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SCATTERING OF A PLANE ELECTROMAGNETIC WAVE
BY A MULTILAYER SPHERICAL LENS

P.O.Afanasyev,1 A.A.Akopov,2 A.M. Lehrer,2 and
M.B.Manuilov3∗ UDC 621.396.67

We propose an analytical solution of the problem of diffraction of a plane electromagnetic wave by
a multilayer dielectric (including plasmon) sphere. The solution is obtained using the method of
separation of variables. New efficient recurrence relationships are obtained for calculations of the
fields in layers, as well as formulas for the fields in the near and far diffraction zones. The novelty
of the proposed solution is connected with the way of representing its radial part in the form of
normalized functions. It is shown that as the number of the lens layers, which approximate the
smooth profile of dielectric permittivity, grows, the electric field at the focusing point increases
and reaches the maximum value. This allows one to determine the minimum required number of
layers in practical problems. Resonance properties of metal-dielectric nanoparticles are studied
in the optical band.

1. INTRODUCTION

Currently, multibeam antennas are used increasingly frequently as base station antennas to enhance
the bandwidth capacity of mobile communication systems in locations with great numbers of subscribers.
In this case, the service sector is covered by several narrow beams, each of which corresponds to its own
base station. From this viewpoint, multibeam antennas based on multilayer Luneberg lenses [1, 2] proved
to offer a promising solution. Due to their spherical symmetry, such lenses can form several independent
radiation patterns in a significantly wider range of angles compared to other antenna types known. Then,
along with the high velocity of beam switching and the low level of side lobes, a high level of the channel
isolation is ensured. Additionally, spherical symmetry makes it possible to tilt the beam without turning
the entire antenna and almost with no radiation pattern distortions.

Despite the above-listed advantages, Luneberg lenses have been of limited use in antenna engineering
so far due to technological complexity of manufacturing dielectric structures with the radial dependence of
dielectric permittivity. Recently, due to the arrival of novel types of electromagnetic materials with preset
parameters, a possibility has appeared to create multilayer structures, in which the distribution of the
dielectric permittivity of a Luneberg lens is realized with acceptable accuracy. Technologies of manufacturing
gradient lenses, in which the required dependence of the refractive index on the radius is formed, have also
been developed [3].

In this connection, it is important to have adequate means and methods for modeling the diffraction
of electromagnetic waves by a layered inhomogeneous dielectric sphere. The methods of solving this problem
were reviewed most comprehensively in [4].
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Geometrical optics methods are widely used to analyze spherical lens antennas, as well as lens an-
tennas of other types [3, 5–13]. It is usually assumed that a lens is irradiated by a point source located
at a certain distance from its surface. This approach yields acceptable results in cases where the lens size
is much greater than the radiation wavelength. To overcome this limitation, the ray tracing method was
combined with the diffraction theory in [14], and the combined method of ray tracing and physical optics
was used in [15] to analyze double-layer Luneberg lenses. All the above-mentioned methods do not allow
for rereflections at the layer boundaries, which reduces the calculation accuracy.

For layered spherical structures, the homogeneous Helmholtz equation can be solved by numerical-
analytical methods. The general scheme of solving the electrodynamic problem for a layered Luneberg
lens [16] consists in solving the system of linear equations, which follow from the conditions of continuity
of the tangential components in the electric-field and magnetic-field vectors at the layer interfaces. In this
case, the order of the system is determined by the number of layers. The amplitudes of the fields in the
layers are found by solving this system. Then the field in the outer region is determined, and from it, the
antenna radiation characteristics are found.

The literature on the problem of diffraction of a plane wave by spherically shaped bodies is quite
extensive [17, 18]. For the first time, it was solved by G.Mie [19]. Mie’s theory was described comprehensively
in [20]. Independently of Mie’s work, an equivalent solution of this problem was obtained by Debye in his
work on light pressure [21]. In both cases, the electric and magnetic fields are represented as series. The
total field outside the sphere is expressed in the form of the sum of the incident and scattered fields. The
diffraction problem is solved basing on the conditions of continuity of the field components at the interfaces
of dielectric layers.

Later, the Mie solution was generalized to the case of diffraction of a plane wave by a radially
inhomogeneous sphere. The problems of diffraction of a plane wave by a double-layer sphere and a dielectric
body consisting of an arbitrary number of concentric layers were solved in [22] and [23], respectively. An
improved method of solving the diffraction problem was proposed in [24] and modified in [4], where the
authors managed to avoid complex calculations of logarithmic derivatives.

The Mie series expansion was first used to solve the problem of scattering of a plane electromagnetic
wave by a conducting sphere [25], and then, by a dielectric sphere [26]. Afterwards, the problem of wave
scattering by a layered dielectric structure was solved in different ways: by using the Mie series [27, 28], the
scalar potentials [29], the Green’s tensor functions [30, 31], and the mode matching methods [32, 33]. In
doing this, the antenna characteristics of the Luneberg lens were studied for the case of irradiation from real
sources [33, 34]. In [35], the two-dimensional model of such a lens was considered. In [36], the analytical
solution on integral equations for the Debye potentials was obtained for the case of a homogeneous or layered
sphere.

Currently, numerical methods are used increasingly frequently to analyze Luneberg lenses, such as
the finite-difference time domain method [37], the finite element method [38], and the method of mo-
ments [39, 40]. An advantage of these methods is their universality and calculation flexibility. This makes
it possible, e.g., to allow for the antenna characteristics of various structural elements. A drawback of such
methods is that they require sufficiently great computational resources, and the computation time increases
strongly as the electric dimensions grow.

The classical Luneberg lens converts a plane electromagnetic wave to a spherical one, and vice versa.
To study the focusing properties of a multilayer Luneberg lens as a function of the number of layers, one
should consider the problem of plane wave diffraction by such a lens. This problem can be solved by both
the numerical methods, which are implemented in the electrodynamic modeling software suites, and by
analytical ones. However, in the case of great geometric sizes of the lens the numerical solution of the
diffraction problem can require significant computational resources.

In what follows, we present a new effective analytical solution of the problem of plane wave diffraction
by a multilayer dielectric sphere. On the one hand, high numerical efficiency and good accuracy of the
proposed solution allow one to use it as the computational kernel for synthesis of the dielectric-permittivity
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profile of a multilayer lens with complex dielectric permittivities of the layers. On the other hand, this
solution can be regarded as a reference for testing of universal numerical methods.

Additionally, in this paper we study theoretically the resonance properties of spherical metal-dielectric
particles in the optical range. When in resonance, the amplitude of the electromagnetic field near a nanopar-
ticle increases by more than an order of magnitude as compared with the amplitude of the incident-wave
field. This effect is used in sensors, biodetectors, elements of optical integral circuits, fluorescent microscopy,
and nonlinear spectroscopy [41]. Most papers deal with studying the influence of the dimensions of metal
nanoparticles on the resonance properties of the particles. Some aspects of the influence of the sizes and
shapes of the particles on their scattering properties are studied, specifically, on the extinction cross section
and the scattered field [42, 43]. In this paper, we study the properties of spherical metal-dielectric parties,
which are coated with a dielectric sheath. The limits of applicability of the quasistatic approximation [41]
in the calculations of metal-dielectric nanostructures are estimated.

2. SOLUTION METHOD

Consider scattering of a plane electromagnetic
y
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Fig. 1. Formulation of the problem of diffraction
of a plane wave by a multilayer dielectric sphere.

wave by a dielectric sphere which consists of N homo-
geneous concentric layers. The sphere is located in a
medium with the dielectric permittivity ε1 and magnetic
permeability μ1, see Fig. 1. The layers are numbered from
the outer layer towards the inner one. The permittivity
and permeability of the layers are εi and μi, respectively,
and the layer radii are ri, where i = 2, 3, . . . , N . The in-
cident plane wave is linearly polarized, the electric-field
vector is directed along the x axis, and the direction of
its propagation coincides with the z axis.

To solve the problem of the plane wave diffraction
by a multilayer sphere, we will use a representation of
the components of the field of this wave in terms of the

Debye potentials [18], specifically, A (electric potential) and F (magnetic potential). For the electric waves
(Hr = 0), the components of the electric and magnetic fields (E and H, respectively) are expressed through
the electric Debye potential as follows:

Eϕ =
1

r sin θ

∂2(rA)

∂r∂ϕ
, Eθ =

1

r

∂2(rA)

∂r∂θ
, Er =

∂2(rA)

∂r2
+ k2rA,

Hθ = iωεε0
1

r sin θ

∂(rA)

∂ϕ
, Hϕ = −iωεε0

1

r

∂(rA)

∂θ
, (1)

where ε0 is the electric constant, ω is the angular frequency of the radiation, and k and ε are the wave
number and the dielectric permittivity at the point having the spherical coordinates r, θ, ϕ, respectively.

The wave equation, which the electric Debye potential should satisfy, has the form

∂2(rA)

∂r2
+

1

r2 sin θ

[
1

sin θ

∂2(rA)

∂ϕ2
+

∂

∂θ
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∂θ

]
+ k2rA = 0.

Note that the conditions of continuity of the tangential field components at the layer boundaries lead to the
continuity of the values εA and ∂(rA)/∂r.

For the magnetic waves (Er = 0), the field components are expressed in terms of the magnetic Debye
potential:

Eθ = −iωμμ0
1
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, Eϕ = iωμμ0

1

r
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∂θ
,
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Hϕ =
1

r sin θ

∂2(rF )

∂r∂ϕ
, Hθ =

1

r

∂2(rF )

∂r∂θ
, Hr =

∂2(rF )

∂r2
+ k2rF, (2)

where μ0 is the magnetic constant, and μ is the magnetic permeability at the point having the spherical
coordinates r, θ, ϕ. The potential F satisfies the same wave equation and conditions of continuity of the
values μF and ∂(rF )/∂r at the layer boundaries.

The solutions of the wave equations will be sought for, as usual, by the method of separation of
variables [18]. We assume that a magnetic wall is located in the plane y = 0. In the pth layer of the
considered structure, the solution will be written in the following form [18]:

Ap(r, θ, ϕ) =
∞∑

m=0

∞∑
n=1

ap,n,mR
a
p,n(r)P

m
n (cos θ) cos(mϕ), (3)

Fp(r, θ, ϕ) =

∞∑
m=1

∞∑
n=1

fp,n,mR
f
p,n(r)P

m
n (cos θ) sin(mϕ), (4)

where ap,n,m and fp,n,m are unknown coefficients, and Pm
n (z) is the associated Legendre functions. The

functions Rσ
p,n(r) in Eqs. (3) and (4) are the solution of the equation

d2[rRσ
p,n(r)]

dr2
+

[
k2p −

n (n+ 1)

r2

]
rRσ

p,n(r) = 0, (5)

where σ = a, f , and kp = ω
√
εpε0μμ0 is the wave number in the pth layer. In this case, the conditions of

continuity at the layer interfaces inside the sphere should be fulfilled for the functions

εpR
a
p,n(r),

d[rRa
p,n(r)]

dr
, μpR

f
p,n(r),

d[rRf
p,n(r)]

dr
.

To simplify further calculations, we will require that the functions Rσ
1,n(r) and Rσ

2,n(r) from Eq. (5) should
satisfy the conditions of normalization at the outer boundary of the sphere:

Rσ
1,n(r2) = Rσ

2,n(r2) = 1. (6)

The solution of wave equation (5) is expressed in terms of spherical Bessel functions. For the external region

(p = 1), it has the form Rσ
1,n(r) = hn(k1r)

/
hn(k1r2), where hn(z) =

√
π/(2z)H

(2)
n+1/2(z) = jn(z) − iyn(z)

is a spherical Hankel function of the second kind, and jn(z) and yn(z) are spherical Bessel functions of the
first and second kinds, respectively.

Let us represent the field outside the sphere as a sum of the field of the incident wave and the scattered
field. For the field of the incident wave, the Debye potentials can be represented as the following series:

Ainc(r, θ, ϕ) =

∞∑
n=1

aincn

jn(k1r)

jn(k1r2)
Pm
n (cos θ) cosϕ, (7)

F inc(r, θ, ϕ) =
∞∑
n=1

f inc
n

jn(k1r)

jn(k1r2)
Pm
n (cos θ) sinϕ. (8)

In the spherical coordinate system, the components of the electric field of the incident plane wave, which is
polarized along the x axis, will have the form

Einc
r = E sin θ cosϕ, Einc

θ = E cos θ cosϕ, Einc
ϕ = −E sinϕ,

E = exp(−ik1r2 cos θ) sin θ cosϕ. (9)
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One can see from relationship (9) that it is necessary to set m = 1, i.e., the other terms of the series
are equal to zero. Using the table series expansion [18], we find the coefficients in series (7) and (8):

aincn =
1

k1
jn(k1r2)

2n+ 1

n (n + 1)
(−i)n−1, f inc

n =
1

Zc,1k1
jn(k1r2)

2n + 1

n (n+ 1)
(−i)n−1,

where Zc, 1 is the wave impedance of the region outside the sphere. Then, using the conditions of continuity
of the Debye potentials and their derivatives on the sphere surface, we find the unknown coefficients in
expansions (3) and (4) for p = 1:

a1,n =
ε1Ṙ

a
2,n(r2)− ε2k1j

′
n(k1r2)

/
jn(k1r2)

Δa
aincn , a2,n = ε1

Ṙa
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′
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/
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aincn , (10)
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f
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/
jn(k1r2)
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f inc
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Ṙf
1,n(r2)− k1j

′
n(k1r2)

/
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Δf
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n , (11)

where Δa = ε2R
a
1,n(r2) − ε1Ṙ

a
2,n(r2), Δf = μ2Ṙ

f
1,n(r2) − μ1Ṙ

f
2,n(r2), the prime superscript denotes the

derivative with respect to the argument, and the dot over a variable denotes the differentiation operator
here and in what follows: Ṙ ≡ d[rR(r)]/dr.

Thus, the electric and magnetic Debye potentials for the scattered field in the outer region (p = 1)
are expressed in the form of series

A1(r, θ, ϕ) =
∞∑
n=1

a1,nR
a
1,n(r)P

1
n(cos θ) cosϕ =

∞∑
n=1

a1,n
hn(k1r)

hn(k1r2)
P 1
n(cos θ) cosϕ, (12)

F1(r, θ, ϕ) =

∞∑
n=1

f1,nR
f
1,n(r)P

1
n(cos θ) cosϕ =

∞∑
n=1

f1,n
hn(k1r)

hn(k1r2)
Pm
n (cos θ) cosϕ. (13)

The components of the electric fields can be expressed in terms of the Debye potentials allowing for Eqs. (1)
and (2) as follows:

Eϕ =
1

r sin θ

∂2(rA)

∂r∂ϕ
+ iωμμ0

1

r

∂(rF )

∂θ
, Eθ =

1

r
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1
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∂(rF )

∂ϕ
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To determine the field inside the sphere, one has to find the functions Ra
p,n(r) and Rf

p,n(r) in expressions (3)
and (4) at p = 2, . . . , N and satisfy the conditions of continuity for these functions and their derivatives.

We will look for the solution in the form

Ra
p,n(r) =

⎧⎪⎪⎨
⎪⎪⎩

KN

εN

jn(kNr)

jn(kNrN )
=

KN

εN
Φ−
N,n(r), p = N, 0 ≤ r ≤ rN ;

1

εp
[KpΦ

−
p,n(r) +Kp+1Φ

+
p,n(r)], 2 < p < N, rp+1 ≤ r ≤ rp,

(15)

where Kp denotes unknown coefficients, and Φ+
p,n(r) and Φ−

p,n(r) are the functions that satisfy Eq. (5) and
the boundary conditions

Φ−
p,n(rp) = 1, Φ+

p,n(rp) = 0, Φ−
p,n(rp+1) = 0, Φ+

p,n(rp+1) = 1, Φ+
N,n(rp) = 0. (16)

Functions (15) that are introduced here satisfy the conditions of continuity of the quantity εpR
a
p,n(r)

at r = rp+1, p = 2, . . . , N − 1. This simplifies writing of the continuity conditions for the derivatives
d[rRa

p,n(r)]/dr at the layer boundaries at r = rp+1, p = 2, . . . , N − 1 considerably. At the same time,
in literature, e.g., in [4, 32], a representation of the solution in the layers is used in the form of a linear
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combination of the spherical Bessel functions of the first and second kinds, which leads to significantly more
complicated transformations and resulting relationships. From the condition of continuity of the derivatives
d[rRa

p,n(r)]/dr at the layer interfaces and r = rp+1, p = 2, . . . , N − 1, using representation (15) we obtain

Kp
1

εp
Φ̇−
p,n(rp+1) +Kp+1

[
1

εp
Φ̇+
p,n(rp+1)− 1

εp+1
Φ̇−
p+1,n(rp+1)

]
= Kp+2

1

εp+1
Φ̇+
p+1,n(rp+1), (17)

p = N − 1, . . . , 2. From normalization conditions (6), it follows that

Ra
2,n(r2) = K2/ε2 = 1. (18)

Relationships (17) and (18) are a recurrence scheme for determination of the unknown coefficients Kp. Cal-
culating these coefficients, we find the function Ra

2,n(r), which is required to satisfy the boundary condition
on the sphere surface:

Ra
2,n(r) =

1

ε2
[K2Φ

−
2,n(r) +K3Φ

+
2,n(r)]. (19)

To determine the function Rf
p,n(r2), one should replace ε in Eqs. (17)–(19) with μ.

The functions Φ+
p,n(r) and Φ−

p,n(r), which enter Eqs. (15)–(17) and satisfy boundary conditions (16),
can be represented as

Φ+
p,n(r) =

1

δ
[jn(kpr)yn(kprp)− jn(kprp)yn(kpr)], Φ−

p,n(r) =
1

δ
[jn(kpr)yn(kprp+1)− jn(kprp+1)yn(kpr)],

where δ = jn(kprp)yn(kprp+1)− jn(kprp+1)yn(kprp).

After calculating the functions Ra
p,n(r) and Rf

p,n(r) in Eq. (15), it is possible to determine the co-
efficients a1,n and f1,n from Eqs. (10) and (11). Substituting these coefficients to series (12) and (13), we
determine the Debye potentials of the scattered field in the outer region by using relationships (14).

Allowing for the asymptotic behavior of the Bessel functions at great values of the argument, one can
show that within the far-zone approximation (k1r → ∞), the expressions for the Debye potentials and the
derivatives take the form

A1(r, θ, ϕ) ∼ 1

k1r

∞∑
n=1

a1,n
exp{−i [k1r − π (n+ 1)/2]}

hn(k1r2)
P 1
n(cos θ) cosϕ,

∂A1(r, θ, ϕ)

∂r
∼ −ik1A1(r, θ, ϕ),

F1(r, θ, ϕ) ∼ 1

k1r

∞∑
n=1

f1,n
exp{−i [k1r − π (n+ 1)/2]}

hn(k1r2)
P 1
n(cos θ) sinϕ,

∂F1(r, θ, ϕ)

∂r
∼ −ik1F1(r, θ, ϕ).

Then the components of the electric field in the far zone are determined by the formulas

Eϕ ∼ ik1

(
− 1

sin θ

∂A

∂ϕ
+

1

Zc,1

∂F

∂θ

)
, Eθ ∼ −ik1

(
∂A

∂θ
+

1

Zc,1

1

sin θ

∂F

∂ϕ

)
.

3. NUMERICAL RESULTS

The proposed analytical method is characterized by fast convergence with regard to the number of
considered terms in the series. In the process of actual calculations, this number varied in the range from 40
to 60. The convergence rate decreases as the electrical size of the calculated structure grows. Therefore, as
the lens radius grows as compared with the operating wavelength, the number of terms in expansions (12)
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and (13) should be increased. Specifically, for an eight-layer lens, which is considered below, one should
allow for 45 terms when summing the series, in order to achieve an error of the order of hundredths of a
percent.

The advantage and efficiency of the proposed method are determined by the simple and fast recurrence
scheme, which is operable at an arbitrary number of dielectric layers having complex dielectric permittivities.
In this case, the computation time per frequency point is equal to less than one second for a modern PC,
which is several orders of magnitude shorter than the computation times of the known off-the-shelf codes
implementing the universal numerical electrodynamic methods.

To check the above-described analytical method, we studied the scattered field for the cases of inci-
dence of a plane wave having the frequency f0 = 2 GHz on a single-layer, a double-layer, or a triple-layer
dielectric sphere. The radii of the layers in the triple-layer sphere were equal to 150, 200, and 250 mm, and
their dielectric permittivities, to 1.77, 1.50, and 1.40, respectively. All dielectric materials had a magnetic
permeability of 1 and no losses.

The same problems were solved by the numerical

5

4

3

2

1
02 0.6 1.0 1.40.4 0.8 1.2 r, m

E, V/m

Fig. 2. Radial dependence of the electric field
of the wave scattered by a three-layer sphere (r
counted in the direction opposite to the wave
propagation), r2 = 250 mm, r3 = 200 mm,
r4 = 150 mm, ε2 = 1.4, ε3 = 1.5, ε4 = 1.77,
f0 = 2 GHz, the � symbols correspond to [44],
and the solid line, to the considered method.

methods implemented in the software suite in [44]. In that
case, the finite elements method was used to calculate the
diffraction by the single-layer sphere, and the method of
moments, the diffraction by multiple-layer spheres. Fig-
ure 2 shows the calculated amplitude of the scattered elec-
tric field in the outer region. Here and in what follows,
the amplitude of the incident field is equal to 1 V/m.
The radial dependence of the field was calculated in the
direction of the wave propagation. The dependences of
the scattered-field amplitude on the angular coordinates
in the E and H planes were also calculated. Graphical
coincidence of the results, which were obtained by the
presented analytical method and the numerical methods,
is observed in all cases,

Note that the proposed solution allows one also to
analyze metal-dielectric structures, e.g., nanoparticles of
gold or silver coated with dielectric sheaths in the optical
spectrum. In the process of the calculations, allowance
was made for the dependence of the refractive indices of
metals on the wavelength. The complex refractive indices

of silver, gold, copper and aluminum are taken from [45].
To determine the minimal number of the layers required for focusing of a parallel beam, diffraction

of a plane wave by a dielectric multilayer sphere was needed for various layer numbers that approximate the
required smooth profile of the dielectric permittivity. The specified profile of the dielectric permittivity was
determined by formula [9], which is a generalization of the Luneberg formula for geometric optics:

ε(r) =
1

F̄ 2

[
1 + F̄ 2 −

( r

R

)2
]
, (20)

where R = r2 is the outer lens radius, F̄ = RF/R is the focal distance normalized with respect to the lens
radius, and RF is the distance between the lens center and the focal point.

Figures 3 and 4 show the amplitudes of the electric field scattered by an eight-layer dielectric lens
(F̄ = 1.1) as functions of the radial and angular coordinates.

The radii of the layers in this sphere are equal to 112.5, 225.0, 337.5, 450.0, 562.5, 675.0, 787.5,
and 900.0 mm, and the dielectric permittivities of the layers, to 1.82, 1.79, 1.74, 1.66, 1.56, 1.43, 1.27, and
1.09 (see Fig. 1). The frequency is f0 = 2 GHz. The presented dependences show that the structure has a
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pronounced focus situated at a distance of about 1 m

r, m
0

4

8

12

16

0 8. 1.2 1.6 2.0 2,4

E, V/m

Fig. 3. Radial dependence of the electric field of
a wave scattered by an eight-layer sphere (r is
counted along the direction of the wave propaga-
tion).

from the lens center, where the electric field exceeds the
amplitude of the incident wave by more than an order
of magnitude. The field decreases fast as the distance
from the focus grows along both the radial and angular
coordinates. The calculated focal distance corresponds to
the value F̄ = 1.1, which was taken in Eq. (20).

The dependences of the electric field at the max-
imum of its distribution (focus) on the number of layers
were studied for various frequencies of the incident wave
and a structure with F̄ = 1.1 and R = 900 mm. In
this case, the profile of the dielectric permittivity of the
lens was approximated with homogeneous layers having
identical thicknesses, i.e., for the number N of layers, the
thickness of each layer was equal to Δr = R/N . It was
found that as the number of the layers, which approxi-
mate the profile of the dielectric permittivity of the lens,
increases, the electric field E at the focusing point is grow-
ing nonlinearly and, starting at a certain value, remains nearly constant. In this case, the dependence of
E at the maximum of its distribution on the number of layers grows with increasing operating frequency.
For example, for a lens working in two standard mobile communication bands (690–960 MHz and 1710–
2690 MHz), the strongest dependence is observed for a frequency of 2690 MHz. For actual problems in the
specified bands, it suffices to take N = 8, since at this value the maximum field is close to the limiting value.

It should be noted that the optimal number of layers is determined by not only the electric size of
the lens, but also the technology of its manufacture. Whenever a technology, which allows one to produce
layers with arbitrary radii, is available, the number of layers can be decreased [46].

Let us consider the resonance properties of spherical metal-dielectric nanoparticles. The calculation
of the diffraction by nanoparticles has its specific features. Unlike the size of the Luneberg lens, the sizes
of nanoparticles are smaller than or comparable with the wavelength. This allows one to use the obtained
formula in the case of a small number of series terms. However, in this case the real and imaginary parts of
the dielectric permittivity have the same order of magnitude. This required developing special procedures
for calculation of the Bessel functions of the complex argument.

It is known [41] that the quasistatic approximation, within which the resonance wavelength is in-
dependent of the sphere diameter, but is determined rather by the dielectric permittivity of the particle

E, V/m E, V/m

0 0

4 4

8 8

12 12

16 16

¡80 ¡80¡40 ¡400 040 40µ, degrees µ, degrees

b)a)

Fig. 4. Angular distribution of the electric field of the wave scattered by an eight-layer sphere in the planes of
the E and H vectors (a and b, respectively). The value of r corresponds to the position of the maximum of
E.
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Fig. 5. Dependence of the electric field on the wavelength λ for golden (a) and silver (b) spheres, which have
radii of 150 nm and are coated with sheaths having outer radii of 200 nm and ε = 1.5 (curve 1), ε = 1.6 (2),
ε = 1.8 (3), and ε = 2.0 (4). The distance from the sphere center is equal to 300 nm (in the direction of the
wave propagation).

E, V/m
b)a)

¸, nm

E, V/m

¸, nm
0

3

6

9

12

300 300400 400500 500600 600
0

10

20

30

5

15

25

35
1

1

2

2

3

3

Fig. 6. Dependence of the electric field on the wavelength for gold (a) and silver (b) spheres having radii of
150 nm, 175 nm, and 200 nm (curves 1, 2, and 3, respectively), which are coated in dielectric sheaths having
the dielectric permittivity ε = 1.5. The outer radius of the spheres is equal to 250 nm. The distance from the
sphere center is 300 nm (in the direction of the wave propagation).

and its surroundings, is valid for nanoparticles that have sizes much smaller than the wavelength in free
space. Numerical experiments showed that the quasistatic approximation makes it possible to estimate the
resonance properties with an error of less than 4% for the ratio between the particle size and the wavelength
being not more than 5%.

Figures 5–7 present the results of calculating the total electric field for the diffraction of a plane wave
by nanoparticles of gold and silver. An increase in the dielectric permittivity of the sheath around a plasmon
nanoparticle leads to a frequency drift of the scattering maximum. A variation in the dielectric permittivity
of the sheath from 1.5 to 2.0 results in an increase of the maximum total (scattered plus incident) field by
about 1.8 times (see Fig. 5). A similar effect is observed, when the sheath thickness increases (see Fig. 6).

Figure 7 presents the dependences of the field on the wavelength for a triple-layer structure. As the
dielectric permittivity of the outer layer changes from 1.6 to 2.0, the maximum total field increases by about
1.5 times. The resonance wavelength also increases in the case under consideration. It should be noted that
it is simpler to achieve the required resonance properties in structures with a greater number of layers, since
variations in one of the layers have less influence on the total characteristic.
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Fig. 7. Dependence of the electric field on the wavelength for gold (a) and silver (b) spheres having radii of
150 nm, 175 nm, and 200 nm (curves 1, 2, and 3, respectively), which are coated in two dielectric sheaths.
The radius and the dielectric permittivity of the inner sheath are equal to 200 nm and ε = 1.5, respectively.
The outer radius is equal to 250 nm, and the dielectric permittivities are ε = 1.6, 1.8, and 2.0 (curves 1, 2,
and 3, respectively.) The distance from the sphere center is 300 nm (in the direction of the wave propagation).

4. CONCLUSIONS

We have obtained an analytical solution of the problem of diffraction of a plane electromagnetic
wave by a multilayer dielectric sphere with an arbitrary number of dielectric layers having arbitrary radii
and dielectric permittivity values. The solution is found by the method of separation of variables. We
used representations of the fields in the layers in terms of the Debye potentials, which are written in the
form of series with respect to associated Legendre functions and spherical Bessel functions. New recurrence
relationships are found for calculating the fields in the layers. They ensure high numerical efficiency of the
solution. The novelty and efficiency of the proposed method are due to the form of record of the radial
part of the solution, which is presented in the form of normalized functions that satisfy the condition of
continuity of the Debye potentials at the layer interfaces. Analytical representations have been obtained for
the components of the scattered field in the near and far diffraction zones. High accuracy and reliability of
the found solution was confirmed by the analysis of the inner solution convergence and comparison with the
numerical methods.

Basing on the found solution, we have analyzed the distribution of the scattered field of a plane
wave by spherical lenses in the RF band. As the number of the layers, which approximate the profile of the
dielectric permittivity of a lens, grows, the electric field at the focal point increases and reaches the maximum
value, which allows one to determine the minimal required number of layers in practical problems. It was
found that in the example under consideration, an eight-layer structure is sufficient for the development
of spherical lens antennas of mobile communication base stations. The development method can be used
efficiently to design and manufacture various lens antennas, as well as to study metal-dielectric structures
in the optical range, e.g, nanoparticles of gold, silver, and other metals covered with dielectrics.

Analysis of the applicability limits of the quasistatic approximation for calculations of metal-dielectric
nanostructures demonstrated that this approximation ensures an error of less than 3% if the ratio of the
particle sizes and the wavelength is no more than 0.05. It is shown that the resonance properties of metal
nanospheres are pronounced better, if they are coated with dielectric sheaths having high refractive indices.
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