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Abstract—Wind energy is a renewable source considerably ex-
plored worldwide. Currently, attempts have been made to create
wind farms on offshore areas, given the higher intensity and
consistency of the wind resource. By doing this, conventional fixed
foundation platforms become infeasible and floating structures
have to be considered. One of the consequences for using these
floating structures is the presence of troublesome motions, that
increase mechanical stress and reduce the energy production of
the wind turbine. Generally in the literature, this problem is
evaluated with the use of numeric simulations, producing results
for one specific case at a time. This paper proposes a classical
mechanics approach, using a Lagrangian framework to describe
the dynamics of pitch motion in a analytical formulation. This
approach can describe the system response with a general model,
instead of only numerical values, facilitating the comprehension
of the most important parameters for the dynamic response.

Index Terms—offshore platforms, wind energy, modeling

I. INTRODUCTION

Wind energy is a renewable source that has proven itself,
having intensive investments and use in the past decade. A
report from the Global Wind Energy Council (GWEC) [1]
states that the global energy production associated with wind
energy is around 900 GW. In wind energy production rankings,
for example the rankings of the International Renewable
Energy Agency (IRENA), China, the USA and Germany lead
the ranking with the highest power generation.

With the increasing effort to diminish the costs of renewable
energy and make it more competitive, multiple improvements
keep being proposed. One current trend of research is to move
farms towards offshore areas, given the higher quality of the
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wind resource in terms of being more steady throughout time
and stronger [2].

As the offshore wind exploration goes into deeper waters,
floating offshore platforms becomes an important solution [3].
According to [1], floating offshore wind (FOW) is rapidly
shifting to commercial scale and is expected to rapidly ac-
celerate. China leads the wind and FOW section in terms of
machinery production and energy generation, with Europe in
second place, mostly represented by projects such as Hywind
(Scotland) and Windfloat (Portugal).

In deep sea waters, i.e. more than 50 meters, it is more feasi-
ble to consider floating foundations instead of more traditional
fixed-foundation structures. In that category, semi-submersible
floating platforms presents the highest TRL (technology readi-
ness levels). Some examples of semi-submersible platforms
include WindFloat in Portugal (25 MW), the biggest wind
turbine platform in the world, and DeepCWind, developed by
the National Renewable Energy Laboratory (NREL) [3]. As
a consequence of the use of floating platforms, the structure
becomes subjected to motions that can influence in multiple
important aspects: installation and maintenance, operation,
lifespan, energy production and so on [4].

There are multiple approaches to the discussion of offshore
platform stabilization, but the common method for authors to
evaluate their ideas on this topic is by using one or more
numerical tools. This method is common, no matter what
aspect is focused on, be it in controller design, structural
aspects, hydrodynamic simulation, or a combination of those
[ST-8].

Despite a substantial amount of publications on platform
stabilization, analytical proposals to investigate the platform
dynamics are not common, generating a struggle to setup and
use complex numerical frameworks that are still unable to
describe the system in a simpler and general way. This paper
aims to introduce a analytical method to compare the dynamics
of offshore platforms with the use of Lagrangian mechanics.
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The paper is organized as follows: in section two, the
underlying theory used throughout the paper is presented. Sec-
tion three proposes three different semi-submersible platform
systems and presents their modeling. Section four analyses
the obtained models in an example scenario to investigate
it’s possible outcomes. The main points and contributions of
the paper are summarized in the conclusion, where further
investigation aspects are also listed.

II. UNDERLYING THEORY

In classical mechanics theory, Lagrangian mechanics refers
to a framework founded in the principle of least action, in
which the dynamic equation for a system can be defined with
the use of it’s energies, potential and kinetic. To obtain the
dynamic equation, a procedure has to be followed, as will be
described bellow.

First, the Lagrangian equation (L) is defined, as in (1)

L=T-U, D

where 7' is the sum of kinetic energies of all ¢ bodies that
composed the investigated system, calculated by (2)

1
p— . ., 2
T=3 2_; L,6; (1), )
in which I; is the moment of inertia of the i body, 6; ()
the angular velocity of the ¢ body and N the total number
of bodies in the system. And U is the sum of all potential
energies of the system, calculated by (3)

N
U=> migh, 3)
=1

where h; is the vertical distance to the origin frame, and g is
the gravity acceleration constant.

Once the Lagrangian (L) is defined, the differential equation
that describes the system can be obtained using the Euler-
Lagrange formulation presented in (4)

doL oL oW

dtd¢ 0q  0q’
where ¢ is time, ¢ is the generalized coordinate system chosen
for the analysis, and W is the so called virtual work.

To evaluate the rotational motion described by the different
bodies in the proposed systems further in the paper, a comple-
mentary theorem is required. When bodies rotate along their
own axis of rotation there are immediate formulations that can
find the resulting moment of inertia. In this paper however,
since the bodies are rigidly connected to form systems, they
rotate along the axis passing through the center of mass of the
system. To compensate for this it’s necessary to modify the
moment of inertia of each body using the paralel-axis theorem.
The modified moment of inertia for a body (Ip4) given it’s
already known moment of inertia (I) is given by (5)

“4)

Ipa =1+ md, &)

where m is the mass of that body, and d the distance to the new
axis of rotation. This formulation is necessary though model
development to obtain the Lagrangian (L) already mentioned.

III. DESCRIPTION AND MODELING

Three systems are proposed to be evaluated in this paper.
They are thought out to be a simple representation of a floating
wind turbine on top of a platform. Three bodies compose each
system: a platform, a column whose base is at the center of
the platform (indicated with subscript C) and a spherical mass
centered on the column’s top (indicated with subscript .S). The
difference between each system is the chosen platform that can
be of different geometries: a cuboid, a cylinder and a cone with
it’s face to the sky. To simplify the equations, a greek letter
notation is used to identify the platforms: the cuboid is «,
the cylinder is [ and the cone ~. A illustration of the three
systems can be seen in Fig 1.

Fig. 1. Illustration of the three proposed systems.

For ease of the calculations that are going to be developed,
the origin point of the coordinate system is placed at the central
point of the platform top surface, which coincides with the
center point of the column base. This definition eases the
calculation of potential energies and distances between the
center of mass of different bodies. Given that the origin points
is fixed to the platform, all translational kinetic energies are
equal to zero in this reference frame, and only kinetic energies
of rotational nature remain.

For the purposes of facilitating the comprehension of all
equations moving forward: the subscript associated with a
parameter states the body to whom that parameter belongs
to. All parameters are indicated as follows: moment of inertia
(I) mass (m), radius (r), height (h), width (w), the distances
between the system center of mass and a body center of mass
(D), the pitch angle of the system () or angular velocity ()
or angular acceleration (é).

All movements described by the proposed systems are of
rotational nature, therefore, to define total kinetic energy it
is necessary to describe the moments of inertia of all bodies
withing the system. When a free moving body is subjected to
a external force, a rotational motion around it’s center of mass
may occur. If this rotational motion is on an axis different from
one of body axis, an alteration must be made to the moment of
inertia using the parallel axis theorem mentioned in (5). Since
it’s considered that the bodies are rigidly connected in the three
proposed systems, they all rotate along the same axis, which
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is the system center of mass. This implies that each of the
three bodies of all three systems must have their moments of
inertia adapted. The resulting moments of inertia of all bodies
for all systems are shown in the following equations. First, the
spherical mass on top of the column in (6)

2
Is = gmsr?g + mglg, (6)
for the column (7)
1
Ic = Emch% +mels, (N

and for the different platforms, starting with the cylindrical
platform (8)

1 1
Iy = Jmgrs + omahs + melj, (8)

for the cuboid platform (9)

M (hi + wi)

I, = 12 + m(ylia 9
and lastly, for the conical platform (10)
3m., (h2 + 4r?
= W +my 2. (10)

Once all moments of inertia are defined, the total kinetic
energy mentioned in (2) can be calculated. For the sake of
clarity, the kinetic energy (7) for each body is presented
separately in the following equations. First, for the sphere (11)

92 .
T = o.5(5msr§ + msz%S) (1), (11
for the column (12)
1 .
To = 0.5(12mch20 + mcﬁc> pw? (2

the same for the platforms, starting with the cuboid platform
(13)

o (h2 +w? .
T, =05 (W + mal§> 01)%  (13)
for the conical platform (14)
3m., (h2 + 4r2 .
T, =05 (W +m, 2 ) 0% (4

and the cylindrical platform (15)

1 2 1 2 2\ ()2
The potential energies (U) can also be described: first for

the sphere in (16)

15)

Us = mgghc cos(9) , (16)

the column (17)

Uc = 0.5meghe cos(0), 17)
the cuboid platform (18)
agha 0
U, = Madhacos(0) (18)
2
the conical platform (19)
U, = My ghy cos(@)7 (19)
4
and the cylindrical platform (20)
mggh g cos(6
Us = Bg+() (20)

At this stage the Lagrangian equation for each one of the
three systems can be obtained following the general format of
2D

L=Ts+Tc+Tp)— (Us+Uc+Up)
P ={a,B,7}

Equation (21) defines all three Lagrangian (L) equations,
one for each system. To obtain each one, the kinetic and
potential energy correspondent to that platform has to be
included in place of Tp and Up.

After all energy components have been described, the Euler-
Lagrange formulation (4) can be used to obtain the dynamic
equation for each configuration, as shown in (22)

21

doL oL oW

dtop 00 90’
where the pitch angle 6 was the chosen generalized for the
analysis.

At this stage of the modeling process, all the excitation
forces acting on the system can be defined. For this study,
one force will be considered as the system input. The force
acts on the center of mass of the sphere in the horizontal
direction and it’s intended to mimic a wind perturbation. There
is no intention at this stage of the proposal to use sophisticated
models of wind excitation forces, therefore, a proposition is
made for force F', as indicated in (23)

(22)

F = Asin(wt), (23)

where A is the amplitude of the excitation force, w is the
angular frequency, and ¢ is time. Real wind forces are usually
presented as a non-zero mean value with an oscillatory nature
as can be seen in [9], however, this simplified model is
proposed to get a simpler initial assessment of the concept,
while still accounting for the change in wind direction.

With the proposed force (23) acting, the system will rotate
along it’s own center of mass, and this displacement can be
measured with an angle 6. The virtual work (W) done by this
force can be defined as W = F'd, where the distance d is
the x-axis projection of the arc length path described by the
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spherical mass, described by d = ls sin (f). Combining these
two information the virtual work can be defined as (24)

W = Alg sin(wt) sin (6) .

Substituting the results of (21) and (24) in (22) and perform-
ing the necessary calculations, a differential equation (DE)
that describes the system dynamics is found. To simplify the
solution procedure of the DE, a linearization step is made for
the equilibrium position of the platform, that is, the upright
position. This results in the simplification sin(f) = 6 and
cos(f) = 1.

The linearized DE is solved symbolically with the aid of
Maple 2023 software. The DE solution has a rather inconve-
nient size, but for the sake of demonstration, the solution for
the cuboid platform case is presented in (25), after some effort
to simplify the equation:

(24)

B 60Als (w B sinh(%t) - C’sin(wt))

C(Bw?+D) ’
where the constants B, C' and D are defined as follows:
constant B is defined in (26)

0(t) (25)

B =5 (h2 + 1212 +w2) ma + 5 (hE + 121%) mc

26
+12mg (518 + 2r%), (20)
constant C' on (27)
C= \/%\/g\/(mc—l—zn’l,g) ho — hamg, 27
and lastly, constant D on (28)
D =30(ghcmc + 2ghcms — ghama). (28)

All lengths [ describe the distances between two points:
the body and the system center of mass. To calculate [ it is
necessary to define those two points. With the origin at the
base center of the column, as proposed, the coordinates of
each iy, body center of mass (C'M;) can be easily described
in terms of the geometric parameters of the bodies. As an
example, the center of mass of the cuboid platform is found
in half it’s height, since the origin is centered at the cuboid top,
that point would just be —h¢ /2. The other point, however, is
the system center of mass, which changes for each different
platform geometry used. To solve this, each of the three
systems (j) has it’s own center of mass and they can be
calculated individually using equation (29)

N
D im1 M
where m; is the mass of each of the 7 bodies in the system,
and r; the distance from origin of each one of the ¢ bodies.
After that, all lengths [ for each body can be calculated with

(30)

. (29)

l; = CM; — CM,y,. (30)

After all the algebraic steps, the function #(¢) can be inves-
tigated for all cases of interest by substituting all geometric
parameters of the system and the excitation force parameters
by it’s numerical values. In the next section, a example
scenario is proposed to investigate the possible outcomes of
the obtained models.

IV. ANALYSIS

Given the complexity of the DE solution shown in (25), it is
not a trivial task to evaluate what parameters present a greater
impact on the systems pitch response. Only two observations
are more evident: first, the excitation force amplitude A is di-
rectly proportional to the motion response, which is expected.
Secondly, the constant D which has a very similar resemblance
to the U component of the Lagrangian, has a inverse relation to
the pitch motion. This indicates that the total potential energy
for the system has a inversely proportional relation to 6.

For the sake of describing in more detail the possible
outcomes of the models, a given set of numerical parameters
is set in order to analyze some example scenarios. These
parameters are shown in Table I and are used to produce
numerical results for all three platforms, whose models were
obtained with the presented procedure.

TABLE I
SYSTEM PARAMETERS
Parameter Value
ms 150 kg
rg 1.5 m
mc 20 kg
ho 10 m
Me 1000 kg
ha 35 m
la 5m
We 10 m
mg 1000 kg
rg % m
hg 3.5 m
M~y 1000 kg
Ty % m
hy 10.5 m
A 50
w 0.5 rad/s
g 9.81 m/s?

The dimensions of the cuboid platform are arbitrated by
the authors, using values of tens of meters, since those are
a reasonable measurements for real applications, as can be
verified by looking at any of the two devices mentioned in
section I. Once the cuboid is defined, the other geometries
were determined. For the sake of trying to create a fair
comparison between the systems, two restricting conditions
are used. All platforms being compared must be of same
volume and have the same top surface area. Two conditions
are necessary since the cylinder and cone have two variables
(height and radius) that need to be defined. The rationale for
those restrictions being that all platforms are built of the same
materials and have the same volume, therefore, same density
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(volume restriction) and must occupy the same area on the
ocean (top surface restriction).

Once all geometry and force parameters are defined, a
graph of the pitch over time (0 x t) for all three systems is
obtained. The cuboid platform response is shown in Fig. 2;
the cylindrical platform in Fig. 3 and conical platform in
Fig. 4. It’s worth mentioning that the graphs already present
the conversion from radians to degrees.

44
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Fig. 2. System dynamic with cuboid platform.

Note that the cuboid and cylindrical platforms reach higher
values of & when compared with the conical system. Also,
a observation can be made regarding the period of the os-
cillations in all cases. The cuboid platform shows the highest
periods, followed by the cylindrical platform, while the conical
system presents the smallest oscillation periods.

It’s also possible to evaluate how each individual parameter
change can alter the dynamic response of one particular
system. In Fig. 5 it’s illustrated how an alteration of the cuboid
platform mass can influence the system dynamic response.

As can be seen, when comparing the same system, versions
with a higher platform mass present smaller oscillations. This
indicates that, for the same system, the total moment of inertia
value is a good indication for the oscillation amplitude. That is
not the case when comparing different platforms, given that the
conical system response presented in Fig. 4 had the smallest
total inertia and still outperformed the other platforms in this
regard.

Beyond the oscillations observed in this time window,
the dynamics of all systems are outlined withing a periodic
envelope function that shifts up and down as indicated in
Fig. 6, and can be understood as a fast oscillation withing

0 (degrees)

0 20 40 60 80 100
Time (s)

Fig. 3. System dynamic with cylindrical platform.
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@

0 20 40 60 80 100
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Fig. 4. System dynamic with conical platform.

a slower oscillatory motion, in this case, around two orders of
magnitude slower.

The authors would like to make clear that no comparison
with other works in the literature are made since, to the best of
our efforts, no similar proposals, tackling a simpler analytical
formulation of the pitch motion of offshore platforms, was
found.
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Fig. 5. Change in dynamic response from mass alteration.
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Fig. 6. Envelope silhouette for the cuboid case over a long time.

V. CONCLUSION

The Lagrangian approach was used to produce an analytical
model of the pitch motion of three different platform systems.
The DE describing the system dynamics was found, linearized
and solved to obtain the pitch equation for each case. General
comments are presented for the final dynamic equation and a
comparison between the proposed platforms was made in an

example case scenario.

The results suggest that the total moment of inertia may be
a good metric for oscillation amplitude, but only when used to
compare similar systems. In the proposed example scenario,
the system associated with the conical platform outperforms
the cuboid and conical platform systems reaching the smallest
oscillation range, while the cuboid platform system outper-
forms the other two with a higher oscillation period. While
evaluating the systems over a long window frame it was noted
that their behavior is described by an periodic enveloping
function with non-zero mean.

For future works, the authors intend to expand the analysis
to other rotational motions; evaluate more platform shapes and
investigate more in depth patterns in the systems response
considering changes on it’s parameters.
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