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A B S T R A C T

Numerous tools/software exist to gap-fill missing eddy covariance (EC) data, with varying performance 
depending on study-site dynamics. Disturbed ecosystems like former cutaway-peatlands may be challenging for 
gap-filling. Researchers using gap-filling spreadsheets may benefit from transitioning to R, but may face chal
lenges if they lack programming skills. To address these, we introduce ‘miniRECgap’, a user-friendly tool in R for 
effortless gap-filling of EC carbon dioxide flux data using well-known temperature- and light-response functions. 
‘miniRECgap’ can model net ecosystem exchange (NEE) via GUI-supported scripts with only five code-lines and 
minimal inputs. A case-study on one ‘classic’ (forest) and one ‘challenging’ (rehabilitating cutaway-peatland) 
ecosystem indicated that standard gap-filling (MDS) performed better for the ‘classic’, but not for the ‘chal
lenging’ ecosystem (MDS R2 = 0.24; ‘miniRECgap’ R2 = 0.57). For the rehabilitating-peatland, an optimised 
shallow Artificial Neural Network outperformed other two approaches (R2 = 0.68). These findings demonstrate 
the importance of NEE gap-filling for assessing ecosystem-level carbon-dynamics, important for rehabilitating- 
peatlands.
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1. Introduction

1.1. Introduction to the eddy covariance (EC) technique and flux gap- 
filling

Atmospheric flux measurements are central to investigating the 
ecosystem biosphere-atmosphere exchange of energy, water, and 
greenhouse gases (GHGs), such as carbon dioxide (CO2) (Burba et al., 
2007). Eddy covariance (EC) is a well-known micrometeorological 
technique frequently used to measure and calculate the turbulent fluxes 
and net flux exchange across the vegetation canopy-atmosphere 
boundary layer (Baldocchi, 2003; Baldocchi et al., 1988). EC tech
nique is considered a relatively non-invasive (in-situ) technique 
compared to some other techniques (Baldocchi et al., 1988) and so may 
be particularly useful to study terrestrial ecosystems, such as peatlands. 
For a detailed description of the technique, see Burba and Aderson 
(2010), Aubinet et al. (2012), and Rebmann et al. (2018). The accuracy 
of the EC technique depends on various environmental conditions, with 

steady atmospheric conditions and homogeneous vegetation cover 
typically preferable (Baldocchi, 2003). Such ideal conditions are not 
often found in many natural ecosystems where environmental condi
tions can vary both temporally and spatially. This means that atmo
spheric storage, flux divergence and advection measurements need to be 
accounted for in the quantification of the GHG exchanges, such as in the 
case of CO2 exchange quantifications (Baldocchi, 2003). The popularity 
of this method is evident from the development of EC station networks 
over the past three decades, such as the European Integrated Carbon 
Observing System (ICOS) network (Rebmann et al., 2018), which con
tains more than 170 sites across 16 countries (ICOS, 2023), and the 
worldwide FLUXNET network of networks (Papale, 2020; Pastorello 
et al., 2020) with over 1000 active and historic flux-site stations 
(FLUXNET, 2015). ICOS is a highly standardised European network that 
aims to adhere to sustained and consistent technical and scientific 
standards across network sites (ICOS, 2022).

One of the major advantages of the EC technique is its suitability to 
construct continuous or near-continuous data measurements of carbon 

Abbreviations:

Amax maximum rate of CO2 assimilation
‘am’ subscript in P and O - refers to the arithmetic mean of each 

variable
ANN artificial neural network
AOC area over curve
‘BFGS’ optimisation algorithm/method (Broyden, 1970; Fletcher, 

1970; Goldfarb, 1970; Shanno, 1970)
BP back propagation
C carbon
c circa
Co county
CO2 carbon dioxide
d dimensions in the dataset (refers to the training points 

upper bound explained in Dubbs (2021–2022))
DI diurnal interpolation
DNN deep neural network
DOY (or DoY) day of year
E total uncertainty (Eq. (10))
EC Eddy Covariance
Er random error (Eq. (9))
Es systematic error or bias (Eq. (8))
EWMA Exponential Weighted Moving Average
GHG greenhouse gas
GPP gross primary productivity
GUI graphical user interface
H sensible heat flux
ICOS Integrated Carbon Observation System
j number of hidden neurons on a hidden layer in ANN
k-cv k-cross validation (k refers to number of repetitions in k- 

cross validation, not to be confused with the unsupervised 
ML ‘k-means clustering’ approach)

‘L-BFGS-B’ optimisation method/algorithm of Byrd et al. (1995).
LH latent heat flux
LUT look-up table
MAE mean absolute error (Eq (7b))
MC Monte-Carlo
MDS marginal distribution sampling
MDSnight MDS followed by nighttime net flux partitioning 

according to Reichstein et al. (2005).
MI multiple imputation
ML machine learning
MPI Max Planck Institute

n number of points in the dataset (refers to the training 
points upper bound explained in Dubbs (2021–2022))

‘N3’ shallow ANN with one hidden layer and three hidden 
neurons (j = 3), also referred to as ‘nnj = 3’

NEE net ecosystem exchange
Np number of predicted half-hourly fluxes for which also the 

observed values are available
Oi observed flux at each half-hourly time-interval (i)
p number of parameters in optimal training/testing ratio of 

p0.5 ∶ 1 suggested by Joseph (2022).
PAR photosynthetic active radiation
PB process-based biogeochemical/biogeophysical modelling
Pi predicted flux at each half-hourly time-interval (i)
PM process modelling
PPFD photosynthetic photon flux density
QC/QA quality control/quality acceptance
R10 respiration rate at 10 ◦C
R2 prediction coefficients of determination (Eq. (5))
‘relu’ ‘rectified linear unit’ activation function in ANN
Reco ecosystem respiration
RF random forest
Rg incoming solar radiation
rH relative humidity
RMSD (or RMSE*) root mean squared prediction deviation (Eq. 

(6b))
RMSE root mean squared prediction error (Eq. (6a))
rRMSPE relative version of RMSE (Eq. (6c))
RROC Regression Receiver Operating Characteristic
SPM semi-parametric modelling
StD standard deviation calculated from MAE (Eq. (7a))
SVM support vector machine
T measured temperature
T0 temperature of 230 K
Tair air temperature
Tsoil soil temperature
u*(or Ustar) friction velocity
UKF unscented Kalman filter
VPD vapor pressure deficit
WGS84 World Geodetic System 1984 geographic coordinate 

system
XGBoost parallel boosted decision trees -i.e. eXtreme gradient 

boosting
α quantum yield based on incident irradiance
у coefficient of convexity
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(C) exchange between the atmosphere and the biosphere over prolonged 
periods of time (Falge et al., 2001), which are often needed in ecosystem 
studies. For example, terrestrial ecosystem studies that focus on CO2 
fluxes often need to assess and compare the net ecosystem exchange 
(NEE) response, usually performed on annual sums of NEE obtained 
from EC measurements. Such comparisons of NEE response are studied 
in connection with the effect of various natural conditions and anthro
pogenic pressures on the global C balance - e.g. scientists may be 
interested in investigating the impact on NEE by biome type, different 
patterns in phenology, and various environmental and anthropogenic 
conditions (Falge et al., 2001). The construction of long datasets from EC 
networks is subject to the occurrence of data-gaps, which can occur for a 
variety of reasons (Baldocchi, 2003), such as instrument/sensor cali
bration, instrument/sensor malfunction or failure, data-rejection due to 
adverse weather, low turbulence, nonstationary conditions or undesir
able wind conditions, or any other undesirable condition that will 
negatively impact the instruments and result in measurements that will 
fail the required data quality control (QC)/quality acceptance (QA) 
criteria (Baldocchi, 2003; Foken and Wichura, 1996; Menzer et al., 
2015). Although, the QA/QC of raw flux data is not the main focus of 
this paper, it should be noted that this is usually carried out by applying 
the established standardised criteria and/or tools used within the sci
entific community. Further details on this topic can be found in relevant 
literature sources (AmeriFlux, 2024; Aubinet et al., 2012; FLUXNET, 
2022; Sabbatini et al., 2018; Vitale et al., 2020).

Given that EC techniques, on average, provide only c. 65 %–68 % of 
annual data coverage (Falge et al., 2001; Vekuri et al., 2023), it is not 
surprising that various gap-filling methods have been developed over 
the past decades. Gap-filling is also frequently accompanied by the 
partitioning of the flux data into nighttime/daytime using different 
approaches (Lasslop et al., 2010; Richardson et al., 2006), to compute 
different components of the ecosystem C budget. While this study fo
cuses on CO2 fluxes, there are numerous gap-filling methods that can be 
used for different GHG EC flux measurements from various terrestrial 
ecosystems. These range from relatively simple to complex methods, 
method-combinations (Falge et al., 2001; Moffat et al., 2007; Vekuri 
et al., 2023), as well as various machine learning (ML) methods 
(Mahabbati, 2022). The application of EC flux data gap-filling in various 
terrestrial ecosystems is reported throughout the literature, and a 
number of the gap-filling methods are listed in Table 1. Many different 
types of computational tools/software and packages for processing EC 
flux data have also been developed, such as the well-known commercial 
software ‘Tovi™’(LI-COR, 2023), and the freely available ‘REddyProc’ 
(Wutzler et al., 2018). The latter (‘REddyProc’) is available in the form 
of a R-package (Wutzler et al., 2018), and an online webtool (MPI, 
2024d) hosted on the website of the Department of Biogeochemical 
Integration at the Max Planck Institute, Jena, Germany (MPI, 2024e). 
Several software/packages that can be used to perform different flux 
data post-processing tasks, including gap-filling and partitioning of 
ecosystem respiration data, are also listed on FLUXNET website 
(FLUXNET, 2022) and include some well-known examples applied in 
various studies on terrestrial ecosystems, such as: 

- The ‘REddyProc’ package (Wutzler et al., 2018) written in R envi
ronment1; this package is often referred within the EC flux commu
nity as the standard approach for EC flux data processing, and has 
been used in various studies on terrestrial ecosystems globally, 
including e.g. forests and wetlands (e.g. Falge et al. (2001); Wutzler 
et al. (2018); Vekuri et al. (2023)).

- ‘ONEFlux’ (Open Network-Enabled Flux processing pipeline) pack
age written in Python2 that is jointly developed by some of the major 
flux networks and used for standard processing of their data from 

Table 1 
Application of eddy covariance (EC) flux data gap-filling in various terrestrial 
ecosystems and sites: Examples of EC studies that have used various types of 
approaches to gap-fill missing greenhouse gas (GHG) flux data in terrestrial 
ecosystems.

A Grouped types of EC gap- 
filling methodologies

B Selected examples 
(studies from the 
literature)

C Various types of 
terrestrial ecosystems or 
sites (from selected 
examples/studies - 
literature under B)

1. Use of redundant 
variables, simple linear 
interpolation, merging 
values, different gap- 
filling methods based on 
the previous data or 
assorted conditions 
depending on 
meteorology, such as 
mean diurnal variations 
and look-up tables (LUT), 
etc.

Falge et al. (2001) and 
Jarvis et al. (1976).

Coniferous forest; 
deciduous forests; 
cropland; grassland.

2. Various semi-empirical 
and nonlinear regression 
gap-filling methods, which 
can vary from classic/ 
traditional semi-empirical 
and parameter- 
optimisation nonlinear 
residual/least square 
methods based on the use 
of different environmental 
response functions, to 
various other multiple and 
non-linear regression 
methods allowing for 
different time-windows, 
seasonal dependencies, 
moving-window, 
dormancy during winter- 
periods, etc.

Falge et al. (2001); Barr 
et al. (2004); Hollinger 
et al. (2004); Desai et al. 
(2005), Richardson 
et al. (2006); Moffat 
et al. (2007); Jones 
et al. (2010); Lloyd 
(2010), Kiely et al. 
(2018); Holl et al. 
(2019); Murphy et al. 
(2022); Murphy (2022); 
Heiskanen (2023).

Coniferous forest; 
deciduous forests; old- 
growth forest; 
cropland/tillage land; 
grassland/grazed 
grassland; bogs/ 
peatlands; subarctic 
ecosystems.

3. Advanced LUT approaches 
and interpolation 
methods, as well as 
various process/process- 
based models – e.g. 
marginal distribution 
sampling (MDS) for 
moving LUT, semi- 
parametric modelling 
(SPM) for three- 
dimensional LUT, diurnal 
interpolation (DI), 
multiple imputation (MI) 
methods, such as MI using 
Monte-Carlo (MC); various 
advanced process 
modelling (PM) 
approaches, such as using 
unscented Kalman filter 
(UKF), or process-based 
biogeochemical/ 
biogeophysical models 
(PB), such as Agro-IBIS;

Reichstein et al. (2005) - 
MDS; Stauch and Jarvis 
(2006) - SPM; Falge 
et al. (2001) - DI; Hui 
et al. (2004) - MI with 
MC; Gove and Hollinger 
(2006) - PM (UKF); 
Aslan Sungur et al. 
(2019) - PB (Agro-IBIS).

Coniferous forest; 
deciduous forests; 
mixed forest; cropland; 
perennial biofuel crops; 
grassland; synthetic 
canopy data.

4. Use of natural statistical 
frameworks and different 
semi-supervised/ 
supervised machine 
learning (ML) approaches, 
ranging from Bayesian 
approaches (Bayesian) and 
different multiple gap- 
filling approaches 
(multiple) to numerous 
ML approaches, such as 
random forests (RFs), 
support vector machines 

Mahabbati (2022) - 
different MLs; Braswell 
et al. (2005) & Buzacott 
et al. (2023) - Bayesian; 
Lucas-Moffat et al. 
(2022) - multiple; 
Mahabbati et al. (2021), 
Irvin et al. (2021) & 
Gao et al. (2023) - RF; 
Gao et al. (2023) - SVM 
& BP; Vekuri et al. 
(2023) - XGBoost; Ooba 
et al. (2006), Evrendilek 

Peatlands; agricultural/ 
drained peatlands, 
mined/degraded/ 
rewetted bog, wetlands; 
rice paddies; evergreen 
coniferous forests; 
deciduous broadleaf 
forest; mixed forest; 
decadal forest; 
grasslands; croplands; 
shrublands; Australian: 
steppe, tropical 
savanna, tropical & 

(continued on next page)
1 R: The R Foundation for Statistical Computing. URL: https://www.r-pro 

ject.org/.
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various terrestrial ecosystems (ONEFlux, 2023); it is also known for 
its use in the creation of the FLUXNET2015 dataset (Pastorello et al., 
2020).

- ‘PyFluxPro’ is a package that is also written in Python and integrated 
into GUI (PyFluxPro, 2024); its predecessor was ‘OzFlux’, developed 
by the flux community in Australia, and predominantly used for 
Australian terrestrial ecosystems, (Isaac et al., 2017).

- ‘GaFir’ (Zhao et al., 2014) is another package written in R, available 
at the Department of Micrometeorology, University of Bayreuth in 
Germany (GaFiR, 2014), which can be applied at forest-, crop-, and 
meadow-sites.

- ‘FluxnetLSM’ is a package that is also written in R environment and 
can be applied at FLUXNET sites; this package is suitable for land 
surface modelling (LSM) due to its ability to transform files into 
NetCDF format that can be used directly by LSM (Ukkola et al., 
2017).

1.2. Study rationale, objectives, and case-study

1.2.1. Rationale and objectives
Despite the number of existing gap-filling tools/software and pack

ages, many users/scientists still perform gap-filling of missing EC flux 
data outside these popular tools using spreadsheet-software, such as 
Microsoft Office Excel. The Excel Solver add-in program is often used to 
perform various optimisation tasks in different semi-empirical and 
nonlinear regression computations (e.g. group 2 in Table 1) applied for 
specific gap-filling needs that are often dictated by the specific charac
teristics of the ecosystem under study, and it has been reported in 
various publications and research dissertations (e. g. Cotten et al., 2017; 
Ito and Ishida, 2023; Lees et al., 2021; Lees et al., 2019; Lloyd, 2010; 
Myklebust et al., 2008; Šigut, 2012; Singh, 2008; Strack et al., 2018). 
These examples show that Excel Solver has many great applications 
(Fylstra et al., 1998) and its use in science and education has been well 
established over a number of years. However, for users/scientists, who 
perform such computations for flux gap-filling tasks via 
spreadsheet-software, it may be beneficial to transition to R or Python, 
particularly in cases with large datasets and where they may wish to 
reduce the time of their computational-runs, while some less experi
enced R or Python users may potentially face challenges in adapting 
their specific EC flux data gap-filling methods to these computing en
vironments. Therefore, the development of a user-friendly gap-filling 

computational tool written in R, which would enable a more effortless 
application of one of the frequently used semi-empirical and nonlinear 
regression approaches, as well as being suitable for new users with no 
prior knowledge of R, is considered beneficial.

While some user-friendly gap-filling tools/software already exist, 
such as the ‘REddyProc’ webtool (MPI, 2024d), there may be also other 
various reasons why some users perform gap-filling by applying semi- 
empirical and nonlinear regression methods that may not necessarily 
be supported by existing software tools. This may occur in cases where 
the EC flux data were obtained from stations that were not equipped to 
operate according to standardised protocols and may not have the data 
for all variables that are required as inputs into some existing well- 
established flux gap-filling tools/software. In other cases, the reasons 
may be due to specific conditions, characteristics or management 
practices at the study sites, which may restrict the application of the 
standard gap-filling methods. An example is a study by Šigut (2012), 
which required the application of an empirically calibrated correction 
factor for ecosystem respiration due to the topographically complex 
terrain at their study site.

There can be many other reasons why some sites may experience 
specific conditions that could restrict the application of some standard 
or frequently used gap-filling methods. For example, while many pop
ular flux gap-filling methods are well known for less-disturbed natural or 
near-natural ecosystems, their application can be challenging in eco
systems that have undergone significant disturbance (Zhu et al., 2023), 
such as converted and rehabilitated cutaway-peatlands, which are often 
extremely heterogenous in terms of vegetation composition, as well as 
the extent of bare soil/peat and open water areas (Bord na Móna, 2021). 
For such ecosystem sites, the key variables used in some of the stand
ard/popular gap-filling methods may or may not sufficiently account for 
their specific conditions. In such cases, it can be expected that several 
different gap-filling approaches may need to be assessed (including 
more advanced methods, i.e. Group 4 in Table 1) to find the most suit
able one for the given ecosystem/site. Therefore, an additional 
user-friendly tool/software that would allow users to evaluate and 
decide, in a more timely and effortless manner, whether the application 
of a simple semi-empirical and nonlinear regression gap-filling approach 
may be suitable for the given site is required.

This paper introduces a simple gap-filling R-package computational 
tool, ‘miniRECgap’. It is based on the application of plain and robust 
validated empirical/semi-empirical modelling EC flux data gap-filling 
approaches. The ‘miniRECgap’ package operates via GUI-supported R- 
scripts and is purposely designed to be user-friendly and suitable for new 
users without any prior knowledge of R.

The main objective of this paper is to introduce the new ‘mini
RECgap’ R-package to the audience that is interested in applying very 
simple and robust gap-filling of missing EC CO2 flux measurements, and 
to provide guidance on using the selected functions. Given that this R- 
package was designed for users with very little or no experience in the R 
environment/language, the intention was to keep it as simple and as 
short as practically possible. This is a relatively small package, hence the 
word ‘mini’ in the package name. The flux-partitioning and gap-filling 
approaches applied in ‘miniRECgap’ are based on very simple yet 
robust empirical/semi-empirical modelling, with minimum required 
input-variables. For this, we have chosen classic light- and temperature- 
response functions (Gilmanov et al., 2003; Lloyd and Taylor, 1994; 
Rabinowitch, 1951) known to represent some of the most conventional 
and widely used nonlinear functions within the EC flux community, 
which have been applied (among others) in various terrestrial ecosys
tems (see Table 1 - group 2). Therefore, it should be noted that the 
gap-filling methodology applied in ‘miniRECgap’ is not meant to 
outperform other more sophisticated and advanced gap-filling methods 
or packages. As such, the main purpose in designing ‘miniRECgap’ was 
to deliver a very simple R-package that could: 

Table 1 (continued )

A Grouped types of EC gap- 
filling methodologies 

B Selected examples 
(studies from the 
literature) 

C Various types of 
terrestrial ecosystems or 
sites (from selected 
examples/studies - 
literature under B)

(SVM) for non-linear 
regression, parallel 
boosted decision trees, i.e. 
extreme gradient boosting 
(XGBoost), Back 
Propagation (BP) neural 
networks, different types 
of artificial neural 
networks (ANNs), and 
many others.

(2013), Knox et al. 
(2015), Holl et al. 
(2020), Zhu et al. 
(2023), Melesse and 
Hanley (2005) - ANNs.

subtropical desert and 
moist broadleaf forest; 
Northern latitude sites: 
grassland, permanent 
wetlands, evergreen 
needleleaf forests; 
coniferous trees 
plantation; 
‘challenging’ sites: 
managed and grazed 
pastures; oil palm 
plantations; dryland 
sites with experienced 
wildfire.

NOTE: It should be noted that Table 1 is for information purposes only. Readers 
who would like to further explore different types of gap-filling methods are 
recommended to check the relevant review-/comparison studies that cover this 
topic in detail, such as the works of Falge et al. (2001), Moffat et al. (2007) and 
Irvin et al. (2021).
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- Assist scientists/users to perform a more effortless application of the 
selected robust empirical/semi-empirical gap-filling method used in 
this package (i.e. light- and temperature-response functions 
(Gilmanov et al., 2003; Lloyd and Taylor, 1994; Rabinowitch, 1951), 
to enable them to assess whether this approach may be suitable for 
their datasets in a potentially more effortless way than using 
spreadsheet-software, for example.

- Serve as a potential tool for learning purposes, such as for users who 
may wish to transition from performing their flux gap-filling calcu
lations in spreadsheet-software, towards using R for their computa
tional flux gap-filling needs.

1.2.2. Case-study
A case-study has been included in this paper to assess the EC CO2 flux 

gap-filling methodology applied in ‘miniRECgap’ vs. selected other ap
proaches (i.e. vs. MDS - group 3, Table 1; ANN - group 2, Table 1) using 
crude metrics of model performance evaluation. Given that the main 
focus of this paper was to introduce the ‘miniRECgap’ package to the 
audience, the assessment based on crude in-sample metrics was assumed 
to be sufficient for this particular study, while in-depth comprehensive 
model evaluation is recommended for potential future work (further 
explanation provided in section 2.4). The study employs a dataset from a 
former peat-extraction site currently undergoing rehabilitation in 
Ireland (Cavemount Bog), as an example of such an ecosystem, to assess 
and critically evaluate our simple in-sample gap-filling approach 
(applied with ‘miniRECgap’ vs. the more advanced MDS approach, and 
the selected ML (shallow ANN) approach). The aim was to assess how 
these different gap-filling approaches may impact estimation of CO2 
emissions/removals for the given site and consequently: 

- Develop our understanding as to whether the given site may act as a 
C-sink or C-source, which is critically important for GHG inventory 
reporting.

- Gain insights into directing potential future studies investigating the 
C-dynamics and the main drivers of CO2 fluxes in relation to peatland 
rehabilitation and restoration activities and management.

For comparison purposes in terms of gap-filling, this study also em
ploys an example from a natural/less-disturbed and well-known 
ecosystem dataset (i.e. the so-called DE-Tha dataset from a German 
forest site used as a template for data-inputs in the ‘REddyProc’ package 
by Wutzler et al. (2018) – further details are provided in section 2.2). 
Considering that both chosen ecosystems (Cavemount Bog and DE-Tha 
forest) are very different in terms of vegetation, soil type, and other 
characteristics, it should be noted that this comparison is not intended to 
assess/compare the GHG emissions/removals from these two ecosys
tems (which is outside the scope of this study). The noted comparison 
between the selected two ecosystem flux datasets in this study is entirely 
intended for the purpose of crude in-sample assessment of the perfor
mance of gap-filling techniques (‘miniRECgap’ and ‘MDSnight’; shallow 
ANN was not applied at DE-Tha). For easier reporting of flux gap-filling 
findings in this study, the Cavemount Bog dataset is labelled as a 
‘challenging’ ecosystem dataset and the DE-Tha dataset is labelled as a 
‘classic’ ecosystem dataset. As such, within the context of this study, the 
term ‘classic’ ecosystem is used for well established, less-disturbed 
ecosystems and for which it can be expected that the popular standard 
gap-filling approaches will work well. Contrary to this, the term ‘chal
lenging’ is used for ecosystems that are expected to pose a challenge for 
some popular standard gap-filling approaches for various reasons. These 
ecosystems include disturbed/formerly disturbed, less established and 
heterogeneous ecosystems, although the challenges in gap-filling may 
occur for other reasons as well.

2. Methods

2.1. Flux gap-filing and flux-partitioning methodologies applied in 
‘miniRECgap’

2.1.1. Basic concepts
This study uses the classic/traditional robust and validated 

empirical/semi-empirical modelling approach for filling gaps in EC CO2 
flux data using a minimum number of input-variables (i.e. it requires 
time-series data for only three main input-variables; Table 2). The 
approach is based on the application of environmental response func
tions in combination with empirical/semi-empirical parameter-optimi
sation (i.e. methods classified under Group 2 in Table 1). To understand 
the gap-filling methods used in this study, the following basic terrestrial 
ecosystem C-cycle components and concepts need to be explained: NEE, 
gross primary productivity (GPP) and ecosystem respiration (Reco). NEE 
refers to the net CO2 exchange between a terrestrial ecosystem and the 
atmosphere (Law et al., 2006), which is also obtained from EC flux 
measurements (Reichle, 2019) and is calculated as follows: 

NEE = GPP + Reco                                                                     Eq. 1

where GPP is defined as the amount of plant-assimilated CO2 resulting 
from photosynthesis (CO2 input from photosynthesis); Reco refers to 
ecosystem respiration (CO2 output from respiration) and includes both 
autotrophic and heterotrophic respiration (Baldocchi and Valentini, 
2004; MPI, 2024c; Reichle, 2019). The units in Eq. (1) used in this study 
are in μ mol CO2-C m− 2 s− 1. The NEE fluxes obtained from the EC 

Table 2 
Main input-variables in the ‘miniRECgap’ and ‘MDSnight’ approaches.

Input-variable Units ‘miniRECgap’ R- 
package a, b, d (
Premrov, 2024)

‘MDSnight’ via 
‘REddyProc’ webtool/R- 
package a, b (Wutzler 
et al., 2018)

Year / Yes - included in 
[‘DateTime’]

Yes [‘Year’]

Day of year / Yes [‘DOY’] Yes [‘DoY’]
Hour / Yes - included in 

[‘DateTime’]
Yes [‘Hour’]

Net ecosystem 
exchange

[μmol C 
m− 2 s− 1]

Yes [‘NEE’] Yes [‘NEE’]

Photosynthetic 
photon flux 
density

[μmol 
m− 2 s− 1]

Yes [‘PPFD’] No c

Soil temperature [0C] No e Yes [‘Tsoil’]
Air temperature [0C] Yes e [‘T’] Yes [‘Tair’]
Latent heat flux [W m− 2] No Yes [‘LE’]
Sensible heat flux [W m− 2] No Yes [‘H’]
Incoming solar 

radiation
[W m− 2] No Yes [‘Rg’]

Relative humidity [%] No Yes [‘rH’]
Vapor pressure 

deficit
[hPa] No Yes* [‘VPD’] or 

calculated if missing
Friction velocity 

(or u*)
[ms− 1] No Yes** [‘Ustar’] required 

if case of u* filtering

NOTE:
Yes* denotes that the package uses an estimated value if the variable is missing.
Yes** denotes that gap-filling without u* filtering can also be performed if the 
variable is missing.

a Variable abbreviation/name used in the package (if applicable) is provided 
in brackets.

b ‘Yes/No’ denotes that the variable is used/not used in the package.
c In this study, PPFD was used to estimate ‘Rg’, which is a required input in the 

‘REddyProc’ webtool/R-package; the methodology is explained in section 2.1.2
and Supplemental Material.

d When ‘miniRECgap’ is used, a value of ‘-9999’ is not to be used for any 
missing values.

e Air temperature was used in Eq. (3) in ‘miniRECgap’ (see section 2.1.3); in 
this study, the application of soil temperature in Eq. (3) was also tested, but gap- 
filling performance was inferior to air temperature.
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measurements (usually at half-hourly intervals) can be either positive or 
negative. This study uses the standard sign-convention, where a nega
tive NEE value refers to a flux that moves from the atmosphere into the 
ecosystem (i.e. ecosystem functions as a C sink) and a positive NEE value 
refers to a flux that moves from the ecosystem to the atmosphere (i.e. 
ecosystem function as a C source) (Gogo and Laurent, 2023; MPI, 
2024c). Therefore, in the case of a negative NEE, Eq. (1) can be also 
expressed as net uptake - NEE = GPP - Reco (MPI, 2024c).

2.1.2. Flux data-partitioning into nighttime and daytime
The flux data are first partitioned into nighttime and daytime. It is 

well known, from terrestrial ecosystem CO2 diurnal dynamics, that CO2 
plant-uptake (GPP) occurs during the day via photosynthesis, which is 
strongly affected by photosynthetic active radiation (PAR) in addition to 
some other factors (such as temperature, vapor pressure deficit, leaf area 
index) (Falge et al., 2001). The PAR that is available to plants is often 
measured in the form of photosynthetic photon flux density or PPFD μ 
mol [quanta] m− 2 s− 1 and can be a part of EC flux variables, depending 
on whether the specific site is equipped with specialised instrumenta
tion, for example the LI-190R Quantum Sensor [LI-COR®], (LI-COR 
Environmental, 2025). In this study, data-partitioning was carried out 
by using an incoming solar radiation (Rg) threshold value of 10 W m− 2 

according to Wutzler et al. (2018), converted to PPFD with a factor of 
2.02 (reported in dos Reis and Ribeiro, 2020), which resulted in a 
threshold PPFD value of 20.2 μ mol m− 2 s− 1 as the chosen threshold 
value between night and day, i.e. obtaining nighttime data by removing 
the data where: 

Daytime PPFD >20.2 [μ mol m− 2 s− 1]                                         Eq. 2

Nighttime fluxes are further screened to remove any negative values, 
as in the absence of photosynthesis all nighttime CO2 values should be 
positive. The obtained nighttime flux is assumed to represent Reco, i.e. 
nighttime efflux of CO2 from autotrophic and heterotrophic respiration.

2.1.3. Modelling Reco using a temperature-response function
Modelling of the nighttime CO2 efflux (Reco) using the temperature- 

response function is done according to the modified Arrhenius equation 
adapted from Lloyd and Taylor (1994): 

Reco = R10 ⋅ e [E0⋅ (1/(283.2 − To) – 1/(T− To))]                                   Eq. 3

where R10 is the respiration rate at 10 ◦C [μmol CO2 m− 2 s− 1], E0 is the 
activation energy (309 K), temperature T0 = 230 K, and T is the 
measured temperature converted to K (T◦C +273.2).

Initial estimates of Reco (pre-modelled Reco) values are obtained by 
using an arbitrary R10 value in Eq. (3) (i.e. the arbitrary value of 4 was 
used in this study; further details are provided in supporting material 
SM4, Step 2 and Step 4), followed by the optimisation of R10 in the 
above model by minimising the residual sum of squares from initial (pre- 
modelled) and measured (nighttime) Reco. If the data are processed in 
Excel, this optimisation is usually performed using Excel Solver, whereas 
the optimisation in the ‘miniRECgap’ package is done using the function 
‘optim’ from R-package ‘stats’ (R Core Team, 2024a) by applying the 
‘L-BFGS-B’ method/algorithm of Byrd et al. (1995). It should be noted 
that, while the function ‘optim’ allows users to choose between several 
different optimisation methods/algorithms, the ‘L-BFGS-B’ algorithm 
was included in ‘miniRECgap’ for this optimisation task. ‘L-BFGS-B’ was 
chosen based on prior comparison with Excel Solver3 on a portion of EC 
flux data from another peatland, which indicated the suitability of this 
method. It is however recommended that additional comparisons are 
made as part of future studies on the possible further expansion of this 

package. For example, future work could involve the potential extension 
of specific functions in this package to include different optimisation 
algorithms, which would allow users to select the algorithm of their 
choice. The optimised R10 value was then used in Eq. (3) to calculate the 
final modelled Reco for the full dataset (nighttime and daytime).

Eq. (3) assumes that Reco depends on a single variable, temperature 
(T). In reality, Reco may also depend on other factors, for example, in a 
study on a temperate peatland, Juszczak et al. (2013) reported a positive 
correlation between Reco and water table depth for some of the 
microsites. However, it should be noted that in this study, Eq. (3)
(conventional temperature-response function) has been used deliber
ately to enable the ‘miniRECgap’ package to operate with the minimum 
number of input variables. As such, potential ‘miniRECgap’ limitations 
in terms of accuracy and precision, resulting solely from the temperature 
variable to estimate Reco, need to be recognised.

2.1.4. Modelling GPP using a light-response function
The half-hourly flux data (including modelled Reco) are partitioned 

into daytime by removing values below the PPFD threshold (Eq. (2); 
section 2.2). The daytime fluxes are further screened to remove any 
positive NEE values. The daytime dataset is then used to calculated GPP 
from measured NEE and modelled Reco according to Eq. (1) (this refers 
to calculated GPP). The obtained GPP is next multiplied by − 1 to switch 
the sign convention. The modelled GPP is obtained next by using the 
light-response function reported in Gilmanov et al. (2003), which is 
adapted from the non-rectangular hyperbola model by Rabinowitch 
(1951): 

GPP = ((α ⋅ PPFD + Amax) – (((α ⋅ PPFD + Amax)2)0.5 – ((4 ⋅ γ) ⋅ (PPFD ⋅ α ⋅ 
Amax)))) / (2 ⋅ γ)                                                                         Eq. 4

where α refers to the quantum yield based on incident irradiance [mol 
CO2 (mol photon)− 1 ], γ is the coefficient of convexity, PPFD is the 
incident photosynthetic photon flux density, and Amax is the maximum 
rate of CO2 assimilation [μmol CO2 m− 2 s− 1].

Initial estimates of GPP (pre-modelled GPP) values are obtained by 
setting the model coefficient parameters (α, Amax and γ) from Eq. (4) to 
initial values (the following initial values for model coefficients were 
used in this study: α = 0.08; Amax = 15; γ = 0.5; further details are 
provided in Supplemental Material SM4, Step 2 and Step 4). This was 
followed by optimisation of the three model coefficient parameters (α, 
Amax and γ) by minimising the residual sum of squares from the initial 
estimates of GPP (pre-modelled GPP). If the data are processed in Excel, 
this optimisation is usually performed with Excel Solver. Optimisation in 
the ‘miniRECgap’ package was again carried out with the function 
‘optim’ from R-package ‘stats’(R Core Team, 2024a) by applying the 
‘BFGS’ algorithm/method (Broyden, 1970; Fletcher, 1970; Goldfarb, 
1970; Shanno, 1970), similar to procedure outlined previously (section 
2.1.3).4 As explained in section 2.1.3, further testing of different opti
misation algorithms that could be applied in ‘miniRECgap’, for this 
optimisation task, is recommended as a part of potential future studies 
on further expansion of this package. The optimised model coefficient 
parameters (α, Amax and γ) were then used in Eq. (4) to calculate the final 
estimated GPP (modelled GPP). It should be noted that these modelled 
GPP values are not yet processed at this stage. Processing of modelled 
GPP values is explained in section 2.1.5.

2.1.5. Modelling NEE, gap-filling, and potential for further package 
development

The obtained modelled GPP values (section 2.1.4) are used to 
calculate modelled NEE. Prior to this step, however, the modelled GPP 
values had to be first processed. This involved filtering to remove any 
positive modelled GPP values that occurred during nighttime conditions 

2 Python. The Python Software Foundation. URL: https://www.python.org/.
3 The difference between two outputs from L-BFGS-B′ and Excel Solver was 

minimal and appeared only at/after the sixth decimal of the output value. 4 The ‘BFGS’ output was again very similar to output from Excel Solver.
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(using the PPFD threshold value, Eq. (2)), and then multiplying the 
values by − 1 to convert the data back into the EC sign convention. The 
modelled NEE values were next calculated according to Eq. (1) using the 
previously modelled Reco (section 2.1.3) and processed modelled GPP. 
The modelled NEE values were then used to infill any missing values/ 
gaps in the measured NEE dataset.

Here, the presented ‘miniRECgap’ R package utilises classic functions 
in Eqs. (3) and (4), which are well-known as some of the most common 
nonlinear functions for modelling Reco and GPP.

As monotonic functions (such as Eqs. (3) and (4)) may not always 
accurately capture the temperature-/light-responses of real-world con
ditions in different ecosystems (Chen et al., 2023; Meng et al., 2024), 
modified versions of such functions have been studied and reported in 
the literature. For example, studies across many terrestrial ecosystems 
that have utilised FLUXNET data have indicated a unimodal relationship 
between Reco and temperature (parabolic curves; Chen et al., 2023), as 
well as between NEE and temperature (Meng et al., 2024). Furthermore, 
Ye (2007) developed a modified light-response function that accounted 
for photo-inhibition that was, in turn, utilised by Jia et al. (2014) for 
daytime NEE modelling. Here, our introduced version of ‘miniRECgap’ 
is deliberately limited to the classic functions (Eqs. (3) and (4)) to 
remain simple and user-friendly. As such, potential future work on 

‘miniRECgap’ could involve the incorporation of additional modelling 
options for Reco and GPP, to enable potential use of this package under 
different circumstances.

2.2. Case-study: site description and data

This study employs two examples of EC flux measurements data: 

(a) A ‘classic’ (less-disturbed) forest ecosystem known as DE-Tha 
dataset (MPI, 2024d), which was used in this study mainly for 
comparison reasons in terms of gap-filling.

(b) A ‘challenging’ ecosystem dataset from Cavemount Bog (original 
to this study), which is a former cutaway extraction peatland site 
undergoing rehabilitation (Fig. 1a, b, c).

These ecosystem examples are used to test the gap-filling ap
proaches, i.e. ‘miniRECgap’ approach vs. selected MDS and ML (shallow 
ANN) approaches. It should be noted that the labels ‘classic’ ecosystem 
and ‘challenging’ ecosystem were introduced for the purpose of easier 
reporting of findings in this study, and do not represent specifically 
defined ecosystem classes/categories, as they are solely based on 
whether the dataset from the given site was expected to potentially pose 

Fig. 1. Cavemount Bog: (a) Schematic presentation of Cavemount Bog location, (b) zoomed-in Cavemount Bog with indicated location of the installed Eddy 
Covariance tower, (c) Cavemount Habitat Map 2022. Prepared by Bord na Móna (BnM), Ireland. 
[NOTE – Cavemount Bog coordinates: 53.307954◦ N, − 7.240437◦ W (WGS84) (Bord na Móna, 2021). Attributions: Fig. 1a - Ireland map boundary: GADM data 
(version 4.1). Global Administrative Areas (GADM). © 2018–2022 GADM. URL: https://gadm.org/(GADM, 2018). Fig. 1b - Base map and data from OpenStreetMap 
and OpenStreetMap Foundation (CC-BY-SA). © https://www.openstreetmap.org and contributors. (OpenStreetMap & Contributors, 2024, Year accessed 2024). 
Fig. 1c - Cavemount Habitat Map 2022, prepared by Bord na Móna (BnM), Ireland. Red line refers to site boundary by BnM.]. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.)
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a challenge for the selected gap-filling approaches used in this study.
The DE-Tha ecosystem dataset is well-known and has been reported 

in several studies (e.g. Grünwald and Bernhofer (2007), MPI (2024d)
and Wutzler et al. (2018)). This dataset contains one year of half-hourly 
EC measurements from the Tharandt coniferous forest site in Germany, 
from the start of January 1998 to the end of December 1998 (MPI, 
2024d). Further details on this site are outlined in Grünwald and 
Bernhofer (2007), MPI (2024d) and Wutzler et al. (2018). The dataset 
file (‘Example_DETha98 EC’) can be downloaded from the Max Planck 
Institute ‘REddyProc’ webtool input format website (MPI, 2024d), 
where this dataset is provided as an example of the data-input template 
format used in the ‘REddyProc’ webtool/R-package.

Cavemount Bog is located in Co. Offaly, Ireland [latitude 53.307954◦

N, longitude − 7.240437◦ W (WGS84); elevation ca. 74m], with the 
Esker River flowing through its centre (Bord na Móna, 2021). A full 
description of this site is provided in Bord na Móna (2021). In brief, 
Cavemount Bog refers to a cutaway peatland site where peat extraction 
occurred from 1970 to 2015. The site is actively undergoing rehabili
tation, which has involved drain blocking to increase the height of the 
water-table. This has resulted in the formation of different vegetated 
areas via natural colonisation. The site also has areas of bare (exposed) 
peat, and open water areas (Bord na Móna, 2021), as evident from 
Fig. 1c. Therefore, due to its highly heterogeneous conditions (i.e. 
mosaic of vegetated, bare peat and open water areas), Cavemount Bog 
was chosen as the “challenging” ecosystem in this study. The Cavemount 
dataset used in this study contains (among others) NEE data from on-site 
EC tower measurements at the eastern side of this site, which was 
installed under the former SmartBOG (2020) project (further details are 
outlined in Bord na Móna (2021)). This study used c. 8 months of EC flux 
measurements (from c. February 2022 to October 2022) from the Cav
emount site, provided at half-hourly intervals. Therefore, the sums of 
gap-filled NEE values from both sites are therefore not directly compa
rable due to the shorter period of observation at Cavemount Bog 
compared to DE-Tha (results are reported in later section 4.1.2.2, 
Tables 9a and 9b). The dataset did not contain the associated meteo
rological data, which were obtained from Clara Bog, an adjacent peat
land site located in Co. Offaly (further information on Clara Bog can be 
found in Ingle et al. (2023)). Prior to flux gap-filling, the raw EC flux 
data were pre-processed and QC/QA screened to remove poor quality 
data. The same methodology for pre-processing/QC/QA screening was 
used as described in Ingle et al. (2023).

It should be noted that, because this study mainly focuses on intro
ducing the ‘miniRECgap’ package to the audience, it employs only two 
selected examples of EC flux measurements data from sites in Ireland 
and Germany. Therefore, future studies that would include additional 
sites from various terrestrial ecosystems and different climatic zones, is 
strongly recommended. Future testing could include datasets from 
ecosystems that could be considered as ‘challenging’ due to other rea
sons, such as dryland ecosystems and deserts, which may potentially 
represent another type of challenge in modelling studies due to occur
rence of pulsed dynamics in precipitation events. Examples of dryland 
ecosystem and desert datasets can be found reported in the literature [e. 
g. Cong et al. (2023), Biederman et al. (2018, 2017)].

2.3. Flux gap-filling approaches and crude in-sample gap-filling 
performance evaluation applied in case-study

Crude evaluation of the gap-filling performance in this study was 
based on the NEE modelling performance, where the modelled NEE 
values were used to fill in the missing NEE data in the dataset.

2.3.1. Data preparation and processing
Both datasets had to be formatted/prepared to be suitable as inputs 

in the chosen R-package/s. The data-input template for ‘miniRECgap’ is 
provided as an example in the Supplemental Material [“SM_miniR
ECgap_input_template.csv”; further explanation can be found in section 

3.2.1]. Gap-filling was carried out on: 

- full datasets (without assigning the data into groups); and
- datasets that were assigned into separate groups/seasons.

This was undertaken to check whether the ‘miniRECgap’ gap-filling 
performance could be improved after the data was assigned into groups/ 
seasons. Separation of the data into groups/seasons had to be done prior 
to using ‘miniRECgap’, because this package does not have a built-in 
function for this purpose. The dataset from the Cavemount site proved 
to be relatively challenging for gap-filling. Simple separation of data on 
a monthly/seasonal-basis did not improve the gap-filling performance 
for this site (results not presented). Therefore, a simple unsupervised ML 
clustering approach was applied to apportion the data into separate 
groups/clusters. This was carried out for both datasets. The k-means 
clustering approach was utilised, where clustering is based on the in
ternal similarity within each cluster (Boehmke, 2018b; Ryan, 2019), 
which was performed using NEE and air temperature data, by applying 
the algorithm presented in Hartigan and Wong (1979) via ‘cluster’ 
R-package (Maechler et al., 2022). Details are provided in Supplemental 
Material SM1. The procedure resulted in an optimal number of three 
clusters.

2.3.2. Gap-filling with ‘miniRECgap’
Gap-filling was first performed on the half-hourly EC flux datasets 

using the ‘miniRECgap’ package by applying the classic nonlinear 
environmental response functions to model the NEE values, as outlined 
in section 2.1. While ‘miniRECgap’ utilises a number of functions 
(Fig. 2a), the package is supported by GUI R-scripts that allow for gap- 
filling to be performed in five simple steps (Fig. 2b), and using only 
five lines of code. This makes it suitable for users with different levels of 
R-programming skills, including those who are new to the R 
environment.

The five steps are explained in section 3 and Supplemental Material 
SM5, which provide a very thorough explanation on how to use the 
‘miniRECgap’ package, ranging from instructions on how to prepare the 
inputs, install and load the software, to specific instructions on how to 
use the package via the GUI supported scripts, including information on 
which calculations (equations from section 2.2) are performed at each 
step. In this study the NEE gap-filling with ‘miniRECgap’ was initially 
carried out on full datasets, as well as on the data assigned into three 
clusters (using k-means clustering approach), for both DE-Tha and 
Cavemount. Table 2 shows the input-variables for the ‘miniRECgap’ (as 
well as ‘MDSnight’, see section 2.3.3) used in this study.

2.3.3. Gap-filling with ‘MDSnight’ approach
In order to evaluate the simple technique applied in ‘miniRECgap’, a 

gap-filling procedure was also performed using the popular ‘REddyProc’ 
webtool [based on the R-package by Wutzler et al. (2018)]. ‘REddyProc’ 
was chosen because it is referred within the EC flux community as one of 
the standard approaches for EC flux data processing, with several studies 
showing better performance of this package compared to some other 
methods (Boudhina et al., 2018; Wang et al., 2023; Wutzler et al., 2018). 
The ‘REddyProc’ package includes a comprehensive set of tools for 
processing, quality control, and gap-filling of EC data, incorporating 
advanced statistical algorithms and modelling techniques (Wutzler 
et al., 2018), which are not built into ‘miniRECgap’. The full datasets 
from both sites were used as inputs into the ‘REddyProc’ webtool. In 
accordance with this paper, hereafter, ‘MDSnight’ was used to refer to 
the gap-filling approach implemented in this study using the ‘REd
dyProc’ webtool, in order to avoid confusion with the actual ‘REd
dyProc’ package/software, which can support different settings.

Detailed explanation on gap-filling with this approach is provided in 
the Supplemental Material SM2. In brief, the gap-filling performed via 
‘REddyProc’ webtool allowed for modelling and gap-filling the NEE data 
via the marginal distribution sampling (MDS) algorithm presented in 
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Reichstein et al. (2005), which is the gap-filling method implemented in 
‘REddyProc’ (Wutzler et al., 2018), followed by nighttime net flux 
partitioning into GPP and Reco, also according to Reichstein et al. 
(2005). Gap-filling was carried out both with and without ustar (u*) 

filtering (Wutzler et al., 2018). Used was a default u* filtering method 
(“UStar Threshold estimation: Moving Point Test …“) available in an 
online tool (MPI, 2024e). The u* filtering refers to the technique that 
removes the EC flux data/measurements recorded during unsuitable 

Fig. 2. Illustrative presentation of the ‘miniRECgap’ R-package: (a) number of functions/R-scripts inside the ‘miniRECgap’ package source-code, and (b) schematic 
presentation of five simple operating steps of the ‘miniRECgap’ run using only five lines of code to complete the gap-filling process. Source: Fig. 2a ‘miniRECgap’ 
(Premrov, 2024). NOTE: Schematic presentation in Fig. 2b is provided for illustrative purpose only. For additional information and improved visual clarity, the 
readers should refer to detailed description of the five steps in Section 3 and in Supplemental Material SM5, accompanied with larger print-screens in separate figures 
(Figs. SM2 to SM11).
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conditions with insufficient turbulence (i.e. low friction velocity) (MPI, 
2024f). In order to be able to use the ‘MDSnight’ approach, the Rg inputs 
(Table 2) were estimated from measured PPFD using a conversion factor 
of 2.02 (reported in dos Reis and Ribeiro, 2020), (see section 2.1.2). The 
extent of introduced uncertainty resulting from the estimation of Rg 
alone was not assessed in this study due to the lack of measured Rg data.

2.3.4. Gap-filling with shallow ANN approach applied to the ‘challenging’ 
ecosystem dataset

Given that the ‘miniRECgap’ package was designed to be as simple as 
possible, it was initially assumed that the ‘MDSnight’ gap-filling 
approach would likely outperform ‘miniRECgap’ for both sites used in 
this study. However, our findings showed that gap-filling of the Cav
emount dataset was quite difficult with both approaches (see results in 
section 4) and therefore, an additional Artificial Neural Networks (ANN) 
ML-based gap-filling approach was applied solely at Cavemount. This 
study is limited to application of relatively shallow ANNs (i.e. ANNs with 
only one or two hidden layers and small number of neurons). The 
approach involved the following workflow, which is also summarised in 
Fig. 3: 

1. Choice of model-inputs and ANN settings for continuous data 
(Fig. 3a; further details are provided in Supplemental Material 
SM3.1).

2. Optimisation of the shallow ANN hyperparameters (Fig. 3b and c; 
further details are provided in Supplemental Material SM3.2).

3. Choice of the training/testing ratio (part of Fig. 3b and c; further 
details are provided in Supplemental Material SM3.3).

4. Obtaining the final model for gap-filling the missing NEE values 
(Fig. 3d; further details are provided in Supplemental Material 
SM3.4).

Details on the employed shallow ANN approach are outlined in the 
Supplemental Material SM3. In brief, the application of shallow ANN in 
this study was done via the ‘neuralnet’ R-package using the ‘neuralnet’ 
function (Fritsch et al., 2019) and the settings are explained in SM3.1. 
The modelling was performed on the pre-scaled/normalised Cavemount 
dataset. The NEE variable was modelled from predictor variables DOY, 
Hour, Tair, Tsoil, rH, LE, H and PPFD (Rg was excluded, because Rg was 
not measured in the Cavemount dataset and had to be estimated from 
PPFD due to lack of measured data). These eight predictor variables 
were initially chosen as potentially suitable for ANN modelling, because 
most were used in the gap-filling methods reported in Table 2. The 
optimisation of ANN hyperparameters (SM3.2) as well as the choice of 
training/testing ratio (SM3.3) were carried out via an adapted ‘fast’ 
k-cross validation (k-cv) approach by calculating selected and simple 
‘metrics’ for ML model evaluation (explained in detail in SM3.2 and 
SM3.3). It should be noted that employed optimisation procedures were 
limited to a relatively low number of repetitions and to the use of 
selected simple ‘metrics’ for ML model evaluation. Therefore, findings 
obtained from using the simplified ANN assessment procedures in this 
study need to be considered with a degree of caution, taking into 
consideration their indicative nature.

The optimisation procedures allowed for the choice of the final ANN 
model, which consisted of a single hidden layer and three neurons 
(hereafter referred to as the ‘N3‘ model, Fig. 4), with settings for linear 
output and a threshold of 0.01 (explained in detail in SM3.4). The model 
was applied using the two training/testing random data-splits: 30:70 
and 70:30. It should be noted that the Cavemount dataset also had some 
missing values for predictor variables LE and H (in addition to NEE data- 
gaps). For this reason, the pre-filtered dataset excluding “NAs” had to be 
used, resulting in the loss of some points in the timeseries. While this was 
considered acceptable for the model evaluation ‘metrics’ used in the 
optimisation procedures, it is not an appropriate approach when 

Fig. 3. Schematic presentation of hyperparameter-optimisation for a shallow ANN: (a) Initial input and output variables; (b) employed ‘k-cv’ procedure by repeating 
k-times the tree outlined steps (STEP 1, STEP 2, STEP 3); (c) ‘metric’ for quick evaluation of ANN as a part of optimisation procedure; (d) final ‘optimised’ 
shallow ANN.
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predictions over a full timeseries are needed. Therefore, the predictor 
variables LH and E were dropped from the ‘N3‘ model, resulting in the 
use of only six predictor input-variables (instead of the initial eight). As 
such, the NEE sum and cumulative NEE could be calculated only on the 
gap-filled dataset using the model with six predictor input-variables. The 
model performance was evaluated using multiple model prediction 
indices (explained in section 2.4) derived from the ‘N3‘ with eight pre
dictors (Fig. 4a) and with six predictors (final ‘N3‘ model, Fig. 4b) 
applied to the joined (training + testing) dataset (see results in section 
4.1.1.2; Table 7b). In addition, the model ‘N3‘(Fig. 4a and b) for both 
eight and six predictor input-variables, was also evaluated separately for 
training and testing datasets, using multiple model prediction indices 
(see results in section 4.1.2, Table 8).

Literature sources cited in the NOTE to Fig. 3: Fritsch et al. (2019); 
Gosiewska and Biecek (2020); Hernández-Orallo (2013).

2.4. Crude evaluation of gap-filling performance applied in case-study

The applied crude model-performance evaluation in this study is 
intended to serve solely as an illustrative example, to demonstrate the 
application of ‘miniRECgap’ vs. two other selected gap-filling tech
niques, using a case-study approach. The evaluation of the gap-filling 
performance for the ‘miniRECgap’, ‘MDSnight’ and optimised shallow 
ANN (‘N3‘ model) approaches used in this study was conducted using 
the selected multiple model prediction indices and estimates of uncer
tainty presented in Table 3, which mainly refer to in-sample metrics 
calculated from the same dataset used to either train or develop the 
model, unless specified otherwise. Some well-known issues and limita
tions of such in-sample model performance metrics are for example 
model overfitting, and lack of information on how the model would 
perform on unseen data. As such, it should be noted that this is a very 
crude evaluation approach, which should not be generalised, and that 

Fig. 4. Schematic Artificial Neural Network (ANN) presentation of the ‘N3‘ model architecture: (a) model with eight predictor input-variables (DOY, Hour, Tair, 
Tsoil, rH, LE, H and PPFD), a single hidden layer with three neurons (j = 3), and one output (NEE), and (b) model with six predictor input-variables (DOY, Hour, Tair, 
Tsoil, rH and PPFD), a single hidden layer with 3 neurons (j = 3) and one output (NEE).

Table 3 
(a) Selected model prediction indices and (b) estimation of uncertainty used for crude evaluation of flux gap-filling performances.

a) Model prediction indices (equation) Eq. no. Description
R2 = [Σ (Pi - Pam) ⋅ (Oi- Oam)]2/[ Σ (Pi - Pam)2 

⋅ Σ (Oi - Oam)2]
[Eq. 5] R2 refers to coefficient of determination, which explains the proportion of variance that is accounted for by the model (in 

this case gap-filling technique), Pi refers to the predicted and Oi to the observed flux at each half-hourly time-interval (i) 
and subscript ‘am’ refers to the arithmetic mean of each variable (Lucas-Moffat et al., 2022; Mahabbati et al., 2021).

RMSE = [Σ (Pi-Oi)2/(Np)] 0.5 [Eq. 6a] The model prediction indices used as indicators of the magnitude of the individual errors: RMSE refers to the root mean 
squared error (Moffat et al., 2007); RMSE* sometimes named as the root mean squared deviation (RMSD) [in some 
literature it is reported as RMSE] (Mahabbati et al., 2021; Piñeiro et al., 2008); rRMSE refers to the relative RMSE (Moffat 
et al., 2007); in Eqs. (6a) and (6b) the Np refers to number of predicted half-hourly fluxes (Lucas-Moffat et al., 2022) for 
which the observed values are available.

RMSE* = [Σ (Pi-Oi)2/(Np-1)] 0.5 [Eq. 6b]
rRMSE = [Σ (Pi-Oi)2/Σ (Oi)2] 0.5 [Eq. 6c]

StD = 2◦ .5/Np ⋅ ΣNp |Pi-Oi| [Eq. 7a] StD refers to standard deviation calculated from mean absolute error (MAE) calculated as 1/Np ⋅ ΣNp |Pi-Oi| (Lucas-Moffat 
et al., 2022; Moffat et al., 2007).MAE = 1/Np ⋅ ΣNp |Pi-Oi| [Eq. 7b]

b) Estimation of uncertainty (equation) Eq. no. Description
Es = 1/Np ⋅ ΣNp (Pi-Oi) [Eq. 8] Es refers to bias or systematic error estimated from model residuals (Pi-Oi) (Lucas-Moffat et al., 2022; Moffat et al., 2007).
Er = { ΣNp [ (Pi-Oi)2/((Np-1) ⋅ Np) ] } 0.5 [Eq. 9] Er refers to random error (Aurela et al., 2002; Lloyd, 2010), which can potentially include random errors due to statistical 

uncertainties of EC method, varying footprint, as well as NEE gap-filling (Aurela et al., 2002).
E = (Er2 + Es2)0.5 [Eq. 10] E refers to an estimate of the total uncertainty (Lloyd, 2010; Lucas-Moffat et al., 2022), obtained from previously 

calculated random error Er (Eq. (9)) and systematic error Es (Eq. (8)) using equation from (Lloyd, 2010)

NOTE: All of the model prediction indices and estimates of uncertainties were computed based on the observed and predicted half-hourly NEE data without further 
conversion of the units (i.e. this study used the same NEE units in which the observed/measured NEE were originally reported [μ mol CO2-C m− 2 s− 1]).
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there are more advanced and in-depth evaluation approaches available 
in the literature (e.g. maximum likelihood used in Richardson et al. 
(2006), introducing the out-of-sample or various scenarios of artificial 
data-gaps of different lengths (e.g. Moffat et al. (2007)). Althoughn these 
approaches were not applied in this study (which is mainly focusing on 
introducing ‘miniRECgap’), they could be considered in potential future 
work on various ‘challenging’ ecosystems.

The gap-filling model performance was first examined using simple 
regression analysis (i.e. comparison of predicted and observed NEE 
values), followed by computation of the remainder of the model pre
diction indices listed in Table 3. The procedure included plotting 
observed vs. predicted NEE values and the calculation of the coefficients 
of determination (R2; Eq. (5)), the root mean squared prediction error 
(RMSE; Eq. (6a)) [or the root mean squared prediction deviation 
(RMSD*; Eq. (6b))], as well as the relative version of RMSE (rRMSPE; Eq. 
(6c)) and the standard deviation calculated from mean absolute error 
(StD, Eq. (7a) and MAE, Eq. (7b)) (Table 3a).

While there are different approaches to quantify the uncertainties in 
flux studies (Hollinger and Richardson, 2005), the term ‘E’ in this study 
refers to an estimate of total uncertainty obtained from systematic error 
or bias (Es) and random error (Er), as defined by equations Eq. (8), Eq. 
(9) and Eq. (10) (Table 3b) (Lloyd, 2010; Lucas-Moffat et al., 2022). As 
such, the variable E in this study should not be confused with the un
certainty that results entirely from the flux data, which occurs mainly 
due to random measurement errors. Furthermore, the random error (Er) 
can potentially include random errors due to the statistical uncertainties 
from the EC method, variable footprint, as well as NEE gap-filling, and is 
computed using the approach from Aurela et al. (2002), which differs 
somewhat from the equation used by Lucas-Moffat et al. (2022). 
Nevertheless, similar to Lucas-Moffat et al. (2022), the errors in this 
study were calculated from model residuals (Table 3b) without ac
counting for potential bias from measurements or for potential errors 
due to autocorrelation, and therefore, the estimate of total uncertainty 
(E) from this study should be considered as the lower range of this es
timate. Further details on multiple model prediction indices and un
certainty estimation used in this study, with accompanying description 
and literature sources, are provided in Table 3, and accompanying notes 
to the table. The sum of gap-filled NEE expressed in units of [t C ha− 1] 
per total period of observation for each site, was also calculated for 
different gap-filling approaches.

3. Introducing the ‘miniRECgap’ R-package

3.1. About ‘miniRECgap’

The ‘miniRECgap’ package is designed for the application of very 
basic functions for gap-filling of missing EC CO2 flux measurements and 
for flux data-partitioning. It requires that the users understand the gap- 
filling procedure, as it is designed in five steps that need to be run in 
sequence, forcing the users to engage in the process. While the ‘mini
RECgap’ package is primarily designed to be suitable for users who are 
less experienced in the R environment and beginners, the functions 
written in ‘miniRECgap’ may also serve as potentially useful examples 
for experienced R-users who may wish to write different types of func
tions in the R environment for some other flux data-partitioning and 
gap-filling methods of their own.

Before using the ‘miniRECgap’ package, a user will first need to 
prepare the input flux data in the required format, launch the R envi
ronment, set up the working directory, and install and load the ‘mini
RECgap’ and other required R-packages. These procedures are explained 
in section 3.2.1 and the Supplemental Material SM4. After this, the user 
can proceed to section 3.2.2 and the Supplemental Material SM5, which 
explain how to use the new ‘miniRECgap’ package with the GUI sup
ported scripts. The procedures in section 3.2.2 and Supplemental Ma
terial SM5, are explained in the form of steps, where at each step, the 
package generates intermediate outputs (when applicable), and not only 

the final output. These intermediate outputs are saved in the working 
directory. It is thought that this feature of the ‘miniRECgap’ package 
should be beneficial for users who may wish to explore the specific in
termediate outputs and that it may also enable the users to gain a better 
understanding of how data processing and computing is performed, by 
linking to the methodologies explained in section 2.1. A more experi
enced user can opt to view the source code and the structure of specific 
functions on the GitHub portal (Premrov, 2024) where the experienced 
user can further explore how these functions link to the specific data 
processing and computing methodologies described in section 2.1. The 
individual ‘miniRECgap’ files, including the source code for individual 
functions, are available on the GitHub portal, where they can be viewed 
i.e. source: Premrov (2024) available under the ‘MIT License + File Li
cense’. Details on how to reference the ‘miniRECgap’ package are pro
vided in subsection 3.2.1 of this paper and Supplemental Material SM6.

3.2. Using ‘miniRECgap’

3.2.1. Starting procedures
It is recommended that users who are completely new to the R 

environment first get familiar with the R user-interface and learn some 
basic concepts about R (i.e. Basic-R or R-Studio, depending on their 
preference/choice) from the numerous materials and manuals that are 
available in various sources and literature (e.g. Douglas, 2023; Douglas 
et al., 2023; FAO, 2022; Grolemund, 2014; Maindonald, 2008; Torfs and 
Brauer, 2014). Starting procedures refer to procedures on setting up the 
working directory, preparing the input flux data in required format, and 
installing and loading the ‘miniRECgap’ and other required R-packages. 
The data-format that is needed for input in the ‘miniRECgap’ package is 
provided in data-example template (see Supplemental Material 
“SM_miniRECgap_input_template.csv”).5 After preparation of the input 
data in the desired format, a user should follow the instructions on the 
remaining starting procedures explained in detail in the Supplemental 
Material SM4. In brief, a user should start by launching R, choosing the 
working directory, create a new script, and install the ‘miniRECgap’ 
R-package from GitHub. The code used for starting procedures involving 
the installation of ‘miniRECgap’ and other required packages, is sum
marised in Table 4. As outlined in Table 4d, a user will need to install 
and load several other R-packages that are needed to use ‘miniRECgap’ 
[i.e. packages ‘stats’, ‘grDevices’, utils’ (R Core Team, 2024b), ‘fgui’ 
(Hoffmann and Laird, 2009), ‘dplyr’ (Wickham et al., 2023) and 
‘ggplot2’ (Wickham, 2016)]. The code to install these packages (if not 
previously installed) is further explained in Supplemental Material SM4. 
It is the responsibility of each user to ensure that these packages are 
appropriately referenced and are used according to their license(s). 
Recommendations on retrieving the information needed for referencing 
the packages are provided in section 3.3 and SM6.

3.2.2. Five steps: employing ‘miniRECgap’ via GUI supported scripts
Use of the ‘miniRECgap’ R-package via GUI supported scripts can be 

done by running just the five lines of the code provided in Table 5 via 
five simple steps. For this reason, this option of employing the ‘mini
RECgap’ package via GUI supported scripts is thought to be suitable for 
all users, including users who are less experienced in the R environment 
and beginners. The code that is provided in Table 5, needs to be run in 
sequence, following the procedures explained in the individual five steps 
(STEP 1 to STEP 5, Fig. 2b). This will enable utilisation of several 

5 The data-format that is needed for input in the ‘miniRECgap’ package is 
provided in example template Supplemental Material “SM_miniRECgap_input_ 
template.csv”, which is a fictional example. 

The data for variables ‘DOI’, ‘DateTime’ ‘NEE’, ‘PPFD’ and ‘T’ included in 
the “SM_miniRECgap_input_template.csv” file are fictional (not real observa
tions) provided entirely as an example for the given template. Accompanying 
information is provided in the “READ_ME_SM_miniRECgap_input_template.txt”.
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‘miniRECgap’ functions (Fig. 2a), which will perform various data- 
processing and partitioning, and NEE gap-filling (Premrov, 2024). 
While the user will need to run five code lines (Table 5), it should be 
noted that ‘miniRECgap’ consists of a number of functions (listed in 
Fig. 2a), most of which will be called via GUI and run in the background 
without the need to write a separate script/code to individually run 
them.

Detailed instructions on how to employ the code from Table 5 to 
perform gap-filling using ‘miniRECgap’ R-package via GUI supported 
scripts (i.e. STEP 1 to STEP 5), are provided in the Supplemental Ma
terial SM5. The user should follow there described instructions on per
forming the procedures in five steps and illustrated in Fig. SM2 to Fig. 
SM11, which provide the print-screens of individually called GUI 
windows.

3.2.3. On referencing and citing relevant sources when using ‘miniRECgap’
When using the ‘miniRECgap’ package, the user should ensure to 

include the references to the package/software source-code, as well as to 
this paper, i.e. the information on referencing the ‘miniRECgap’ R- 
package source-code is included in Table 6a. A user can also easily 
retrieve the information required for referencing the Arrhenius equation 
adapted from Lloyd and Taylor (1994) and the light-response function 
reported in Gilmanov et al. (2003), which is adapted from the 
non-rectangular hyperbola model by Rabinowitch (1951), which form 
part of the flux-partitioning and gap-filing methodologies used in 
‘miniRECgap’ (explained in section 2.1). Information on both references 
can be obtained by running the code from Table 6b in R. It is the re
sponsibility of each user to also include the references on all other 
R-packages that are required for operating ‘miniRECgap’. The infor
mation needed for referencing these packages can be retrieved by using 
the function ‘citation’ explained in Table 6c (with further details 
explained in the note to Table 6 and Supplemental Material SM6).

Table 4 
Code used for starting procedures, installation of ‘miniRECgap’ and other required packages [details are explained in Sup
plemental Material SM4].

NOTE: (a) ’devtools’ refers to package by Wickham et al. (2022).

Table 5 
Code used for starting procedures, installation of ‘miniRECgap’ and other required packages [details are explained in 
Supplemental Material SM4].
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4. Case-study results and discussion

4.1. Gap-filling performance evaluation using data from the ‘classic’ and 
‘challenging’ ecosystems

The gap-filling performances were assessed on the basis of the find
ings of multiple model prediction indices and estimations of uncertainty 
derived from the NEE modelling outputs using different modelling 

approaches from this study. The findings are reported based on the NEE 
modelling that was performed on data-inputs at half-hourly intervals (i.e. 
the original format of time-interval of measured data), which resulted in 
model outputs for the same half-hourly time-intervals. To evaluate the 
‘miniRECgap’ gap-filling approach (i.e. temperature- and light-response 
functions), the results also include the findings from the standard 
‘MDSnight’ approach (applied via the ‘REddyProc’ webtool by Wutzler 
et al. (2018)) for both ecosystem examples. Furthermore, in the case of 

Table 6 
Retrieving information needed for referencing: (a) ‘miniRECgap’ R-package citation; (b) code, which can be used to retrieve 
information needed for referencing the non-linear response functions/gap-filling methods used in ‘miniRECgap’; (c) other R- 
packages required for operating ‘miniRECgap’.

NOTE: The code in Table 6 (b), (c) can be run in R to retrieve required information after first running the code from Table 4. 
After running the code from Table 6 (b), (c) in R, the information on references will be loaded in R Console. The reference to the 
‘miniRECgap’ R-package/source-code (Table 6 (a)) should also be accompanied by the references to this paper. The ‘PACKAGE 
NAME’ in the code (Table 6c) must be replaced with the actual name of the package, i.e. these packages are: ‘stats’, ‘grDevices’, 
‘utils’ (R Core Team, 2024b), ‘fgui’ (Hoffmann and Laird, 2009), ‘dplyr’ (Wickham et al., 2023) and ‘ggplot2’ (Wickham, 2016); 
(additional explanation is provided in Supplemental Material SM6].
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Cavemount Bog (‘challenging’ ecosystem), the NEE modelling results 
obtained from applying an optimised shallow ANN are also reported.

4.1.1. The ‘classic’ ecosystem: DE-Tha forest

4.1.1.1. Model prediction indices and estimation of uncertainty. The 
‘miniRECgap’ package performance was first examined by plotting the 
observed vs. modelled/predicted NEE values for the DE-Tha ‘classic’ 
ecosystem. The R2 value for the full dataset was 0.61 and was 0.71 for the 
dataset with three clusters (Fig. 5). There was a reasonably close fit of the 
regression line to the 1:1 line (Fig. 5b and c). The results further showed 
that the ‘MDSnight’ approach outperformed ‘miniRECgap’, which was 
evident from an even closer fit of the regression line to the 1:1 line and an 
R2 value of 0.83 for the former (Fig. 5a). These results confirm our earlier 

expectation that the ‘MDSnight’ approach (applied using ‘REddyProc’ 
webtool) would likely outperform ‘miniRECgap’ for the ‘classic’ 
ecosystem, which is in agreement with previous work that showed the 
better performance of ‘REddyProc’ compared to some other methods 
(Boudhina et al., 2018; Wang et al., 2023; Wutzler et al., 2018). Never
theless, while the ‘MDSnight’ approach performed better than ‘mini
RECgap’, it is also more ‘data-hungry’. The advantage of the ‘miniRECgap’ 
package is that it requires (in addition to stamp/date-time variable) data 
for only three main input-variables (NEE, PPFD and T; Table 2), whereas 
the ‘MDSnight’ approach requires data for five to seven input-variables 
(NEE, Tsoil, Tair, LE, Rg, rH and optional VPD and Ustar; Table 2). 
Therefore, the ‘miniRECgap’ package may be potentially useful for data
sets that lack some of the required input data needed in ‘MDSnight’.

The results from multiple model prediction indices and estimation of 
uncertainty derived from both approaches (Table 7a) further confirmed 
that ‘MDSnight’ performed better than ‘miniRECgap’, with ‘MDSnight’ 
with u* filtering likely the best gap-filling approach for the DE-Tha 
‘classic’ ecosystem (R2 = 0.83; E = 0.03 μ mol CO2-C m− 2 s− 1, 
Table 7a). In the case of DE-Tha, RMSE (rRMSE) values derived from the 
different approaches [i.e. rRMSE = 0.39 for ‘MDSnight’ (with u* 
filtering); rRMSE = 0.50 for ‘miniRECgap’ (on the dataset with three 
clusters); Table 7a] were found to be in the range of rRMSE values re
ported in the literature. For example, a study by Moffat et al. (2007), 
which compared a variety of different EC flux gap-filling techniques on 
six forested European sites, reported mean rRMSE site-dependency 
values that ranged from c. < 0.35 (daytime) to > 0.7 (nighttime).

While most of the model prediction indices (RMSE, StD, MAE, 
Table 7a) derived from the ‘MDSnight’ approach without u* filtering 
appeared to be the same, similar or slightly lower than the ones derived 
with u* filtering, the observed bias or systematic error (Es) was smaller 
where u* filtering was used (Es = 0.009 μ mol CO2-C m− 2 s− 1) (Table 7a). 
The Es and relative error (Er) values indicate that the major contributor to 
the difference in the magnitude of uncertainty estimate (E) between the 
‘miniRECgap’ and ‘MDSnight’ approaches was likely due to the observed 
negative Es value when the former approach was used (Table 7a). The 
strongest negative Es value was observed when NEE was modelled using 
‘miniRECgap’ on the dataset with no prior separation into clusters/groups 
(Es = − 0.46 μ mol CO2-C m− 2 s− 1; Table 7a). However, the strength of the 
bias almost halved after assigning the data into three clusters (Es = − 0.24 
μ mol CO2-C m− 2 s− 1; Table 7a), while the R2 value increased to 0.71. 
These results strongly indicate that the performance of the ‘miniRECgap’ 
approach could potentially improve, provided NEE modelling was un
dertaken on datasets disaggregated by groups. As ‘miniRECgap’ is a 
relatively simple tool, it does not have a built-in function for this purpose, 
and users need to assign their own data into groups or clusters. In some 
cases, this may be the preferred practice because different ecosystem sites 
could require different approaches for such grouping or clustering of data, 
depending on their specific conditions or management. The advantage of 
‘miniRECgap’ is that it operates in an effortless manner using just five 
lines of code, thereby allowing users to check the performance on various 
pre-prepared data-splits using data-splitting methods of their own choice, 
in order to decide on the best one for the given site.

It is known that continuous bias in gap-filling can potentially lead to 
over- or under-estimation of annual NEE sums (Moffat et al., 2007). 
‘However, bias occurrence is not unusual in gap-filling techniques and 
has been reported widely in the literature. For example, a negative bias 
has been reported for a study by Desai et al. (2005) for classic non-linear 
regression gap-filling technique (Moffat et al., 2007). Negative biases for 
gap-filling of CO2 can be also found for a number of sites in studies by 
Lucas-Moffat et al. (2007, 2022) using different gap-filling techniques. 
The literature shows that even the widely used MDS gap-filling method 
is not immune to bias. The recent study by Vekuri et al. (2023) showed 
that the MSD gap-filling technique can cause systematic bias if applied to 
data from northern sites at latitudes > 60◦, which can result in the 
systematic overestimation of CO2 emissions. The authors further sug
gested that ML can be used to reduce this bias for northern sites (Vekuri 

Fig. 5. Observed vs. predicted net ecosystem exchange (NEE; μ mol CO2-C m− 2 

s− 1] for DE-Tha forest (‘classic’ ecosystem dataset) using different modelling 
approaches (a) ‘MDSnight’ - with u* filtering, (b) ‘miniRECgap’ - full dataset 
(no clusters); (c) ‘miniRECgap’ - dataset assigned into three clusters. 
NOTE: Data-splitting into clusters was performed using k-means clustering 
approach. A figure for NEE modelled using ‘MDSnight’ without u* filtering is 
not presented (due to its strong similarity with Fig. 5a). Note the difference in x- 
axis and y-axis scale (interval-length), but not in the units. The observed values 
are plotted on the y axis and predicted values on the x axis (i.e. OP type of plot) 
in accordance with the mathematical evidence that OP regression should be 
used when evaluating models, following Piñeiro et al. (2008).
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et al., 2023). Clearly, these findings indicate that users need to pay 
special attention when using gap-filling approaches/techniques at 
different sites, and should assess the systematic errors/bias to evaluate 
the risk of potential over-/under-estimation of CO2 fluxes.

4.1.1.2. NEE sums and cumulative NEE. Overall, our results showed that 
the DE-Tha forest site acted as a C-sink (NEE sum exceeding − 6 t CO2-C 

ha− 1). These results are in agreement with similar NEE sum values re
ported for the same site in the literature by Grünwald and Bernhofer 
(2007), with some slight differences possibly occurring due to potential 
different settings in the gap-filling approaches. In this study, the DE-Tha 
annual NEE sums (Table 9) and cumulative NEE (Fig. 6) from ‘mini
RECgap’ may need to account for potential under-estimation due to 
observed negative bias (Es = − 0.24 μ mol CO2-C m− 2 s− 1; Table 7a). 

Table 7 
Selected model prediction indices and estimation of uncertainty derived from using different gap-filling approaches for: (a) DE-Tha forest (‘classic’ example) and (b) 
Cavemount Bog (‘challenging’ example) datasets.

Gap-filling approach/package/methodology Model prediction indices b Estimation of uncertainty b

R2 [Eq. 
(5)]

RMSE [Eq. 6a; 
6b]b,

rRMSE [Eq. 
(6c)]

StD [Eq. 
(7a)] b

MAE [Eq. 
(7b)] b

Es [Eq. 
(8)] b

Er [Eq. 
(9)] b

E [Eq. 
(10)] b

a) DE-Thaa

‘miniRECgap’ Full dataset 0.61 4.53 0.61 4.13 2.92 − 0.46 0.04 0.47
3 clusters 0.73 3.69 0.50 3.52 2.50 − 0.24 0.04 0.25

‘MDSnight’ c u* filtering 0.83 3.02 0.39 2.84 2.01 0.01 0.03 0.03
No u* 
filtering

0.83 2.91 0.39 2.71 1.92 0.02 0.03 0.04

b) Cavemount
‘miniRECgap’ Full dataset 0.46 1.60 0.77 1.66 1.17 − 0.39 0.02 0.39

3 clusters 0.57 1.43 0.69 1.45 1.03 − 0.36 0.02 0.36
‘MDSnight’ c u* filtering 0.23 1.83 0.88 1.93 1.36 (− )0.00 0.02 0.02

No u* 
filtering

0.24 1.82 0.87 1.91 1.35 (− )0.00 0.02 0.02

‘N3’ with eight predictors d Trained on 
30 %

0.69 1.17 0.56 1.11 0.79 − 0.03 0.01 0.03

Trained on 
70 %

0.69 1.17 0.56 1.12 0.79 − 0.01 0.01 0.02

‘N3’ with six predictors (final 
model) d,e

Trained on 
30 %

0.68 1.18 0.57 1.13 0.80 0.02 0.01 0.03

Trained on 
70 %

0.68 1.17 0.56 1.13 0.80 0.01 0.01 0.01

NOTE:
cThe outputs from Eq. (6a) and Eq. (6b) were the same (due to high Np).

a DE-Tha refers to Tharandt forest site dataset, which is a well-known ‘classic example’ provided as a template for data input into the ‘REddyProc’ webtool (the 
dataset was downloaded from MPI (2024d)).

b The units (where applicable) are in μ mol CO2-C m− 2 s− 1 because gap-filling was done on datasets without converting their original units (i.e. measured NEE [μ mol 
CO2-C m− 2 s− 1] in 1/2 h intervals). A negative sign (− ) for zero Es values correspond to negative Es values at three or four decimal precision, but they were rounded to 
zero because they are reported at two decimals. In order to avoid losing on precision in the findings from gap-filling, the values have not been converted from original 
units μ mol CO2-C to g CO2-C m− 2 s− 1.

c Gap-filling performed with application of ‘REddyProc’ by Wutzler et al. (2018), where ‘MDSnight’ refers to application settings/approaches in chosen in the 
‘REddyProc’ webtool as explained in section 2.3.3 and Supplemental Material SM2.

d Gap-filling performed on joined dataset (training + testing) with the ANN model ‘N3 ‘with a single hidden layer and three neurons (j = 3), via ‘neuralnet’ function 
from R-package ‘neuralnet’ (Fritsch et al., 2019), using settings explained in section 2.3.4 and Supplemental Material SM3.

e When using six predictors the joined dataset (training + testing) represents the full dataset (further explanation is provided in sections 2.3.4 and 4.1.2).

Table 8 
Selected model prediction indices and estimation of uncertainty derived from the Artificial Neural Network (ANN) model ‘N3’ for predicting net ecosystem exchange 
(NEE) for the Cavemount Bog dataset, trained on either 30 % or 70 % training data, and by applying different number of input predictor variables: (a) eight input 
predictor variables [DOY, Hour, Tair, Tsoil, rH, LE, H, PPFD]; (b) six input predictor variables [DOY, Hour, Tair, Tsoil, rH, PPFD].

ANN model 
‘N3’

Model prediction indices a Estimation of uncertainty a

R2 [Eq. 
(5)]

RMSE [Eq. (6a); 
6b]a, b

rRMSE [Eq. 
(6c)]

StD [Eq. (7a)] 
a

MAE [Eq. 
(7b)] a

Es [Eq. (8)] 
a

Er [Eq. (9)] 
a

E [Eq. (10)] 
a

a) Eight input predictor variables
Training/testing ratio 

30:70
Training 0.70 1.15 0.54 1.09 0.77 0.00 0.02 0.02
Testing 0.68 1.17 0.56 1.13 0.80 − 0.04 0.02 0.04

Training/testing ratio 
70:30

Training 0.69 1.16 0.55 1.11 0.79 0.00 0.02 0.02
Testing 0.68 1.19 0.57 1.15 0.81 − 0.03 0.02 0.04

b) Six input predictor variables
Training/testing ratio 

30:70
Training 0.65 1.23 0.59 1.19 0.84 0.00 0.02 0.02
Testing 0.69 1.16 0.56 1.11 0.79 0.03 0.02 0.03

Training/testing ratio 
70:30

Training 0.67 1.18 0.57 1.13 0.80 0.00 0.02 0.02
Testing 0.70 1.16 0.55 1.11 0.79 0.02 0.02 0.03

NOTE:
a Gap-filling performed on separate training and testing datasets for the Cavemount site (‘challenging’ example) with an ANN model ‘N3‘ with a single hidden layer and 
three neurons (j = 3), via ‘neuralnet’ function from R-package ‘neuralnet’ (Fritsch et al., 2019), using settings explained in section 2.3.4 and Supplemental Material SM3.
d Training - refers to in-sample metrics; Testing - refers to out-of-sample metrics (see section 2.4).

a The units (where applicable) are in μ mol CO2-C m− 2 s− 1 as gap-filling was done on datasets without conversion of their original units (i.e. measured NEE [μ mol 
CO2-C m− 2 s− 1] in 1/2 h intervals).

b The outputs from Eq. (6a) and Eq. (6b) were the same (due to high Np).
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However, the range of annual NEE sums from both ‘miniRECgap’, and 
‘MDSnight’ approaches overlap somewhat [i.e. range for ‘miniRECgap’: 
6.02 to − 6.23 t CO2-C ha− 1 (depending on whether the approach used 
clustering or not); range for ‘MDSnight’: 6.12 to − 6.43 t CO2-C ha− 1 

(depending on whether the approach used u* filtering or not)]. This 
overlapping would indicate that the risk of potential NEE sum 
under-estimation when using ‘miniRECgap’ could lie within the range of 
occurring variability of modelled NEE results derived from different 

gap-filling approaches. This is also supported by the fact that the shape 
of the cumulative NEE curves derived from the two approaches closely 
resemble each other (Fig. 6a, b and 6c).

4.1.2. The ‘challenging’ ecosystem: Cavemount Bog

4.1.2.1. Model prediction indices and estimation of uncertainty. The 
package performance was next examined by plotting the observed vs. 

Fig. 6. Daily cumulative gap-filled net ecosystem exchange (NEE; g CO2-C m− 2] for the DE-Tha forest site (‘classic’ ecosystem dataset) using different gap-filling 
approaches: (a) ‘MDSnight’ - with u* filtering, (b) ‘miniRECgap’ - full dataset (no clusters); (c) ‘miniRECgap’ - dataset assigned into three clusters. 
NOTE: Total period of observation is 1 year (365 days). Data-splitting into clusters was performed using k-means clustering approach (k = 3 clusters). A figure for 
cumulative NEE obtained by using ‘MDSnight’ without u* filtering is not presented (strong similarity was observed between the two cumulative NEE curves obtained 
using the ‘MDSnight’ gap-filling approach with and without u* filtering).

Table 9 
Gap-filled net ecosystem exchange (NEE) sums using different gap-filling approaches/packages for the (a) DE-Tha (‘classic’ example) and (b) Cavemount (‘challenging’ 
example) sites.

a) DE-Thaa Sum of gap-filled NEE [t C ha¡1] for 365 days Proportion of gaps c

‘miniRECgap’ b Full dataset − 6.23 36 %
3 clusters − 6.02 36 %

‘MDSnight’ d u* filtering − 6.12 45 %
No u* filtering − 6.43 36 %

b) Cavemount Sum of gap-filled NEE [t C ha¡1] for 236 days Proportion of gaps c

‘miniRECgap’ b Full dataset − 0.33 20 %
3 clusters − 0.23 20 %

‘MDSnight’ d u* filtering − 0.17 25 %c

No u* filtering − 0.03 20 %
‘N3‘ e with 6 predictors Trained on 30 % data 0.01 20 %

Trained on 70 % data 0.01 20 %

NOTE:
a DE-Tha dataset is provided as a template for data input into the ‘REddyProc’ webtool, and it was downloaded from MPI (2024d).
b Three half-hourly NEE values from the DE-Tha ‘miniRECgap’ gap-filled dataset were estimated with linear interpolation as gap-filling with ‘miniRECgap’ was not 

possible for the three data-points due to missing meteorological data.
c The number of data-gaps in the dataset increased in case if the u* filtering was applied (using ‘REddyProc’ webtool) resulting in an increase in the total number of 

NEE data-gaps. In the case of the Cavemount dataset, the u* filtering was applied on top of pre-existing QC/QA screening (further details are explained in section 2.2).
d Gap-filling performed with the application of ‘REddyProc’ by Wutzler et al. (2018), where ‘MDSnight’ refers to the application settings/approaches selected in the 

‘REddyProc’ webtool as explained in section 2.3.3 and Supplemental Material SM2.
e Gap-filling performed using ANN via the ‘neuralnet’ function from R-package ‘neuralnet’ (Fritsch et al., 2019) using hidden configuration and other settings 

explained in section 2.3.4 and Supplemental Material SM3. ANN gap-filling approach with ‘N3‘ was used for the Cavemount peatland dataset only.
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modelled/predicted NEE values for the ‘challenging’ ecosystem 
example, Cavemount Bog (Fig. 6). In contrast to DE-Tha, the ‘MDSnight’ 
approach (applied via ‘REddyProc’ webtool) no longer showed a better 
performance compared to ‘miniRECgap’. In the first instance, this was 
evident from the results of the regression analysis, which showed low R2 

values (R2 ≤ 0.24) and a deviation of the regression line from the 1:1 line 
(Fig. 6a and b) when using the ‘MDSnight’ approach, regardless of u* 
filtering. With the exception of uncertainty estimation, the results from 
other multiple model prediction indices derived from different model 
approaches (Table 7b) further confirmed that the application of the 
‘MDSnight’ approach may be a challenge for this rehabilitated 
ecosystem.

While ‘miniRECgap’ showed some advantages over ‘MDSnight’ in 
the ‘challenging’ ecosystem in specific context of this particular study, 
this does not imply its universal superiority. Rather, it indicates that the 
Cavemount Bog ecosystem dataset posed more of a challenge for the 
‘MDSnight’ gap-filling method than if conventional temperature- and 
light-functions were applied in ‘miniRECgap’ in this particular example. 
It should be noted that the MDS method relies more on the existing data 
distribution. Therefore, the heterogeneous and complex nature of a 
‘challenging’ ecosystem in the given example (resulting from the pres
ence of a mosaic of vegetated areas, bare patches and open water areas) 
may have posed a challenge for ‘MDSnight’ if the existing dataset did not 
adequately represent the full range (distribution) of various conditions 
at the given site. This may have been the reason for somewhat better 
performance of ‘miniRECgap’ compared to ‘MDSnight’, considering that 
‘miniRECgap’ relies more on the given functional relationships. These 
findings indicate that users are recommended to test and apply the 
‘miniRECgap’ tool to periods of data that capture the dynamism in 
variable driving flux dynamics at their site, particularly those that relate 
to management or significant variations in climate variables. However, 
since this study employs only crude model performance metrics, these 
findings should be considered as indicative. Therefore, additional 
research using longer datasets (than in the given example), from 
extended monitoring periods, and sites from a wider range of terrestrial 
ecosystems, is strongly recommended. As explained earlier, there is also 
a need for future in-depth comprehensive model evaluation, which 
could include different data-gap scenarios (Moffat et al., 2007) and 
various terrestrial ecosystem types.

Although the multiple prediction indices indicated that ‘mini
RECgap’ performed somewhat better than ‘MDSnight’, the findings also 
indicate that the Cavemount Bog dataset is also a challenge for the 
‘miniRECgap’ approach. The observed R2 values were lower compared 
to DE-Tha [i.e. R2 = 0.48 for Cavemount dataset with no clusters, Fig. 7c; 
R2 = 0.57 for Cavemount dataset with three clusters), Fig. 7d]. These 
results are in agreement with the findings of Zhu et al. (2023) who 
assessed the application of EC gap-filling approaches in a number of 
‘challenging’ ecosystems. According to Zhu et al. (2023) many popular 
flux gap-filling methods (such as MDS employed in this study) can work 
well for less disturbed/natural ecosystems (such as the DE-Tha), but 
their application can be challenging for ecosystems that have undergone 
significant disturbances (e.g. Cavemount Bog). Despite this, the RMSE 
value [μ mol CO2-C m− 2 s− 1] derived from the ‘miniRECgap’ and 
‘MDSnight’ approaches for the Cavemount site [i.e. RMSE: 1.83 
(‘MDSnight’ with u* filtering); RMSE: 1.43 ‘(miniRECgap’, three clus
ters); Table 7b] still appears to be within the range of RMSE variability 
reported in the literature. For example, a study on an upland blanket bog 
in the north Pennines by Lloyd (2010) noted seasonally variable RMSE 
values in the range 1.88–2.75 μ mol CO2-C m− 2 s− 1 when the PIRT6

gap-filling modelling technique was used.
In the case of Cavemount, the ‘miniRECgap’ approach also showed 

the highest observed E estimate of uncertainty, which again appears to 

result from the negative bias Es (Table 7b). For this reason, when using 
‘miniRECgap’, the interpretation of the findings of the Cavemount Bog 
NEE sums or cumulative NEE again need to take into consideration the 
potential risks of underestimation of NEE sums, resulting from the 
observed negative Es. Similar to earlier findings (section 4.1.1), the 
strongest negative bias was observed when NEE was modelled using 
‘miniRECgap’ on the dataset with no prior separation into groups/ 
clusters (Es = − 0.39 μ mol CO2-C m− 2 s− 1; Table 7b). A slight reduction 
in the strength of the bias (Es = − 0.36 μ mol CO2-C m− 2 s− 1 Table 7b) 
can be observed when the dataset was assigned into three clusters, 
indicating that the performance of the ‘miniRECgap’ approach could 
potentially improve, provided NEE modelling was carried out on the 
datasets disaggregated by groups/clusters using the clustering method
ology suitable for the given data (i.e. in this study the approach was the 
unsupervised ML k-means clustering; section 2.3.1).

It should be noted that as Cavemount Bog is a rehabilitated cutaway 
peatland, the conditions at this site are subject to extreme heterogeneity, 
represented by a mosaic of vegetation communities, as well as areas of 
bare soil/peat and open water (Bord na Móna, 2021). Therefore, it is not 
surprising that challenges in NEE gap-filling are observed for both ap
proaches (‘miniRECgap’ and ‘MDSnight’) as these approaches may not 
have sufficiently accounted for the specific heterogeneous conditions 
found at this site. In cases when we deal with highly disturbed ecosys
tems that are very heterogeneous in nature, several different gap-filling 
approaches may need to be assessed to determine the most suitable one 
for the given case, including more advanced methods, such as ML (i.e. 
Group 4 in Table 1). The advantage of ‘miniRECgap’ is that it operates in 
a simple and user-friendly way, which allows the user to obtain the NEE 
modelled outputs more effortlessly and focus more on evaluating the 
model performance in order to decide whether any other gap-filling 
approaches may need to be tested. In this study, the application of 
‘miniRECgap’ showed that for the ‘challenging’ Cavemount Bog site, 
other gap-filling methods should be tested. Therefore, an additional 
ANN ML-based gap-filling approach was applied to the Cavemount 
dataset (as explained in section 2.3.4).

The performance of an optimised and trained ANN model (‘N3’ 
consisting of a single hidden layer and three neurons) was first assessed 
separately on the training and testing datasets. The results showed that 
the best overall model performance was when six predictor input- 
variables [DOY, Hour, Tair, Tsoil, rH, PPFD] and the 70:30 training: 
testing ratio were employed (R2 = 0.70; Es = 0.02 μ mol CO2-C m− 2 s− 1; 
the other model prediction indices and estimation of uncertainty are 
presented in Table 8). The performance of the optimised and trained 
‘N3’ model was next assessed by applying the model to the joined 
dataset (training + testing). Here, the results showed that the best 
overall performance was when eight predictors [DOY, Hour, Tair, Tsoil, 
rH, LE, H, PPFD] and the 70:30 training: testing ratio were employed 
(R2 = 0.69, Es = -0.01 μ mol CO2-C m− 2 s− 1; the other model prediction 
indices are presented in Table 7b). The ‘N3’ model with six predictors 
[DOY, Hour, Tair, Tsoil, rH, PPFD] and the 70:30 training: testing ratio 
resulted in similar but positive bias (Es = 0.01 μ mol CO2-C m− 2 s− 1, R2 

= 0.68, Table 7b) compared to the model with eight predictors, which 
resulted in similar but negative bias (Es = -0.01 μ mol CO2-C m− 2 s− 1; 
Table 7b).

As explained in section 2.3.4 and Supplemental Material SM3.4, the 
Cavemount dataset had some missing LE and H values, which meant that 
when eight predictor input-variables were used in ANN modelling [DOY, 
Hour, Tair, Tsoil, rH, LE, H, PPFD], the joined dataset (training +
testing) also contained gaps due to the missing LE and H points in the 
timeseries. This was not the case when the ANN modelling was per
formed using only six predictor variables, as the LE and H variables were 
excluded from model-inputs, which meant that the joined model-input 
dataset (training + testing) represented the full time-series dataset for 
model input-variables [DOY, Hour, Tair, Tsoil, rH, PPFD]. For this 
reason, the ‘N3‘ model using six predictor input-variables was selected as 
the final ANN model, because it allowed NEE gap-filling on the full 

6 PIRT refers to the photosynthetic irradiance response and temperature 
sensitive respiration model explained in Lloyd (2010).
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dataset, which is needed to calculate the NEE sum and the cumulative 
NEE for the given period of observation (236 days at the Cavemount 
site).

The regression analysis showed that the final ‘N3‘ model with six 
predictor input-variables (R2: 0.68; regression line to the 1:1 line; Fig. 6e 
and f) outperformed the ‘miniRECgap’ and ‘MDSnight’ approaches for 
both the 70:30 and 30:70 training: testing ratios. Although the strength 
of bias for the ‘MDSnight’ approach (with and without u* filtering Es =
0.00 μ mol CO2-C m− 2 s− 1; Table 7b) was much lower compared to the 
strength of the bias observed when using the final ‘N3‘ model (Table 7b), 
the remainder of the model prediction indices showed that the optimised 

shallow ANN gap-filling approach performed better than both ‘mini
RECgap’ and ‘MDSnight’. The final ‘N3‘ model (using six predictors and 
70 % training data) showed similar magnitude of bias (Es = 0.01 μ mol 
CO2-C m− 2 s− 1) compared to the model trained on only 30 % data 
(Table 7b).

4.1.2.2. NEE sums and cumulative NEE. For Cavemount Bog, annual 
NEE sums and cumulative NEE derived from different gap-filling ap
proaches used in this study did not provide conclusive information as to 
whether this site acts as a C sink or C source. The range in annual NEE 
sums from the different approaches (‘miniRECgap’, ‘MDSnight’ and ‘N3‘ 

Fig. 7. Observed vs. predicted net ecosystem exchange (NEE; μ mol CO2-C m− 2 s− 1] for Cavemount Bog (‘challenging’ ecosystem dataset) using different approaches 
to model NEE: (a) ‘MDSnight’ with u* filtering, (b) ‘MDSnight’ without u* filtering, (c) ‘miniRECgap’ full dataset (no clusters); (d) ‘miniRECgap’ dataset split into 
three clusters; (e) ANN model ‘N3’ (six predictors) trained on 30 % data; (f) ANN model ‘N3’ (six predictors) trained on 70 % data. 
NOTE: Data-splitting into clusters was performed using k-means clustering approach. Note the difference in x-axis scale and in crossing y-axis in Fig. 7a and b vs. 
Fig. 7c–f. The observed values are plotted on the y axis and predicted values on the x axis (i.e. OP type of plot) in accordance with the mathematical evidence that OP 
regression should be used when evaluating models, following Piñeiro et al. (2008).
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model) did not overlap (as was the case with DE-Tha). NEE sums derived 
from ‘miniRECgap’ and ‘MDSnight’ were all negative [i.e. ‘mini
RECgap’: 0.33 t CO2-C ha− 1 (no clusters), − 0.23 t CO2-C ha− 1 (three 
clusters); ‘MDSnight’: 0.17 t CO2-C ha− 1 (no u* filtering), − 0.03 t CO2-C 
ha− 1 (with u* filtering); Table 7b], which may be consistent with the 
observed negative Es values (Table 7b). The NEE sum derived from the 
‘N3‘ was positive [0.01 t CO2-C ha− 1; Table 7b], which may be consistent 
with the observed positive Es value (Table 7b). Contrary to the DE-Tha 
site, the shapes of the cumulative NEE curves for Cavemount Bog, 
derived from different gap-filling approaches, showed only a slight 
resemblance to each other (Fig. 8a–f). These findings indicate that we 

may need to account for potential under-/over-estimation in NEE sums 
and in the cumulative NEE values derived from different gap-filling 
approaches, possibly influenced by the negative/positive bias 
(Table 7b). Despite these potential under-/over-estimations, the Cav
emount NEE sums derived from all three gap-filling approaches appear 
to be in the low range and relatively close to zero [i.e. not exceeding 
±0.50 t CO2-C ha− 1]. Furthermore, during the total observation period, 
we can observe fluctuations between positive (C losses) and negative (C 
uptake) cumulative NEE at the Cavemount Bog. These results indicate 
that the Cavemount cutaway peatland ecosystem undergoing rehabili
tation, is in a transition-period and will still need some time before it is 

Fig. 8. Daily cumulative gap-filled net ecosystem exchange (NEE; g CO2-C m− 2] for Cavemount Bog (‘challenging’ ecosystem dataset) using different gap-filling 
approaches: (a) ‘MDSnight’ with u* filtering, (b) ‘MDSnight’ without u* filtering, (c) ‘miniRECgap’ full dataset (no clusters); (d) miniRECgap’ - dataset split into 
three clusters; (e) ANN model ‘N3’ (six predictors) trained on 30 % data; (f) ANN model ‘N3’(six predictors) trained on 70 % data. NOTE: Fig. 8b and c - total period 
of observation is less than a year (236 days). Data-splitting into clusters was performed using k-means clustering approach.
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established as an active long-term C sink.
It appears that the NEE sum and cumulative NEE results derived from 

the final ‘N3‘ model most closely represent the potential transitioning 
conditions at Cavemount Bog, which is evident from the very low NEE 
sum value of 0.01 t CO2-C ha− 1 (closest to zero among the three ap
proaches), as well as from the well-balanced s-shaped cumulative NEE 
curve, where positive and negative cumulative NEE areas appear to 
almost cancel each-other (Fig. 8e and f). Although direct comparison of 
the NEE sums with studies from the literature is not possible due to the 
short period of observation at Cavemount Bog (ca. 8 months), the 
observed findings are in agreement with the low NEE values observed 
during the initial six month period (January to June) at a drained and 
rewetted bare peat Bellacorrick peatland microsite in a study by Wilson 
et al. (2016). Based on the shapes of the cumulative NEE curves (Fig. 8e 
and f) during the observational period from c. February to October 2022, 
one can observe the predominantly positive cumulative NEE occurring 
during c. first half of the total observation period, to predominantly 
negative values occurring during the second half of this period. It would 
appear that Cavemount Bog switched from acting as a C source to 
becoming a C sink at around the end of June or early July 2022. This 
observed seasonal pattern in the Cavemount cumulative NEE is in 
agreement with the overall generally strong summer CO2 uptake 
observed at some of the microsites from another Irish former 
peat-extraction site, Bellacorrick peatland, which was rehabilitated in 
2002 (Wilson et al., 2016). These findings clearly demonstrate the 
importance of assessing the gap-filled NEE to gain deeper insights into C 
dynamics and better understanding whether the ‘challenging’ ecosystem 
has shifted from a C source to C sink. It would be interesting to further 
assess other variables, such as water-table fluctuations, plant biomass, 
length of growing season, etc. at the site during these periods, to 
determine the potential main drivers of C dynamics, which can be 
important information for management of the rehabilitation and resto
ration activities at this site. For peatlands undergoing rehabilitation 
which may be subjected to transitioning conditions, it is recommended 
to assess the annual cumulative NEE curves over a number of years of 
observation. This can provide further insights if the shapes of the annual 
cumulative NEE curves over the observational years are shifting towards 
the shape that can be observed in ecosystems that are well-established C 
sinks (e.g. the ‘classic’ ecosystem example used in this study (Fig. 6)). 
Furthermore, long-term observations are also crucial to assess the 
interannual variations in GHG fluxes, given that large variations can be 
an indicator that the given rehabilitated peatland ecosystem is under
going transition (Wilson et al., 2016).

5. Conclusions

Here, we introduced the ‘miniRECgap’ R-package, which simplifies 
the workflow for flux-partitioning and gap-filling of missing eddy 
covariance (EC) CO2 flux measurements by enabling researchers to 
apply conventional, robust empirical and semi-empirical gap-filling 
methods in five main steps, using GUI supported scripts in just five lines 
of code, and requiring the minimum number of input variables.

There is significant potential to further develop and expand this 
package. Future work is recommended to potentially expand some of the 
‘miniRECgap’ functions to allow for more choice in some of their set
tings when the selected gap-filling methods are applied. Further studies 
on assessing model performance are also recommended (e.g. by 
applying different data-gap scenarios, the use of longer datasets and data 
from a wider range of terrestrial ecosystems).

The main findings from our comparative simple evaluation of the 
‘miniRECgap’ package (against two other gap-filling methods) based on 
used case-study are summarised in the key points below. 

• Gap-filling performance based on case-study

In this study, the shallow ANN (‘N3‘ model) outperformed both 

‘miniRECgap’ and ‘MSDnight’ in the ‘challenging’ ecosystem (Cav
emount Bog). ‘MDSnight’ performed better in the ‘classic’ ecosystem 
(DE-Tha), while ‘miniRECgap’ showed somewhat better performance in 
the ‘challenging’ ecosystem (Cavemount Bog). These findings indicate 
that testing several gap-filling methods is recommended when dealing 
with ‘challenging’ ecosystems. The findings further indicate that ‘mini
RECgap’ performance could potentially improve through application of 
appropriate data-clustering. 

• Customised flux gap-filling approach

This study encourages the consideration and application of custom
ised flux gap-filling approaches, where specific site conditions and data 
availability are assessed in order to select the most suitable method. The 
selection of the most appropriate gap-filling method will largely depend 
on: 

o Data availability: The choice of gap-filling approach can depend on 
the number of input variables required and the quantity and quality 
of the EC flux data available.

o Model evaluation and performance metrics: In-depth comprehensive 
model evaluation is recommended. However, less complex model 
performance metrics (such as used in this study) may also provide 
valuable indicative insights into gap-filling method selection.

o Ecosystem type and characteristics: The complexity and character
istics of the ecosystem in question can influence the choice of the 
most appropriate gap-filing method; therefore, testing several 
methods is advised when dealing with ‘challenging’ environments 
(such as in the case of disturbed or formerly disturbed ecosystems, or 
ecosystems that are very heterogeneous in nature, ecosystems under 
rehabilitation, etc. such as the Cavemount Bog example in this 
study).
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this paper are entirely written in R https://www.R-project.org/ (R Core 
Team, 2024b). The ‘miniRECgap’ (Version v0.1.0) package/software 
source-code is publicly available under the ‘MIT License + file License’ 
[Copyright (c) Trinity College Dublin 2024] on GitHub https://github. 
com/APremrov/miniRECgap (Premrov, 2024), DOI https://doi. 
org/10.5281/zenodo.13228227.

The ‘miniRECgap’ package (Version v0.1.0) is available under the 
‘MIT License + file License’, with license provided in ‘LICENSE.md’ and 
‘LICENSE’ files, which can be accessed at following links: https://github. 
com/APremrov/miniRECgap?tab=MIT-2-ov-file, https://github.com/ 
APremrov/miniRECgap?tab=License-1-ov-file.
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Kasak, K., Maier, R., Morin, T.H., Nemitz, E., Oechel, W.C., Oikawa, P.Y., Ono, K., 
Sachs, T., Sakabe, A., Schuur, E.A., Shortt, R., Sullivan, R.C., Szutu, D.J., Tuittila, E.- 
S., Varlagin, A., Verfaillie, J.G., Wille, C., Windham-Myers, L., Poulter, B., 
Jackson, R.B., 2021. Gap-filling eddy covariance methane fluxes: Comparison of 
machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. 
Agric. For. Meteorol., 108528, 108510.101016/j.agrformet.102021.108528. 

Isaac, P., Cleverly, J., McHugh, I., van Gorsel, E., Ewenz, C., Beringer, J., 2017. OzFlux 
data: network integration from collection to curation. Biogeosciences 14 (12), 
2903–2928, 2910.5194/bg-2914-2903-2017. 

Ito, D., Ishida, S., 2023. The effect of periodical grass mowing and various meteorological 
factors on CO2 flux in a sod-cultured apple orchard. J. Agric. Meteorol. 79 (1), 
18–27. https://doi.org/10.2480/agrmet.D-2422-00010.

Jarvis, P., James, G.B., Landsberg, J.J., 1976. Coniferous forest. In: Monteith, J.L. (Ed.), 
Vegetation and the Atmosphere, Vol. II. Case Studies. Academic Press, London, 
pp. 171–240.

Jia, X., Zha, T.S., Wu, B., Zhang, Y.Q., Gong, J.N., Qin, S.G., Chen, G.P., Qian, D., 
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ElKhidir, H.A.M., Eugster, W., Ewenz, C.M., Ewers, B., Famulari, D., Fares, S., 
Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., 
Galvagno, M., Gharun, M., Gianelle, D., Gielen, B., Gioli, B., Gitelson, A., Goded, I., 
Goeckede, M., Goldstein, A.H., Gough, C.M., Goulden, M.L., Graf, A., Griebel, A., 
Gruening, C., Grünwald, T., Hammerle, A., Han, S., Han, X., Hansen, B.U., 
Hanson, C., Hatakka, J., He, Y., Hehn, M., Heinesch, B., Hinko-Najera, N., 
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