
On the Difference Between Finite-State
and Pushdown Depth

Liam Jordon(B) and Philippe Moser(B)

Computer Science Department, National University of Ireland Maynooth,
Maynooth, Co Kildare, Ireland

liam.jordon@mu.ie, pmoser@cs.nuim.ie

Abstract. This paper expands upon existing and introduces new for-
mulations of Bennett’s logical depth. A new notion based on pushdown
compressors is developed. A pushdown deep sequence is constructed.
The separation of (previously published) finite-state based and pushdown
based depth is shown. The previously published finite state depth notion
is extended to an almost everywhere (a.e.) version. An a.e. finite-state
deep sequence is shown to exist along with a sequence that is infinitely
often (i.o.) but not a.e. finite-state deep. For both finite-state and push-
down, easy and random sequences with respect to each notion are shown
to be non-deep, and that a slow growth law holds for pushdown depth.

Keywords: Algorithmic information theory · Kolmogorov
complexity · Bennett’s logical depth

1 Introduction

In a seminal paper [2], Bennett introduced a new method to measure the useful
information contained in a piece of data; called logical depth. Logical depth
is different from classical information theory in the following sense. Consider
a random binary sequence. According to classical information theory, such a
random sequence contains a large amount of information because it cannot be
significantly compressed while logical depth says that this information is not
of much value. Contrast this with a 10-day weather forecast; from the classical
information point of view it contains little information (namely no more than
the differential equations from which it was originally simulated), but it contains
useful information according to logical depth.

Logical depth helps to formalise the difference between complex and non-
complex structures. Deep structures can be thought of as structures that contain
an underlying patterns which are extremely difficult to find. Given more and
more time and resources, an algorithm could spot these patterns and exploit
them (such as to compress a sequence).

L. Jordon—Supported by a postgraduate scholarship from the Irish Research Council,
Government of Ireland.

c© Springer Nature Switzerland AG 2020
A. Chatzigeorgiou et al. (Eds.): SOFSEM 2020, LNCS 12011, pp. 187–198, 2020.
https://doi.org/10.1007/978-3-030-38919-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38919-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-38919-2_16

188 L. Jordon and P. Moser

Bennett’s original notion is based on Kolmogorov complexity [2], and inter-
acts nicely with fundamental notions of computability theory as shown in [12].1

Due to the uncomputability of Kolmogorov complexity, several researchers have
attempted to adapt Bennett’s notion to lower complexity levels, aka feasible
depth. Most of these notions are centered around polynomial time computations
[1,10,11] and finite-state machines [6]. Due to the intrinsic limitations of polyno-
mial time (resp. finite state) algorithms, none can match all the nice properties of
Bennett’s original, i.e. each feasible notion studied represents a trade-off between
advantages and limitations.

Similarly to randomness, there is no absolute notion of logical depth, and
all variants mentioned above can be seen as variations of a same theme [11],
based on the compression framework. However most notions satisfy some basic
properties that could be seen as fundamental. These are:

– Random sequences are not deep (for the appropriate randomness notion).
– Computable sequences are not deep (for the appropriate computability

notion).
– A slow growth law: deep sequences cannot be quickly computed from shallow

ones.
– Some deep sequence exists.

In this paper, we continue the study of depth at the finite-state level. In sum-
mary, we construct a new depth notion (called ILPDC-depth), based on infor-
mation lossless pushdown compressors (see [9] for definitions and a comparison
with other compressors). We show our notion satisfies the fundamental depth
properties mentioned above. We compare ILPDC-depth to finite-state depth [6],
and show the two notions are different. This is somehow surprising as pushdown
machines are strictly more capable than finite state machines. This shows that
although pushdown machines are strictly stronger than finite state machines,
stronger does not necessarily mean better.

We also extend the finite-state notion of [6], by introducing an a.e. version
(the original [6] is an i.o. version), and show the two notions differ.

Let us explain our results in more details. In the first part of this paper we
introduce a notion of pushdown depth. As observed in [11], most depth notions
can be expressed in the compression framework, i.e. fix a compressor type T
(e.g. finite state, polynomial time, etc.). A sequence S is T -deep, if for every
compressor C of type T , there exists a compressor C ′ of type T (think of C ′

as being more powerful than C) such that C ′ compresses almost every prefix
of S, better than C. The meaning of “better” will vary with the corresponding
depth notion (and actually has consequences on the computational power of

1 We acknowledge that logical depth was originally defined as depending on both com-
putational complexity and Kolmogorov complexity, which is a descriptional complex-
ity. The new notions in this paper are focused purely on a descriptional complexity
lengths, specifically the ratio between the length of the input and the length of the
output to restricted classes of transducers. However we continue to call these depth
notions to be consistent with previous literature in [6,11].

On the Difference Between Finite-State and Pushdown Depth 189

the sequence, as shown in [10,12]), but for most notions, bounds considered
are O(1), O(log n) and O(n). From the work in [6], it seems linear bounds are
appropriate at the finite state level, and thus we also use linear bounds.

We say a sequence is T -deep if for every compressor C of type T , there exists
a compressor C ′ of type T such that on almost every prefix of S (with length
denoted n), C ′ compresses it at least by αn more bits than C, for some constant
α. We define ILPDC-depth by setting type T to be information lossless push-
down compressors (ILPDC). Intuitively, an ILPDC is a pushdown transducer
such that when run the transducer on input x, the output y and final state q
uniquely determines the input x, hence the name information lossless. Contrary
to finite state information lossless transducers, it is not known whether this auto-
matically yields a pushdown decompressor (in the finite state model, the finite
state decompressor comes for free [7,8]).

We show ILPDC-depth satisfies all fundamental depth properties highlighted
above, i.e. both random and easy sequences are not deep, ILPDC-depth satisfies
a slow growth law, and there exists a PD-deep sequence.

Next we compare ILPDC-depth to finite state depth [6] (called i.o. FS-depth),
and show the two notions are different: we prove there exists a sequence S which
is i.o. FS-deep but not ILPDC-deep.

Most notions of depth, measure the compression difference on almost all
prefixes of the sequences. Notable exceptions include the original finite state
notion [6] (see [12] for further i.o. notions), where the difference is only required
be large on infinitely many prefixes of the sequence. Such depth notions are
called i.o. depth. In the second part of this paper, we extend the original i.o.
FS-depth of [6], to an almost everywhere notion, called a.e. FS-depth. We show
there exists an a.e. FS-depth sequence. We also show a.e. FS-depth is a stronger
requirement than i.o. FS-depth, by constructing a sequence that is i.o. FS-deep
but not a.e. FS-deep.

Due to lack of space, most proofs are omitted. A final journal version of this
paper is in preparation.

2 Preliminaries

N denotes the set of all non-negative integers. A finite binary string is an element
of {0, 1}∗. A binary sequence is an element of {0, 1}ω. The length of a string x
is denoted by |x|. λ denotes the empty string (the string of length 0). For all
n ∈ N, {0, 1}n denotes the set of binary strings of length n. For a string (or
sequence) S and i, j ∈ N, S[i . . . j] denotes the ith through jth bits of S with the
convention that if i > j then S[i . . . j] = λ. S � j denotes S[0 . . . j − 1], the first
j bits of S. For a string x and a string (or sequence) y, xy denotes the string
(or sequence) composed of x concatenated with y. For a string x and n ∈ N,
xn denotes x concatenated with itself n times. For strings x, y, z ∈ {0, 1}∗, if
w = xyz, we say y is a substring of w. For a string x, and a string (or sequence)
y, we say x is a prefix of y, written as x � y, if x = y[0 . . . |x| − 1]. In particular
we occasionally write x ≺ y if x is a prefix of y and |x| < |y|. The lexicographic

190 L. Jordon and P. Moser

ordering of {0, 1}∗ is defined by saying for two strings x, y, x is less than y if
either |x| < |y| or else |x| = |y| with x[n] = 0 and y[n] = 1 for the least n such
that x[n] �= y[n]. For a string x, x−1 denotes x written in reverse. By intervals
of N we mean closed intervals of N in the normal sense. All logarithms are taken
to be in base 2.

3 Models of Computation

3.1 Finite-State Transducers

We use the standard finite-state transducer model.

Definition 1. A finite-state transducer (FST) is a 4-tuple T = (Q, q0, δ, ν),
where

– Q is a nonempty, finite set of states,
– q0 ∈ Q is the initial state.
– δ : Q × {0, 1} → Q is the transition function,
– ν : Q × {0, 1}∗ → {0, 1}∗ is the output function,

For all x ∈ {0, 1}∗ and b ∈ {0, 1}, the extended transition function ̂δ :
{0, 1}∗ → Q, and the transducer output T : {0, 1}∗ → {0, 1}∗ is defined by
the usual recursion.

An FST is information lossless (IL) if the function x �→ (T (x), ̂δ(x)) is 1–1;
i.e. the output and final state of T on input x uniquely identify x. We call an
FST that is IL an ILFST. By the identity FST, we mean the ILFST IFS that
on every input x ∈ {0, 1}∗, IFS(x) = x. We write FST to denote the set of all
FSTs.

A map f : {0, 1}ω → {0, 1}ω is said to be FS computable (ILFS computable)
if there is an FST (ILFST) T such that for all S ∈ {0, 1}ω, lim

n→∞ |T (S � n)| = ∞
and for all n ∈ N, T (S � n) � f(S). In this case we say T (S) = f(S).

It is well known [7,8] that any function computed by an ILFST can be
inverted to be approximately computed by another ILFST.

Theorem 1. For any ILFST T , there exists an ILFST T−1 and a constant
c ∈ N such that for all x ∈ {0, 1}∗, x � (|x| − c) � T−1(T (x)) � x.

Corollary 1. For any ILFST T , there exists an ILFST T−1 such that for all
S ∈ {0, 1}ω, T−1(T (S)) = S.

3.2 Pushdown Compressors

The model of pushdown compressors we use is the same pushdown compressor
model as used in [9]. Note that to keep the model feasible, there is a bound on
how long the compressor can empty its stack before it needs to output a symbol.

A pushdown compressor (PDC) is an 8-tuple C = (Q,Σ, Γ, δ, ν, q0, z0, c)
where

On the Difference Between Finite-State and Pushdown Depth 191

1. Q is a non-empty finite set of states,
2. Σ is the finite input alphabet,
3. Γ is the finite stack alphabet,
4. δ : Q × (Σ ∪ {λ}) × Γ → Q × Γ ∗ is the transition function,
5. ν : Q × (Σ ∪ {λ}) × Γ → Σ∗ is the output function,
6. q0 ∈ Q is the start state,
7. z0 ∈ Γ is the special bottom of stack symbol,
8. c ∈ N is an upper bound on the number of λ-rules per input bit.

We fix Σ = {0, 1} and Γ = {0, 1, z0}. We assume every state in Q is reachable
from q0. We write δ = (δQ, δΓ ∗). The transition function δ accepts λ as an input
in addition to {0, 1}. This means C has the option of altering its stack while not
reading an input character. We call this a λ-rule. In this case δ(q, λ, a) = (q′, λ),
that is, we pop the top symbol from the top of the stack. To enforce determinism
we require that at least one of the following hold for all q ∈ Q and a ∈ Γ :

1. δ(q, λ, a) = ⊥
2. δ(q, b, a) = ⊥ for all b ∈ {0, 1}.

δ is restricted so that z0 cannot be popped off of the stack. That is, for every
q ∈ Q, b ∈ {0, 1} ∪ {λ}, either δ(q, b, z0) = ⊥, or δ(q, b, z0) = (q′, vz0) where
q′ ∈ Q and v ∈ Γ ∗.

The extended transition function δ∗ : Q × Σ∗ × Γ+ → Q × Γ ∗ is defined
recursively as usual.

δ∗ is abbreviated to δ, and δ(q0, w, z0) to δ(w). The output from state q on
input w ∈ {0, 1}∗ with z ∈ Γ ∗ on the top of the stack is defined by the recursion
ν(q, λ, z) = λ,

ν(q, wb, z) = ν(q, w, z)ν(δQ(q, w, z), b, δΓ ∗(q, w, z)).

The output of the compressor C on input w ∈ {0, 1}∗ is the string C(w) =
ν(q0, q, z0). For a string xy, we write ν̄(y) as shorthand for |C(xy)| − |C(y)|, i.e.
the output of C on y after already reading x. It should be clear from context
what x is each time this notation is used.

A PDC is said to be information lossless (IL) if the function

w �→ (C(w), δQ(w))

is 1–1. A PDC that is IL is called an ILPDC. We write (IL)PDC to be the set of
all (IL)PDCs. By the identity PDC IPD we mean the ILPDC that on any input
x ∈ {0, 1}∗, IPD outputs x without using its stack.

4 Pushdown Depth

Lemma 1 demonstrates the existence of strings that an ILPDC compresses poorly
on and is used in proofs throughout this section.

192 L. Jordon and P. Moser

Lemma 1. Let d,m ∈ N. Then for all C ∈ ILPDC with at most d states and
for all x ∈ {0, 1}∗, there exists a string y of length m such that

|C(xy)| − |C(x)| ≥ m − log(d) − 1.

The following general depth definition says that S is a.e. T-deep if for every
compressor of type T there is a (better) compressor of type T such that the
difference of compression, on almost every prefix of S, exceeds some linear bound.
More precisely,

Definition 2. Let S be a sequence. Fix a compressor type T. S is a.e. T-deep
(resp. i.o. T-deep) if

(∀C ∈ T)(∃α > 0)(∃C ′ ∈ T)(Qn ∈ N) [|C(S � n)| − |C ′(S � n)| ≥ αn],

where Q is ∀∞ (resp. ∃∞).

Observe if S is a.e. T-deep, it is also i.o. T-deep.
To measure how well a compressor compresses a sequence, we use the follow-

ing compression ratios.

Definition 3. Let S ∈ {0, 1}ω. Let T be a family of compressor types.

1. The best-case compression ratio of type T of S is defined as

ρT (S) = inf{lim inf
n→∞

|C(S � n)|
n

: C ∈ T}.

2. The worst-case compression ratio of type T of S is defined as

RT (S) = inf{lim sup
n→∞

|C(S � n)|
n

: C ∈ T}.

We define pushdown depth to be a.e. ILPDC-depth.
The following results show that pushdown depth satisfies the basic depth

properties, in the sense that both easy and random sequences cannot be deep.

Theorem 2. Let S ∈ {0, 1}ω.

1. If ρILPDC(S) = 1, then S is not a.e. ILPDC-deep.
2. If RILPDC(S) = 0, then S is not a.e. ILPDC-deep.

The following result shows that pushdown depth satisfies a slow growth law.

Theorem 3 (Slow Growth Law). Let S be any sequence, let f : {0, 1}ω →
{0, 1}ω be ILFS computable and let S′ = f(S). If S′ is a.e. ILPDC-deep then S
is a.e. ILPDC-deep.

Remark 1. Theorems 2 and 3 also hold true for i.o. ILPDC-depth.

On the Difference Between Finite-State and Pushdown Depth 193

The following result constructs a pushdown deep sequence S. The sequence
is a sequence of blocks, where each block is devoted to some pair of compressors
C,C ′. On such a block, C compresses poorly, while C ′ compresses very well.
This is achieved by having C ′ simulate C to find strings it cannot compress.
The first found string describes the next bit of the block, and so C ′ is able to
compress the block. In blocks not devoted to him, C ′ simply simulates C. This
ensures that C ′ never compresses S worse than C, and on blocks devoted to
it, C ′ compresses much better. C ′ detects whether the current block is devoted
to him by signal flags interleaved throughout the sequence. To keep C ′ IL, as
soon as C ′ makes a wrong prediction, it simply outputs what C does from then
on onward. To guarantee an a.e. result, blocks devoted to the same pair repeat
every constant number of blocks.

A full construction of C ′ is omitted for space.

Theorem 4. There exists an a.e. ILPDC-deep sequence.

5 Finite-State Depth

The finite-depth in [6] is based on finite-state decompression. However, before
we begin examining depth, we first must choose a binary representation of all
finite-state transducers.

Definition 4. A binary representation of finite-state transducers σT is a par-
tially computable map σT : {0, 1}∗ → FST, such that for every FST T , there
exists some x ∈ {0, 1}∗ such that σT (x) fully describes T . We say |T |σT

=
min{|x| : σT (x) = T}.

For a binary representation of FSTs σT , for all k ∈ N, define

FST≤k
σT

= {T ∈ FST : |T |σT
≤ k}.

For all k ∈ N and x ∈ {0, 1}∗, the k-finite-state decompression complexity of
x with respect to binary representation σT is defined as

Dk
σT

(x) = min
π∈{0,1}∗

{

|π| : T ∈ FST≤k
σT

& T (π) = x
}

.

Here π is the shortest program that gives x as an output when inputted into
an FST of size k or less with respect to the binary representation σT . T can be
thought of as the FST that can decompress π to reproduce x.

For the purpose of this paper, we fix the following binary representation of
finite-state transducers σT . Let T = (Q, q0, δ, ν) be an FST. We define the func-
tion the function Δ : Q × {0, 1} → Q × {0, 1}∗, where Δ(q, b) = (δ(q, b), ν(q, b)).
This function Δ completely describes the state transitions and outputs of T . In
[3], different encoding schemes are presented to represent each transducer via an
encoding of this function Δ.

194 L. Jordon and P. Moser

The binary representation σT we fix in this paper is as follows. For a trans-
ducer T , if Q = {q1, q2, . . . , qn} and q0 = qi, for 1 ≤ i ≤ n, we encode T by the
string

d(bin(i))01ρ

where d(bin(i)) is the binary encoding of i which acts as a pointer to the start
state of T but with every bit doubled and ρ is an encoding of Δ as seen in [3].

We fix this binary representation σT as it is needed to prove Lemma 2 which
in turn is needed for Theorem7, Theorem 8 and Theorem 9. However, we later
show that if a sequence S is deep with respect to one depth notion, it is deep
with respect to every depth notion. Henceforth, we will drop the σT notation and
instead write |T | for |T |σT

, FST≤k for FST≤k
σT

and Dk
FS(x) instead of Dk

σT
(x).

All other definitions and results hold and can be proved regardless of the binary
representation being used.

To measure the randomness density of a sequence, the following notions are
useful. For any sequence S,

1. The finite-state dimension of S [5] is defined to be

dimFS(S) = lim
k→∞

lim inf
n→∞

Dk
FS(S � n)

n
,

2. The strong finite-state dimension of S is defined to be

DimFS(S) = lim
k→∞

lim sup
n→∞

Dk
FS(S � n)

n
.

In [6] a notion2 of depth based on finite-state transducers is introduced called
i.o. finite-state depth.

Definition 5. A sequence S is infinitely often (i.o.) finite-state deep if

(∀k ∈ N)(∃α > 0)(∃k′ ∈ N)(∃∞n ∈ N)Dk
FS(S � n) − Dk′

FS(S � n) ≥ αn,

and DimFS(S) �= 0.

We introduce an a.e. version of the original finite-state notion [6] called almost
everywhere (a.e) finite-state depth.

Definition 6. A sequence S is almost everywhere (a.e.) finite-state deep if

(∀k ∈ N)(∃α > 0)(∃k′ ∈ N)(∀∞n ∈ N)Dk
FS(S � n) − Dk′

FS(S � n) ≥ αn,

and DimFS(S) �= 0.

Remark 2. The condition that DimFS(S) �= 0 is required as otherwise 0ω would
be considered deep.

2 Actually two notions were introduced, which differ only by the order of quantifiers.

On the Difference Between Finite-State and Pushdown Depth 195

The following result shows that sequences that appear random to finite-state
transducers, cannot be finite-state deep. Further study of sequences that appear
random to finite-state transducers can be found in [4].

Theorem 5. Let S ∈ {0, 1}ω.
If dimFS(S) = 1, then S is not a.e. finite-state deep.

Remark 3. We originally hoped to include a version of a slow growth law for a.e.
FS-depth. However an adequate notion nor proof has not been found as of yet.

The following theorem demonstrates that if a sequence S is a.e. FS-deep
when the size of finite-state transducers are viewed with respect to one binary
representation, then it is a.e. FS-deep regardless of what binary representation
is used.

Theorem 6. Let πT be a binary representation of FSTs. Let S be an a.e. FS-
deep sequence when the size of the finite-state transducers are viewed with respect
to a binary representation πT . Then S is a.e. FS-deep when the size of the finite-
state transducers are viewed with respect to any other binary representation.

To prove the existence of an a.e. FS-deep sequence we need he following two
lemmas.

Lemma 2. For our fixed binary representation σT , we have that for k ≥ 4,
∀n ∈ N,∀x, y, z ∈ {0, 1}∗,

Dk
FS(xynz) ≥ D3k

FS(x) + nD3k
FS(y) + D3k

FS(z).

Lemma 3. ∀ε > 0,∀k ∈ N,∃k′ ∈ N,∀x, y,∈ {0, 1}∗, whenever Dk
FS(x) is suffi-

ciently large
Dk′

FS(xy) ≤ (1 + ε)Dk
FS(x) + Dk

FS(y) + 2.

In the following result we construct an a.e. finite-state deep sequence. The
sequence is constructed in consecutive blocks, each block is devoted to some
pair k, k′. On such a block, transducers of size k do poorly, while some larger
transducer of size k′ does very well. The key difference with the proof in [6],
is that blocks devoted to the same pair k, k′ repeat every constant number of
blocks. This ensures an a.e. finite-state deep sequence, as opposed to a mere i.o.
finite-state deep sequence.

Theorem 7. There exists an a.e. finite-state deep sequence.

Remark 4. If S ∈ {0, 1}ω is a.e. finite-state deep then it is i.o. finite-state deep.

The following result shows that being i.o. FS-deep is a weaker requirement
than being a.e. FS-deep.

Theorem 8. There exists a sequence S that is i.o. FS-deep but not a.e. FS-deep.

196 L. Jordon and P. Moser

5.1 Separation from ILPDC-depth

We next demonstrate a difference between i.o finite state depth [6] to our a.e.
pushdown depth notion by constructing a sequence that is i.o. finite-state deep
but not a.e. pushdown deep.

Theorem 9. There exists a sequence S such that S is i.o. finite-state deep, but
S is not a.e. ILPDC deep.

Proof. Fix some ε > 0 small. Split N into intervals I1, I2, I3, . . . such that |I1| =
2a for the smallest constant a such that 2a > 1

ε , and |Ij | = 2|I1|+···+|Ij−1| for
j ≥ 2. Define mj = min(Ij) and Mj = max(Ij). We construct the sequence
S = S1S2 · · · in stages, with Sj ∈ {0, 1}|Ij | for all j ∈ N. So Sj = S[mj . . . Mj].

For Sj , if j is even, Sj is devoted to some FST description bound length
k ∈ N (what occurs for j odd is discussed later in the proof.) Specifically for
each k, k is devoted to every substring Sj where for all n ≥ 0, j = 2k + n2k+1.
k = 1 is first devoted to S2 and every 4th substring after that. k = 2 is devoted
to S4 and every 8th interval after that, and so on.

Consider description length k. Let rk be a string of length |I2k | such that rk

is 3k-FS random in the sense that D3k
FS(rk) ≥ |rk| − 4k. Such a string exists as

there are at most |FST≤3k| · 2|rk|−4k < 2|rk| strings contradicting this. If Sj is

devoted to k, we set Sj = r

|Ij |
|rk|
k .

First we show S is i.o. FS-deep by examining prefixes of the form S1S2 · · · Sj ,
for j even. Let k ≥ 4 and suppose k is devoted to Sj . Then by Lemma 2

Dk
FS(S1S2 · · · Sj) ≥ D3k

FS(S1S2 · · · Sj−1) +
|Sj |
|rk|D

3k
FS(rk) ≥ |Sj |

|rk| (|rk| − 4k).

For all r ∈ {0, 1}∗, define the single state FST Tr = ({q0}, q0, δ, ν), where for
b ∈ {0, 1}, ν(q0, b) = r. Let k′ be large enough so that IFS, Trk

∈ FST≤k′
. Hence

Dk′
FS(Sj) ≤ |Sj |

|rk| and Dk′
FS(S1 · · · Sj−1) ≤ |S1 · · · Sj−1|. Let k̂ be from Lemma 3

such that

Dk̂
FS(S1S2 · · · Sj) ≤ 2Dk′

FS(S1 · · · Sj−1)+Dk′
FS(Sj)+2 ≤ 2|S1S2 · · · Sj−1|+ |Sj |

|rk| +2.

Therefore for infinitely many prefixes of the form S1S2 · · · Sj where Sj is
devoted to k

Dk
FS(S1S2 · · · Sj) − Dk̂

FS(S1S2 · · · Sj) ≥ |Sj |
|rk| (|rk| − 4k − 1)

− 2|S1S2 · · · Sj | − 2

= |Sj |(1 − 4k

|rk| − 1
|rk|) − 2 log |Sj | − 2

≥ |Sj |(1 − δ) (δ > 17ε)
≥ |S1S2 · · · Sj |(1 − α) (α > δ)

On the Difference Between Finite-State and Pushdown Depth 197

as 4k
|rk| is maximum for k = 4.

For 0 ≤ k ≤ 3, the above result follows from the fact that D0
FS(S � m) ≥

. . . ≥ D3
FS(S � m) ≥ D4

FS(S � m), when we take S � m = S1 · · · Sj to be such
that Sj is devoted to k = 4.

Furthermore S has a non-zero finite-state strong dimension as for k ≥ 4,
there exists infinitely many prefixes of the form S � m = S1 · · · Sj such that

Dk
FS(S � m) ≥ |Sj |(1 − 4k

|rk|) ≥ |Sj |(1 − 16ε) = (m − log |Sj |)(1 − 8ε) ≥ m(1 − ε̂),

where ε̂ > 16ε for j large. Therefore S is i.o. finite-state deep.
Next we show S is not a.e. ILPDC-deep.
Let C1, C2, . . . be an enumeration of all ILPDCs such that for a pair of

ILPDCs Cp, Cq, if p ≤ q, Cq has at least as many states as Cp. As the number
of machines with k states is bigger than k, we can say that Ck has at most k
states.

Henceforth we assume j is odd and examine Sj . Each odd j can be written
in the form 2k − 1 + n2k+1. Then for ILPDC Ck, Ck is devoted to every interval
of the form 2k − 1 + n2k+1, n ≥ 0.

If Sj is devoted to Ck, we set Sj to be a string y of length |Ij | from Lemma 1
that satisfies

|Ck(S1 · · · Sj)| − |Ck(S1 · · · Sj−1)| ≥ |Sj | − log k − 1.

Say S � m = S1 · · · Sj . Hence we have that for β1, β2 > 0, for j large

|Ck(S � m)| ≥ |Sj | − log k − 1 > |Sj |(1 − β1)
= (m − O(log m))(1 − β1) = m(1 − β2).

Hence for all k, for j large and for infinitely many prefixes of the form S1 · · · Sj

we have

|IPD(S1 · · · Sj)|− |Ck(S1 · · · Sj)| < |S1 · · · Sj |− |S1 · · · Sj |(1−β2) = |S1 · · · Sj |β2.

As β1, β2 can be made arbitrarily small, S is not a.e. ILPDC-deep.
��

6 Final Remarks

We introduced pushdown depth and showed our notion is a well behaved depth
notion that satisfies all basic depth properties. We showed that is different from
i.o. finite-state depth [6]. This gives more weight to the thesis that there is no
perfect depth notion, but rather a “best for the job” notion.

It would be interesting to see whether a converse can be proven, i.e. a sequence
that is ILPDC-deep but not i.o. finite state deep.

Acknowledgements. The authors would like to thank the anonymous referees for
their useful comments, specifically to explore how the chosen binary representations of
FSTs affects FS-depth.

198 L. Jordon and P. Moser

References

1. Antunes, L., Fortnow, L., van Melkebeek, D., Vinodchandran, N.: Computational
depth: concept and applications. Theoret. Comput. Sci. 354, 391–404 (2006)

2. Bennett, C.H.: Logical depth and physical complexity. In: Bennett, C. (ed.) The
Universal Turing Machine, A Half-Century Survey, pp. 227–257. Oxford University
Press, New York (1988)

3. Calude, C.S., Salomaa, K., Roblot, T.K.: Finite state complexity. Theoret. Com-
put. Sci. 412(41), 5668–5677 (2011)

4. Calude, C.S., Staiger, L., Stephan, F.: Finite state incompressible infinite
sequences. Inf. Comput. 247, 23–36 (2016)

5. Dai, J., Lathrop, J., Lutz, J., Mayordomo, E.: Finite-state dimension. Theoret.
Comput. Sci. 310, 1–33 (2004)

6. Doty, D., Moser, P.: Feasible depth. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.)
CiE 2007. LNCS, vol. 4497, pp. 228–237. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-73001-9 24

7. Huffman, D.A.: Canonical forms for information-lossless finite-state logical
machines. IRE Trans. Circ. Theory CT-6 (Special Supplement) 5(5), 41–59 (1959)

8. Kohavi, Z.: Switching and Finite Automata Theory, 2nd edn. McGraw-Hill,
New York (1978)

9. Mayordomo, E., Moser, P., Perifel, S.: Polylog space compression, pushdown com-
pression, and Lempel-Ziv are incomparable. Theory Comput. Syst. 48(4), 731–766
(2011)

10. Moser, P.: Polynomial depth, highness and lowness for E. Inf. Comput. (2019,
accepted)

11. Moser, P.: On the polynomial depth of various sets of random strings. Theor.
Comput. Sci. 477, 96–108 (2013)

12. Moser, P., Stephan, F.: Depth, highness and DNR degrees. Discrete Math. Theor.
Comput. Sci. 19(4) (2017)

https://doi.org/10.1007/978-3-540-73001-9_24
https://doi.org/10.1007/978-3-540-73001-9_24

	On the Difference Between Finite-State and Pushdown Depth
	1 Introduction
	2 Preliminaries
	3 Models of Computation
	3.1 Finite-State Transducers
	3.2 Pushdown Compressors

	4 Pushdown Depth
	5 Finite-State Depth
	5.1 Separation from ILPDC-depth

	6 Final Remarks
	References

