
Interval Extensions as a Way to Achieve Reduction in Carbon Emissions and
Energy Consumption

1st Josefredo Gadelha da Silva
Centre for Ocean Energy Research

Department of Electronic Engineering
Maynooth University

josefredo.silva.2024@mumail.ie

2nd Thalita Emanuelle De Nazaré
Centre for Ocean Energy Research

Department of Electronic Engineering
Maynooth University

thalita.nazare.2023@mumail.ie

3rd Marcio Junior Lacerda
Department of Electrical Engineering

Federal University of São João del-Rei
lacerda@ufsj.edu.br

4th Erivelton Geraldo Nepomuceno
Centre for Ocean Energy Research

Department of Electronic Engineering
Maynooth University

erivelton.nepomuceno@mu.ie

Abstract—The present work explores the use of interval extensions to
reduce the carbon footprint of computer simulation. We present a method
for estimating the amount of energy expended based on the number
of operations performed and we demonstrate how different numerical
representations of the same system can lead to a considerable reduction
in the number of operations and, consequently, energy consumption. We
have applied our technique on three scenarios for discrete simulation of
the well-known Chua’s circuit. The results show a saving of approximately
22.50% in the values of emitted CO2 and consumed energy when using
two different forms of representation of the same system. A simple
rewrite of a differential equation could lead to a decrease in the number
of operations, mainly the number of multiplications adopted in the
representation of Chua’s circuit, resulting in reliable and more efficient
simulations.

I. INTRODUCTION

The computational domain is characterised by a paradigm that
is somehow different from the world of real numbers. Most mod-
ern computers operate according to the standards of floating-point
arithmetic IEEE 754 [1] [2]. In practice, mathematical properties
that are considered absolute with respect to real numbers, such as
distributivity and commutativity, may not be obeyed in the computa-
tional domain [3]. This is because computers are finite systems with
finite energy, and the floating-point standard establishes rounding
and truncation conditions to be observed during the execution of
operations. These conditions can be seen as errors added to a system
when simulated in the computational domain. Some works have
shown how to control these errors [4] [5].

In contrast, recent works have addressed the issue of green comput-
ing and the need to adopt practices that reduce energy consumption in
computational environments [6]–[8]. In this sense, even though some
mathematical properties may not be synthesised in the computational
domain, they can serve as a previous alternative to ensure the
reliability of simulation results of a system. Simpler equivalent
algebraic forms of a system can be explored in order to have the
accuracy of results and also ensure lower simulation complexity. This
alternative algebraic representations are known as interval extensions
[9].

Among the various types of systems, the simulation of nonlinear
systems is usually the most problematic, as it requires highly ad-
vanced discretization techniques. The present work explores the use
of interval extensions for the representation and simulation of Chua’s
circuit, a dynamic circuit with nonlinear and chaotic behaviour. We
present a method for estimating the amount of energy expended based
on the number of operations performed, and we demonstrate how

different numerical representations of the same system can lead to a
considerable reduction in the number of operations, and consequently,
energy consumption. The results show that a simple rewrite of a
differential equation (ODE) could lead to a decrease in the number
of operations, mainly the number of multiplications adopted in the
representation of the Chua’s circuit, resulting in reliable and more
efficient simulations. These findings contribute to the discussion about
green computing, energy-saving, and energy efficiency, while also
providing insights into modelling techniques for dynamic systems
and computational simulations.

II. BACKGROUND

The Chua’s circuit’s is a three-component circuit that exhibits
complex and chaotic behaviour, non-periodic oscillations and is
highly sensitive to the initial conditions. The topology of Chua’s
circuit is shown in Figure 1.

+

− id

C1

+

−

vC1

R

C2

+

−

vC2 L

iL

Fig. 1: Chua’s circuit topology, adapted from [10]

The dynamics of the circuit can be modelled by the following
Equations:

dvC1

dt
=

1

C1

[
(vC2 − vC1)

R
− id(vC1)

]
, (1)

dvC2

dt
=

1

C2

[
(vC1 − vC2)

R
− iL

]
, (2)

diL
dt

= − 1

L
vC2, (3)

id(vC1) =


GbvC1 +Bp(Gb −Ga) , vC1 < −Bp

GavC1 , |vC1| ≤ Bp

GbvC1 +Bp(Ga −Gb) , vC1 > Bp,

(4)

2023 15th IEEE International Conference on Industry Applications Fri1Track C.3

979-8-3503-1418-2/23/$31.00 ©2023 IEEE 1274 ISBN 979-8-3503-1418-2

20
23

 1
5t

h
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
du

st
ry

 A
pp

lic
at

io
ns

 (I
N

DU
SC

O
N

) |
 9

79
-8

-3
50

3-
14

18
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IN
DU

SC
O

N
58

04
1.

20
23

.1
03

74
82

1

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 15,2025 at 11:32:00 UTC from IEEE Xplore. Restrictions apply.

where vC1 and vC2 represent the voltages on capacitors C1 and C2,
respectively; iL is the current in inductor L and id is the current that
flows through the Chua’s diode and is dependent on voltage vC1.
While Ga, Gb, and Bp are related to the slope of the diode curve and
are given in terms of the resistances that make up such a component,
which can be implemented through operational amplifiers.

A. Karatsuba Method

The Karatsuba algorithm is a fast multiplication algorithm that was
first published by Anatolii Karatsuba [11]. The algorithm can perform
multiplication of two n-digit numbers in O(nlog2(3)) ≈ O(n1.585)
time complexity, which is faster than the traditional multiplication
algorithm’s O(n2) time complexity.

Karatsuba’s breakthrough came from observing that the multiplica-
tion of two n-digit numbers could be reduced to three multiplications
of n

2
− digit numbers and some additional operations, instead of

four multiplications as in the traditional algorithm. This reduction in
the number of multiplications leads to a significant reduction in the
overall time complexity of the algorithm.

B. Green Algorithm

Green algorithms is a rapidly growing field that focuses on
developing algorithms that are environmentally friendly and energy-
efficient. The principal objective of green algorithms is to mitigate
the environmental impact of computing and data processing, a matter
of growing significance in light of the proliferation of big data and
the rapid expansion of the digital economy [12].

The development of green algorithms entails the optimisation of
computational methods and techniques for energy efficiency. This
includes creating algorithms that consume less energy, reducing
the amount of data that must be processed, and optimising the
hardware used to implement the algorithms. By reducing energy
consumption and minimising the use of non-renewable resources,
green algorithms can help mitigate the negative impact of computing
on the environment.

Green Algorithm is a website devoted to furthering and dissemi-
nating research in the field of green algorithms. The website provides
researchers with a multitude of resources, including publications, data
sets, and tools for measuring the energy consumption of algorithms.
The methodology behind the Green Algorithms project is described
in [13] with highlights the need for more research in this field and
identifies several areas where green algorithms can make a significant
impact, including energy-efficient data processing, renewable energy
systems, and smart grids.

III. METHODOLOGY

Our objective is to analyse the voltage through capacitor C1.
We adopted the values for the circuit components and parameters
suggested in [14]: L = 19.2mH , C1 = 10nF , C2 = 100nF ,
and R = 1978.5Ω. The adoption of these values guarantees chaotic
behaviour. To simulate the dynamics of the system, we applied the
fourth-order Runge-Kutta method [15] [16]:

xn+1 = xn + h
6
(k1 + 2k2 + 2k3 + k4),

k1 = f(tn, xn),

k2 = f
(
tn + h

2
, xn + h

2
k1
)
, tn+1 = tn + h,

k3 = f
(
tn + h

2
, xn + h

2
k2
)
,

k4 = f(tn + h, xn + hk3),

(5)

where h > 0 is the integration step size and x represents the
voltage states described in Equation (1). In a first scenario, we rewrite
Equation (5) proposing the following interval extension:

xn+1 = xn +
h

6
(k1 + 2(k2 + k3) + k4). (6)

In a second scenario, we fixed the Runge-Kutta Equation shown in
Equation (5), and proposed an interval extension of the model itself
(Equation (1)), leading to the following representation:

dvC1

dt
=

1

C1R
vC2 −

1

C1R
vC1 −

1

C1
id(vC1) (7)

Observe that, in the first scenario, we reduced the number of
operations (specially multiplications) in the original equation by
applying the associative property. On the other hand, we increased
the number of operations in the second scenario by applying the
distributive property. Table I summarises the simulated cases.

TABLE I: Summary of simulated cases.

Case ODE Model Runge-Kutta Model
Case 1 Equation (1) Equation (5)
Case 2 Equation (1) Equation (6)
Case 3 Equation (7) Equation (5)

We use the software Matlab, version R2022b, in a computer
based on a 12-core, CPU CORE i9-10920XE, 64 GB of RAM
with a NVIDIA T400 4GB GPU to run the simulations. Finally, we
calculate the amount of energy consumed in the simulation of each
representation, considering the simulation time and the number of
bits used, using the method proposed by Karatsuba’s algorithm. The
following equation can be used to estimate the number of bits:

NBITS = 64×A+ 641.585 ×M, (8)

where A and M represent the number of additions and multiplica-
tions, respectively. Once we had the number of bits, we estimated the
amount of energy and the carbon footprint in each simulation case.

IV. RESULTS

As expected, as shown in Figure 2 and Figure 3, no significant
differences are observed in the simulation results of the models
considered. Figure 2 is the comparison between Case 1 and Case 2,
where we altered the Runge-Kutta notation. Therefore, it shows
the voltage across capacitor C1, using the formulation expressed in
Equation (1) and considering interval extensions shown in Equation
(5) and Equation (6). Figure 3 depicts the comparison between Case 1
and Case 3, where we altered the differential equation for the voltage
in capacitor C1. Therefore, it shows the voltage across capacitor C1,
using the formulation expressed in Equation (1) and Equation (7) and
considering Runge-Kutta notation shown in Equation (5). Despite the
differences, the results highlight that a small change in the model led
to a change in the results without significantly alter the accuracy.

Due to the fact that simulation time varies with each attempt,
we simulated the systems together several times and compared the
simulation times. Figure 4 demonstrates the ratios between the simu-
lation times at each iteration, considering different representations of
the Runge-Kutta model and also Equations (1) and (7). The typical
mean of the time ratio was 1.0010 seconds for the first scenario
and 1.0025 seconds for the second scenario. In practice, this means
that the simulation time using Equation (5) is 0.10% greater than
the simulation time of Equation (6). While the simulation time of

1275

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 15,2025 at 11:32:00 UTC from IEEE Xplore. Restrictions apply.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t(ms) 10
4

-4

-3

-2

-1

0

1

2

3

4
V

o
lt

a
g

e
 a

c
ro

ss
 c

a
p

a
c
it

o
r

C
1

Fig. 2: Comparison between Case 1 and Case 2: Voltage across
capacitor C1, using the formulation expressed in Equation (1) and
considering interval extensions shown in Equation (5) and Equation
(6)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t(ms) 10
4

-4

-3

-2

-1

0

1

2

3

4

V
o

lt
a
g

e
 a

c
ro

ss
 c

a
p

a
c
it

o
r

C
1

Fig. 3: Comparison between Case 1 and Case 3: Voltage across capac-
itor C1, using the formulation expressed in Equation (1) and Equation
(7) and considering Runge-Kutta notation shown in Equation (5)

Equation (7) is 0.25% greater than the simulation time of Equation
(1). Table II presents the the maximum and minimum times for the
time occurrences.

0 10 20 30 40 50 60 70 80 90 100

Iteration

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

R
a
ti

o
 b

e
tw

e
e
n

 s
im

u
la

ti
o

n
 t

im
e
s

Scenario 1

Scenario 2

Fig. 4: Scenario 1: Ratio between simulation times, considering
comparison between Case 1 and Case 2. Scenario 2: Ratio between
simulation times, considering comparison between Case 1 and Case
3.

It may seem like a difference to be disregarded, but it is observed
that we are referring to a few seconds of simulation. It is therefore
worth analysing the difference in the amount of bits used in each case.
We describe below each case in terms of the number of operations

TABLE II: Characteristics of the times of simulation.

Measure Case 1 Case 2 Case 3
tmax 0.4761 0.4599 0.4801
tmin 0.4180 0.4191 0.4192

employed, considering the notation of the ODE that models the
voltage in capacitor C1 and the Runge-Kutta model used in the
simulation. Note that Case 2 reduced one multiplication operation
compared to Case 1, while Case 3 increased 5 multiplication opera-
tions compared to Case 1.

• Case 1: 26M + 19A
• Case 2: 25M + 19A
• Case 3: 31M + 19A

Using the Karatsuba method to determine the number of bits, we
have:

• Case 1: 2.0173× 104 bits
• Case 2: 1.9444× 104 bits
• Case 3: 2.3819× 104 bits
The Figure 5 shows the amount of carbon emitted and the energy

expended for each minute of simulation on the computer used. This
represents 0.0205g of CO2 and 0.0610Wh per second. Intuitively,
we can relate the amount of carbon and energy spent per bit:
4.4186x10−7g/bit of CO2 and 1.3148x10−6Wh/bit of energy.

Fig. 5: Amount of carbon emitted and the energy expended for each
minute of simulation.

For each iteration of the calculation, using the equations of Case
2 represents a reduction of 3.63% in carbon emissions and energy
consumption when compared to the formulations for Case 1. An
increase of 18.07% is observed in energy consumption and CO2

emissions when using the formulations of Case 3, compared to Case
1. A difference of 22.50% is observed between Case 3 and Case 2.

A. Discussion

Unlike real-world applications where the simulation time is not
always pre-established, we applied the Runge-Kutta method along a
vector of 75001 positions, with an integration step of 10−6, starting
from zero. Thus, it is understood that the results were generated with a
maximum of 75001 iterations. In practice, this represents a controlled
environment in which we limit the maximum simulation time by
establishing the number of iterations. In a different scenario where
the total simulation time was longer, the differences could be much
more significant.

The results emphasise that the simulation time is a critical factor
in the computational performance of many systems. Various math-
ematical models have different levels of complexity, and therefore,
the time required to simulate them can vary considerably. Extended
simulation times may lead to increased energy consumption, which
can be a significant problem for devices with limited power capacity.
Hence, it is crucial to take into account the energy consumption

1276

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 15,2025 at 11:32:00 UTC from IEEE Xplore. Restrictions apply.

implications when selecting a simulation method. By opting for a
more efficient simulation approach, such as one that employs simpler
mathematical models or reduces the simulation time, we can reduce
energy consumption and enhance the overall performance of the
system.

Carbon footprint and energy consumption are crucial issues that
need to be addressed to achieve environmental sustainability in
computational systems. Green algorithms and adoption of simpler
interval extensions are some of the solutions that can help reduce the
environmental impact of computational systems. These techniques
optimize energy consumption by reducing unnecessary computations
and data transfers and minimising storage requirements. By develop-
ing and implementing the techniques presented in this work, we can
reduce the energy consumption and carbon footprint of computational
systems, leading to significant environmental benefits.

V. CONCLUSIONS

In this work, we demonstrate how the simple way of representing
an equation can affect the energy consumption and carbon dioxide
emissions during computational synthesis. The increase in the number
of operations represented by the increase of five multiplication
operations led to a greater use of the number of bits and consequently
to a higher energy consumption. The overall results point to saving of
approximately 22.50% in the values of emitted CO2 and consumed
energy when using two different forms of representation of the same
system.

As climate change becomes a growing concern, the importance
of reducing carbon footprint has become increasingly significant. By
reducing carbon footprint, we can mitigate the impact of our activities
on the environment and take the necessary steps to combat climate
change. Measuring and reducing carbon footprint are critical aspects
of achieving a sustainable future, and a key element in achieving this
is to approach computational systems in a correct way. Therefore, this
work intends to encourage constant dialogue about this topic and how
healthy computing techniques can contribute to global sustainability.

This work addressed only the issue of using different interval ex-
tensions and their impacts, which could be understood as a technique
of green computing, but in fact, it focuses on the modelling of the
problem. Future works can address the use of more complex interval
extensions and compare the cost-benefit with the typical ”mean value
form” extension [17] [18]. Another approach could consider the use
of optimised programming techniques for simulation, focusing on
both optimised modelling and the adoption of optimised algorithms
for computational simulation of dynamic systems.

ACKNOWLEDGEMENT

This material is based upon works supported by Science Foundation
Ireland (SFI) for Josefredo Gadelha, Erivelton Nepomuceno and Marcio
Lacerda under contract number SFI/21/FFp-P/10065 and by Maynooth
University via a John and Pat Hume Doctoral (WISH) for Thalita Nazaré.
The authors also wish to express their gratitude to the International Office
of Maynooth University for funding this work.

REFERENCES

[1] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Comput. Surv., vol. 23, p. 5–48, mar
1991.

[2] M. Overton, Numerical computing with IEEE floating point arithmetic.
SIAM, Society for Industrial and Applied Mathematics, reprint ed., 2004.
Bibliografia. Índex.

[3] I. C. S. S. C. W. group of the Microprocessor Standards Subcommittee
and A. N. S. Institute, IEEE standard for binary floating-point arith-
metic, vol. 754. IEEE, 1985.

[4] M. R. Silva, E. Nepomuceno, G. F. V. Amaral, S. A. M. Martins,
and L. G. Nardo, “Exploiting the rounding mode of floating-point
in the simulation of chua’s circuit,” Discontinuity, Nonlinearity, and
Complexity, vol. 7, no. 2, pp. 185–193, 2018.

[5] R. Corless, C. Essex, and M. Nerenberg, “Numerical methods can
suppress chaos,” Physics Letters A, vol. 157, no. 1, pp. 27–36, 1991.

[6] A. Tarafdar, S. Sarkar, R. K. Das, and S. Khatua, “Power modeling for
energy-efficient resource management in a cloud data center,” Journal
of Grid Computing, vol. 21, no. 1, 2023.

[7] L. Lannelongue, J. Grealey, A. Bateman, and M. Inouye, “Ten simple
rules to make your computing more environmentally sustainable,” PLoS
Computational Biology, vol. 17, no. 9, pp. 6–13, 2021.

[8] A. Abugabah and A. Abubaker, “Green computing: Awareness and prac-
tices,” 2018 4th International Conference on Computer and Technology
Applications, ICCTA 2018, pp. 6–10, 2018.

[9] E. G. Nepomuceno and S. A. M. Martins, “A lower bound error for free-
run simulation of the polynomial narmax,” Systems Science & Control
Engineering, vol. 4, no. 1, pp. 50–58, 2016.

[10] L. O. Chua, “The genesis of chua’s circuit,” Tech. Rep. UCB/ERL
M92/1, EECS Department, University of California, Berkeley, Jan 1992.

[11] A. Karatsuba, “The complexity of computations,” Proceedings of the
Steklov Institute of Mathematics-Interperiodica, vol. 211, pp. 169–183,
1995.

[12] S. M. Alismail and H. A. Kurdi, “Green algorithm to reduce the energy
consumption in cloud computing data centres,” Proceedings of 2016 SAI
Computing Conference, SAI 2016, pp. 557–561, 2016.

[13] L. Lannelongue, J. Grealey, and M. Inouye, “Green algorithms: Quan-
tifying the carbon footprint of computation,” Advanced Science, vol. 8,
p. 2100707, June 2021.

[14] L. A. Aguirre, Introdução à identificação de sistemas–Técnicas lineares
e não-lineares aplicadas a sistemas reais. Editora UFMG, 2004.

[15] R. Chapra and S. Canale, “Numerical methods for engineers,” 1998.
[16] J. H. E. Cartwright and O. Piro, “The dynamics of runge–kutta methods,”

International Journal of Bifurcation and Chaos, vol. 02, pp. 427–449,
1992.

[17] Z. Galias, “The Dangers of Rounding Errors for Simulations and
Analysis of Nonlinear Circuits and Systems - and How to Avoid Them,”
IEEE Circuits and Systems Magazine, vol. 13, no. 3, pp. 35–52, 2013.

[18] J. D. Bruguera, “Optimizing the representation of intervals,” Science of
Computer Programming, vol. 90, pp. 21–33, sep 2014.

1277

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 15,2025 at 11:32:00 UTC from IEEE Xplore. Restrictions apply.

