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A B S T R A C T

This work investigates magnetic properties and the magnetocaloric effect in the scope of continuous and first-
order phase transitions in different stability regimes of a system described by the Ashkin–Teller model. Mean
Field Theory is implemented through the Gibbs–Bogoliubov variational principle to obtain expressions for free
energy, entropy and magnetization, in addition to computing the magnetocaloric properties of the system
under analysis. The starting point is a detailed analysis of magnetic properties as a function of temperature,
coupling configurations and external fields. Continuous and first-order phase transitions are observed. The
impact of having the system under the influence of an external field is studied, showing and discussing the
most favorable conditions for the manifestation of the magnetocaloric potential. In addition, phase transitions
between metastable and stable states due to the hysteresis effect when varying the external field are obtained
from two different methods, Maxwell relations and the use of entropy variation to compute the correct
magnetocaloric effect properties.
1. Introduction

Observed by E. Warburg [1] in 1881, the magnetocaloric effect
(MCE) is a physical phenomenon in which the temperature of some
materials changes when the system is driven from a initial to a final
state under the influence of a variation in the external magnetic field
applied to it. This behavior was also observed years latter by Weiss and
Picard [2] and can be calculated by means of an adiabatic variation
of temperature or an isotermic variation of the magnetic entropy of
the material under study [3]. MCE has become a major research topic
due to its diversity of results regarding the magnetic properties of
materials. We realized this when analyzing theoretical works on the
subject such as that of Guerrero [4] in which magentocaloric properties
of the 𝐽𝑥 − 𝐽𝑦 Blume–Capel model were obtained through the two
point approximation of the Cluster Variation Method, finding different
characteristics for the phase diagram according to the values of the
anisotropic parameter, external magnetic field, temperature and ratio
between exchange parameters, highlighting the discovery of direct and
inverse MCE through the application of low fields and temperatures
around jumps between plateaus of magnetization. Another example
of recent theoretical work that we can cite is that of Mandal and
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collaborators [5], in which the researchers presented results on mag-
netocaloric properties on two series of double perovskites compounds
La2FeMn1−𝑥Cu𝑥O6 and Sr2RuMn1−𝑥Fe𝑥O6 with different concentrations,
showing that for certain doping levels of specific ions, there was a
coexistence of direct and inverse MCE. Other examples of recent work
in this line of theoretical analyzes can be seen in [6–9]. Furthermore,
we can also mention recent works in lines of experimental research on
the magnetocaloric effect, such as those by Ghorai et al. [10] in which
the magentocaloric properties of the material La0.4Pr0.3Ca0.1Sr0.2MnO3
were analyzed for possible applications in magnetic refrigeration at
room temperature, and by Sharma and collaborators [11] in which,
through XRD, structural, magnetic, and magnetocaloric properties of
the perovskite TmFeO3 were discovered, which showed hysteresis cy-
cles with interesting characteristics of this material for application
in magnetic refrigeration. Another interesting experimental work is
that of Bouhbou et al. [12] in which magnetic, magnetocaloric and
critical exponent properties of amorphous Fe67Y33 ribbons were in-
vestigated after preparing the material using melt-spinning method,
making comparisons between the results obtained experimentally and
theoretically, finding second-order phase transitions and critical expo-
nents close to those of the long-range mean-field approach, confirming
vailable online 10 August 2024
304-8853/© 2024 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.jmmm.2024.172407
Received 21 March 2024; Received in revised form 30 June 2024; Accepted 5 Aug
data mining, AI training, and similar technologies.

ust 2024

https://www.elsevier.com/locate/jmmm
https://www.elsevier.com/locate/jmmm
mailto:jander@ufsj.edu.br
mailto:rubens_henrique3945@aluno.ufsj.edu.br
mailto:rafaelrmf@ita.br
mailto:derickdsr@ita.br
mailto:erivelton.nepomuceno@mu.ie
https://doi.org/10.1016/j.jmmm.2024.172407
https://doi.org/10.1016/j.jmmm.2024.172407
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2024.172407&domain=pdf


Journal of Magnetism and Magnetic Materials 607 (2024) 172407J.P. Santos et al.

a
o
w

b
m
m
b
a
p
r
o

the validity of this type of approximation. In addition to these works,
other experimental studies on magnetocaloric potentials can be seen
in [13–16].

As a phenomenon that falls within the research field of areas such as
thermodynamics, statistical and quantum mechanics, an effective way
to study the MCE is through spin models, since they are capable of
modeling the structure of certain magnetic materials and thus allow
the investigation of their properties and its relation with temperature
and external fields. To this end, several approximation theories can
be applied to such models, of which we can mention the Mean Field
Theory (MFT), a widely disseminated method in the study of materi-
als, as in the work of Oliveira and collaborators [17] in which they
investigated MCE properties of the spin-1 Blume–Capel model in a
hexagonal lattice through MFT, analyzing the characteristics of the free
energy, magnetization and entropy of the system for critical exponents
in continuous and first-order phase transitions. Another recent work
that we can mention here that also makes use of this approach is that of
Abu-Elmagd et al. [18] in which through MFT and first-principles DFT
calculation the authors investigated the magnetocaloric effect in YFe3
nd HoFe3 compounds, analyzing that the nature of the phase transition
f these materials belongs to the class of second order, in agreement
ith the universal MCE curve of YFe3. Still on current applications of

this method, we can mention the work of Mounira, Zaidi and Hlil [19]
in which MFT was used to establish the magnetocaloric properties in
TbFeSi and DyFeSi intermetallic magnetic alloys, finding convergences
etween theoretical results and experimental literature. Therefore, as
entioned previously, Mean Field Theory is widely used in the area of
aterials research, being present in several recent works, as can still

e seen in the following Refs. [20–26]. Another approximation method
pplicable to spin models for studying thermodynamic and magnetic
roperties of materials is the Effective Field Theory (EFT), which was
ecently used by Morais, Santos and Sá Barreto [27] in obtaining results
f such properties of a graphene-type nanostructure with 𝐴𝐵𝐴 stacking

described by the q-state Potts model, investigating the magnetization,
the free energy, the internal energy, the entropy, and the specific heat
of this system, concluding the presence of second and first-order phase
transitions depending on the number of states. Another research in
which Effective Field Theory was used is by Ümit Akıncı [28], in which
properties of the MCE of Ising binary alloys with arbitrary spin values
and different concentrations were obtained through EFT, showing that
different spin and concentration values can tune the magnetocaloric
performance and increase the refrigerant capacity. Effective Field The-
ory, as well as Mean Field Theory, is widely used as an approximation
method in the study of material properties, and other recent works with
applications can be seen in [29–33]. A last example of these approxima-
tion methods that we can mention is the Monte Carlo Simulation (MC),
used in works such as that of Kadim and collaborators [34] in which
using the Ab initio and Monte Carlo calculations, the authors stud-
ied magnetocaloric properties of La0.75Sr0.25MnO3 perovskite, showing
that such material is a good candidate for applications in magnetic
refrigeration at ambient temperatures and with the application of mod-
erate external fields. Another example is that of Yang et al. [35] in
which the thermodynamic properties and the magneotcaloric effect of
a polyhedron chain with mixed spin were studied using MC simulation,
concluding that parameters such as exchange coupling, spin quantum
number and external magnetic field play an important role in the effects
on the compensation behavior of the ferrimagnetic system. Other recent
works that use MC simulation can be seen in [36–38].

Experimental and theoretical works in the literature has investi-
gated MCE with a focus on physical contexts where continuous phase
transitions are presented, such as in the work of Zhang et al. [39], in
which the researchers reported the presence of a giant magnetocaloric
effect properties in all-𝑑-metal Ni(Co)MnTi based magnetic Heusler
alloys and analyzed the materials with results of second-order phase
transitions. In parallel with this type of analysis, some methods for
2

studying it in first-order phase transitions regimes have been proposed
with the aim of taking into account the MCE contribution due to
discontinuities in the magnetization, as in the work of Morais et al. [40]
in which the characteristics of the magnetocaloric effect were analyzed
within the scope of first-order phase transitions in a cubic lattice
described by the q-state Potts model using EFT, highlighting the use
of Maxwell relations in the analysis of the equilibrium behavior of
the thermodynamic quantities and the Clausius–Clapeyron equation
for cases with discontinuity in the order parameter. Another work
that performs this type of analysis is that of Nascimento and collab-
orators [41] in which the magnetocaloric effect and properties such
as free energy, magnetization and entropy are explored in the spin-
3/2 Blume–Capel model using MFT for continuous and first order
phase transitions. Some other works that also propose to perform the
MCE analysis for first-order phase transitions in different contexts and
objectives can be seen in [42–46]. In this context, a spin model that
exhibits a rich phase diagram where both continuous and first-order
phase transitions are present, besides many tricritical points and mixed
phases, is the Ashkin-Teller model (AT model) [47]. This model was
proposed in 1943 for description of the cooperative phenomena of
quaternary alloys and can be seen as a generalization of the Ising model
to a four-component system. Due to its potential application in various
areas, such as magnetism [48,49], chemical interactions in metallic
alloys [50], elastic response of DNA molecule to external force and
torque [51] and phase diagram of selenium adsorbed on the Ni(100)
surface [52], the AT model has, over time, been the subject of many
works by means of different methods, such as MFT [53–58], EFT [59],
rigorous inequality correlation function [60], renormalization group
theory (RG) [61,62], mean-field renormalization group (MFRG) [63,
64] and MC simulation [65–67]. Recently, the stability properties of
systems described by this model were studied based on the application
of external fields oscillating over time [68] and under the analysis of
the critical exponents of the free energy values of the system [69], thus
enabling the investigation of conditions of the parameters applied to
the model that allow the emergence of stable, metastable and unstable
states.

As mentioned, this model has a variety of results related to lattice
statistics problems and the analysis of the critical behavior of systems,
and can be used in the modeling of materials, as in the case of the
work of Benmansour and collaborators [70], in which ferromagnetic
thin films were modeled from the AT model, obtaining magnetic prop-
erties and phase diagrams of this theoretical material in the presence
of a crystal field. In addition, some materials may present exchange
interaction systems, critical behaviors and phase transition phenomena
similar to those found in the study of this model, as in the case of the
work by Kumar et al. [71], in which the AT model was mentioned in
an attempt to explain the existence of fourfold vertices in ferroelectrics
in ultra-tetragonal PbTiO3 thin films, or in the case of the work of
Varma and Zhu [72], who mentions the fact that thermodynamic
properties of the loop current order transitions with broken symme-
try in high-temperature superconductors exhibit characteristics of AT
model properties. Therefore, whether in the direct application in the
description of the spin variables of a lattice capable of modeling the
structure of a material or for the explanation of critical phenomena and
phase transition that arise from the study of different types of systems,
it is necessary to better understand the properties of the Ashkin-Teller
model in order to use it more accurately, thus justifying new studies
regarding the results of the lattice statistics of this model.

In light of the above, in this work we aim to study the MCE
properties of the AT model in a cubic lattice by means of the MFT from
the Gibbs-Bogoliubov variational principle [73–75]. To accomplish this,
first, we obtain some thermodynamic quantities, such as free energy,
entropy and magnetization. Then, we plot some phase diagrams and
obtain the critical parameters of the system, so that we can know
which method to use in each critical regime, i.e., continuous and first-
order phase transition. With this information in hand, we calculate

the variation of magnetic entropy of the system with respect to the
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variation in the external field applied to it, using the Maxwell relation
where only continuous variations for the magnetization are present and
the Clausius–Clapeyron equation where first-order phase transitions
take place. To finalize the study, we investigate the MCE related to the
first-order phase transitions that occur for the metastable states of the
system due to hysteresis effects and compare it to some results obtained
by Amaral et al. [76].

We can highlight here that the MFT approach is used in this work as
an initial tool suitable for a preliminary understanding of the problem.
Although it is known that the MFT approach does not produce results
as accurate as other numerical and analytical methods, it serves as a
first qualitative insight into the problem.

The article is organized as follows. In Section 2, we present the
mathematical formalism used to investigate the system. In Section 3,
we analyze the numerical results and diagrams that were obtained. In
Section 4, we conclude and make the conclusions.

2. Model and formulation

This section aims to present conceptual aspects and the mathemat-
ical formalism necessary to understand the means by which the results
presented in Section 3 were obtained. This work studies the spin-1∕2

shkin-Teller model, which establishes the construction of an Ising-
ype system composed of the spin variables 𝑆 and 𝜎 that are coupled
y an exchange interaction 𝐽 and a third variable 𝜎𝑆 coupled by the

exchange interaction 𝐾. Let us therefore begin with the presentation of
the Hamiltonian of this system

𝐻 = −
∑

⟨𝑖𝑗⟩

[

𝐽
(

𝑆𝑖𝑆𝑗 + 𝜎𝑖𝜎𝑗
)

+𝐾𝑆𝑖𝜎𝑖𝑆𝑗𝜎𝑗
]

− ℎ
∑

𝑖

(

𝑆𝑖 + 𝜎𝑖 + 𝑆𝑖𝜎𝑖
)

, (1)

where the term ⟨𝑖𝑗⟩ denotes the idea of interaction between pairs of
nearest neighboring spins and ℎ is an external magnetic field.

In this work we propose the development of MFT through a vari-
ational principle based on Bogoliubov’s inequality [73–75], which
consists of the validity of the following expression

𝐺 ≤ 𝜙 = 𝐺0 + ⟨𝐻 −𝐻0⟩0 . (2)

The total Hamiltonian of the lattice, denoted by 𝐻 , describes the
interactions among spin variables within the system, along with its
corresponding free energy 𝐺. Meanwhile, 𝐻0 represents the trial Hamil-
onian of a simplified lattice-statistical model, enabling precise calcula-
ions, while 𝐺0 stands for its associated free energy. Additionally, ⟨...⟩0
ignifies the mean of the canonical ensemble within this simplification.
inally, 𝜙 characterizes the variational Gibbs free energy, offering an
pper bound for the true Gibbs free energy due to this method.

The mathematical procedure of the MFT approximation used in this
ork requires us to construct a trial Hamiltonian with the presence
f variational parameters. For our study, through the mathematical
evelopment of the MFT, the trial Hamiltonian for the spin-1∕2 AT
odel is given by

0 = −
𝑁
∑

𝑘

(

𝑆𝑘𝛾𝑆 + 𝜎𝑘𝛾𝜎 + 𝜎𝑘𝑆𝑘𝛾𝜎𝑆
)

, (3)

here 𝛾𝑆 , 𝛾𝜎 and 𝛾𝜎𝑆 are the variational parameters for each spin
ariable in the AT model, and 𝑁 represents the number of sites present
n the lattice. To simplify the mathematical formalism, for the rest of
his work, we define the notation 𝜏 to represent the variables 𝑆, 𝜎 and
𝑆, that is, 𝜏 = {𝑆, 𝜎, 𝜎𝑆}.

The parameters 𝛾𝜏 have a physical meaning, acting on localized
pins on the 𝑖 site with an effective field role that operates on its
oundary. In order to obtain the thermodynamic quantities, we have
o minimize the free energy of the model with respect to the these
ariational parameters, process that can also be seen in [17,41,53].
hen, we can write expressions for the Gibbs free energy (𝐺) and
agnetizations (𝑚𝜏 ) as

= −𝑁𝑘𝐵𝑇 ln

[

4

(

∏

cosh 𝛽𝛾𝜏 +
∏

sinh 𝛽𝛾𝜏

)]
3

{𝜏} {𝜏} 𝑘
+ 𝑧𝑁
2

[

𝐽𝑚𝑆
2 + 𝐽𝑚𝜎

2 +𝐾𝑚𝜎𝑆
2
]

, (4)

and

𝑚𝜏 =
tanh 𝛽𝛾𝜏 + tanh 𝛽𝛾𝜏′ tanh 𝛽𝛾𝜏′′
1 + tanh 𝛽𝛾𝜏 tanh 𝛽𝛾𝜏′ tanh 𝛽𝛾𝜏′′

, (5)

here the variational parameters are given by 𝛾𝑆 = 𝑧𝐽𝑚𝑆 + ℎ, 𝛾𝜎 =
𝐽𝑚𝜎 + ℎ and 𝛾𝜎𝑆 = 𝑧𝐾𝑚𝜎𝑆 + ℎ. The notations 𝜏′ and 𝜏′′ were used to
how that the variational parameters refer to different magnetizations
𝜏 ≠ 𝜏′ ≠ 𝜏′′) and 𝑧 represents the coordination number of the lattice.

With these expressions in hand, we can establish the conditions for
btaining phase transition lines. For continuous transitions, we take
he following condition 𝑚𝜏 → 0, while for the case of first order
ransitions we seek to establish the values for the equation 𝐺(𝑚𝜏 ) =
(𝑚′

𝜏 ), following the condition that 𝑚𝜏 ≠ 𝑚′
𝜏 .

From Eqs. (4) and (5), we obtain the entropy of the system

= − 𝜕𝐺
𝜕𝑇

. (6)

Now we can establish ways to calculate the entropy variation of
the system 𝛥𝑆𝑀 (𝑇 , 𝛥ℎ), with 𝑀 being the set of magnetizations (𝑀 =
{𝑚𝑆 , 𝑚𝜎 , 𝑚𝜎𝑆}). The most direct and simple way is to subtract from
the value of a final entropy state an initial state value through an
isothermal process, i.e.,

𝛥𝑆𝑀 (𝑇 , 𝛥ℎ) = 𝑆𝑀2
(𝑇 , ℎ2) − 𝑆𝑀1

(𝑇 , ℎ1) (7)

where 𝑀1 and 𝑀2 are different states that depend on the external field
intensities ℎ1 and ℎ2.

Another way to obtain the magnetocaloric potential is to establish
its value using the Maxwell relations of Eqs. (5) and (6) [77] solving
the following integral

𝛥𝑆𝑀 (𝑇 , 𝛥ℎ) =
∑

{𝜏}
∫

ℎ2

ℎ1

[

𝜕𝑚𝜏 (𝑇 , ℎ)
𝜕𝑇

]

ℎ
𝑑ℎ. (8)

When first-order phase transitions take place, we have to add an
extra term in Eq. (8) to compute its contribution in the entropy vari-
ation due to the magnetization discontinuity, as can be seen in the
Refs. [17,40,41], so that this expression becomes

𝛥𝑆(𝑓𝑜)
𝑀 (𝑇 , 𝛥ℎ) ≅

∑

{𝜏}

{

∫

ℎ𝐶−𝛿ℎ

ℎ1

[

𝜕𝑚𝜏 (𝑇 , ℎ)
𝜕𝑇

]

ℎ
𝑑ℎ

+∫

ℎ2

ℎ𝐶+𝛿ℎ

[

𝜕𝑚𝜏 (𝑇 , ℎ)
𝜕𝑇

]

ℎ
𝑑ℎ + 𝛿𝑆𝜏

}

, (9)

where 𝛿ℎ → 0 and the notation (𝑓𝑜) indicates the presence of first-order
hase transitions. To indicate the presence of this first-order phase
ransition, the subscript (C) will be used, for example, 𝑇𝐶 and ℎ𝐶 . As
e can observe, the expression given in Eq. (9) has three different

erms, which provide the MCE exhibited by the system in a particular
rocess before (first-term), after (second-term) and during (third-term)
he occurrence of the first-order phase transition. The third-term will
e obtained by means of the Clausius–Clapeyron equation, described as

𝑆𝜏 =
( 𝑑ℎ
𝑑𝑇

)

𝛿𝑚𝜏 (𝑇𝐶 , ℎ𝐶 ), (10)

where the variation in the order parameter (𝛿𝑚𝜏 ) around 𝑇𝐶 can be
btained by 𝛿𝑚𝜏 (𝑇𝐶 , ℎ𝐶 ) = 𝑚𝜏(ℎ𝐶−𝛿ℎ)

− 𝑚𝜏(ℎ𝐶+𝛿ℎ)
.

. Numerical results and diagrams

In this section, we show the magnetizations and MCE curves, besides
hase diagrams for the AT model in a cubic lattice (𝑧 = 6). The first-
rder phase transitions exhibited by the system can be found between
table states, where 𝐺(𝑚𝜏 ) = 𝐺(𝑚′

𝜏 ), and also between metastable and
nstable states, due to the hysteresis effect, both will be shown in
he phase diagrams. For simplification here we will consider units of

𝐵 = 1, 𝐾∕𝐽 = 𝑥.
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Fig. 1. (a) Phase diagram (𝑇 as function of 𝑥 = 𝐾∕𝐽 ) of spin-1/2 AT model in a cubic lattice obtained from MFT approximation for null external field. Second order phase
transitions are represented by solid lines, and the hatched region represents the values for which first-order phase transitions occur. (b) External field (ℎ𝐶 ) as a function of the
parameters (𝑇𝐶 ) and (𝑥𝐶 ), establishing the condition for the presence of first-order phase transitions, that is, the (𝑑𝑃 ) phase.
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In order to start the presentation of the numerical results, let us
irst define the notations used in this work for the phases obtained with
ifferent external field values (ℎ ≥ 0):
(𝑖) The Baxter (1) phase is denoted by 𝑃1, where 𝑚(1)

𝜏 ≠ 0, with ℎ = 0.
onsidering ℎ > 0, for 𝑚(2)

𝜏 > 𝑚(1)
𝜏 , this phase is denoted by Baxter (2).

(𝑖𝑖) The ⟨𝜎𝑆⟩(1) phase is denoted by 𝑃2, where 𝑚(1)
𝜎 = 𝑚(1)

𝑆 = 0 and
(1)
𝜎𝑆 ≠ 0, with ℎ = 0. Considering ℎ > 0, for 𝑚(2)

𝜎 = 𝑚(2)
𝑆 ≠ 0, with

(2)
𝜎𝑆 > 𝑚(1)

𝜎𝑆 , this phase is denoted by ⟨𝜎𝑆⟩(2).
(𝑖𝑖𝑖) The Para phase is denoted by 𝑃3, where 𝑚(1)

𝜏 = 0, with ℎ = 0.
onsidering ℎ > 0, for 𝑚(2)

𝜏 ≠ 0, this phase is denoted by Baxter (3).
(𝑖𝑣) The region in the diagrams where occur first-order phase tran-

itions between the phases 𝑃1, 𝑃2 and 𝑃3, with values of the external
ield ℎ ≥ 0, is denoted by dense phase (𝑑𝑃 ).

We will start our discussions by analyzing the phases and magne-
izations curves presented by this system, both in the absence and in
he presence of an external field. The results obtained will be explored
ater in the MCE investigation. The inputs and parameters used in this
ection were chosen with the objective of construct a complete picture
f the behavior of the system, so that, besides illustrate some special
ases, we have also present the general ones.

In Fig. 1(a), we present the phase diagram of the AT model (𝑇 as a
unction of 𝑥), where the phases defined above are shown. Considering
ℎ = 0), the results obtained are the solid lines representing continuous
hase transitions between the 𝑃1𝑃2, 𝑃1𝑃3, and 𝑃2𝑃3 phases, while the

dashed lines represent first-order phase transitions between the 𝑃1𝑃2
and 𝑃1𝑃3 phases. The continuous and first-order phase transitions are
separated by multicritical points 𝐸1 and 𝐸2, and their values are given,
respectively, by 𝑥 = 0.251 and 𝑥 = 1.911. Additionally, we can observe
the presence of a bifurcation point, indicated by 𝐹 , which appears
at 𝑥 = 1.387. These phase transitions for (ℎ = 0) can be studied in
more detail in Ref. [53]. For (ℎ > 0), only first-order phase transitions
occur for different values of the external field. These phase transitions
are present in the shaded region, which has been denoted by dense
phases 𝑑𝑃 , defined above the dashed line and ending at the dotted
line. In Fig. 1(b), is shown the external field (ℎ𝐶 ) as a function of the
temperature (𝑇𝐶 ) and the variable 𝑥𝐶 . This set of variables, obtained
in the equilibrium condition where 𝐺(𝑚𝜏 ) = 𝐺(𝑚′

𝜏 ), establishes the
presence of first-order phase transitions in the dense region (𝑑𝑃 ), which
occur between the points 𝐸1 and 𝐸2. The values of the temperatures
(𝑇𝐶 ) are present in Table 1. The role of the external field is to decrease
the region where first-order phase transitions are present in the system.
The value of the external field ℎ𝐶 = 0.2 vanishes the phase region of
(𝑑𝑃 ).

In order to show the first-order phase transitions in the presence of
an external field ℎ ≥ 0, in Fig. 2(a), we plot some magnetization curves
(𝑀 ≡ {𝑚𝜏}) as functions of temperature (𝑇 ), where 𝑚𝜎 = 𝑚𝑆 = 𝑚𝜎𝑆 , for
4

𝑥 = 1 and external field values of ℎ = {0, 0.05, 0.1, 0.15, 0.197, 0.30, 0.50}.
hese transitions, indicated by vertical lines, were also obtained by
eans of the equilibrium condition 𝐺(𝑚𝜏 ) = 𝐺(𝑚′

𝜏 ) and occur in the
anges of temperatures 7.281 ≤ 𝑇𝐶𝑖 ≤ 7.051 and external fields of
≤ ℎ𝐶𝑖 ≤ 0.197. In Fig. 2(b), we show the free energy of the system

s a function of the magnetizations (𝑚𝜏 ), for 𝑥 = 1. As we can observe,
he pair of values, denoted by 𝜆𝐶𝑖 = (𝑇𝐶𝑖, ℎ𝐶𝑖), indicate first-order phase
ransitions that occur with the configurations presented in the previous
igure. In this context, the dashed lines represent the free energy for
= 0 with different values of temperature (𝑇 ≥ 𝑇𝐶1), where a first-

rder phase transition occur at 𝑇𝐶1, being 𝑚𝜏 = 0 the stable state for
ther values of temperature. In Fig. 2(c), the free energy is represented
s a function of the magnetizations with 𝑥 = 1, but, this time, the
emperature is chosen to be fixed at 𝑇𝐶4. For this configuration, we
bserve that in the range 0 ≤ ℎ < 0.15 of external field intensities, the
agnetizations of the system change in a continuous way (solid line),

nd, at ℎ = 0.15, a first-order phase transition occur (dashed line). In
he interval 0.15 < ℎ ≤ 0.50, the magnetizations present continuous
hanges again. Therefore, when considering the temperature 𝑇 = 𝑇𝐶4

for external field ℎ = 0.15, we must use the Clausius–Clapeyron
equation in the calculations made by means of Eq. (9). Now, we turn
our attention to the MCE. At first, we will consider the condition
𝑥 = 1, so that the information obtained in the previous figures can be
used. Within this approach, we calculated the variation in the magnetic
entropy of the system as a function of temperature when the external
field applied to it varies from ℎ = 0 to ℎ = ℎ𝐶𝑖. These procedures
generate one −𝛥𝑆𝑀 curve for each 𝛥ℎ as a function of temperature,
which are plotted in Fig. 2(d). Dashed lines are used in the interval of
temperatures where first-order phase transitions are exhibited at certain
values of external field, while out of it, we have used solid lines. As
expected, due to the presence of first-order phase transitions, when
the configuration of the inputs (ℎ and 𝑇 ) reaches the ordered pairs
(𝑇𝐶1, ℎ𝐶1), the system exhibits a discontinuity in the magentocaloric
potential, resulting in a much higher change in its magnetic entropy
with external field variations when compared to the regimes where
only continuous phase transitions take place. This behavior extend
until the temperature of 𝑇𝐶5 is reached, where the discontinuity of
the order parameter in the phase transition goes to zero and only
continuous phase transitions are exhibited. In general, all curves plotted
in Fig. 2(d) present similar shapes for small temperatures, i.e., an in-
creasing tendency until the temperature 𝑇𝐶1 and a decreasing behavior
after it, as 𝑇 → ∞. This type of magnetocaloric potential behavior
can be observed in some classes of materials, as can be seen in the
work of Skini et al. [78] in which researchers obtained results on the
MCE for 𝐿𝑎0.8−𝑥□𝑥𝐶𝑎0.2MnO3, finding discontinuities in magnetization
and on the magnetocaloric potencial, or in the work of Guillou and
collaborators [79], where a similar behavior was found in the MCE

study for 𝐸𝑢2𝐼𝑛. Other experimental works whose MCE properties have
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Fig. 2. (a) Magnetization (𝑀) as a function of temperature (𝑇 ) for 𝑥 = 1 and ℎ ≥ 0. (b) Free energy (𝐺) as a function of magnetizations (𝑚𝜎 = 𝑚𝑆 = 𝑚𝜎𝑆 ) for 𝑥 = 1 and ℎ = 0, and
(c) for ℎ ≥ 0. (d) Magnetocaloric potential (−𝛥𝑆𝑀 ) as a function of temperature (𝑇 ) for 𝑥 = 1 and 𝛥ℎ = {0.05, 0.10, 0.15, 0.197, 0.30, 0.50}.
similarities related to discontinuities in the magnetocaloric potential
can be seen in [80–82]. Furthermore, recent theoretical studies have
also reported such behavior in the analysis of the MCE, as in the case
of the aforementioned works by Oliveira et al. [17], Morais et al. [40]
and Nascimento et al. [41], among others [31–33,83].

When 𝑥 ≠ 1, the magnetizations 𝑚𝜏 are no longer equal to each
other, due to the difference between the couplings 𝐽 and 𝐾, and
because of that, the system will present the configurations 𝑚𝜎 = 𝑚𝑆 >
𝑚𝜎𝑆 and 𝑚𝜎 = 𝑚𝑆 < 𝑚𝜎𝑆 for, let us say, 𝑥 = 0.5 and 𝑥 = 1.3,
respectively. It is interesting to analyze how these features impact the
magnetocaloric potential curves, so, in the next figures, let us analyze
the magnetizations and the −𝛥𝑆𝑀 , side by side, for both mentioned
values of 𝑥.

In Fig. 3(a) and (b), the magnetizations are plotted for external
fields given by ℎ = {0, 0.036, 0.067, 0.5} and ℎ = {0, 0.089, 0.170, 0.5}, for
𝑥 = 0.5 and 𝑥 = 1.3, respectively, while in −𝛥𝑆𝑀 curves, the field vari-
ation is 𝛥ℎ = 0.5 in both figures. Here, we can observe similar patterns
to that shown in the previous figures, with −𝛥𝑆𝑀 increasing until the
temperatures 𝑇𝐶𝑖; in this context, given by 𝑇𝐶6 and 𝑇𝐶9, still increasing
the temperatures, the −𝛥𝑆𝑀 starts to decrease, but still showing a high
value compared to the regions where no first-order phase transitions
are present (solid lines). At 𝑇𝐶8 and 𝑇𝐶11, the system goes out of the
first-order phase transition regime, and the magnetocaloric potential
goes to zero as 𝑇 → ∞. In addition, in Fig. 3(c), the magnetizations
and the −𝛥𝑆𝑀 are plotted as functions of 𝑇 , respectively, both for
𝑥 = 1.5. This time, the intensities of the external field related to the
magnetization curves are ℎ = {0, 0.037, 0.095, 0.5}, while its variation
in the magnetocaloric potential study is 𝛥ℎ = 0.5. In this context, the
system pass through the phases 𝑃1, 𝑃2 and 𝑃3 (please, see Fig. 1(a)).
To verify it, we can observe the magnetization curves when ℎ = 0, in
which 𝑚𝜎 = 𝑚𝑆 < 𝑚𝜎𝑆 ≠ 0 at 𝑇𝐶12, where a first-order phase transition
occurs and the magnetizations change from 𝑚𝜎 = 𝑚𝑆 to zero and from
𝑚𝜎𝑆 to 𝑚′

𝜎𝑆 > 0, i.e., from 𝑃1 to 𝑃2. Then, increasing the temperature
until 𝑇 makes the system undergoes a continuous phase transition,
5

𝐶15
going from 𝑃2 to 𝑃3. For the −𝛥𝑆𝑀 curve, the same behavior of previous
figures can be observed, with the addition of a peak at 𝑇𝐶15 due to
the continuous phase transition in the order parameter. With the aim
of provide a general picture of the magnetocaloric potential behavior,
in Fig. 3(d), we plot the −𝛥𝑆𝑀 as a function of 𝑇 , with external
field variation 𝛥ℎ = 0.5, for 𝑥 = {0, 0.251, 0.5, 0.8, 1.0, 1.3, 1.5, 1.911}.
Among these values of 𝑥, we have some special ones, being 𝑥 = 0 and
𝑥 = 1.0, corresponding to the Ising and Potts limits, respectively, while
0.251 and 1.911 correspond to the points 𝐸1 and 𝐸2 present in the
phase diagram where the first-order transition ceases to manifest for a
system under null external field. As we can observe, due to continuous
phase transitions, some peaks are present in the curves. This behavior
was also observed in experimental works, as in the work of Shahumi
et al. [84] in which in addition to structural and magnetic properties,
the MCE of La0.7Sr0.3Mn1−𝑥Fe𝑥O3 nanoparticles was studied, obtaining
a similar behavior of the magnetocaloric potential to that described
above. We can also mention the work of Taubel et al. [85], in which
it is also possible to observe these peaks in the magnetocaloric poten-
tial related to continuous transitions for all-𝑑-metal Ni − Co −Mn − Ti
Heusler alloys under certain conditions. Furthermore, other research
that also presented results containing this type of MCE behavior can
be seen at [17,31–33,40,41,82,83,86]. Still in relation to the analysis
of Fig. 3(d), the presence of a double peak for some values of 𝑥 and
𝑇 is observed. This pattern of magnetocaloric potential behavior has
also been observed by Ivchenko and Igoshev [87] in their work on
MCE in metallic systems with the presence of first-order transitions
and in the work of Nascimento et al. [41] in their work on MCE
in the Blume–Capel spin-3/2 model. According to these studies, this
pattern seems to be related to systems whose temperatures 𝑇𝐶 are
variable. Another study that also observed the presence of this pattern
of double peaks in the MCE was that of Yüksel [88], in which through
the analysis of morphological, magnetic and magnetocaloric properties
of ferromagnetic nanoparticles with core–shell geometry the author
defined that the presence of these double peaks in the magnetocaloric
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Fig. 3. In figures (a), (b), and (c), the magnetization and MCE diagrams are shown as a function of temperature for values of 𝑥 = {0.5, 1.3, 1.5}. In figure (d), the MCE diagram is
presented as a function of temperature for values of 𝑥 ranging from 𝑥 = 0 to the limit where the first-order phase transition ends at 𝑥 = 1.911.
potential defined through the magnetic entropy change of the system
are associated with two phase transitions, one related to the core layer
and the other related to the shell layer.

In this context, when 𝑥 is equal to 0 until 0.251, the peaks occur
at the phase transition between the 𝑃1 and 𝑃3 phases, while when
𝑥 = 1.911, there are peaks where the system changes from the 𝑃1 to the
𝑃2 and from the 𝑃2 to the 𝑃3 phases. For 𝑥 values that lies between 𝐸1
and 𝐸2, the system present first-order phase transitions, so that we can
observe discontinuities in the −𝛥𝑆𝑀 curves. This region, depicted by
a dashed line, represent the most favorable regime for magnetocaloric
potential measurements because of its high values compared to regions
where only continuous phase transitions are presented.

To finalize our study, let us analyze the results of the MCE for the
spin-1∕2 AT model, for 𝑥 = 1, considering phase transitions that occur
between metastable and stable states due to the hysteresis effect when
varying the external field. In Fig. 4(a), we have some magnetization
curves with the same configuration of Fig. 2(a). The difference here is
the presence of metastable (dashed lines) and unstable (dotted lines)
states in the diagram, in which the vertical dotted lines indicate the
temperatures where first-order phase transitions occur between stable
states, where the presence of double arrows means that the phase
transition can occur in both ways, i.e., from higher to lower magnetiza-
tion values and vice versa. Regarding the hysteresis effect, the vertical
arrows (↑) that initiate at 𝑇 = 6.0 and end at 𝑇𝐶5 represent phase
transitions from metastable (lower magnetization) to stable (higher
magnetization) states, while the vertical arrows (↓) that initiate at 𝑇𝐶16
and last until 𝑇𝐶5 represent the same type of phase transition, but in
the opposite way. In Fig. 4(b), by means of the free energy (𝐺) of
the system, we can verify these phase transitions with more details.
In this diagram, in order to give an example for illustration purposes,
we have set 𝑇 = 𝑇𝐶16 and 𝑥 = 1, such that, for values of external field
starting at ℎ = 0 until ℎ = 0.095, the local minimum of 𝐺 (metastable
state) disappears, making the system reach the stable state by means of
hysteresis effects in both cases. When ℎ = 0.048, the system undergoes a
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first-order phase transition between stable states (equilibrium condition
𝐺(𝑚𝜏 ) = 𝐺(𝑚′

𝜏 )), as were indicated in the magnetization curves. The
free energy of the system for 𝑥 = 1 and ℎ = 0 can be analyzed with
more details in Ref. [53]. In Fig. 4(c) e (d), where −𝛥𝑆𝑀 is shown as
a function of 𝑇 , with external field variations of 0 ≤ ℎ ≤ 0.5 and 0 ≤
ℎ ≤ 2.0, respectively, we will explore the phase transitions described in
Fig. 4(a) and (b). In these diagrams, the line between 𝑇𝐶1 and 𝑇𝐶5 was
obtained via Eqs. (5) and (7), where phase transitions between stable
states are present (↕). For phase transitions driven by hysteresis from
highly magnetized metastable to slightly magnetized stable states, we
have the dashed-dotted line between 𝑇𝐶16 and 𝑇𝐶5, obtained by means
of the Maxwell relations (Eq. (9)), besides the dashed line between
the points 𝑄1 and 𝑇𝐶5, obtained via entropy variation (Eq. (7)). For
the same kind of phase transition, but going from slightly magnetized
metastable to highly magnetized stable states, we have also the dashed-
dotted line between 𝑄2 and 𝑇𝐶5 and the dashed line between 𝑄3 and
𝑇𝐶5, calculated by means of the Maxwell relations and the entropy
variation, respectively. As we can observe in Fig. 4(c), where 0 ≤ ℎ ≤
0.5, the results obtained via Eqs. (7) and (9) for the phase transitions
between metastable and stable states are not equal to each other.
Besides that, in Fig. 4(d), for 0 ≤ ℎ ≤ 2.0, we note that at 𝑇𝐶16 the
magnetocaloric potential of the system reaches values that are higher
than the maximum entropy of the spin-1∕2 AT model (ln(4)), while at
𝑄3, this error do not occur. These facts evidence what had already been
observed by Amaral et al. [76], i.e., that the Maxwell relations cannot
be used to investigate MCE effects in non-equilibrium systems.

4. Conclusions

In this work we have investigated the magnetic and magnetocaloric
properties of the spin-1/2 Ashkin-Teller model in a cubic lattice un-
der an external field potential under conditions of different lattice
parameters and system stability levels. The numerical results were
obtained by means of the Mean Field Theory approximation through
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Fig. 4. (a) Magnetization (𝑀) as function of temperature (𝑇 ) for 𝑥 = 1 and ℎ = 0. (b) Free energy (𝐺)as a function of magnetizations with 𝑇𝐶16 held constant and ℎ ≥ 0. (c) −𝛥𝑆𝑀
as a function of (𝑇 ) for 𝑥 = 1 and 𝛥ℎ = 0.5, (d) for 𝛥ℎ = 2.0, highlighting the inadequacy of the Maxwell relations in the study of magnetocaloric potential, where the model
exhibits first-order phase transitions, as observed previously by Amaral et al. [76].
Table 1
For numerical comparison and experimental propose, we show some values of
temperatures 𝑇𝐶𝑖 discussed in this section.

Notation Value Notation Value Notation Value Notation Value

𝑇𝐶1 7.281 𝑇𝐶5 7.999 𝑇𝐶9 8.068 𝑇𝐶13 8.800
𝑇𝐶2 7.463 𝑇𝐶6 6.246 𝑇𝐶10 8.400 𝑇𝐶14 9.015
𝑇𝐶3 7.646 𝑇𝐶7 6.400 𝑇𝐶11 8.700 𝑇𝐶15 8.999
𝑇𝐶4 7.828 𝑇𝐶8 6.526 𝑇𝐶12 8.656 𝑇𝐶16 7.456

the Bogoliubov inequality, showing convergence with experimental and
theoretical works such as [17,31–33,40,41,82,83,86], in addition to
new informations about the system under analysis.

The Ashkin-Teller model presents two distinct coupling constants
that could be explained as two Ising models in contact with each
other. Those two Ising models presents self (𝐽 ) and inter-couplings
(𝐾) and this open the possibilities of having regions where the self
coupling parameter is bigger, smaller and equal in magnitude compared
to the inter-coupling one. The results presented in this work showed
that the weight between the two coupling parameters could potentially
leads to situations where changing the temperature, at first under zero
external fields, produce continuous or first-order phase transitions. In
the case of equal magnitude, that is 𝐽∕𝐾 = 1, the results showed that
the Asking-Teller model presents first-order phase transitions at zero
external magnetic field. Another result presented was that first-order
phase transitions favor high variations in the magnetocaloric potential.
When analyzing the results, we also realized that the action of the
external field increases the value of the temperature 𝑇𝐶 where the first
order transition takes place, whereas its action also presents a critical
point where the first order transition vanishes from the system and only
continuous transitions remain.

The system configuration where the magnitude of the self-coupling
(𝐽 ) are bigger or smaller than the inter-coupling (𝐾) also present first-
order phase transitions, once again this behavior favors the MCE. The
7

point where 𝐾∕𝐽 = 0.251 or 𝐾∕𝐽 = 1.911 are specially important due
to the fact that for zero external field the first-order transition are no
longer placed in the system, only continuous transitions are numerically
observable. In this case, the results suggest that the magnetocaloric
potential would be less efficient for materials with similar properties.
In both couplings configurations, that is, the ratio 𝐾∕𝐽 being bigger or
smaller than one, the effect of applying a magnetic field in the system
tends to increase the temperature where the first-order transitions are
present, except for the couplings configurations where the first-order
transitions vanishes.

The AT model still corroborates with a system configuration where
continuous and first-order phase transitions manifest simultaneously.
For system configurations where 1.387 ≪ 𝐾∕𝐽 ≪ 1.5 a bifurcation point
is characterized. The experimental possibilities around this behavior
regardless to the MCE are very exciting, although the finding of the
present work suggest that the system of configuration around 𝐾∕𝐽 = 1
are more prominent to produce system with better MCE properties.

Finally, for a system configuration of 𝐾∕𝐽 = 1, we highlighted
the phase transitions between metastable and stable states due to
the hysteresis effect under the action of an external magnetic field.
Beyond mapping the stable and metastable states transition, where the
first-order transition happens, we proved the findings of Amaral and
collaborators [76] through a convergence of results. There he showed
the fail of Maxwell relations in order to investigate the MCE effects
in non-equilibrium states. Instead, here we suggest the use of entropy
variation to compute the correct MCE properties.
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