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a b s t r a c t

In this note we consider the stability preserving properties of diagonal Padé approximations to thematrix
exponential. We show that while diagonal Padé approximations preserve quadratic stability when going
from continuous-time to discrete-time, the converse is not true.We discuss the implications of this result
for discretizing switched linear systems. We also show that for continuous-time switched systems which
are exponentially stable, but not quadratically stable, a Padé approximation may not preserve stability.
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1. Introduction

Diagonal Padé approximations to the exponential function
are known to map the open left half of the complex plane
to the open interior of the unit disk [1]. This gives rise to a
correspondence between continuous-time stable LTI (linear time
invariant) systems and their discrete-time stable counterparts
(a fact that is often exploited in the systems and control
community [2]). Perhaps the best known map of this kind is
the first order diagonal Padé approximations (also known as the
bilinear or Tustin map [1]). The bilinear map is known not only to
preserve stability, but also preserve quadratic Lyapunov functions.
That is, a positive definite matrix P satisfying A∗

c P + PAc < 0 will
also satisfy A∗

dPAd −P < 0where Ad is themapping of Ac under the
bilinear transform [2] with some sampling time h [3]. Thismakes it
extremely useful when transforming a continuous-time switching
system:

ẋ = Ac(t)x, Ac(t) ∈ Ac (1)

into an approximate discrete-time counterpart

x(k + 1) = Ad(k)x(k), Ad(k) ∈ Ad (2)
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because, the existence of a common positive definite matrix P
satisfying A∗

c P + PAc < 0 for all Ac ∈ Ac implies that the same
P satisfies A∗

dPAd−P < 0 for all Ad ∈ Ad. Thus quadratic stability of
the continuous-time switching system implies quadratic stability
of the discrete-time counterpart. This property is useful in
obtaining results in discrete-time from their continuous-time
counterparts [2], and in providing a robust method to obtain a
stable discrete-time switching system froma continuous-time one.

Our objective in this present note is to determine whether
this property is preserved by higher order Padé approximations.
From the point of view of discretization, low order approximants
are not always satisfactory, and one often chooses higher order
Padé approximations in real applications. Later we present an
example of an exponentially stable continuous-time switching
system for which a discretization based on a first order Padé
approximation is unstable, but, discretizations based on second
order approximations are stable for any sampling time. Also,
it is well known that the first order Padé approximation (the
bilinear approximation) can map a negative real eigenvalue to a
negative eigenvalue if the sampling time is large. In such situations,
while stability is preserved, qualitative behavior is not preserved
even for LTI systems; a non-oscillatory continuous mode may be
transformed into an oscillatory discrete-timemode. In this context
we establish the following facts concerning general diagonal Padé
approximations.

(i) Consider an LTI system Σc : ẋ = Acx and let Σd : x(k + 1) =

Adx(k) be any discrete-time system obtained from Σc using
any diagonal Padé approximation and any sampling time. If

http://dx.doi.org/10.1016/j.sysconle.2011.04.024
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
mailto:ssuryashravankumar@gmail.com
mailto:surya.sajja.2009@nuim.ie
http://www.hamilton.ie/
http://www.hamilton.ie/
http://www.hamilton.ie/
http://www.hamilton.ie/
http://dx.doi.org/10.1016/j.sysconle.2011.04.024


684 R. Shorten et al. / Systems & Control Letters 60 (2011) 683–689
V is any quadratic Lyapunov function for Σc then, V is a
quadratic Lyapunov function for Σd.

(ii) The converse of the statement in (i) is only true for first order
Padé approximations.

(iii) Consider a switched system Σsc : ẋ = Asc(t)x, Asc(t) ∈ {Ac1,
. . . , Acn} and let Σsd : x(k + 1) = Asd(k)x(k), Asd(k) ∈ {Ad1,
. . . , Adn} be a discrete-time switched system obtained from
Σsc using anydiagonal Padé approximations and any sampling
times. If V is any quadratic Lyapunov function for Σsc then, V
is a quadratic Lyapunov function for Σsd.

(iv) The converse of the statement in (iii) is only true for first order
Padé approximations.

(v) Consider an exponentially stable switched system Σsc : ẋ =

Asc(t)x, Asc(t) ∈ {Ac1, . . . , Acn}. Let Σsd : x(k + 1) = Asd(k)
x(k), Asd(k) ∈ {Ad1, . . . , Adn} be a discrete-time switched
system obtained from Σsc using a p’th order diagonal Padé
approximation. Then, Σsd may be unstable, even when p = 1.

These results are quite subtle, but we believe that they are
important for a number or reasons. Discretization of switched
systems is a relatively new research direction in the control
systems community. To the best of our knowledge, few papers
exist on this topic; for example see [4–6].1 In the context of
such studies, our results say that quadratic stability is robust
with respect to diagonal Padé approximations. That is, quadratic
stability is always preserved, even when the sampling time is
poorly chosen. This is an important fact when building simulators
of switched linear systems. Our results also indicate that Padé
approximations do not, in general, preserve the stability properties
of exponentially (but not quadratically) stable systems. In such
cases, building a (stability preserving) discrete-time simulation
model of such systems that preserves stability is non-trivial and
remains an open question.

The consequences of our observations go beyond numerical
simulation. In many applications one converts a continuous-time
switched system to a discrete-time equivalent before embarking
on control design. For example, in [7], a model that is essentially
a continuous-time uncertain (and switched) system is replaced
with a switched discrete-timemodel. Our results indicate that one
must exhibit extreme caution in discretizing a continuous-time
switched system model. In particular, care is needed in assuming
that properties of the original continuous-time problem are
inherited from properties of the discrete-time approximation [7].
In fact, stability of the discrete-time model does not necessarily
imply stability of the continuous-time one: even for discrete-time
systems that are quadratically stable. Our results also pose questions
for model order reduction of switched linear systems. Again this
is a relatively new area of study of considerable interest in the
VLSI community [8]. In such applications, where the ultimate
objective is numerical simulation, stability may be preserved in
the reduction of the continuous-timemodel to another lower order
continuous-time model, only for it to be lost in the discretization
step.

2. Mathematical preliminaries

The following definitions and results are useful in developing
the main result, Theorem 1, which is given in Section 3.
Notation: A square matrix Ac is said to be Hurwitz stable if all of its
eigenvalues lie in the open left half of the complex plane. A square
matrix Ad is said to be Schur stable if all its eigenvalues lie in the
open interior of the unit disk. The notation M∗ is used to denote
the complex conjugate transpose of a general square matrix M; M

1 Preliminary results from this paper have been presented at IEEE CDC2010.
is Hermitian ifM∗
= M . A Hermitian matrix P is said to be positive

(negative) definite if x∗Px > 0 (x∗Px < 0) for all non-zero x and we
denote this by P > 0 (P < 0). In all of the following definitions,
P = P∗ > 0.

A matrix P is a Lyapunov matrix for a Hurwitz stable matrix Ac
if A∗

c P + PAc < 0. In this case, V (x) = x∗Px is a quadratic Lyapunov
function (QLF) for the continuous-time LTI system ẋ(t) = Acx(t). A
matrix P is aSteinmatrix for a Schur stablematrix Ad if A∗

dPAd−P <
0. In this case, V (x) = x∗Px is a quadratic Lyapunov function for the
discrete-time LTI system x(k + 1) = Adx(k).

Given a finite set of Hurwitz stable matrices Ac a matrix P is a
common Lyapunovmatrix (CLM) forAc ifA∗

c P+PAc < 0 for allAc in
Ac . In this case, we say that the continuous-time switching system
(1) is quadratically stable (QS) with Lyapunov function V (x) =

x∗Px and V is a common quadratic Lyapunov function (CQLF) for
Ac . Given a finite set of Schur stable matrices Ad a matrix P is a
common Stein matrix (CSM) for Ad if A∗

dPAd − P < 0 for all Ad in
Ad. In this case, we say that the discrete-time switching system (2)
is quadratically stable (QS) with Lyapunov function V (x) = x∗Px
and V is a common quadratic Lyapunov function (CQLF) for Ad.

Whenever a continuous-time or discrete-time system is
quadratically stable then, it is globally exponentially stable
about the origin. The converse result is not true, that is, global
exponential stability does not imply quadratic stability for a
switching system. Roughly speaking, global exponential stability
of a linear switched system under arbitrary switching is equivalent
to the existence of common Lyapunov function (though not
necessarily a quadratic Lyapunov function) [9,10]. However,
for second order switched systems, necessary and sufficient
conditions for stability have been derived in [11–13].

Our primary interest in this note is to examine the invariance
of quadratic Lyapunov functions under diagonal Padé approxima-
tions to the matrix exponential. Recall the definition of a diagonal
Padé approximations to the exponential function.

Definition 1 (Diagonal Padé Approximations [1,14]). The pth order
diagonal Padé approximation to the exponential function es is the
rational function Cp defined by

Cp(s) =
Qp(s)
Qp(−s)

(3)

where

Qp(s) =

p−
k=0

cksk and ck =
(2p − k)!p!

(2p)!k!(p − k)!
. (4)

Thus the pth order diagonal Padé approximation to eAch, the
matrix exponential with sampling time h, is given by

Cp(Ach) = Qp(Ach)Q−1
p (−Ach) (5)

where Qp(Ach) =
∑p

k=0 ck(Ach)k.
Much is known about diagonal Padé maps in the context of LTI

systems. In particular, the fact that such approximations map the
open left half of the complex plane to the interior of the unit disk
is widely exploited in systems and control. This implies the well
known fact that these maps preserve stability of LTI systems as
stated formally in the following lemma.

Lemma 1 ([1] Preservation of Stability). Suppose that Ac is a Hurwitz
stable matrix and, for any sampling time h > 0, let Ad = Cp(Ach) be a
diagonal Padé approximation of eAch of any order p. Then Ad is Schur
stable.

A special diagonal Padé approximation is the first order
approximation. This is also sometimes referred to as the bilinear
(or Tustin) transform.
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Definition 2 (Bilinear Transform [1,14]). The first order diagonal
Padé approximation to the matrix exponential with sampling time
h is defined by:

C1(Ach) =


I + Ac

h
2


I − Ac

h
2

−1

. (6)

This approximation is known to not only preserve stability, but
also to preserve quadratic Lyapunov functions [3,15,2]; namely if
P is a Lyapunov matrix for Ac then it is also a Stein matrix for
Ad = C1(Ach). The converse statement is also true. Actually, we
have the following known resultwhich is a special case of Lemma3
below.

Lemma 2 ([15] Preservation of Lyapunov Functions). Suppose that
Ac is a Hurwitz stable matrix and, for any sampling time h > 0, let
Ad = C1(Ach) be the first order diagonal Padé approximation (bilinear
transform) of eAch. Then P is a Lyapunov matrix for Ac if and only if P
is a Stein matrix for Ad.

As we shall see, bilinear transforms play a key role in studying
general diagonal Padé approximations. In particular, a complex
version of this map that inherits some of the above properties will
be very useful in what follows. The complex bilinear transform is
related to the Cayley transform [16].

Lemma 3 (The Complex Bilinear Transform). Let Ac be a Hurwitz
stable matrix and for any complex number λ with Re(λ) > 0, define
the matrix

Ad = (λI + Ac)(λ
∗I − Ac)

−1. (7)

Then P is a Lyapunov matrix for Ac if and only if P is a Stein matrix
for Ad.

Proof. Consider any matrix P = P∗ > 0. When Ad is given by (7),
the Stein inequality A∗

dPAd − P < 0 can be expressed as

(λ∗I − Ac)
−∗(λI + Ac)

∗P(λI + Ac)(λ
∗I − Ac)

−1
− P < 0.

Post-multiplication byλ∗I−Ac and pre-multiplication by (λ∗I−
Ac)

∗ results in the following equivalent inequality

(λI + Ac)
∗P(λI + Ac) − (λ∗I − Ac)

∗P(λ∗I − Ac) < 0,

which simplifies to

(λ + λ∗)(PAc + A∗

c P) < 0.

Since λ + λ∗ > 0 this last inequality is equivalent to the Lyapunov
inequality PAc +A∗

c P < 0. Thus P is a Lyapunovmatrix for Ac if and
only if it is a Stein matrix for Ad. �

The final basic result thatwe shall need concerns common Stein
matrices for discrete-time systems. A proof of this (well known)
lemma is given in the Appendix.

Lemma 4. If P is a CSM for A1, . . . , Am then P is a Stein matrix for
the matrix product

∏m
i=1 Ai.

3. Main result

We now present the main result of the paper: Theorem 1. A
main consequence of this result is that common quadratic Lya-
punov functions are preserved by all diagonal Padé discretiza-
tions for all sampling times. Thus, quadratic stability is preserved
under all diagonal Padé discretizations of a quadratically stable
continuous-time switched system. This result is stated formally in
Corollary 1.
Fig. 1. Illustration of Theorem 1.

Theorem 1. Suppose that Ac is a Hurwitz stable matrix and Ad is any
pth order Padé approximation to eAch for any h > 0. If P is a Lyapunov
matrix for Ac then P is a Stein matrix for Ad.

Proof. Consider any matrix P which is a Lyapunov matrix for Ac .
Recall that Ad = Qp(Ach)Q−1

p (−Ach). Since the coefficients of the
polynomial Qp are real,

Qp(sh) = khp
n∏

j=1


αj + s

 m∏
i=1

(λi + s)(λ∗

i + s)

for some k ≠ 0, where 2m + n = p, the real numbers −hαj,
j = 1, . . . , n are the real zeros of Qp and the complex numbers
−hλi, −hλ∗

i , i = 1, . . . ,m are the non-real zeros of Qp. Since all
the zeros ofQp have negative real parts [1,14] wemust have αj > 0
for all j and Re(λi) > 0 for all i. It now follows that Ad can be
expressed as

n∏
j=1

(αjI + Ac)


m∏
i=1

(λiI + Ac)(λ
∗

i I + Ac)



×


m∏
i=1

(λiI − Ac)(λ
∗

i I − Ac)

−1  n∏
j=1


αjI − Ac

−1

which, due to commutativity of the factors, can be expressed as
n∏

j=1

(αjI + Ac)(α
∗

j I − Ac)
−1


m∏
i=1

(λiI + Ac)(λ
∗

i I − Ac)
−1



×


m∏
i=1

(λ∗

i I + Ac)(λiI − Ac)
−1


.

Hence Ad is a product of bilinear terms of the form (λI +

Ac)(λ
∗I − Ac)

−1 where Re(λ) > 0. Since P is a Lyapunov matrix
for Ac , it follows from Lemma 3 that P is a Stein matrix for each of
the bilinear terms. Thus Ad is a product of a bunch of matrices each
of which have P as a Stein matrix. It now follows from Lemma 4
that P is a Stein matrix for Ad. �

The above theorem is illustrated in Fig. 1. If we denote the
convex cone of all positive definite matrices P satisfying AT

c P +

PAc < 0 by LAc , and the convex cone of all positive definite
matrices P satisfying AT

dPAd − P < 0 by SAd , this theorem
establishes the fact that LAc ⊆ S Ad . In other words, our main
theorem states that if Ad is a diagonal Padé approximation of eAch
for any h > 0 then a Lyapunov matrix for Ac is also a Stein matrix
for Ad. Lemma 2 tells us that the converse of this statement is true
for p = 1; namely for p = 1we have thatLAc = S Ad . However, the
converse of this statement is not necessarily true for p ≥ 2; that
is, for p ≥ 2, a Stein matrix for Ad is not necessarily a Lyapunov
matrix for Ac , and in general LAc is strictly contained in SAd . This
is demonstrated in the following example.

Example 1. Consider the Hurwitz stable matrix:

Ac =

[
1.56 −100
0.1 −4.44

]
.
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Fig. 2. Two Padé approximations.

Now consider the matrix Ad obtained under the 2nd order diagonal
Padé approximation of eAch with the discrete-time step h = 2:

Ad =

[
−0.039 0.4205
−0.0004 −0.0138

]
.

The matrix

P =

[
2.3294 −0.0138

−0.0138 2.7492

]
is a Stein matrix for Ad but is not a Lyapunov matrix for Ac .

The following corollary is easily deduced from the main
theorem. This is probably the most useful result in the paper. It
says that quadratic stability is preserved under all diagonal Padé
discretizations of a quadratically stable continuous-time switched
system.

Corollary 1. Suppose that P = P∗ > 0 is a CLM for a finite set of
matrices Ac . Then P is CSM for any finite set of matrices Ad, where
each Ad in Ad is a diagonal Padé approximation of eAch of any order
for some Ac in Ac and h > 0.

Proof. If P is a CLM for Ac then, P is an Lyapunov matrix for every
Ac in Ac . It now follows from Theorem 1, that P is a Stein matrix
for every Ad in Ad. Hence P is a CSM for Ad.

The last corollary shows that diagonal Padé approximations
preserve quadratic stability for switching systems. Thus, quadratic
stability of a continuous-time switching system implies quadratic
stability of a corresponding discrete-time switching system
obtained via a diagonal Padé discretization. This is easily deduced
by extending the situation in Fig. 1 tomultiplematrices, (see Fig. 2).

However, it is very important to note that the corollary does
not imply the converse. Namely, intersection of the discrete-
time sets SAd1 and SAd2 does not imply the intersection of the
corresponding continuous-time sets. This is demonstrated in the
following example.

Example 2. Consider the Hurwitz stable matrices:

Ac1 =

[
1.56 −100
0.1 −4.44

]
, Ac2 =

[
−1 0
0 −0.1

]
.

Since the matrix product Ac1Ac2 has negative real eigenvalues it
follows that there is no CLM [17] for {Ac1, Ac2}. Now consider
the matrices Ad1, Ad2 obtained under the 2nd order diagonal Padé
approximation of eAcih with the discrete-time step h = 2:

Ad1 =

[
−0.039 0.4205
−0.0004 −0.0138

]
, Ad2 =

[
0.1429 0

0 0.8187

]
.

These matrices have a CSM

Pd =

[
2.3294 −0.0138

−0.0138 2.7492

]
. �

Comment : Example 1, together with Corollary 1, illustrate the
following facts. LetAc be a finite set of Hurwitz stablematrices and
Ad the corresponding finite set of Schur stable matrices obtained
under diagonal Padé approximations for fixed p and h. If P is a
CLM for Ac then P is a CSM for Ad. However, as the example
demonstrates, the existence of a CSM for Ad does not imply the
existence of a CLM for Ac .
4. A converse result

We have seen that if P is a Lyapunov matrix for Ac then, for
any positive integer p, P is a Stein matrix for the pth order Padé
approximation of eAch for all h > 0 that is,

Ad(h)∗PAd(h) − P < 0 for all h > 0,

where Ad(h) is a diagonal Padé approximation (of any fixed order)
to eAch. The next lemma tells us that to achieve a converse result
we need the following additional condition to hold,

lim
h→0

Ad(h)∗PAd(h) − P
h

< 0. (8)

Lemma 5. Suppose that, for all h > 0, the matrix Ad(h) is a Padé
approximation (of any fixed order) to eAch. Then P is a Lyapunov
matrix for Ac if and only if P is a Stein matrix for Ad(h) for all h > 0
and (8) holds.

Proof. In view of our previous results, we can prove this result if
we show that

lim
h→0

Ad(h)∗PAd(h) − P
h

= PAc + A∗

c P. (9)

To demonstrate this limit, first recall that Ad(h) = Qp(Ach)Qp

(−Ach)−1 and

Qp(Ach) = I +
1
2
(Ach) + h2Dp(Ach)

where Dp is a polynomial. Hence

lim
h→0

Qp(−Ach) = I

and

lim
h→0

Qp(Ach)∗PQp(Ach) − Qp(−Ach)∗PQp(−Ach)
h

= PAc + A∗

c P.

Since Ad(h)∗PAd(h) − P can be expressed as

Qp(−Ach)−∗
[Qp(hAc)

∗PQp(hAc)

−Qp(−Ach)∗PQp(−Ach)]Qp(−Ach)−1,

we obtain the desired result (9). �

5. Implications of main result

The starting point for our work was the recently published
paper [2]. One of the main results of that paper was the fact that
the bilinear transform preserves quadratic stability when applied
to continuous-time switched systems. We have shown that this
property also holds for general diagonal Padé approximations
(although the converse statement is not true). This is an important
observation due to the fact that while the bilinear transform
is stability preserving, it is not always a good approximation
to the matrix exponential. Our result says that higher order
approximations are also stability preserving when going from
continuous-time to discrete-time.

A potential application of this result is immediate. Our results
provide amethod to discretize quadratically stable linear switched
system in a manner that preserves stability; see [5] for a recent
paper on this topic. That is, given a quadratically stable switched
linear system, a discrete-time counterpart obtained using diagonal
Padé approximations to the matrix exponential, will also be
quadratically stable. Since this property is true for all orders
of approximation, and for all sampling times, then our main
result says that quadratic stability is robustly preserved under Padé
discretizations or any order.



R. Shorten et al. / Systems & Control Letters 60 (2011) 683–689 687
In the context of the previous comment, it is important to
realize that the robust stability preserving property of Padé
approximations is a unique feature of quadratically stable systems.
It was recently shown that non-quadratic Lyapunov functions may
not be preserved under the bilinear transform with sampling time
h = 2. This fact was first demonstrated in [2], where it was proven
that unlike quadratic Lyapunov functions, ∞-norm and 1-norm
type Lyapunov functions are not necessarily preserved under the
bilinear mapping with h = 2. In fact the situation may be worse as
the following example illustrates.

Example 3. Consider a continuous-time switching system de-
scribed by (1) with Ac = {Ac1, Ac2, Ac3} where

Ac1 =


−19.00 0 0

0 −9 0
0 0 −0.10


,

Ac2 =


−19 0 0
−10 −9 0

−18.75 0 −0.10


,

Ac3 =


−19.00 0 18.75

0 −9 8.75
0 0 −0.10


.

Using the ideas in [18] (also see Theorem 2 in the next
section) it can be shown that this continuous-time switching
system is globally exponentially stable. It follows from the results
of Dayawansa and Martin [9] that this switching system has a
Lyapunov function (though this is not necessarily quadratic). Now
consider a discrete-time approximation to the above system. We
assume that switching is restricted to only occur atmultiples of the
sampling time h = 0.25. Using the first order Padé approximation,
we obtain a discrete-time switching system described by (2) with
Ad = {Ad1, Ad2, Ad3} where

Adi =


I −

1
8
Aci

−1 
I +

1
8
Aci


, i = 1, 2, 3.

that is,

Ad1 ≈


−0.40 0 0

0 −0.06 0
0 0 0.98


,

Ad2 ≈


−0.40 0 0
−0.35 −0.06 0
−1.37 0 0.98


,

Ad3 ≈


−0.40 0 1.37

0 −0.06 1.01
0 0 0.98


.

We now claim that the discrete-time switching system is unstable.
To see thiswe simply consider the incremental switching sequence
Ad3 → Ad2 → Ad1; then the dynamics of the system evolve
according to the product

Ad = Ad1Ad2Ad3.

Since the eigenvalues of Ad are approximately {−0.0002, 0.606,
−1.0357}, then with one eigenvalue outside the unit disk, this
switching sequence, repeated periodically results in an unstable
system.

Clearly, by selecting a smaller sampling time one obtains a
better approximation to the continuous-time system. However,
selecting an appropriate sampling time is difficult for switched
systems since sampling time is usually related to solution growth
rates. While this is simple to calculate for an LTI system, bounds
on the solution growth rates are usually very difficult to calculate
for a switched system. On the other hand, if the original system is
quadratically stable, then our main result implies that stability can
never be lost by a bad or unlucky choice of sampling time.
5.1. A further comment on the counter example

Example 3 in the previous section indicates that ourmain result
and its corollary do not, in general, extend to switched systems
which are exponentially stable, and which do not have a quadratic
Lyapunov function. An interesting question therefore is to ask how
one discretizes a general, exponentially stable, switching system.
In this section we give a preliminary result in this direction.
Specifically, we take a closer look at Example 3, and ask the
question as to how onemight discretize the system in the example
so that exponential stability is preserved irrespective of choice of
sampling time. Our results can be summarized as follows.
(i) Even ordered Padé discretizations preserve exponential stabil-

ity for the system class illustrated by Example 3. This is true for
any even ordered approximation, and for any sampling time.

(ii) Odd ordered Padé discretizations preserve exponential stabil-
ity provided the sampling time is smaller than a computable
bound.

The above items say that even ordered Padé discretizations
preserve stability in a robust manner; odd ordered ones do not.
Example 3 is an example of a switching system of the form (1)
where every matrix Ac in Ac has real negative eigenvalues and
every pair of matrices in Ac have n − 1 common eigenvectors
(namely all such matrix pairs are pairwise triangularizable). It is
shown in [18] that such systems are exponentially stable. This
result follows from the following theorem in [18] which we give
here to aid our discussion.

Theorem 2 ([18]). Suppose V = {v1, . . . , vn+1} is a set of vectors
in Rn with the property that any subset of n vectors is linearly
independent. Let

M = {Mi : i = 0, 1, . . . , n}

where M0 = [v1 · · · vn] and

Mi = [v1 · · · vn+1 vi+1 · · · vn] for i = 1, 2, . . . , n, (10)

that is, Mi is obtained by replacing the i-th column in M0 with the
vector vn+1. Let Ac be any finite subset of the following set ofmatrices:

{MDM−1
: M ∈ M and D is diagonal negative definite} (11)

Then the continuous-time switching system (1) is globally exponen-
tially stable.

Recently, a discrete-time version of this result was ob-
tained [19]. Namely, a discrete-time switching system is exponen-
tially stable if every pair of matrices in Ad share n − 1 common
eigenvectors, and if all eigenvalues are real, inside the unit circle,
and positive [19] (i.e. there is no oscillatory behavior).

In both the discrete-time case and the continuous-time case,
the same type of arguement is used to prove stability. Since Padé
approximations are eigenvector preserving, it immediately follows
that any approximations that map real negative eigenvalues
to positive ones, will, by invoking the above result, preserve
exponential stability.

Using the above observations we obtain our next result. To
describe this result, consider any positive integer p and let

ᾱp =


largest real zero of Qp
−∞ if Qp has no real zeros.

Since all real zeros of Qp must be negative, we must have ᾱp < 0.
When p is odd, Qp must have at least one real zero; hence ᾱp is
finite. When p is even, we show later than Qp does not have any
real zeros; hence ᾱp = −∞ for even p. To illustrate,

Q1(s) = 1 +
1
2
s, Q2(s) = 1 +

1
2
s +

1
12

s2;

hence
ᾱ1 = −2, ᾱ2 = −∞.
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Theorem 3. Suppose that Ac is set of matrices satisfying the
hypotheses of Theorem 2 and let

α = min{α : α is an eigenvalue of Ac and Ac ∈ Ac}.

Consider any positive integer p and define

h̄p =


ᾱp/α if Qp has a real zero
∞ if Qp has no real zeros. (12)

Let Ad be any finite subset of

{Cp(hAc) : Ac ∈ Ac and 0 < h < h̄p}.

Then the discrete-time switching system (2) is globally exponentially
stable.

Proof. We first show that all the eigenvalues of the matrices in
Ad must be positive, real and less than one. So, consider any
matrix Ad in Ad. This matrix can be expressed as Ad = Cp(Ach)
where Ac is in Ac and h < ᾱp/α. From the description of Ac we
have Ac = MDM−1 where D is diagonal with negative diagonal
elements, α1, . . . , αn. Consider any i = 1, . . . , n. Since αi is an
eigenvalue of Ac , it follows from the definition of α that αi ≥ α;
hence hαi ≥ hα. Recalling the requirement that h < ᾱp/α and
noting that α < 0 we must have hα > ᾱp; hence

hαi > ᾱp.

Since Qp(s) ≠ 0 for s > ᾱp where ᾱp < 0 and Qp(0) = 1 > 0, it
follows from the continuity of Qp that Qp(s) > 0 for s > ᾱp; hence
Qp(hαi) > 0. Since −hαi > 0, we also have Qp(−hαi) > 0. Hence
Cp(hαi) = Qp(hαi)/Qp(−hαi) > 0. Since hαi < 0 and Cp maps
the open left half plane into the open unit disk, we must also have
Cp(hαi) < 1. Since Ad = Cp(Ach) and Ac = MDM−1, we have

Ad = MΛM−1

where Λ is diagonal with diagonal elements

Λii = Cp(hαi), i = 1, . . . , p.

Hence Cp(hα1), . . . , Cp(hαp), are the eigenvalues of Ad and these
eigenvalues are positive, real and less that one.

We will now show that

Ad = {eÃc : Ãc ∈ Ãc} (13)

where Ãc is a set of matrices which satisfy the hypotheses of
Theorem 2. This will imply that the continuous-time switching
system

ẋ = Ãc(t)x(t) Ãc(t) ∈ Ãc (14)

is globally exponentially stable. Relationship (13) tells us that the
state of the discrete-time system (2) corresponds to the state at t =

0, 1, 2, . . . of the continuous-time system (14) switching at these
times; this will imply that the discrete-time switching system is
globally exponentially stable. To achieve the above goal, consider
any i = 1, . . . , p and we let α̃i = ln[Cp(hαi)]. Then α̃i is negative
real and

Cp(hαi) = eα̃i . (15)

Now consider Ãc = MD̃M−1 where D̃ is the diagonal matrix with
negative diagonal elements α̃1, . . . , α̃p. Since Ãc = MD̃M−1 we
also have eÃc = MΛ̃M−1 where Λ̃ is diagonal with diagonal
elements

Λ̃ii = eα̃i , i = 1, . . . , p.

It follows from (15) that Λ̃ = Λ; hence

Ad = eÃc .
Since Ac is a finite set of matrices satisfying the hypotheses
of Theorem 2, it now follows that Ad can be expressed as (13)
where Ãc is a finite set of matrices satisfying the hypotheses of
Theorem 2. As explained above this now implies that the discrete-
time switching system is globally exponentially stable. �

Note that α is the most negative eigenvalue of the matrices in
Ac . In the example of the previous section, α = −19 whereas
ᾱp = ᾱ1 = −2; hence h̄p = −2/ − 19 = 0.1053. In this example,
h = 0.25 > h̄p and so the hypotheses of the above theorem
are not satisfied. It is easily verified that had we, in Example 2,
discretized with h < 0.1053, the corresponding discrete-time
switching would have been exponentially stable.

Before proceeding to the next result, we briefly digress to show
that for p even, the polynomial Qp has no real zeros (hence h̄p = ∞

whenever p is even). This conclusion is evident from the following
theorem. Throughout the paper, the order of a diagonal Padé
approximation ‘p’ has been defined as the order of the polynomial
Qp. But for a more general case, R(z) is a rational approximation
to ez of order ‘q’, if ez − R(z) = Czq+1

+ O(zq+2) with C ≠ 0.
Theorem4provides themaximumattainable order of such rational
approximations under some conditions.

Theorem 4 ([20]). Suppose that a rational approximation to the
exponential function is given by R(z) = Pk(z)/Qj(z), where the
subscripts k and j denote the orders of the polynomials Pk and Qj
respectively. Let Qj have only m different complex zeros. If in addition
Qj has a real zero then, the order q of R satisfies

q ≤ k + m + 1.

If Qj has no real zeros then,

q ≤ k + m.

A Padé approximation Pk/Qj is a special case of the rational
approximations considered in the above theorem and its order is
q = j + k [20], where k and j denote the orders of the polynomials
Pk and Qj. Hence, if Qj has only m different complex zeros and at
least one real zero, it must satisfy j + k ≤ k + m + 1, that is,

j ≤ m + 1 .

If Qj had a real zero when j is even, it must have two real zeros and,
since Qj has at least m complex zeros, this yields the contradiction
that j ≥ m+ 2. Hence, for a Padè approximation Pk/Qj with j even,
Qj has no real zeros.
Comment: The above results tell us that for even order Padé
approximations we have h̄p = ∞. This yields the next result.

Theorem 5. Suppose that Ac is a finite set of matrices satisfying the
hypotheses of Theorem 2 and p is any even positive integer. Then, for
any sampling time, the discrete-time switching system (2) obtained
under the pth order diagonal Padé approximation is globally
exponentially stable.

The key point in the proof of the last theorem is that even
ordered Padé polynomials do not have real zeros. It immediately
follows that stability is preserved for any choice of sampling
interval. Odd ordered Padé polynomials, on the other hand, have
some real zeros, and these zeros can cause difficulties in ensuring
that negative real eigenvalues map to positive ones. To preserve
stability in this case one must select a sampling time that is small
enough. To illustrate this point let us consider again Example 3.
We assume that switching is restricted to only occur at multiples
of the sampling time h = 1 (which is chosen to illustrate the
assertions in Theorem 3). As can be seen from Table 1, the first
two odd order approximations lead to an unstable discrete-time
switching system.
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Table 1
Stability of some even and odd approximations for Example 3.

Order λmax(Ad1Ad2Ad3) Comment

1 2.5819 Unstable
2 0.5957 Stable
3 1.0710 Unstable
4 0.6539 Stable

Comment: The results of this section indicate that the selection of
stable Padé discretizations is guided strongly by the knowledge
of the Lyapunov function for the original switched system. This
suggests the following interesting openquestion. Namely, to deter-
mine if in choosing a discretization method for exponentially sta-
ble continuous-time switched systems, knowledge of a Lyapunov
function for the original continuous-time system is required.

6. Conclusions

In this paperwehave shown that diagonal Padé approximations
to the matrix exponential preserve quadratic Lyapunov functions
between continuous-time anddiscrete-time switched systems.We
have also shown that the converse is not true. Namely, it does not
follow that the original continuous-time system is quadratically
stable even if the discrete-time system has a quadratic Lyapunov
function. Furthermore, it is easily seen that such approximations
do not (in general) preserve stability when used to discretize
switched systems that are stable (but not quadratically stable). Our
results suggest a number of interesting research directions. An im-
mediate question concerns discretization methods that preserve
other types of stability, see for example [21,22]. Since general Padé
approximations can be thought of as products of complex bilin-
ear transforms, an immediate question in this direction concerns
the equivalent map for other types of Lyapunov functions. Namely,
given a continuous-time system with some Lyapunov function,
what are themappings from continuous-time to discrete-time that
preserve the Lyapunov functions? A natural extension of this ques-
tion concerns whether discretization methods can be developed
for exponentially stable switched and nonlinear systems butwhich
do not have a quadratic Lyapunov function.

Appendix. Proof of Lemma 4

Suppose that P is a common Stein matrix for two matrices A1
and A2, that is,

A∗

1PA1 < P and A∗

2PA2 < P.

Pre-multiply the first inequality by A∗

2 and post-multiply it by A2
and use the second inequality to obtain

A∗

2A
∗

1PA1A2 ≤ A∗

2PA2 < P,

that is,

(A1A2)
∗P(A1A2) < P,

which implies that P is a Stein matrix for the product A1A2. This
shows that the statement of the lemma is true for m = 2. Now
assume that it is true for m = k and then let Mk =

∏k
i=1 Ai.
Since Mk+1 = MkAk+1, it follows from the result for two matrices
that P is a Stein matrix forMk+1. Hence by induction the proposed
lemma is true for allm. So it can concluded that if all the constituent
matrices of a product have a CSM P then P is a Stein matrix for the
product. �
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