0 (19) 

p⃛ + \_pB + \^p� + \+p � 0 (20) 

By choosing appropriate \q > 0 , j � 1, … ,6 such that
(19) and (20) are Hurwitz, the system can achieve exponential
stability for any initial state. This topic is discussed extensively
in [13] within the feedback linearization section.

IV. SIMULATION AND RESULTS

In this section, the proposed controller is applied to the 
tractor-trailer system, and the results will be discussed. 

The configuration of the tractor-trailer system considered in 
this paper is given in table 1. 

Table 1- Robot Configuration 

Parameters Nominal Values � 0.41 �J 0.05 �5 0.135 �
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A sinusoidal reference is defined as 

a�]
i� � 0.1i 
��	]
i� � 2 sin
0.05i� 
�� (21) 

Backward motion is desired. The initial conditions are as 

"
0� � x�0.2 0.1 y 2z 1.2217 �0.5 0| (22)

The chosen \q values are�\� \ \* \+ \^ \_� � �100 40 32 100 80 40�
In Fig. 2, the robot successfully follows the reference 

trajectory. The magnitude of the inputs is limited, with the 
maximum linear velocity being 0.5 m/s and the maximum 
rotational velocity of the tractor being 5.76 rad/s. To achieve 
these limits, a saturated velocity is considered.  

Figure 2. Trajectory tracking of the proposed controller for a 

sinusoidal trajectory in backward motion 

The mean of error p~ is  2.2509 × 10Z+ and the mean of
error p� is �2.7266 × 10Z+ for this trajectory.

Figure 3. Errors for the sinusoidal trajectory in backward motion 

Simulations for two trajectories are presented and compared 
with the controllers from [3] and [4]. The results demonstrate 
that the proposed controller outperforms both the Coordinate-
Change Lyapunov-based Controller (CCLC) controller from 
[3] and the robust adaptive feedback linearizing dynamic
controller (RAFLD) controller from [4]. The proposed
controller in this study is named dynamic feedback linearizing
controller (DFLC).

Figure 4. Control input signals for the sinusoidal trajectory in 

backward motion 

The reference trajectory in [3] is defined as 

��]
i� � 0.02 �30 + cos �7� ��� cos � 7�� �� 
�� 	]
i� � �0.02 �30 + sin �7� ��� sin � 7�� �� 
�� (23) 

The proposed controller performs excellently in both 
backward and forward motion, showing better results than the 
two previous studies. 

The initial conditions for forward motion are 

"
0� � ��0.8901 0.6243 0.0042 0.6612 0.2 0� (24) 

These initial conditions are described as challenging in [3]. 
The controller in [4] cannot successfully track the trajectory 
under these conditions. However, the proposed controller in this 
study successfully follows the trajectory, with the error 
decreasing to zero more effectively and quickly than the 
controller in [3]. Although the DFLC relies on exact 
cancellation, its ability to stabilize the system exponentially for 
any initial condition allows it to outperform the two Lyapunov-
based controllers, which are not globally stable or effective 
under all conditions. 

The chosen \q values are�\� \ \* \+ \^ \_�� �250 800 700 600 500 750�
In Fig. 5, it is evident that the DFLC successfully follows 

trajectory B, outperforming the CCLC. In contrast, the RAFLD 
controller fails to follow the trajectory. The DFLC 
demonstrates a quicker response and better adherence to the 
trajectory compared to the CCLC. 

The initial conditions for backward motion are: 

"
0� � ��0.8901 0.6243 0.0042 0.6612 �0.2 0�  (25) 

The chosen \q values are the same as for the forward
motion. 

In Fig. 8, trajectory B in backward motion is successfully 
followed. Although backward motion is not typically addressed 
in the literature, the comparison with the CCLC and RAFLD 
controllers in forward motion highlights the DFLC's 
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effectiveness in this context. Despite the inherent challenges of 
backward motion, the DFLC demonstrates superior 
performance compared to the other two controllers. 

Figure 5 Performance of three controllers for trajectory tracking in 

forward motion 

Figure 6. Error plots in forward motion 

Figure 7. Control input signals in forward motion 

Figure 8. Trajectory tracking in backward motion 

Figure 9. Error plots in backward motion 

Figure 10. Control input signals in backward motion 

The proposed controller performs excellently in both 
backward and forward motion, showing better results than the 
two previous studies. In table 2 and 3, the mean errors for the 
three controllers are written for forward and backward motion.  

Table 2- The mean erros of the controllers in backward motion 

Controller �pfk
p~� �pfk
p��
DFLC -0.0188 0.0032 

CCLC [3] 0.0383 -0.0844

RAFL [4] 0.2156 -0.0668

Table 3- The mean erros of the controllers in forward motion 

Controller �pfk
p~� �pfk
p��
DFLC -0.026 0.0019 

CCLC [3] 0.0383 -0.0844

RAFL [4] 0.2156 -0.0668

The proposed controller remains effective even with 
modeling errors in the system dynamics. When parameters 

such as � and J are perturbed by 10%, the mean error p~ in
forward motion changes slightly from -0.0188 to -0.0189, 

while the mean error p� stays at 0.0032. This indicates that the

proposed controller is robust to perturbations in the system 
modeling. 
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V. CONCLUSION

In this study, we propose a controller for the trajectory 
tracking problem of a tractor-trailer system using the Dynamic 
Feedback Linearization (DFL) method. The kinematic model of 
the system is derived under the assumption of pure rolling 
conditions, allowing the DFL method to be applied effectively. 
It is shown that this controller can follow any reference 
trajectory in both backward and forward motion, as DFL, unlike 
Static Feedback Linearization (SFL), lacks internal dynamics 
and stabilizes the system in both directions. Simulations for two 
trajectories are presented, demonstrating that the proposed 
controller outperforms existing controllers from previous 
studies. However, there are drawbacks: determining 
appropriate gain values can be challenging and must be done 
for each trajectory. Additionally, this method cannot prevent 
jack-knife incidents, and it operates offline, requiring 
enhancements for online situations. The current study considers 
only pure rolling conditions based on kinematics, leaving room 
for future research to explore dynamics, including wheel slip in 
backward motion. Integrating neural networks or reinforcement 
learning could also provide solutions to mitigate jack-knife 
risks.  
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