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Abstract—Computer applications have played a central role
in human progress over the past few decades. Their increasing
prevalence has raised concerns about high energy consumption,
drawing the attention of many scientists. Numerous studies
have been conducted to develop techniques aimed at enhancing
the efficiency of algorithms. Many of these studies evaluate
performance based on computational time, which is measured
by the elapsed time between two points in the algorithm. In this
work, we present an experimental evaluation of energy reduction
that reveals the computational time metric may overestimate the
benefits of code efficiency. We have employed Horner’s method
to improve the code efficiency of two identified polynomial Non-
linear AutoRegressive Moving Average with eXogenous inputs
(NARMAX) models for the Lorenz Attractor and Mackey-Glass
systems. To directly measure Central Processing Unit (CPU)
energy consumption, we utilised a Power Measurement Device.
QOur findings indicate that, while commonly used indicators such
as simulation time and CPU utilisation are informative, they may
not fully capture the complete picture of power usage.

Index Terms—Nonlinear Dynamical Systems, Green Algo-
rithm, Horner’s method, Sustainable Circuits and Systems, Com-
puter Arithmetic, Computer Simulation.

I. INTRODUCTION

The growing need for computational power within the Infor-
mation and Communication Technology (ICT) industry is in-
herently linked to higher levels of energy consumption, carbon
footprint, and subsequent environmental consequences [1]—[3].
Efforts to address these impacts have primarily focused on
improving the efficiency of hardware and software systems,
employing techniques such as dynamic voltage frequency
scaling and dynamic power management [4]-[8].

In the field of sustainable computing, the primary emphasis
has often been on optimising algorithms to reduce computa-
tional complexity and execution time [7], [8]. This optimisa-
tion is valuable for assessing code efficiency, with computation
time widely used as a key performance indicator [9]. For
example, authors in [10] introduced the Green-box System
Identification approach, applying multi-objective optimisation
to create sustainable computing frameworks, highlighting the
balance between computational complexity and environmental
impact. Gémez-Carmona et al. presented an approach that
simplifies the complexity of supervised learning algorithms at
the Edge, significantly reducing computational cost and pro-
moting efficient and sustainable classification solutions [11].
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In another approach, central processing unit (CPU) execution
time was measured for evaluating a modelling technique using
tic and toc commands in MATLAB [12].

Nonetheless, in many applications, especially those with
energy constraints, what’s more crucial than computation time
is a direct measure of energy expended or energy reduction
achieved by a novel technique [13]. Additionally, compu-
tational time measurements can be influenced by various
other ongoing processes on the computer. Therefore, there
is a significant gap in current research, notably the absence
of a direct method for measuring CPU energy consumption
to evaluate the efficiency of numerical methods in reducing
simulation time and complexity.

In an effort to contribute to the academic discussion in
this field, and inspired by the findings from [14] which
demonstrated a significant reduction in the carbon footprint of
computational processes, this paper investigates the efficacy
of using Horner’s approach in MATLAB for the evaluation
of NARMAX models [15]-[17]. This work introduces an
experimental evaluation of energy reduction on the CPU using
a Power Measurement Device (PMD). It has been observed
that commonly used indicators such as simulation time and
CPU utilisation, while informative, may not fully capture the
complete picture of power usage. The results of our research
indicate that computational time may overestimate the benefits
of code efficiency obtained through Horner’s method. The
method is applied in two case studies: the computer simu-
lation of the Lorenz Attractor and Mackey-Glass identified
models. These findings suggest that our analysis represents an
important step toward gaining a more thorough understanding
of the energy dynamics associated with computer simulations
of nonlinear dynamical systems.

The article is structured as follows: the initial section
IT provide a comprehensive background on the theoretical
concepts essential for understanding the study. This is followed
by a detailed description of the methodology, including the
experimental setup and procedures used for measuring CPU
energy consumption. The section IV presents the findings
on the impact of the applied methods on energy efficiency.
Finally, the article concludes with a discussion of the implica-
tions of these findings and suggestions for future research in
the field of energy-efficient computing.
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II. BACKGROUND

In this section, the basic background of this paper is
presented. Polynomial NARMAX, the Horner‘s method and
CPU power are briefly described.

A. Polynomial NARMAX

A polynomial NARMAX (Nonlinear Auto Regressive Mov-
ing Average model with eXogenous input) can be defined as
[15]:

14
F [yk—l, S ayk‘—ny s Uk-1y -« oy Uk-ny, »
s kene], (1)

in which y, u; and e are, respectively, the model output,
input and noise terms at time k € N. The parameters n,,
n, and n. are the maximum lag for output, input and noise
terms. Terms of ey are constantly used during the parameter
estimation process to avoid bias. In this work, F* is assumed
to be a polynomial with non-linearity degree ¢ € Z™.
Nonlinear systems are usually modelled using particular
cases of the polynomial NARMAX, such as the polyno-
mial nonlinear autoregressive exogenous (NARX) or nonlinear
autoregressive (NAR). In the former case, noise terms are
not used, whereas the polynomial NAR is used to represent
autonomous systems in which the input is not used. In this
paper, we use the acronym NARMAX to name all of them.

B. Horner’s Method

Consider the following polynomial:

Y =

Ch-1s - -

P(x) = apz™ 4+ ap_12" '+ ..+ a2z’ + a1z +ag  (2)

where ay_;, are the coefficients to the variable z*=!" in

the polynomial p(x). The Horner’s method is an algebraic
manipulation that represents (2) as:

Plx)=(.((anz+apn-1)x+...+a2)z+ar)z+ag (3)

When the polynomial is represented in nested form as seen
in Eq. (3), the number of multiplications and additions in the
equation is reduced to n, according to the polynomial degree.
As a result there is a significant reduction in the number of
operations, time and energy used in the calculation.

C. CPU and Computation

This section focuses on the examination of MATLAB’s
function in performing complex calculations and data analysis,
with a particular emphasis on the central processing unit’s
crucial role in task execution and energy efficiency. This
research focuses on the variables of CPU processing time,
engagement level, and energy expenditure, with a specific
emphasis on power usage. Understanding these aspects is
crucial in driving advancements in energy-efficient computing
systems.

1) CPU time: The emphasis is placed on CPU time rather
than ”wall-clock” time to provide a more precise benchmark.
This measure accounts for the actual time the CPU dedicates
to a specific process, offering an unobscured view of the
program’s time complexity, unaffected by other background
processes.

2) CPU utilisation: This measure provides insight into the
level of CPU utilisation by providing the proportion of time
the CPU is allocated to a certain job during a defined span of
CPU time. The monitoring process may be facilitated by using
the Windows task manager, providing an integral insight into
the efficiency and energy consumption of the process, and is
given by the formula:

TP
Tory’
where Ucpy is the CPU utilisation, 7}, is the CPU spent on
a particular process, in this case it was MATLAB.exe, and
Tepy is the total time the CPU has spent executing. In order
to analyse peaks and sustained loads on the processor, the
Area Under the Curve (AUC) of the CPU utilisation data can
be used to compare the workloads of different programs, the
AUC is also how the total energy used is calculated for the
time-series power consumption data.

3) CPU power: The study uses two approaches to assess
the power consumption of the CPU: direct and indirect. Direct
measurement involves the use of a PMD or onboard sensors
to quantitatively assess the magnitude of electric current being
supplied to the CPU. In contrast, indirect methods include
estimating energy usage by considering variables such as clock
speed, CPU temperature, and voltage. Power consumption may
be measured directly using a PMD or indirectly via the use of
OpenHardwareMonitor, an open-source software application
that estimates or directly monitors the power consumption of
the CPU, depending on the presence of onboard sensors.

“4)

Ucpyu =

III. METHODOLOGY

To assess the impact of Horner’s method on the computa-
tional efficiency of the NARMAX polynomial, we developed a
methodology that combines theoretical analysis with empirical
measurement of CPU energy consumption and utilisation.
This study was conducted in a controlled environment, using
MATLAB R2023a to implement and evaluate the polynomial
equations, both before and after applying Horner’s method. To
ensure the accuracy of the results, the equations were subjected
to 1 x 107 iterations.

The measurement of the CPU’s energy consumption was
carried out using a PMD, connected between the power supply
and the CPU’s 12v EPS (Extra Power Supply) power connec-
tor. This direct connection allowed for the precise collection of
energy consumption data during the execution of mathematical
operations in MATLAB.

Parallel to the energy consumption measurement, a dual
approach was employed to monitor the CPU utilisation by the
MATLAB. exe process. For this purpose, a specific algorithm
was developed with carefully chosen parameters to oper-
ate efficiently and discreetly, avoiding unnecessary terminal
openings. This algorithm utilised the getProcessTimes ()
function from the Windows library in C++. This function
retrieves the total CPU time used by the MATLAB.exe
process on the system, allowing us to calculate Processor
Utilisation using Equation (4). The CPU utilisation data,
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Fig. 1. Flowchart illustrating CPU monitoring for the MATLAB . exe process.
The procedure begins by validating the existence of the MATLAB.exe
process on the system. After verification, the CPU monitoring starts, and
MATLAB.exe executes the ’Perform Task’ function, which involves the
system simulations. CPU utilisation data are carefully documented during
the simulation operations at the same time. After the monitoring phase
and system simulations are completed, the data is subjected to thorough
processing, detailed analysis, and visualisation. If the MATLAB . exe process
is not detected, the workflow is immediately stopped, and an error condition
is triggered, thereby stopping the activity.

including processing times and utilisation percentages, were
continuously collected and stored for subsequent analysis.
This methodological choice ensured the accuracy of processor
utilisation measurements.

Additionally, a MATLAB control interface was used to
manage the start and end of data collection, as well as to
process and analyse the collected data. This interface allowed
for effective integration between energy consumption data
collection and CPU utilisation analysis, facilitating the com-
parison between conditions before and after applying Horner’s
method.

Through this methodology, it was possible to conduct a
detailed analysis of computational performance and energy
consumption associated with executing complex mathematical
operations in MATLAB.exe. This study highlighted the ef-
fectiveness of Horner’s method in optimising computational
performance, providing valuable insights into the interplay
between algorithmic theory and computational practice in
high-demand processing contexts. The flow chart for the code
can be seen in Fig. 1.

A. Application of Horner’s method to NARMAX model

1) Mackey-Glass: The NARMAX model parameters for the
Mackey-Glass system were determined using an orthogonal
regression approach. A simulated system comprising 6000 data
points served as the basis for this estimation. The model was
constructed to accommodate a maximum lag of 10 and a non-
linearity degree of 4, criteria selected to ensure an optimal
balance between model complexity and predictive accuracy.

The efficacy of the model was evaluated using the Root
Mean Square Error (RMSE) metric. An RMSE of 0.267
was observed when the model’s predictions were compared
with a subsequent set of 6000 data points, which served as
a validation dataset distinct from the training set. This low
error metric highlights the model’s robustness and predictive
precision in replicating the complex dynamics inherent in the
Mackey-Glass system.

The mathematical representation of the Mackey-Glass
NARMAX model is articulated as follows:

y(k) = 5.3569y(k — 1) — 14.0952y(k — 2) 5)
+ 24.3744(k — 3) — 31.1053y(k — 4)
+30.9521y(k — 5) — 24.4804y(k — 6)
+ 15.1982y(k — 7) — 7.0278y(k — 8)
+2.1031y(k — 9) + 0.013883
+0.066535y(k — 9)y(k — 10) — 0.35279y(k — 10)
+0.095508y(k — 10)* — 0.14165y(k — 10)®
— 0.0083594y(k — 8)y(k — 10)®
+0.050857y (k — 10)*

choosing y(k — 10) as the variable to factorise in yields the
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NARMAX model in nested form:

y(k) = 5.3569y(k — 1) — 14.0952y (k — 2) ()
+24.3744y(k — 3) — 31.1053y(k — 4)
+30.9521y(k — 5) — 24.4804y(k — 6)
+15.1982y(k — 7) — 7.0278y(k — 8)
+2.1031y(k — 9) + 0.013883 + y(k — 10)

x (0.095508 + y(k — 10)(—0.14165
— 0.0083594y(k — 8)
+ y(k — 10) x 0.050857)))

2) Lorenz: Consider the simplified NARMAX model for
the Lorenz attractor, presented by the Equations (7), (8) and
(9), similar to a model proposed by Aguirre and Billings [18],
note the error components were omitted for simplicity. Observ-
ing these equations it is clear the Lorenz Attractor NARMAX
model has a non-linearity degree of 2, and maximum lag of
1, which may affect the energy reduction since the higher the
power in the polynomial the more it can be factored.

In this model, there are three variables: x(k — 1), y(k — 1),
and z(k — 1). Implementing Horner’s method in this con-
text deviates slightly from its standard application, given the
multivariate nature of the equations, but the core principle
remains intact. It’s essential to strategically select one variable.
Ideally, opting for the most frequently occurring variable can
minimise the number of required multiplications, streamlining
the computational process.

x(k) = 0.859192(k — 1) 4+ 0.22489y(k — 1) (7
—2.833 x 10 *2(k — 1)z(k — 1)

—3.4598 x 10~ *y(k — 1)z(k — 1) — 0.012927
—6.9159 x 10~ *z(k — Dy(k — 1)
+7.326 x 10 *z(k — 1)*

y(k) = 1.109y(k — 1) — 0.006713y(k — 1)z(k — 1) ®)
—0.018688x(k — 1)z(k — 1) + 0.54947z(k — 1)
—3.3705 x 10" °2(k — 1)> 4 6.7054 x 107°
+ z(k — 1)y(k — 1) — 3.6965 x 10~ *z(k — 1)

2(k) = 1.01z(k — 1) + 9.34 x 10 %z (k — Dy(k — 1) )
—2.1708 x 10°z(k — 1) + 7.2469 x 10 *z(k — 1)*
+7.6919 x 10 ?y(k — 1)> — 0.47834
+ 4.8760 x 10 °y(k — 1)z(k — 1)

For instance, if designate x(k — 1) as the variable to be
factorised in x(k) and y(k), while assigning z(k — 1) as the
variable for z(k), is it possible to express the equations in
their nested forms. This aids in illuminating their structure and
facilitating an efficient computation. The nested representation
of the equations, obtained through this methodical variable
selection and restructuring, are as follows:

x(k) = —0.012927 — 3.4598 x 10" y(k — 1)z(k —1)  (10)
+ 0.22489y(k — 1) + z(k — 1)(0.85919
—2.833x 10 *2(k—1)

—6.9159 x 10" *y(k — 1)
+a(k —1)7.326 x 107%)

y(k) = 1.109 y(k — 1) — 0.006713y(k — 1)2(k — 1)
—3.3705 x 107° 2(k — 1)?

+ a(k — 1)(—0.018688 z(k — 1) + 0.54947
+6.7054 x 10 ° y(k — 1)
+ (k — 1)(—3.6965 x 10~ %))

2(k) = —0.47834 + 9.34 x 10 % z(k — 1)y(k — 1)
+7.2469 x 107° (x(k — 1))?
+7.6919 x 1072 (y(k — 1))?

+ z(k — 1)(1.01 + 4.8760 x 10> y(k — 1)
+ z(k — 1)(2.1708 x 10~ %))

amn

12)

Here, the calculations are optimised and a clearer perspective
of the interactions among variables is gained. This approach,
informed by Horner’s method, ensures a more concise and
computationally efficient representation of the original system
of difference equations

B. Bench-marking CPU

The CPU time and usage were carefully averaged through-
out each segment of 1 x 107 data points to determine mean
run-time and utilisation, giving insights into computational
efficiency and resource engagement. As mentioned before, in
this study, it examined the power consumption of the CPU
utilising both direct and indirect measurement approaches.
However, our preliminary results indicate that the indirect
strategy exhibited much poorer accuracy and slower collection
of data, operating at one-second intervals, in contrast to the
real-time precision provided by the direct method using PMD.
As a result, we set a higher emphasis on using the direct
measurement method in order to enhance the dependability
and uniformity of our data.

CPU power was evaluated in real-time using a PMD that
captured continuous time-series power data, transmitted via
serial connection and stored in a .csv file for analysis. The
analysis was performed in MATLAB, extracting insights from
raw data to understand CPU power dynamics under different
operational loads. A design of the PMD from ElmoreLabs
is shown in Fig. 2a [19]. This mixed-method approach pro-
vided a thorough evaluation of CPU performance and energy
efficiency. Fig. 2b gives an overview of the PMD and USB
connection. The PMD intercepts the EPS connector from the
PSU and sends the voltage, current, and power consumption
to the .csv file. The power consumption for each run was
estimated by dividing the total energy used by 50. In order to
analyse peaks and sustained loads on the processor the AUC
was estimated using the trapezoidal rule for the mean CPU
utilisation data. The AUC by means of the trapezoidal rule is
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Fig. 2. (a) PMD Circuit Board Layout designed by ElmoreLabs. The
PMD measures voltage, current and power consumption from the PSU. (b)
ElmorLabs PMD-USB (Power Measurement Device with USB). This device
presents 2x EPS 8-pin (CPU) and 3x PCIE 8-pin (GPU) power inputs from
the power supply. Source: ElmorLabs.

also how the total energy used was estimated for the time-
series power consumption data using Equation (13):

E/tz P(t) dt

t1

13)

where t; and t, specify the time interval on which the
measurement took place, and P(t) is the power signal.

IV. RESULTS

This study used Horner’s method to accurately evaluate
energy utilisation while simulating NARMAX models in MAT-
LAB. It directly quantified the power necessary to execute
particular programmes to understand the intricate mechan-
ics of energy consumption and the environmental effect of
certain computing activities. An in-depth CPU analysis was
performed before and after Horner’s Method was applied to the
NARMAX polynomial of two systems: the Lorenz attractor,
a simple model for the chaotic system, and the Mackey-Glass
system, whose model is more complex (Table 1) due to its
higher maximum lag and non-linearity degree.

These results present a 0.6% and 29.3% energy reduction,
94.9% and 42.4% CPU time reduction, and a 44.48% and
95.0% reduction for AUC of CPU Utilisation for the Lorenz
Attractor and Mackey-Glass system respectively, which were
derived from Table 1. This data indicates a consistent reduction

in CPU time post-Horner’s method application, aligning with
the AUC of CPU utilisation.

It is also essential to emphasise that a comprehensive exam-
ination of the findings reveals a multifaceted relation between
the duration of simulation and the use of energy. The rela-
tionship between simulation duration and energy consumption
does not exhibit a linear proportionality, wherein a reduction
in simulation time does not result in a corresponding drop in
energy expenditure. The aforementioned result highlights the
delicate nature of energy dynamics in computing systems and
encourages a more detailed analysis of solutions targeted at
improving energy efficiency.

The relationship between carbon emissions and consump-
tion of energy has been well recognised and proven. By
using Horner’s technique, a discernible drop in energy con-
sumption was noticed, leading to a corresponding reduction
in carbon emissions. This outcome serves to validate the
efficacy of the strategy in mitigating the carbon footprint.
The study conducted in our research examined the overall
power consumption of the CPU. However, we were able to get
valuable insights into individual process workloads by seeing
the decrease in CPU time and utilisation. This highlights the
effectiveness of our technique in many computing activities
beyond the assessment of NARMAX models.

TABLE 1
COMPUTER SIMULATION PERFORMANCE OF NONLINEAR DYNAMICAL
SYSTEMS. TWO SYSTEMS ARE TESTED: LORENZ ATTRACTOR (LA) AND
MACKEY-GLASS (MG) BOTH BEFORE AND AFTER APPLYING HORNER’S
METHOD. THE PERFORMANCE MEASUREMENTS ARE: I: CPU TIME [MS];
II: AUC ofF CPU UTILISATION, III: ENERGY USED PER RUN [J]; IV:
NUMBER OF MULTIPLICATIONS; V: NON-LINEARITY DEGREE.

System 1 11 m | IV | V
LA 95.0 802.1 | 161.6 | 30 | 2
LA-H 54.7 4453 | 1603 | 24 | 2
MG 1093.7 | 9384.0 | 208.0 | 25 | 4
MG-H 56.3 465.1 | 147.1 | 14 | 4

V. CONCLUSION

This study has introduced a novel method to experimen-
tally evaluate energy reduction on the CPU achieved through
code optimisation. Horner’s method has been applied to two
identified polynomial NARMAX models for the Lorenz At-
tractor and Mackey-Glass systems. In many prior works in
the literature, algorithm performance has been assessed using
computational time metrics. Commands such as tic/toc
in MATLAB have been widely used as a means to measure
the efficiency of such algorithms. It is well-known that this
measurement is influenced by many other processes. It has
been believed that an average of hundreds of realisations could
yield a reliable performance index, as demonstrated in [12].
However, when the focus is on observing the energy reduction
resulting from code optimisation, our technique has revealed
that computational time may overestimate the benefits.

We have conducted a comprehensive examination of energy
consumption associated with the simulation of NARMAX
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models in MATLAB, a subject not extensively covered pre-
viously. Horner’s approach was employed, and a detailed
analysis was performed to evaluate its effectiveness in reduc-
ing computing time and energy consumption. In a computer
simulation of the Lorenz Attractor using the Horner’s Method,
we observed only a 0.6% reduction in energy consumption,
while its CPU time reduction was 42.4%.

In future work, we intend to investigate the memory im-
pact and explore techniques that may be more efficient in
reducing energy consumption during computer simulations of
nonlinear dynamical systems. Additionally, we aim to develop
new performance indices that can simultaneously consider
computation time and energy consumption. We also plan to
enhance energy efficiency identification systems for highly
complex systems, such as those in renewable energy systems,
as demonstrated in [10].
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