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Abstract—This paper considers the problem of communication
and computation-efficient distributed learning via a wireless fading
Multiple Access Channel (MAC). The distributed learning task is
performed over a large network of nodes containing local data with
the help of an edge server coordinating between the nodes. The
information from each distributed node is transmitted as an analog
signal through a noisy fading wireless MAC, using a common
shaping waveform. The edge server receives a superposition of
the analog signals, computes a new parameter estimate and
communicates it back to the nodes, a process which continues
until an appropriate convergence criterion is met. Unlike typical
Federated learning approaches based on communication of local
gradients and averaging at the edge server, in this paper, we
investigate a scenario where the local nodes implement a second
order optimization technique known as Determinantal Averaging.
The communication complexity at each iteration per node of
this method is the same as any gradient based method, i.e.
O(d), where d is the number of parameters. To reduce the
computational load at each node, we also employ an approximate
Newton method to compute the local Hessians. Under the usual
assumptions of convexity and double differentiability on the local
objective functions, we propose an algorithm titled Distributed
Approximate Newton with Determinantal Averaging (DANDA).
The state-of-art first and second-order distributed optimization
algorithms are numerically compared with DANDA on a standard
dataset with least squares based local objective functions (linear
regression). Simulation results illustrate that DANDA not only
displays faster convergence compared to gradient-based methods,
but also compares favourably with exact distributed Newton
methods, such as LocalNewton.

Index Terms—Distributed Learning (DL), Analog Transmission,
Fading Multiple Access Channel (MAC), Approximate Newton
methods

I. INTRODUCTION

Privacy concerns often restrict the application of Machine

learning (ML). Conventionally, ML tasks are performed in a

server containing data gathered from multiple edge devices or

nodes (e.g. mobiles, sensors, etc.). It is difficult to preserve

privacy when the user data have to be collected from the nodes

for model training in “centralized” learning tasks. Distributed

Machine Learning (DML) provides a method to train the ML

model locally, without collecting data from the nodes. An edge

server is often used in DML that coordinates between the nodes.

This publication has emanated from research conducted with the financial
support of Science Foundation Ireland under Grant number 18/CRT/6049

While training, the nodes share training parameters to the edge

server which aggregates and provides a new parameter estimate

back to the nodes. This process continues until the training

parameters attain a global optimum within a certain tolerance.

This way of learning discards the movement of data for model

training from the end-user, thereby securing privacy as well as

reducing communication overhead.

A. Related Work

Our work is related to the field of Federated Learning (FL)

[1] where the nodes contribute in the learning process with

the help of an edge server. The edge devices exchange local

gradient information based on local data with the edge server

and perform the learning task using local stochastic gradient

descent (SGD) techniques. The conventional FL algorithms

use orthogonal access channel for communicating information

from the nodes, which exhausts the bandwidth as the number

of nodes increases. Numerous studies show the application

of distributed-SGD over wireless Multiple Access Channel

(MAC) using analog uncoded transmission, utilizing its over-

the-air additive nature of the wireless channel, and reducing

the channel bandwidth requirement e.g. [2]–[7]. The works of

[2]–[4] use analog MAC transmission method with scheduling

schemes and power control to compensate for the wireless

fading channels. The GBMA algorithm in [5] works directly

with distorted gradients transmitted over MAC using analog

transmission, while the authors in [6] propose the optimization

of the parameters in the transceiver with consideration of the

“non-stationarity” in the local gradients based on a simple

feedback variable. In [7], the authors propose pre-coding at

the nodes and scaling at the parameter server to mitigate the

effect of channel noise.

The iterative algorithms based on transmission of local

gradients have a significant communication overhead due of

their slow convergence (i.e. a large number of communication

rounds). To alleviate the communication cost, second order

optimization based methods can be used at the local nodes,

although they are computationally expensive. Extensive litera-

ture on reducing the communication overhead by using quasi-

Newton methods is present. These include DANE [8], that

approximates the Newton step in a distributed manner using
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Fig. 1: Transmission Scheme over a wireless MAC

Bregman divergence, DONE [9], that produces an approximate

newton direction using classical Richardson iteration on each

edge node, whereas GIANT [10] and DISCO [11] approximate

the Hessian using conjugate gradient methods. One method

of reducing the communication overhead is using the Newton

method locally and instead of sharing newton direction for

global parameter vector update, optimize the parameter vector

locally and share the updated parameters as done in the algo-

rithm LocalNewton [12]. The authors in [13] compute Newton

directions locally and share the local optimum parameter vector

to the edge server by adopting a nonconvex low-rank beam-

forming approach with over-the-air computation via difference-

of-convex-functions (DC) programming. Most second order

Newton type methods, however require computation of the

inverse of the Hessians locally, which is computationally ex-

pensive, thus warranting various forms of approximate Newton

methods. In a recent work [14], the authors determine the

inverse Hessian times the gradient product vector using the

Alternating Direction Method of Multipliers (ADDM) in an

effort to reduce computation costs.

B. Our Contributions

In this paper, we propose a novel distributed learning method

based on a computationally efficient approximate Newton

method based on the technique of determinantal averaging

[15] at each node. The nodes communicate training parameters

with the edge server using analog uncoded transmission over a

fading wireless MAC, with a communication overhead of O(d)
at each iteration, where d is the number of model parameters

to be optimized. This distributed learning algorithm, titled

DANDA, is empirically tested in a linear regression task with

the Million Song Dataset [17], in a simulated communication

setting with its performance averaged over multiple random

channel realizations. Comprehensive numerical results illustrate

significantly faster convergence of DANDA compared to first

order methods such as GBMA, and comparable energy con-

sumption and computational complexity with state of the art

second order methods.

The rest of the paper is organized as follows. Section 2 pro-

vides the distributed learning and the communication models.

Section 3 provides the theoretical background of the algorithm

DANDA, followed by a description of its implementation. Sec-

tion 4 provides a comprehensive set of experimental results on

its comparative performance with existing algorithms, followed

by some concluding remarks in Section 5.

II. SYSTEM MODEL

A. Distributed Learning Model

We consider a distributed wireless edge learning problem

with N nodes and an edge server for aggregation of information

collected from the nodes over a fading wireless MAC. The

global objective function, F (θ), is an average of the local objec-

tive functions, fn(θ), as described in the following optimization

problem:

min
θ∈Θ

{

F (θ) =
1

N

N
∑

n=1

fn(θ)
}

, fn(θ) =
1

bn

bn
∑

i=1

ℓn(θ
Txi,n)

(1)

where θ is a d×1 parameter vector over which the optimization

of the global objective function takes place, ℓn is the loss

function at the n-th node, xi,n is the ith input row for nth

node, and bn is the size of dataset in the nth node. As shown

in Fig. 1, the edge server broadcasts an initial parameter vector,

θ0 to all the nodes, to which each node determines a function

of the local information on its data. These functions are then

communicated to the edge server over the wireless MAC as

analog signals with a common shaping waveform, and due

to the superposition property of the wireless medium, get

aggregated over the transmission channel, and consequently

provides the global descent direction at the edge server.

B. Communication Model

We consider a wireless MAC, where each edge node trans-

mits information as a common analog waveform and the

superposition of the N transmitted waveforms is received at the

edge server as shown in Fig. 1. In the case where the number

of features, d, is much smaller than the number of nodes, N ,

this communication scheme solves the issue of high bandwidth

requirement in distributed ML. We assume time is slotted, with

slot duration T , with the k-th slot being tk ≤ t ≤ tk + T .

Let s(t) = (s1(t), s2(t), ....sd(t)), 0 < t < T , be a vector

of d orthogonal base-band equivalent normalized waveforms,

satisfying
∫ T

0
s2m(t)dt = 1,

∫ T

0
sm(t)st(t)dt = 0,for m ̸= n.

Each node n experiences at the k-th slot a block fading channel

h̃n,k with gain hn,k ≜ |h̃n,k| ∈ R+ and phase ϕn,k ≜

∠h̃n,k ∈ {−π, π}. The channel fading is assumed independent

and identically distributed (i.i.d. across the nodes), and time

slots, with mean µh and variance σ2
h. We also assume that

each iteration of distributed learning algorithm is aligned with

the time-slots. In other words, the fading channel coefficients

are constant within a single iteration, but change from iteration

to iteration in a statistically independent manner.

NOTE: The phase lag due to channel experienced by each

node ϕn,k is assumed to be known at each node and therefore

cancelled before transmitting a signal. This is the underly-

ing principle of transmission over a coherent MAC, which

obviously requires distributed transmit beamforming, and can
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be difficult to achieve across a large number of nodes. Note

however, that even if the channel phases are not accurately

accounted for, and there is some residual phase offset, the

individual signals arriving at the edge server will still have

positive coefficients as long as the phase offsets are small [5].

A description of useful notations is provided in Table I.

III. DISTRIBUTED NEWTON ALGORITHMS WITH

DETERMINANTAL AVERAGING

We aim to solve the empirical risk minimization problem

described in (1) where fn(·) : Rd 7→ R, for all n ∈
[N ] = {1, 2...N}. The function fn(·) satisfies the following

assumptions:

Assumption 1: fn(·) is Convex and twice differentiable.

Assumption 2: fn(·) has a Lipschitz continuous Hessian: For

any n ∈ [N ], there exists a constant L, such that ∀θ,θ′ ∈ Rd,

||Hn(θ)−Hn(θ
′)||2 ≤ L||θ − θ′||

where, Hn(θ) = ∇2fn(θ)
Note: The assumptions mentioned above are standard in

the machine learning literature and are satisfied by several

standard cost functions, including the linear regression based

least squares cost function.

A. Distributed Newton with Determinantal Averaging: DNDA

In the distributed setting, we have N nodes and each node

carries a subset Sn ⊂ [N ] of size bn (i.e. bn = |Sn|), for all

n ∈ [N ] = {1, 2...N}, where N is the total number of data

points in the original dataset. The samples Sn at each node

are obtained randomly without replacement, hence Si ∩ Sj =
∅, ∀i, j ∈ [N ], i ̸= j.

Note that a typical second order optimization algorithm based

on approximating the global Newton step, H−1(θ)G(θ) for

F (θ), involves aggregating the local Hessians and the local

gradients from the local Newton steps, H−1
n (θ)gn(θ) for

fn(θ), from the nodes. However, obtaining the Hessian for the

global Newton’s step by naive aggregation of the local Newton

steps suffers an inversion bias as E(H−1
n (θk)) ̸= H−1(θk).

Derezinski et. al. in [15] proved that a weighted sum of

local inverse hessian times the global gradient, asymptotically

converges to global inverse hessian times the global gradient.

They call this Determinantal Averaging, as given below. Define

̂H−1(θ)G(θ) =

∑N
n=1 anH

−1
n (θ)G(θ)

∑N
n=1 an

(2)

where an = det(Hn) and G(θ) is the global gradient. As

N → ∞, ̂H−1(θ)G(θ) → H−1(θ)G(θ) almost surely.

Note that this estimation requires the product of local inverse

Hessian and the global gradient1 which is a vector of size

d × 1. As the number of nodes, N → ∞, the estimate of

inverse of the global Hessian Ĥ−1 → H−1. The convergence

guarantee offered by this method is given by:

1However, as shown in [14], the local Newton’s step can be replaced by

the product of local hessian and local gradient, (H−1

n (θ)gn(θ)), as long as
gn(θ)) is an i.i.d. unbiased estimate of the global gradient.

Corollary 6 [15]: For any δ, η ∈ (0, 1) if the expected

local sample size satisfies K ≥ Cη−2µd2log3 d
δ

then under

Assumption 2

||θ̃ − θ∗|| ≤ max
{ η√

N

√
K||θ − θ∗||, 2L

λmin

||θ − θ∗||2
}

where θ̃ = θ − ̂H−1(θ)G(θ),

holds with probability at least 1 − δ, where C is an absolute

constant, µ = 1
d
maxi ℓ

′′(θTxi)(xi
T∇−2F (θ)xi), K and

λmin are the condition number and smallest eigenvalues of

∇2F (θ).
It can be observed that as N → ∞ the above bound exhibits

quadratic convergence similar to the exact Newton’s method.

In our analog transmission based distributed learning algo-

rithm, the signal to be transmitted by the nth node at the kth

iteration is sent to the edge server in two halves of the time slot,

representing functions of the numerator and the denominator

in (2). The signals transmitted from the nodes in the first

(tk ≤ t < tk + T
2 ) and second half (tk + T

2 ≤ t < tk + T ) of

the k-th time slot, respectively, as

y1n(θk, t) ≜
√
αPe−jφn,kan(H

−1
n (θk)gn(θk))

Ts(t), (3)

y2n(θk, t) ≜
√

(1− α)Pe−jφn,kans
′(t) (4)

Here, an = det(Hn(θ)), e−jφn,k is the phase correction

factor to produce a positive channel gain at the receiver, s(t)
is the vector of orthogonal normalised waveforms to carry the

numerator part of (2) and s′(t) is a scalar normalised waveform

function to carry the denominator part of (2). P is a node

power adjustment factor (PAF), which is distributed among

the two signals such that αP is the power to the first signal

representing the numerator and (1 − α)P is the power to the

denominator, where α ∈ (0, 1). Signals received at the edge

server are superimposed on each other due to the analog nature

of the transmitted signals. The two received signals in the first

and second halves of the k-the time slot are, respectively:

r1k(t) =
N
∑

n=1

√
αPhn,kan(H

−1
n (θk)gn(θk))

Ts(t)+ w1
k(t),

(5)

r2k(t) =
N
∑

n=1

√

(1− α)Phn,kans
′(t) + w2

k(t) (6)

Here w1
k and w2

k are additive independent white Gaus-

sian noise (AWGN) processes distributed as N (0, σ2
wId) and

N (0, σ2
w) respectively. After matched filtering and some read-

justments, the demodulated signals at the edge server are:

v1
k =

1

N

N
∑

n=1

hn,kanH
−1
n (θk)gn(θk) +w1

k (7)

v2k =
1

N

N
∑

n=1

hn,kan + w2
k (8)

where w1
k ∼ N (0,

σ2

wId

N2αP
) and w2

k ∼ N (0,
σ2

w

N2(1−α)P ). The

edge server receives the superposition of the respective signals
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Symbol Description Symbol Description Symbol Description

N number of nodes Hn local Hessian for nth node an determinant of local Hessian at nth node
n node index G global gradient α power distribution factor (PDF), 0 < α < 1
d number of features gn local gradient for nth node bn size of dataset at nth node, |Sn|
R entire dataset s(t) d orthogonal normalized waveforms hn,k channel gain for nth node and kth iteration

k iteration index Sn dataset at nth node wk thermal noise at kth iteration, wk ∼ N (0, σ2
wId)

θ parameter vector Sn sub-sampled dataset at nth node β generic learning rate
θ∗ optimum parameter vector H global Hessian P power adjustment factor (PAF)

TABLE I: Symbols and their description

from all the nodes with channel distortion and AWGN. The

ratio of two signals,
v
1
k

v2

k

, gives noisy and distorted version of

the Newton’s step, that is used for parameter updates as follows,

θk+1 = θk − β
v1
k

v2
k

(9)

where β is an appropriately scaled learning rate.

Note that the communication overhead per node involves

a d + 1 dimensional vector at each iteration, requiring a

similar communication overhead compared to gradient based

methods. The difficulty of course lies in computing the inverse

local Hessian at the nodes, which in general, costs O(d3)
computations per iteration. In Section III-C, we will address

this issue by using a quasi-Newton method to approximate the

local Hessians.

B. DNDA with Recursive Least Squares

Consider the special case where the local cost functions are

regularized least square loss functions (i.e. linear regression),

given as follows:

fn(θ) = ℓn(θ
Txn) =

1

2
||θTxn − yn||22 +

λ

2
||θ||22 (10)

It is easy to check that in this case the local Hessians are

independent of the parameter vector θ and hence is constant

over the iterations of DNDA algorithm. Therefore the denom-

inator of the (2), which involves the sum of the determinants

of the local Hessians, can be estimated using a recursive least

squares estimation method. For the kth iteration, the received

denominator of (2) is a distorted version of the determinant of

the local hessian, an summed over all the nodes, given by v2k
in (8).

By observing the received signal v2k over T̄ iterations, We

can estimate the local hessian determinants, an at kth iteration

using an ordinary least square problem as follows:

âk = (
T̄
∑

k=1

hkh
T
k )

−1(
T̄
∑

k=1

hkzk)

where hk is a vector of channel gains observed by the nodes 1

to N for kth iteration, âk is a vector of estimated local hessian

determinants for nodes 1 to N for kth iteration and zk = Nv2k.

A recursive least squares (RLS) method can be used to estimate

an iteratively as follows,

âk = âk−1 +Kk(zk − (hk)
T âk−1)

Kk = Pkhk, Pk =
Pk−1

hT
kPk−1hk + 1

(11)

where, Kk is the gain vector for the kth iteration and Pk

represents (
∑T̄

k=1 hkh
T
k )

−1, computed in a recursive way using

the matrix inversion lemma.

This method avoids the direct use of a distorted sum of local

hessian determinants,
∑

n an, and instead uses an estimate of it.

Using a recursive least squares estimate of
∑

n an provides bet-

ter asymptotic convergence compared to the Distributed Newton

with Determinantal Averaging (DNDA) algorithm using the

distorted sum of local Hessians, as shown in the Experimental

Results section.

C. Distributed Approximate Newton with Determinantal Aver-

aging: DANDA

Algorithm 1: DANDA

input: Local function fn(·) at the nth node; Initial iterate

θ0 ∈ R
d; Regularization constant (λ); learning rate

(β); PAF (P ); Optimal PDF (α∗); Sub-sample sizes
(Sk

n); Convergence Parameter (ϵ)
define: [Ur,Λr] =TruncatedSVDr(HSn) as rank-r truncated

SVD of local sub-sampled hessian (HSn ) with
(Λr)ii = λi;
k = 1; θk = θ0; F (θk) =

1
N

∑n

i=1 fn(θk)

while
|F (θk)−F (θk+1)|

F (θk)
≥ ϵ do

Local training process;
for n = 1 to N do

Compute local gradient
gn = ∇fn(θk)
Compute local hessian using sub-samples

Let HSk
n
= 1

|Sk
n|

∑
i∈Sk

n
ℓ
′′

n(θ
T
k xi,n)

Ĥ−1

Sk
n

= λk−1

r+1Id +Uk
r (Λ

k−1

r − λk−1

r+1Ir)U
kT

r

Compute the numerator Nk
n and the denominator

Dk
n for the determinantal averaging

ak
n = det(ĤSk

n
)

Nk
n = anĤ

−1

Sk
n

gn

Dk
n = an

Aggregate distorted N̂k and D̂k

N̂k = 1
N

∑N

n=1 h
k
nN

k
n +wk

1

D̂k = 1
N

∑N

n=1 h
k
nD

k
n +wk

2

Update θk+1 = θk − β
N̂k

D̂k

k ← k + 1
output: θk

Computing the inverse Hessian in Newton’s step is ex-

pensive, especially for high-dimensional datasets, and com-

putational constraints at the edge nodes may render it even

prohibitive. Here we adopt an approximate Newton’s step using

sub-sampled Hessians, as presented by Erdogdu and Monta-
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nari in their algorithm called NewSamp [16]. This algorithm

has been shown to significantly reduce computational cost,

while still preserving the fast convergence rate of a second-

order method. Other than convexity and differentiability of the

local cost functions and Lipschitz continuity of the Hessians

mentioned above, in this section, we need two additional

assumptions:

Assumption 3: Bounded Hessian: ∀i = 1, 2, .., n, the Hessian

of the function fi(θ),∇2
θfi(θ), is upper bounded by an absolute

constant K, i.e., maxi≤n ||∇2
θfi(θ)|| ≤ K.

Assumption 4: Lipschitz continuous sub-sampled Hessian:

For any subset, Sn ⊂ [Sn] in n ∈ [N ], there exists constant

Ln, such that ∀θ,θ′ ∈ Rd,

||HSn
(θ)−HSn

(θ′)||2 ≤ Ln||θ − θ′||
where, HSn

(θ) = ∇2fn(θ) over the subset Sn.

The approach in [16] is based on a low-rank approximation

of sub-sampled Hessians (Hessians obtained over the subset of

data points of size Sn). The low-rank approximation of local

sub-sampled hessian HSn
(θ) is performed by using a truncated

singular value decomposition (SVD) along the direction of large

eigenvalues only, as, ĤSk
n
= Uk

r (Λ
k
r )U

kT

r , where Λr is r ×
r diagonal matrix with the r largest eigenvalues of the local

sub-sampled hessian HSk
n

and Ur is a d × r matrix whose

columns correspond to the eigenvectors of HSk
n

. The superscript

k represents the iteration number.

For stability, the eigenvalues smaller than rth largest eigen-

value are replaced by (r + 1)th largest eigenvalue of Ĥn, and

the approximate inverse Hessian is then given by

Ĥ−1
Sk
n

= λk−1

r+1Id +Uk
r (Λ

k−1

r − λk−1

r+1Ir)U
kT

r (12)

The computational cost in classical second order methods is

O(bnd
2) operations per node for the local hessian and O(d3)

operations per node for the inverse of the local hessian. The

NewSamp algorithm determines both the hessian and its inverse

in O(bnd+ (|Sn|max + r)d2) operations per node [16].

The Algorithm: DANDA

Our proposed approximate Newton algorithm DANDA is

based on the determinantal averaging algorithm, adapted to the

analog transmission over a wireless fading MAC channel, as

described in Algorithm 1. It takes a convergence parameter

ϵ as input that is a threshold for convergence based on the

fractional difference between two consecutive values of F (θk).
The optimal PDF α∗ 2 is the α value that takes minimum total

power per node for convergence.

IV. EXPERIMENTAL RESULTS

In this section, we provide numerical examples to illustrate

the performance of the algorithms DNDA (with and without

RLS), DANDA and their comparison with GBMA [5] and

LocalNewton [12] (NOTE: In LocalNewton the local parameter

estimates are updated L times using the Newton’s algorithm

2We determined α∗ by exhaustive search, varying α within a suitable range
in (0, 1), although more sophisticated methods can be used.

Parameter Value

Network

AWGN wk ∼ N (µ = 0, σ2
w = 4 mW)

Channel Fading hn ∼ Rayleigh(σ̃h = 1)
Number of nodes N = 100
DANDA

PAF 7× 104

Learning Rate β = 0.95
Optimal PDF α = 0.3
Sub-Sample size |Sn| = 3000
rank(sub-sampled hessian) r = 50
DNDA

PAF 8× 1024

Learning Rate β = 0.95
Optimal PDF α = 0.3
LN
PAF 2.5
Learning Rate β = 1
L 1
GBMA
PAF 0.3
Learning Rate β = 0.1

TABLE II: Simulation Parameters

before being communicated to the edge server using ana-

log transmission for aggregation). We used the Million Song

Dataset (MSD) [17] that has 90 audio features for 515,345

soundtracks to recognize the year of release of a song. We

pre-process the data by omitting cases corresponding to the

year below 1976 to avoid skewness and the outliers in the

distribution. The features are normalized to have zero mean

and unity variance and the response has zero mean 3. We split

the dataset into training and test sets based on the partition

recommendation [18]. The simulated distributed network has

an edge server and 100 nodes, with each node having a disjoint

set of 4,200 data points obtained via uniform random sampling.

We considered a regularized least squares loss function (10)

with regularization parameter, λ = 0.1. Table II shows the

value of various simulation parameters for the experiments. The

transmitted signals from the N nodes face an i.i.d Rayleigh

fading channel gain with the distribution p(|h|) = |h|
σ̃2

h

e

−|h|

2
˜

σ2

h ,

where µh = σ̃h

√

π
2 and σ2

h =
σ̃2

h
(4−π)

2 .

algorithm average time per iteration per node

GBMA 0.009462 s
LN 0.04112 s
DNDA 0.04379 s
DANDA(r = 50, |sn| = 3000) 0.04084 s

TABLE III: Average computer time (seconds) taken by algorithms per iteration
per node on 1.6 GHz Dual-Core Intel Core i5 processor machine with 8 GB
2133 MHz LPDDR3 RAM

Fig. 2 shows a comparison of DANDA with LocalNewton

(LN), GBMA and DNDA. The transmission parameters are

set such that each algorithm takes approximately equal total

energy for convergence4. In Fig. 2 (a) LN converges the

fastest followed by DNDA and DANDA. The communication

channel randomness and AWGN affects DANDA the most,

3This normalization method eliminates the need of intercept in linear
regression model.

4The convergence criteria for the simulation is
|F (θ)−F (θ∗)|

F (θ∗)
≤ 0.05, where

F (θ∗) is the optimal value of centralized newton method. The black horizontal
line in all the Figures (except Fig. 5 & Fig. 6), shows this convergence
threshold.
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(b) Computation time comparison of GBMA, LN,
DNDA and DANDA on 1.6 GHz Dual-Core Intel Core
i5 processor machine with 8 GB 2133 MHz LPDDR3
RAM

Fig. 2: Simulation results on convergence and computation time averaged over
100 channel realizations

while DNDA and GBMA converge to the lowest value, GBMA

requiring four times as many iterations to reach convergence.

The Fig. 2 (b) shows the computation time taken to convergence

by these algorithms. The GBMA takes the least time for

computation per iteration as it is gradient based. The DANDA

takes slightly shorter time for each iteration than LN and

DNDA because it uses the approximate hessian and hence is

computationally less expensive at nodes. Table III shows the

average time per iteration (in seconds) required by the four

algorithms. The computations are performed on 1.6 GHz Dual-

Core Intel Core i5 processor machine with 8 GB 2133 MHz

LPDDR3 RAM.

Fig. 3 shows the performance of the DANDA algorithm with

different power settings, In Fig.3 (a), convergence improves

with PAF5, as increasing PAF effectively increases the signal-

to-noise ratio (SNR). Fig.3 (b) shows the trade-off between total

power required per node and average number of iterations the

algorithm takes for convergence.

The DANDA algorithm uses hessian approximation by sub-

sampling local data and using top r eigenvalues from the

eigenvalue decomposition, indicated by the rank. Fig. 4 shows

a comparison of DANDA with different rank values keep-

ing |Sn| = 3000. As the rank values increases the hessian

approximation moves closer to exact hessian and hence the

5The actual transmission power is the product of PAF and squared-norm of
the vector to be transmitted, eg. in GBMA it is P ||gn(θk)||
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(b) Power requirements vs convergence rate perfor-
mance of DANDA

Fig. 3: Simulation results for different PAF values for DANDA averaged over
100 channel realizations

Fig. 4: Convergence comparison of DANDA with different rank values, keeping
every other parameter constant

performance of the algorithm improves.

Fig. 5 shows the accuracy on the test dataset comparison. All

three algorithms based on second order optimization perform

similarly on the test data, with LN showing the best results.

The GBMA, once again, takes four times as many iterations to

achieve its lowest mean squared error (MSE).

The total power consumed for convergence versus the aver-

age number of iterations required for DANDA in comparison

with the DNDA, LN and GBMA is presented in Fig. 6.

DANDA, DNDA and LN take similar number of iterations for

a certain power consumption value 6, while GBMA clearly

requires more iterations. Among the second order methods,

6The power consumption values shown in Fig. 6 are approximate and
comparable but not exactly identical for all algorithms due to the random
channel gain and noise which affects gn(θk) and Hn(θk) at every kth

iteration. The results shown in Fig. 6 are averaged over 100 channel realizations
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Fig. 5: Test data performance of DANDA, DNDA, GBMA and LN

Fig. 6: Total power vs average iterations comparison of DANDA, DNDA, LN
and GBMA

LN takes the minimum no. of iterations for a given power

consumption value and DANDA takes the maximum, since

LN transmits a single vector whereas DNDA (and DANDA)

transmits two signals that makes them more prone to noise.

Fig. 7 shows a comparison of DNDA with DNDA based on

RLS, and a combination of both. The recursive least squares

estimation performs better compared to DNDA asymptotically

but the convergence is slower. We used a combination of

DNDA and RLS based DNDA where after the first iteration the

algorithm switches from DNDA to the RLS based DNDA. This

method is useful as the RLS based DNDA can be initialized by

the parameter values obtained after the first iteration of DNDA,

rather than with an arbitrary value.

V. CONCLUSIONS

We introduced a distributed ML algorithm, DANDA, that

uses the Determinantal Averaging combined with a low-rank

Hessian approximation at each node, and performs over-the-

air edge learning. This algorithm provides the benefit of fast

convergence and uses approximation methods to reduce the
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Fig. 7: Convergence performance of DNDA, DNDA with RLS and a combi-
nation of both

computation cost per iteration. The results show that the con-

vergence performance of DANDA is much faster than state-of-

the-art gradient based GBMA and compares favourably with

true hessian based LN in terms of total power consumption and

computational time, with better privacy guarantee as it does not

transmits the parameter vector, θ itself.
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