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1. Introduction

There are numerous results giving the upper bounds on the second largest modulus of eigenvalues
of primitive stochastic matrices (see [3,5-8]). In [1], by using Seneta’s [6] definition of coefficients of
ergodicity, we have provided an attainable upper bound on the second largest modulus of eigenvalues
of a primitive matrix that makes use of the so-called scrambling index (see below).

For vertices u,v and w of a digraph D, if (u,w), (v,w) € E(D), then vertex w is called a common out-
neighbour of vertices u and v. The scrambling index of a primitive digraph is the smallest positive integer

k such that for every pair of vertices u and v, there exists a vertex w such that u X wandvXwinD.
The scrambling index of D will be denoted by k(D).
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Fig. 1. D .

The main result in [1] is the following.

Theorem 1.1 [1]. D be a primitive digraph with n vertices and girth s. Then
kD) < K,s). (1)
Equality holds if D = Ds 5 and gcd(n,s) = 1, where Ds , is a digraph as in Fig. 1,K(n,s) = k(n,s) +n — s and

) (%) n, whensisodd,
(n,s) = (%> s, whensiseven.

In this paper, we characterize all the primitive digraphs D such that k(D) = K(n, s).

2. Some results on scrambling index

For terminology and notation used here we follow [1,2].

Let D = (V,E) denote a digraph (directed graph) with vertex set V = V (D), arc set E = E(D) and order
n. Loops are permitted but multiple arcs are not. A u — v walk in a digraph D is a sequence of vertices
u,uq,...,u;,v e V(D) and a sequence of arcs (u,uq), (Ug,Us),..., U V) € E(D), where the vertices and
arcs are not necessarily distinct. A closed walk is a u — v walk where u = v. A cycle is a closed u — v

walk with distinct vertices except for u = v. The notation u X, v is used to indicate that there is a
u — v walk of length k. The distance from vertex u to vertex v in D, is the length of a shortest walk from
u to v, and denoted by d(u, v). A p-cycle is a cycle of length p, denoted C,. If the digraph D has at least
one cycle, the length of a shortest cycle in D is called the girth of D, denoted s(D). The number of arcs
entering (leaving) a vertex u is called the in-degree (out-degree) of u, denoted deg~(u) (deg™ (u)).

A digraph D is called primitive if for some positive integer t there is a walk of length exactly t from
each vertex u to each vertex v. If D is primitive, the smallest such t is called the exponent of D, denoted
by exp(D). A digraph D is primitive if and only if it is strongly connected and the greatest common
divisor of all cycle lengths in D is equal to one [2]. For a positive integer r, we define D" to be the digraph

with the same vertex set as D and arc (u, v) if and only if u 5 v in D. Consequently, the scrambling index
is the smallest positive integer k such that each pair of vertices has a common out-neighbour in D¥.
We define the local scrambling index of u and v as

kyv(D) = min{k : u X wandvX w, for somew e V(D)}.
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Then

kD) = u'{/lgéz(D)[ku,v(D)L

Lemma 2.1 [1]. Let p and s be positive integers such that gcd(p,s) =1 and p > s > 2. Then for each
t,1 <t < max{s— 1, |p/2]}, theequation xp + ys = t has a unique integral solution (x,y) with |x| < |s/2]
and |y| < Lp/2].

Let D be a primitive digraph, and let s and p be two different cycle lengths in D and gcd(s,p) =1,
where 2 < s < p < n.Foru,v € V(D), we can find a vertex w € V(D) such that there are directed walks
from u to w and v to w such that both walks meet cycles of lengths s and p. Denote the lengths of these
directed walks by I(u, w) and I(v, w). We say that w is a double-cycle vertex of u and v, and we let

luy = max{lu, w),l(v,w)}.
Lemma 2.2 [1]. Let D be a primitive digraph, and let s and p be two different cycles lengths in D. Suppose
that2 < s < p < nand ged(s,p) = 1. Then

kuy(D) < min{ly|s, |x|p} + Ly, (2)
where (x,y) is the integer solution of the equation xp + ys = r with minimum absolute value and where

[l(u,w) — I(v,w)| = r(mods).

Corollary 2.3 [1]. Let D be a primitive digraph of order n with a Hamilton cycle, and let the girth of D be s,
where1 < s < n—1and gcd(s,n) = 1. Ifk(D) = K(n,s), then D contains a subgraph isomorphic to Ds .

Lemma 2.4 [1]. Let D = Ds . Then for all vertices u and v in D, I, (D) < max{n —s, L%J}.

Let r be the positive integer that is defined as follows:

%(mod s), if sis odd and n is even,

r= (3)

12 (mods), if both s and n are odd.

Corollary 2.5 [1]. Suppose that gcd(s,n) = 1, and s > 2. Then for u,v € V(Ds ), without loss of generality
take u > v, kyy(Dsn) = K(n,s) if and only ifu = n and

(1) v=n—r—tsforsomet ¢ {0,1,2,...,“%”},whensisodd.
(2) v=n— 5, whensis even.

Lemma 2.6 [1]. Let D be a primitive digraph with a Hamilton cycle and let the girth of D be s, where
gcd(n,s) = 1,2 < s < n. Then either the cycle C; is formed from s consecutive vertices on the Hamilton
cycle or there is another cycle of length p such that gcd(s, p) = q, where q < 5 when sis even and q < §
when s is odd.

Lemma 2.7 [1]. Let D be a primitive digraph with n vertices, and suppose that s is the girth of D with s > 2.
If there is another cycle of length p,s < p < n, such that gcd(s,p) = 1, then
kD) < K(n,s). (4)
Furthermore, if p < n, then k(D) < K(n,s).

Let D be a primitive digraph and L(D) = {s,a, ..., a;} be the set of distinct cycle lengths of D, where
S<ay <---<d.



1102 M. Akelbek, S. Kirkland / Linear Algebra and its Applications 430 (2009) 1099-1110

Lemma 2.8 [1]. Let D be a primitive digraph with n vertices, and s be the girth of D with s > 2. Let
L(D) = {s,aq,...,ar}. Ifgcd(s,a;) # 1 foreachi=1,2,...,r, Then

kD) < K(n,s).
Corollary 2.9 [1]. Let D be a primitive digraph of order n, and s be the girth of D with s > 2. If there is a
cycle of length p,s < p < n, such that gcd(s,p) < s/3 or ged(s,p) < s/3 and Cs N Cp + @, then

kD) < K(n,s).

3. Characterization of primitive digraphs with k(D) = K(n,s)
3.1. Properties of a primitive digraph D with k(D) = K(n, s)

Let D be a primitive digraph with n vertices, s be the girth of D, and k(D) = K(n, s). Then by Lemmas
2.7 and 2.8 there is a cycle of length p, s < p < n, such that gcd(s,p) = 1 and p = n. Since D contains a
Hamilton cycle, then by Corollary 2.3 D contains Ds, as a subgraph. From the above, we conclude the
following.

Theorem 3.1. Let D be a primitive digraph with n vertices, let the girth of D be s > 2, and suppose that
k(D) = K(n,s). Then

(1) There is no cycle of length p,s < p < n, such that gcd(s,p) = 1.
(2) D contains Ds as a subgraph and ged(s,n) = 1.

In the following we only consider primitive digraphs that contain Ds; as a subgraph, and we label
the digraph D as in Fig. 1. For Ds 5, by Corollary 2.5 we know all the pairs of vertices u,v € V(Ds ) such
that ky v(Ds ) = K(1,5).

Proposition 3.2 [4]. The tth power of a cycle of length p is the disjoint union of gcd(p, t) cycles of length
p/ged(p, t).

Definition 3.3. If the digraph D contains at least two different cycles, then the distance between two
different cycles in D is defined as follows
d(C’,C"y = min{du,vju e C',veC'},

where €’ and C” are different cycles in D.
Lemma 34. Let D = D, gcd(n,s) = 1, and let t be a positive integer such that t|s. Then

(i) The digraph D' contains a Hamilton cycle and t disjoint cycles of length s/t.
(ii) Every cycle of length s/t is formed from s/t consecutive vertices on the Hamilton cycle in Dt.
Denote the t cycles of length s/t in Dt by Hy,H,, .. .,H; in order as in Fig. 2, and we say that H; and
H(i11)( mod ry» Where i = 1,2,.. ., t, are neighbour cycles in D*. We also have the following:
(iii) The distance between two neighbour cycles of length s/t in Dt is either [%57 or [2757 + 1.

Proof. (i) Since gcd(s,n) = 1, then ged(t, n) = 1. Therefore by Lemma 3.2, we know that D¢ contains a
Hamilton cycle and ¢ disjoint cycles of length s/t.

(ii) For vertices i,1 < i < t, we have i+ pt € G5, 0 < p < § — 1. Also we have

St . . (S .
1—t>1+t—t>1+2t—t>..4—[>z+<E—1)t—t>1.
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Therefore every cycle of length s/t is formed from s/t consecutive vertices on the Hamilton cycle
in D,

(iii) There are two different types of directed paths of length t in Ds . One type contains the arc
1 — s, and the other type does not contain the arc 1 — s. Observing D!, we know that every arc in the
Hamilton cycle in D¢ corresponds to a directed path of length t in D , that does not contain thearc 1 — s,
and all the other arcs, we call them shortly s-arcs, correspond to directed paths of length t in D;;, that
contain the arc 1 — s. Also notice thatif u; — uy isans-arc,then1 < uy <tands—(t—-1) <uy <s.

Let d(H;, Hi11)( mod 1)) = ¢ for some i, then there exist a vertex u € H; and a vertex v € Hj 1) mod 1)
such that d(u,v) = q in D*. From the digraph D!, we know that deg’(u) = 2 and deg™ (v) = 2. Hence
u is the starting vertex of an s — arc and v is the ending vertex of an s — arc. Therefore 1 < u < t and
s—(t-1H<K<v<s.

Since in Df, we have u 4 v, then in Ds,; we have u % v and this directed walk does not go through
thearc1 — s.

In Ds,n, the directed path from vertex u to vertex v without going through the arc 1 — s is of the

! s 1
form u —> 15 n"5 s 3 v, where I}, < t — 1. Thus

n-s+1<qg<n-s+1+t—-1)+(~-1),and
n—-s+1<qg<n-s+¢-1)+t.

Hence

n-—s n-—s
— | <qg< | — .
| <a< [P ]+

Therefore the distance between any two neighbour cycles of length s/t is 2227 or [2] + 1. [

3.2. The case s is even

Lemma 3.5. LetD be aprimitive digraph that contains Ds , as a subgraph, where s is the girth of D, gcd(n, s) =
1 and s is even. If D contains another cycle of length p, where s < p < n. Then k(D) < K(n, s).
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Proof. Let C, be the cycle of length p in the primitive digraph D.

Case 1: Suppose gcd(s,p) = r, with r < 5. Then by Corollary 2.9 we have k(D) < K(n,s).

Case 2: Suppose gcd(s, p) = 3.1fCs N Cp # ¥, we are also done by Corollary 2.9.1f Cs N G, = 9, consider
D3. There are 5 cycles of length 3 and $ cycles of length 3{. Letp = %". Foru,v e V(D%), Ly <n-3.
Hence

o (3-1Y
L (Dé) < (?)P +n-3
=p' +n-3.
Sincepgn—sp/<3—"—3wehave
kuy(D) < (n+p—3) —+n— 2s < k(n,s) +n—s.

Case 3. gcd(s,p) = 5. Since s is even, then n is odd. We know there is only one pair of vertices
u,v € V(Dsp) such that ky y(Dsn) = k(n,s) + n — s, and they are vertexnandn — 3 Con51der the digraph

Dz.1tis easy to see that vertices n and n — 5 are consecutive vertices on the Hamilton cycle in the

digraph D2, and there are 5 cycles of length 2 and 5 cycles of length p’ respectively, where p = 2p and
p’is odd (since p = 5p’). Let p’ = 2t + 1 for some nonnegative integer t. For vertex n — 5, we can find
a vertex w such that the directed walk from vertex n — 3 to vertex w is a path through both cycles of

length2 and p’,and I(n — 3,w) < n — p’. Since inD%,we haven > n — 5.Thenl(n,w) —I(n — §,w) =1
and [(n,w) < n — p’ + 1. Therefore in the digraph D3, we have

I(n,w)+2t
n' "MFy and

< n; and hence

k,w_%(D) < (;) n<kn,s)y+n-s.

Case 4. gcd(s,p) = s. Suppose p = ts, where 1 <t < .

Ift =1, thenp = s.If the cycle G is formed from s vertices that are not consecutive on the Hamilton
cycle, then by Lemma 2.6, there exists another cycle of length g such that ged(s, q) < 3. For this case,
from the previous results we know that k,, n-3 (D)k(n,s) +n —s.

Ifthe cycle Gy is formed by joining vertex i to vertex (i + s — 1)(modn), wherei = 1, then consider the
subgraph D . Note that since i # 1,although p = s,but Gy # Cs. Therefore Dy, # Ds . In Dy, the upper
bound is attained for only one pair of vertices, and they are vertex i — 1 and vertex (i + s — 2)(modn).
Since i — 1 # n, we have k;, n-3 s (Dpn) < K(n,s). Therefore in the digraph D, we also have

nn—f(D) < kn,s)+n-—s.

Now suppose that t > 1, then s < 5. If G N Gy + @, there is at least one vertex w belonging to the
cycle Gy suchthats +1 < w < n — 5 — 1. Otherwise the cycle Cp only has to contain vertices between
vertex s to vertex 1Tand nton— 5 + 1. But there are only s + § such vertices and s + 5 < p. Hence

for vertex n — 7, we have I(n — 7,W) <n—2.Then I(n,w) < n—sand I(n,w) —l(n — ) = % In Dsp,
when n > 3, we get

n—1
— S
n-s (2
n—s —>) s and
n-2_%s%,s

2

When n < 3, we have



M. Akelbek, S. Kirkland / Linear Algebra and its Applications 430 (2009) 1099-1110 1105

n-1
n—s (2 )S

n—s — s and
s n—35+n-s (5-1)n

n-- — s — s
2

Note that 251 > =1 > rand let 251 = ¢ +t". Then (%) s =p +t's, where p = st. Hence

I(n,w +t's
n' 2 WP W and
sln-3w) 3n

n—i — W—Ww.

Therefore k,, n-3 s (D) < I(n,w) + p +t's <k(mn,s)+n-s.

IfGnNG = @ for vertex n — ? we can find a vertex w € Cp such that I(n — j,w) —5s—p. Then
In,w)<n-s—p+ 35 and I(n, w)—l(n— $.w)=3$. Since 151 > 121 > ¢ et 251 = t/(modt). For a
nonnegative integer h we have %>* = th +t'.If p’ = 0, then (%) s = hts = hp, and so

l(nW)W—p>w and
I(n—5, s
stk

Therefore k;, n-s s(D) < hp +I(n,w) < k(n,s) +n—s.
Ift' +0,t > t/ > 0, we know that

s, (-1, _s
2 2 2

or equivalently
/ s S
(th-i—t)s—in_ 5
Adding (t — p’)s on both sides, we get

hts +t's+ (t —t')s — %n:—%+(t—t’)s

or
s
(h+ Dts — <§n+(t—t/—1)s> ==
Therefore we have
L

w and
S 111——25 W h+1)p
(_) )W(—>) w

2

Then kn'n_%(D) <in+ (-t -Ds+Ilnw) <3n+ -t -)s+n—-s—p= (%)s+n757
t's < k(n,s) +n —s, as desired. [

Theorem 3.6. Let D be a primitive digraph of order n and girth s, where s is even. Then k(D) = K(n,s) if
and only if D = Ds, and ged(n,s) = 1.
3.3. The case s is odd

Lemma 3.7. Let D be a primitive digraph that contains Ds 5 as a subgraph, where gcd(n,s) = 1,sis odd and
s > 3.If D contains a cycle of length p with gcd(s, p) < 3, then k(D) < K(n, s).
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Proof. Case 1. gcd(s,p) = 1,1 < % Then by Corollary 2.9 k(D) < k(n,s) +n —s.
Case 2. gcd(s,p) = 3.1f G N G # ¥, we are done by Corollary 2.9.If s N G, = ¢, consider D3. There

are § cycles of length 3 and § cycles of length BT”, letp’ = %". For u,v e V(D%), we have [, <n-3.
Hence

s 3-1
ku,v(Di) < <T>p’+n—3=p’+n—3.
Sincepgn—sandp’g35—”—3,weget

ku,v(D)g%(n+p’—3)<¥+n—2$<k(n,s)+n—s. O

Next we consider a primitive digraph D that contains Ds, as a subgraph, where gcd(s,n) = 1 and s
is odd, and where the digraph D also contains another cycle of length p with ged(s,p) = s.

Lemma 3.8. Let D be a primitive digraph that contains D, as a subgraph, where gcd(s,n) = 1,sis odd and
s > 3. Suppose that the digraph D also contains another cycle of length p with gcd(s,p) =s. If CGs N Cp £ 9,
then k(D) < K(n,s).

Proof. Suppose that p = ts and that u is a vertex of Ds, such that k(D) = (%) n+n-s.
If u ¢ Cs, then in the digraph Ds;; we have

=1
nBs(Z—Qns and

u-s . ms
u—S—:5,

where m is a positive integer such that ms — % n=n-u

If there is a vertex w such that s + 1 < w < u and it belongs to the cycle Cp, then choose w as the
double-cycle vertex of u and n. Then we have [(u,w) < u —s,I(n,w) < n—sandl(n,w) — l(u,w) =n —u.
Also since ms > n > p and p = ts, then ms = p + t’s for some nonnegative integer t’. Then

=1\
n 1oy (2—2 w and
lw,w) p+t's
u—smw-—mw

Thus knu (D) < (%) n+1n,w) < kn,s)+n—s.

Otherwise there is an arc from vertexj,u < j < n,tovertexi, 1 < i < s.Then we can get from vertex
n to a vertex i on the cycle Cs in less than n — s steps. Therefore ky (D) < k(n,s) +n —s.

Next consider u € G;. If p = s, suppose that the cycle G, is formed from s consecutive vertices as in
Fig. 3.

Ifv=u+1, then I(n,w) <n—s and [(u,w) = s # n —s. Therefore k;;(D) < k(n,s) +n—s. If v+
u + 1, then consider the subgraph Dy . In Dy, for some vertex v’ we have k,_1 . (Dpn) = K(n,). Since
v —1 4+ u,n, then kny(Dpn) < k(n,s) +n — s. Therefore kny(D) < k(n,s) +n —s.

If the cycle G, is not formed from s consecutive vertices, then by Lemma 2.6, there exists a cycle of
length g such that ged(s, q) < % In that case, by Lemma 3.7, we have k(D) < k(n,s) +n —s.

If p > s, then take the first vertex w on cycle G, from vertex n as the double-cycle vertex of u and n.
Since p > 2s, I(n,w) < n — 2s. Since l(u,n) < s, then l(u,w) < n —s.

In the digraph Dsp, there is a vertex v/, u < v’ < n, such that d(u,n) =dn,u’) =n—-uv/, ky,w(D) =
k(n,s) +n—sand

s—1
nBs(z—Qns and

S U—s ms
u—Ss—sS,
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V+S

Fig. 3. Dsn U{v — v + s}

where ms — (%) n=n—u'.Sincems > n > p,thenms = p + ts for some nonnegative integer t. In the
digraph D we have

I(n,w +ts
n 8wy and

w2,

where I(u,w) — I(n,w) = n — u’. Therefore kn (D) < (%) n+luw) < (%) n+n-s. O

Lemma 3.9. Let D be a primitive digraph that contains Ds as a subgraph, suppose that s is odd,s > 3, and
that there is another cycle of length p such that Cs N C, = ¢ and ged(s, p) = s. If the cycle of length p is not
formed from p consecutive vertices on the Hamilton cycle, then k(D) < K(n,s).

Proof. Since the cycle of length p is not formed from p consecutive vertices on the Hamilton cycle,
then there exists an arc from vertex i to vertex j, where s+ 1 < i <j <nandj> i+ 1. Then for any
two vertices u,v € V(D), we can get to vertices s1,5, € Cs in less than n — s — 1 steps. Therefore k(D) <
kn,s)+n-s—1. O

The only remaining case is that D is a digraph constructed from Ds; by adding an arc from vertex
utovertex u+ms— 1, wheresisodd,s > 3,s <u <n—ms+1and m is a positive integer such that
1<m =t

Recall that in (3) we define the positive integer r as follows

% (mods), if sis odd, n is even,
=

1=3(mods), if both s and n are odd.
In both cases n — 2r can be divided by s. Let

n-—2r
h= R (5)

Note that in Dy, h + 1 is the number of pair of vertices whose local scrambling indices are K(n, s).
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Lemma 3.10. Let D be a digraph constructed from Dsn,s > 3, by adding an arc from vertex u to vertex
u+ms—1, wheres <u <n—ms+ 1. Then knn_r—ts(D) = K(n,s) if and only ifu=n—r—ts+1 and
”zﬂ —t—1=0(modm).

Proof. For the digraph D = Ds , the local scrambling index of nand n —r — tsis K(n,s) when 0 < t <
”‘Tzr. We only consider those pairs of vertices.
Suppose that u = n —r — ts + 1 for some t. From the digraph we know that

r+ts—ms
—

n n—r—ts+ms and

n—-ms
n—r—ts—n-—r—ts+ms
andn—ms—(r+ts—ms)=n—r—ts=r+ (h—1t)s, since n = 2r + hs. When n is even,

n+h s—1
( 5 —t)s—(T>n:r+(h—t)s.

Supposem — 1 — qis the smallest nonnegative integer such that (”%h —t+m—-1-— q) scanbedivided
by p = ms, where 0 < g < m — 1. Then

<"§—"—t+m—1—q)s

r4ts—ms
n — n—r—ts+ms — n—r—ts+ms
and
n—ms %)n+(m—1—q)s
n—-r—ts—sn-r—ts+ms — n—r—ts+ms.

Therefore knpn_r_ts(D) = (%) n+n-—s—gs.

Since ("T”’ —t+m-1- q) s can be divided by p = ms, then

nzﬁ —t—1=q(modm).

Therefore if " — ¢ — 1 = 0(modm), we have
knn—r—ts(D) = K(n,s).

If 150t — 1 0(modm), then knp—r—ts < K(n,$).
Next we consider all other pairs of vertices n and u such that k; ;;(Ds n) = K(n,s).
Ifu#n-r—ts+1,letv=u+ms— 1. Consider the following three cases.
Casel.n—r —ts+1 < u. We have

n-v
n— v and
n—r—ts+n—v
nor—ts"TEYy

In addition we haven —r —ts+ n—-v) —(n—v) =n—r —ts =r + (h — t)s. Then we obtain

v (#—H—m—l—q)s

n—v — v and
s=1
=2 )n+(m—1-q)s
n—r—ts+n—v 2
n—r—ts — v( > — V.

Therefore  knnr_ts(D)=n—r1—ts+ N —v) + (%)n+(m— 1-—q)s <n—ms+ (%)n+(m—1
—q)s:(%)n—kn—s—qsgk(n,s)-kn—s.
Case 2.n —r —ts > v. We have
nS'v and

n—-r—ts—v
n—r—ts — v,
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andn—v—-Mn—-r—ts—v)=r+ts. Also

n_h+t s (=1 n=r+ts
2 2 - ’

Then
v (%)nﬂm—l—q)s
n—yv — v and
n—h
Ner—ts—v (T—t+m—1—q)s
n—-r—ts — v — V.

Therefore knn_r_is(D) =n — v + (%) n+m-—1—q)s<n—ms+ (%) n+m-1-—q)s= (%) n+

n—s—gqs<kmns)y+n-s.
Case3.u < n—r—ts < v.Choose v as the double-cycle vertex of n and n — r — ts. Then

n’¥v and

n—r—ts—u+1
n—r—ts — V.

fn—-v>n—-r—ts—u+1,sincen—-v—-n—-r—ts—u+1)=r+ts—vV-u+1)=r+({—-m)sand
v > ms, then

s—1

knn—r—ts(D) < (T) n+n—-v+@m-1-qs

s—1
:<T>n+n—57v+msqu
< kn,s)+n-—s.

fn—-v<n—-r—ts—u+1,thenn—-r—ts—u+1-n-v)=—-r—-ts+v—-u+1=—-r—ts+ms=
s—r+(@m-1-1t)s.Then

s—1 n N
(T)n—QEJ—t)s_s—r+(m—1—t)s

for some integer t’. Therefore

s—1
knn—r—ts(D) < (T) n+n—v+4+@m-1-q)s

=<%>n+n—s—v+ms—qs<k(n,s)+n—s. a

Lemma 3.11. Let D be a digraph constructed from Dsn(s > 3) by adding arcs from vertex u; to vertex
u; +m;s — 1, where u; > s,m; > 1,i = 1,2 and uq # uy. Then k(D) < K(n,s).

Proof. Let D;, i = 1,2, be the subgraph of D that contains Ds, and the cycle of length m;s, then by
Lemma 3.10, we know that there is at most one pair of vertices, vertex n and vertex u; — 1, such that
knu;—1(Dj) = K(n,s). Since uy # uy, In the digraph D, we have k;,,,_1(D) < K(n,5). [

Concluding the above results, we have the following theorem.

Theorem 3.12. Let D be a primitive digraph of order n and girth s, where s is odd and s > 3. Then k(D) =
K(n,s) if and only if gcd(n,s) = 1 and D = Dg, or,D = Dsy U {n —r —ts + 1 — n — r — ts + ms} for some
me N and some t € {1,2,...,“%” — 1} such that ”T“T —t —1=0(modm), where r and h are as in (3)
and (5).
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