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Abstract. We establish the existence and uniqueness of radially symmetric self-dual topological 
vortices in the p = 2 members of the hierarchies of (generalised) C h e m - S i r r ~  ltiggs and Abelian 
Higgs models. We also obtain all possible symmetric nontopological vortices ,-in the Chem-Simons 
model characterised by an additional parameter governing the decay rates of the fields. 
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1. I n t r o d u c t i o n  

Vortices of the Abelian Higgs model [1] play an important role in various areas 
of physics and their mathematical analysis has attracted considerable interest. 
These vortices are finite energy and topologically stable solutions of the static 
Hamiltonian in 2 Euclidean dimensions, pertaining to the Abelian Higgs model 
in (2 + 1)-dimensional Minkowski space. More recently, it was discovered [2] 
that a particular U(1) Higgs model in which the Maxwell term was replaced by 
the Chern-Simons (CS) term, also had vortex solutions. In addition to having a 
different kinetic term, the CS Higgs model [2] differs from tt~ former [ 1 ] also in that 
it has a different potential term - the usual quartic symmetry-breaking Higgs self- 
interaction potential of the Abelian Higgs model is replaced by a sextic symmetry 
breaking potential. As a consequence, the CS Higgs model has, in addition to 
topolagically stable vortex solutions, another category of solutions for which the 
magnitude of the Higgs field vanishes at infinity. The latter are the nontopological 
vortices I3]. 

One of  the most important features of the Abelian and CS Higgs vortices 
is that they can be self-dual, namely that the energies are minimised absolute- 
ly by a set of  first-order Bogomol'nyi equations which saturate the corresponding 
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topological inequalities. In both models [1, 2], this saturation is possible only when 
the dimensionless coupling strength A of the respective Higgs self-interaction 
potential equals one. In these cases, the stress tensor vanishes identically and there 
can be no forces between such vortices. In turn, one of the most important features 
of self-dual vortices is that when ,~ is not equal to one, there is a force between 
the vortices of the Abelian Higgs model which is attractive or repulsive according 
to whether ,~ is smaller or greater than one, respectively [4]. It is expected that 
a similar situation holds qualitatively for the CS Higgs vortices also. Thus the 
self-dual vortices demarcate the attractive and repulsive vortices. This is a very 
important physical property. 

The vortices of both U(1) models [1, 2] are exponentially localised to an 
absolute scale, namely the asymptotic (vacuum) value of the magnitude of the 
Higgs field at infinity. The detailed properties of these vortices depend on the 
specific dynamics of the model in question. While the choice of the symmetry- 
breaking Higgs self-interaction potential in each case [1, 2] is determined by 
the requirement of topological stability, it is possible to add other positive definite 
terms to the system without invalidating the corresponding topological inequalities. 
Candidates for such terms are additional potential terms satisfying the same vacuum 
conditions and Skyrme-like kinetic terms involving higher derivatives of both the 
U(1 ) and the Higgs fields. The latter must satisfy the condition that no higher power 
than the square of the 'velocity' is featured, which means that these Skyrme-like 
terms must be the squares of some totally anti-symmetric forms, which in two 
dimensions means that the only acceptable Skyrme term is the quartic kinetic 
term. Such a modification of the respective models [1, 2] will result in a certain 
quantitative difference in the detailed properties of the vortices, and is interesting 
for this reason. If performed in an arbitrary manner, this procedure will lead to 
systems for which it is not possible to saturate the topological inequalities and 
find noninteracting self-dual vortices. Vortices of such models are not expected to 
be endowed with attractive and repulsive phases and, hence, are of little physical 
interest. Besides this, an arbitrary modification of the CS Higgs model would 
sacrifice the necessary topological inequalities as a consequence of solving the 
Gauss law constraint in this case. 

The problems of modifying the two U(1) Higgs models, with Maxwell [1] 
and CS [2] dynamics, respectively, with appropriate Skyrme terms so that the 
generalised models have topologically stable and self-dual vortex solutions, were 
solved in [6] and in [5], respectively. We refer to these as generalised Abelian Higgs 
and the generalised CS Higgs models, respectively. In [5] and [6], no analytic proof 
for the existence of the radially symmetric solutions discussed there was given. 
This is the aim of the present Letter, with which we proceed below. 
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2. F o r m u l a t i o n  of  the P rob l em 

Recall that the generalised self-dual Chern-Simons Higgs equations obtained in 
[5] are 

(1 -1012)F12 = i (DI~[D2~5]*  - [ D 1 ~ 5 ] * ] ) 2 ~  ) § 1,~2(1 -1~512)21v512, 
(1) 

Dlq5 = iD2q5 , 

where 

D00 = 0 j 4  + i A j r  and Fak = OaAk - O~A a. 

We are to look for an N-vor tex  solution of  (1) so that, counting algebraic multi- 
plicities, ~ has N zeros, say P l , . . . ,  PN. 

Using the second equation in (1), we see that the first equation in (1) takes the 
form 

(1 - IOl2)FI2 § ]DlqSI 2 + ID20I 2 = I,\2( 1 - ]qsl2)Rl~bl 2. (2) 

On the other hand, with the notation 

0 = 1(01 -- i02), A = A1 + iA2, 

we can rewrite the second equation in (1) as 

2 i 0 4 = A * q 5  or A* = 2 i 0 1 n 6 .  (3) 

Therefore 

Fl2 = - i ( 0 A  - O'A*)  

= - 2 ( 0 0 "  lnoS* + 0*01ngi) 

= - 2 0 0 "  In I 12 = -�89 In Iq>l 2 

Inserting this result into (2), we obtain 

- ( 1  - 1012)~ In I~l 2 + 2( IDlq~l 2 + ID2~SI 2) = ,~2(1 - 10512)21~[ 2. (4) 

Next, we observe that, if ~ is represented locally as q5 = e ~+k~ where cr and co 
are real-valued functions, then, by (3), we have 

( 0 + 0 * ) 0 + i  i - 1 - 7 2 - - ) 0  Di(b = 

D20  = 

24~(0"o'), 

- o ' ) 0 +  i (  i(0 

-2i&0*~r. 

0*05* 

(5) 
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Let [r 2 = e u. From (5), we have 

[DIr  2 + 1D2r -- 4lr 2 -F [O*crl 2) 

1 u = ~ e [Vu[ 2. 

Substituting (6) into (4), we find 

N 

(1 - e ~ ) A u  - e~lVul 2 = -A2(1 - eU) 2 e ~ + 47r ~ 6p, 
j = l  

It is more convenient  to rewrite (7) as 

N 

A ( l + u - e U ) = - A 2 ( 1 - e U ) 2 e U + 4 7 r Z 6 p s  i n n  2. 
j = l  

It is easily checked that 
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(6) 

in II~ 2. (7) 

(8) 

w = q(u) = l + u - e  ~ (9) 

is a strictly increasing function on ( - o o ,  0] and the range of  q(.) is also ( - 0 %  0]. 
Denote by Q(w)  the inverse function of  q: ( - o o ,  0] -+ ( - c %  0]. Then Q(w)  
satisfies 

w = 1 + Q(w)  - e Q(w), - o o  < w <~ 0. (10) 

With w being defined in (9) or (10), we rewrite (8) as 

N 

A w  = - g ( w ) + 4 7 r ~ - - ~ 6 p j  in/R 2, (11) 
3----1 

where g(w) = A2(1  - e Q ( w ) )  2 e Q(w), w<~O. 
From (10), we have 

Q ' ( w ) = ( 1 - e Q ( ~ ' ) )  - ' ,  w < 0 .  

Hence 

g'(w) = A2(1 - 3eQ(w))eQ(~),  w < 0. (12) 

Consider now the left derivative of  g(w) at w = 0. Since Q(w) --+ O- as 
w -+ 0 - ,  Equation (10) gives us the asymptotic formula 

Q(w)  = x /2C(w)~-- -w for w < 0 small, (13) 

where C(w)  --, 1 as w ---+ 0 - .  Hence, by the definition o f g  and (12), 

lira g ( w ) _  _2A2 = lim g'(w). (14) 
w--~O- W w - - - + 0 -  
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This result allows us to extend the domain of definition of 9( ')  to a bounded 
C'-function (by this we mean both g and 9' are bounded) on entire ( - o o ,  oo) so 
that 

9(~v) = A2(1 - eQ(W))2eQ(W) forw~<0 and g'(0) = -2A 2. 

In the sequel, we will always assume that g already has such an extension. 

3. Proof  of Existence for the Reduced Equation 

From now on, we only consider radially symmetric solutions of(11) with P l , . . . ,  PN 
= the origin of p2. Thus (11) becomes, by a simple application of the removable 
singularity theorem (see [8]) and the L'H6pital rule, the following initial-value 
problem of an ordinary differential equation 

1 
w,.,. + - w r  = - 9 ( w ) ,  r > O, 

7" 

lim w(r)  _ lira rw, . (r )  = 2N. (15) 
,.--0+ In r r--+0+ 

We are in a position to quote a general result in [7]. 
Consider the second-order ordinary differential equation 

w "  § f ( t ) g ( w )  = O, -<x~ < t < oo, 

w( t ) = o4 + O( l ) a s t - - - , - o o .  
(16) 

The following are the basic hypotheses we are to make for (16) in order to 
obtain useful results in classical field theory. 

(HI) The functions f ,  9 E C'I(R) and 

.0 [ t f ( t ) ld t  < ec, 

sup{lg(w)l + < 

(H2) There hold the properties 

f ( t ) > O ,  t E ~ ;  g ( w ) > 0 ,  w < 0 ;  

l i m f ( t ) = ~ ;  g ( O ) =  O. 
t~c>o 

(H3) f ' ( t )  >>. 0 for all t E R. 
(H4) There exists M > 0 such that 9 '(w) > 0 when w < - M  and 
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fo ~ f ( t ) g ( - M t )  d t <  ( X 3  . 

(H5) If one defines 

then 
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{ /5 } M o = i n f  a > 0  f ( t ) g ( - a t )  dt < cc , 

/o ~ f ( t ) g ( - M o t )  dt = ~ .  

In addition, for every c > 0, 

inf f ( t  - c) > O. 
t>o f ( t )  

F l ( t ) -  i f ( t )  Go(w) 
f ( t ) '  G l ( w ) -  g (w)"  

Then both fl  = l i m t ~  Fl( t)  and 91 = lim~--,_oo Gl(w)  exist and are finite. 

(H7) The functions F1 and G1 defined in the assumption (H6) satisfy Fl( t )  >/ fl  
for all t C Ii~ and Gl(w) >>. gl for all w E ( - c o ,  0). 

(HS) There is some 5 > 0 such that g'(w) <<. 0 in [-5,  0]. 

The following result concerning the system (16) was established in [7]. 

THEOREM 1. Suppose that a ) 0  and f ,  9 satisfy (H1)-(H3). Then (16) has at 
least one solution w satisfying 

w <~ O, w I >>. O, w" <<. O in IR 

and 

lim w(t) = 0. (17) 
t---+ ~ 

(H6) Let 

a o ( w )  = g(v) dv. 
c o  

Note that the assumptions (H2)-(H4) would imply the finiteness of Go(w) for 
each w E IR. Define 



G E N E R A L I S E D  S E L F - D U A L  C H E R N - S I M O N S  V O R T I C E S  4 0 9  

If  in addition, (H8) is fulfilled, the solution of(16) satisfying (17) is unique. 
I f  f ,  9 satisfy also (H4)-(H6), then for each/3 E (• + 2f191,90 ), Equation (16) 

has at least one solution w such that w < 0, w" < 0 in ~ and 

lim ,w;(t) = -/3. (18) 
~--+ O.O 

If  in addition (H7) holds, then for  any nonpositive solution of  (16) satisfying 
lira inft_r162 w( t ) < O, there exists some/3 E ( c~ 4- 2flgg, ~ )  to achieve (18). 

We now show that the hypotheses (H1)-(H8) all hold for (15) under the new 
variable 

t = In 7', (19) 

which transforms (15) into the following equivalent system 

'w" + e2tg(w ) = O, - o o  < t < oo, 
(2O) 

w(t) = 2 N t  + O(1) as~ ~ -90 .  

Of  course, we have f ( t )  = eZt,9 = g(w),  c~ = 2N,  when we identify (20) with 
(16). It is straightforward to verify that f ,  9 satisfy (H1)-(H3). 

From (12), we see that when 

_ 1 w < Q - l ( _  In3) = q ( -  in3) = 1 5 - ln3 = - M I  < 0, (21) 

we have 9'(w) > 0. Besides, (10) says that 

w = Q ( w ) + ( 1 - e  Q(~))>~Q(w) forw<~0.  

Hence e ?(~') ~< e '~ for w ~< 0. This result shows that 

fo ~ e2t g ( - M t )  dt < 90 

whenever M > 2. Of course, 2 > Ma. Therefore (H4) holds. 
To examine (H5), we note by using (10) that 

eO(w) - !  
lira - -  - e 

Consequently, there is a sufficiently large number M > 0 so that 

�89 ~' < e O(~) < 2 e - l e  ~ (22) 

whenever w < - M .  The inequality (22) implies immediately that 

( I / 5  ) inf cr > 0 e2t g(-crt  ) dt < 90 = 2 
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and 

f0 ~ e2tg(-2t) dt = OO. 

Therefore (H5) is also fulfilled. 
In (H6), we have F1 (t) = 2 and fl  = 2. Besides, using the L'H6pital rule, 

91 = lim f~-W~176 
, . ~ - ~  g(w) 

= lim 9(w) _ 1 .  
g'(w) 

In particular, (H6) holds as well. 
For (H7), we want to know whether G1 (w)i> gl = 1 for w < 0 or, equi- 

valently, 

f_ " g(v) >lg(w), w <  (23) dv O. 

In fact, setting 

/: F ( w ) =  g(v) d v - g ( w ) ,  w<.O, 
O 0  

we can check that 

and 

= 0  

F t ( w )  = g (w)  - 9 ' (w)  = A2e2Q(w)(1  q- e Q(w)) > O, w < O. 

So F(w) > 0 for - c ~  < w < 0. In other words, (23) is true and (H7) is fulfilled. 
Finally (H8) follows from (12). 
Using (20) and Theorem 1, we see that the following conclusions are obtained 

for (15). 

THEOREM 2. Consider nonnegative solutions of(15). 

(i) There is a unique solution w such that w --+ 0 as r --+ oo. This solution is 
strictly monotonically increasing. In particular, w < 0 everywhere. 

(ii) For each/3 E (2N + 4, oo), there is a solution w such that 

w(r) ~ - c~  as r --* ~ and lim rwr(r) = -/3. (24) 
"t" ---+ C ~  
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(iii) I f  w is a solution of  (15) such that w - ,  - ~  as r ---, ee, then there is a 
suitable/3 E (2N + 4, e~) so that w satisfies the second property stated in 
(24) as well. 

Proof We only need to show the monotonicity assertion in part (i). In fact, 
Theorem 1 shows already w is nondecreasing. If  there were rl  < r2 so that 
W(7"I) : t0(7'2) , then there would exist an r0 E ( r l ,  7"2) SO that w0 = w(ro) were 
a local minimum. Hence, wry(to) >1 O, w~(ro) = 0. Using this information in (15) 
and the property 9(w)  > 0 for w < 0, we would obtain 9(wo) = 0 or w0 = 0. The 
uniqueness theorem of the initial-value problem of ordinary differential equations 
then would say that w(r )  = 0 for all r > 0 because w = 0 is also a solution 
of the equation in (15). This contradiction proves that w(r l )  < w(r2) whenever 

0 < 7 "  1 < 7 "  2. 

4. Existence of Vortices and Asymptotic Behaviour 

Note that, in (7) or (8), the sector u --+ 0 as [z[ ~ ~ and the sector u --+ 
- ~  as Ixl -- ,  ~ correspond to topological and nontopological vortex solutions, 
respectively. If  there were a point at which u > 0, then u would have a positive 
maximum at a point p E N2. Of  course, p r pj for any j = 1,- �9 -, N.  However, 
inserting this information into (7), we would have (Au ) (p )  > 0, which is false. 
Thus, u~<0 everywhere and the transformation (9) into the new variable w is 
general enough for us to obtain all possible finite-energy solutions, topological and 
nontopological. In this sense, Theorem 2 says that we have constructed all possible 
topological and nontopological radially symmetric N-vortex solutions. 

To see that the solutions presented in Theorem 2 all carry finite energies and 
to get generalised magnetic and electric charges, we need to study their (implied) 
asymptotic behaviour as well. To this end, we consider the radial function I~(r)[ for 

the radially symmetric field configuration, corresponding to -- e�89 = e�89 
For the topological vortices, the behaviour of I~b[ in the Ix[ = 7" >> 1 region is 
already given in [5] which may be cited as follows: 

IO(r)l = 1 - 7~K0(v / -2 r ) ,  (25) 

where K0 is the modified Bessel function K~ with u = 0, which has the exponential 
decay resulting in the finiteness of the energy. The constant 3' in (25) is determined 
by the behaviour of I~(r)l in the r << 1 region. In the case of the nontopological 
vortices, the 7" >> 1 behaviour of the function IqSI is again consistent with the 
finiteness of the energy but in this case it does not have an exponential but rather a 
power decay. It has been shown that this behaviour is the same for both the p = 2 
and the p = 1 models, given by [3] 

C C 3 
I~b(7" ) l -  r or'' 8(Oz 0 _ 1)2r3c~o_2 "-~ O ( r  -5c~~ (26) 
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where the parameter ao is subject to a 0 )  1. Interpreting our asymptotic results 
stated in Theorem 2, we find that 

]~b(r)[ = e�89 ~' = e�89 Q(~) = O(r -~~ forlarge r = [z[, (27) 

where a0, which is related to/3 in Theorem 2 through a0 = �89 may be arbitrarily 
chosen from the interval (N + 2, ee) but other a0's are prohibited. This restriction 
on the range of a0 was arrived at in [3] using numerical methods. Given that our 
solutions are all self-dual, the energy equals the magnetic charge ff which is not 
quantised since it is parametrised by the above arbitrary quantity ao > N + 2 
through 

(b = 27r(N + ao). (28) 

We summarise the study in this section as follows. 

THEOREM 3. There exist two families of finite-energy radially symmetric vortices 
in the p = 2 generalised self-dual Chern-Simons model: topological and nontopo- 
logical. The topological vortices are uniquely determined by their vortex number N 
and the interaction densities decay exponentially at infinity so that the associated 
electric and magnetic charges and the energy are all quantised. The nontopolog- 
ical vortices are not unique for a given vortex number N but are labelled by an 
additional parameter ao > N + 2. These solutions are a continuous family which 
decay at infinity according to the sharp expression (27) and the corresponding 
magnetic charge may be determined by formula (28). 

5. Generalised Abelian Higgs Vortices 

We then consider the generalised Abelian Higgs model proposed in [6]. For p = 2, 
the self-dual system is similar to (1) where only the Higgs self-interaction term is 
replaced by 

3(1 -]q512) 2. 

Thus the reduced elliptic vortex equation still takes the same form (1 1) but 9(w) 
is now defined by 

g ( w )  = 6(1 - w , <  o.  

With the above function in mind, we can verify that (H1)-(H3) and (H8) all hold. 
Hence, for the Abelian Higgs model with p = 2, there is a unique radially sym- 
metric topological solution for each N. Its asymptotic behaviour and energy/flux 
quantisation are already addressed in [6]. 
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