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The scrambling index of a primitive digraph D is the smallest pos-

itive integer k such that for every pair of vertices u and v, there is

a vertex w such that we can get to w from u and v in D by directed

walks of length k; it is denoted by k(D). In [M. Akelbek, S. Kirkland,

Coefficients of ergodicity and the scrambling index, preprint], we

gave the upper bound on k(D) in terms of the order and the girth of a

primitive digraph D. In this paper, we characterize all the primitive

digraphs such that the scrambling index is equal to theupperbound.

Published by Elsevier Inc.

1. Introduction

There are numerous results giving the upper bounds on the second largest modulus of eigenvalues

of primitive stochastic matrices (see [3,5–8]). In [1], by using Seneta’s [6] definition of coefficients of

ergodicity, we have provided an attainable upper bound on the second largest modulus of eigenvalues

of a primitive matrix that makes use of the so-called scrambling index (see below).

For vertices u, v and w of a digraph D, if (u,w), (v,w) ∈ E(D), then vertex w is called a common out-

neighbour of vertices u and v. The scrambling index of a primitive digraph is the smallest positive integer

k such that for every pair of vertices u and v, there exists a vertex w such that u
k→w and v

k→w in D.

The scrambling index of D will be denoted by k(D).
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Fig. 1. Ds,n .

The main result in [1] is the following.

Theorem 1.1 [1]. D be a primitive digraph with n vertices and girth s. Then

k(D) � K(n, s). (1)

Equality holds if D = Ds,n and gcd(n, s) = 1,where Ds,n is a digraph as in Fig. 1,K(n, s) = k(n, s) + n − s and

k(n, s) =
⎧⎨
⎩

(
s−1
2

)
n, when s is odd,(

n−1
2

)
s, when s is even.

In this paper, we characterize all the primitive digraphs D such that k(D) = K(n, s).

2. Some results on scrambling index

For terminology and notation used here we follow [1,2].

LetD = (V , E) denote a digraph (directed graph)with vertex set V = V(D), arc set E = E(D) and order

n. Loops are permitted but multiple arcs are not. A u → v walk in a digraph D is a sequence of vertices

u,u1, . . . ,ut , v ∈ V(D) and a sequence of arcs (u,u1), (u1,u2), . . . , (ut , v) ∈ E(D), where the vertices and

arcs are not necessarily distinct. A closed walk is a u → v walk where u = v. A cycle is a closed u → v

walk with distinct vertices except for u = v. The notation u
k−→ v is used to indicate that there is a

u → vwalk of length k. The distance from vertex u to vertex v inD, is the length of a shortest walk from

u to v, and denoted by d(u, v). A p-cycle is a cycle of length p, denoted Cp. If the digraph D has at least

one cycle, the length of a shortest cycle in D is called the girth of D, denoted s(D). The number of arcs

entering (leaving) a vertex u is called the in-degree (out-degree) of u, denoted deg−(u) (deg+(u)).

A digraph D is called primitive if for some positive integer t there is a walk of length exactly t from

each vertex u to each vertex v. If D is primitive, the smallest such t is called the exponent of D, denoted

by exp(D). A digraph D is primitive if and only if it is strongly connected and the greatest common

divisor of all cycle lengths inD is equal to one [2]. For a positive integer r, we defineDr to be the digraph

with the same vertex set asD and arc (u, v) if and only if u
r→ v inD. Consequently, the scrambling index

is the smallest positive integer k such that each pair of vertices has a common out-neighbour in Dk .

We define the local scrambling index of u and v as

ku,v(D) = min{k : u k→w and v
k→w, for some w ∈ V(D)}.
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Then

k(D) = max
u,v∈V(D)

{ku,v(D)}.

Lemma 2.1 [1]. Let p and s be positive integers such that gcd(p, s) = 1 and p > s � 2. Then for each

t, 1 � t � max{s − 1, �p/2�}, the equation xp + ys = t has a unique integral solution (x, y)with |x| � �s/2�
and |y| � �p/2�.

Let D be a primitive digraph, and let s and p be two different cycle lengths in D and gcd(s, p) = 1,

where 2 � s < p � n. For u, v ∈ V(D), we can find a vertexw ∈ V(D) such that there are directed walks

from u tow and v tow such that both walks meet cycles of lengths s and p. Denote the lengths of these

directed walks by l(u,w) and l(v,w). We say that w is a double-cycle vertex of u and v, and we let

lu,v = max{l(u,w), l(v,w)}.

Lemma 2.2 [1]. Let D be a primitive digraph, and let s and p be two different cycles lengths in D. Suppose

that 2 � s < p � n and gcd(s, p) = 1. Then

ku,v(D) � min{|y|s, |x|p} + lu,v, (2)

where (x, y) is the integer solution of the equation xp + ys = r with minimum absolute value and where

|l(u,w) − l(v,w)| ≡ r(mods).

Corollary 2.3 [1]. Let D be a primitive digraph of order n with a Hamilton cycle, and let the girth of D be s,

where 1 � s � n − 1 and gcd(s,n) = 1. If k(D) = K(n, s), then D contains a subgraph isomorphic to Ds,n.

Lemma 2.4 [1]. Let D = Ds,n. Then for all vertices u and v in D, lu,v(D) � max{n − s, � n
2
�}.

Let r be the positive integer that is defined as follows:

r ≡
{

n
2
(mod s), if s is odd and n is even,

n−s
2

(mod s), if both s and n are odd.
(3)

Corollary 2.5 [1]. Suppose that gcd(s,n) = 1, and s � 2. Then for u, v ∈ V(Ds,n),without loss of generality

take u > v, ku,v(Ds,n) = K(n, s) if and only if u = n and

(1) v = n − r − ts for some t ∈
{
0, 1, 2, . . . , n−2r

s

}
, when s is odd.

(2) v = n − s
2
, when s is even.

Lemma 2.6 [1]. Let D be a primitive digraph with a Hamilton cycle and let the girth of D be s, where

gcd(n, s) = 1, 2 � s < n. Then either the cycle Cs is formed from s consecutive vertices on the Hamilton

cycle or there is another cycle of length p such that gcd(s, p) = q, where q � s
2
when s is even and q � s

3
when s is odd.

Lemma 2.7 [1]. Let D be a primitive digraph with n vertices, and suppose that s is the girth of D with s � 2.

If there is another cycle of length p, s < p � n, such that gcd(s, p) = 1, then

k(D) � K(n, s). (4)

Furthermore, if p < n, then k(D) < K(n, s).

Let D be a primitive digraph and L(D) = {s, a1, . . . , ar} be the set of distinct cycle lengths of D, where

s < a1 < · · · < ar .
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Lemma 2.8 [1]. Let D be a primitive digraph with n vertices, and s be the girth of D with s � 2. Let

L(D) = {s, a1, . . . , ar}. If gcd(s, ai) /= 1 for each i = 1, 2, . . . , r, Then

k(D) < K(n, s).

Corollary 2.9 [1]. Let D be a primitive digraph of order n, and s be the girth of D with s � 2. If there is a

cycle of length p, s < p � n, such that gcd(s, p) < s/3 or gcd(s, p) � s/3 and Cs ∩ Cp /= ∅, then
k(D) < K(n, s).

3. Characterization of primitive digraphs with k(D) = K(n, s)

3.1. Properties of a primitive digraph D with k(D) = K(n, s)

Let D be a primitive digraph with n vertices, s be the girth of D, and k(D) = K(n, s). Then by Lemmas

2.7 and 2.8 there is a cycle of length p, s < p � n, such that gcd(s, p) = 1 and p = n. Since D contains a

Hamilton cycle, then by Corollary 2.3 D contains Ds,n as a subgraph. From the above, we conclude the

following.

Theorem 3.1. Let D be a primitive digraph with n vertices, let the girth of D be s � 2, and suppose that

k(D) = K(n, s). Then

(1) There is no cycle of length p, s < p < n, such that gcd(s, p) = 1.

(2) D contains Ds,n as a subgraph and gcd(s,n) = 1.

In the following we only consider primitive digraphs that contain Ds,n as a subgraph, and we label

the digraph D as in Fig. 1. For Ds,n, by Corollary 2.5 we know all the pairs of vertices u, v ∈ V(Ds,n) such

that ku,v(Ds,n) = K(n, s).

Proposition 3.2 [4]. The tth power of a cycle of length p is the disjoint union of gcd(p, t) cycles of length

p/ gcd(p, t).

Definition 3.3. If the digraph D contains at least two different cycles, then the distance between two

different cycles in D is defined as follows

d(C ′,C ′′
) = min{d(u, v)|u ∈ C ′, v ∈ C

′′ },
where C ′ and C

′′
are different cycles in D.

Lemma 3.4. Let D = Ds,n, gcd(n, s) = 1, and let t be a positive integer such that t|s. Then

(i) The digraph Dt contains a Hamilton cycle and t disjoint cycles of length s/t.

(ii) Every cycle of length s/t is formed from s/t consecutive vertices on the Hamilton cycle in Dt .

Denote the t cycles of length s/t in Dt by H1,H2, . . . ,Ht in order as in Fig. 2, and we say that Hi and

H(i+1)( mod t), where i = 1, 2, . . . , t, are neighbour cycles in Dt . We also have the following:
(iii) The distance between two neighbour cycles of length s/t in Dt is either � n−s

t � or � n−s
t � + 1.

Proof. (i) Since gcd(s,n) = 1, then gcd(t,n) = 1. Therefore by Lemma 3.2, we know that Dt contains a

Hamilton cycle and t disjoint cycles of length s/t.

(ii) For vertices i, 1 � i � t, we have i + pt ∈ Cs, 0 � p � s
t − 1. Also we have

i
t→ i + t

t→ i + 2t
t→ · · · t→ i +

(
s

t
− 1

)
t

t→ i.
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Fig. 2. Dt .

Therefore every cycle of length s/t is formed from s/t consecutive vertices on the Hamilton cycle

in Dt .

(iii) There are two different types of directed paths of length t in Ds,n. One type contains the arc

1 → s, and the other type does not contain the arc 1 → s. Observing Dt , we know that every arc in the

Hamiltoncycle inDt corresponds toadirectedpathof length t inDs,n thatdoesnot contain thearc1 → s,

and all the other arcs, we call them shortly s-arcs, correspond to directed paths of length t in Ds,n that

contain the arc 1 → s. Also notice that if u1 → u2 is an s-arc, then 1 � u1 � t and s − (t − 1) � u2 � s.

Let d(Hi,H(i+1)( mod t)) = q for some i, then there exist a vertex u ∈ Hi and a vertex v ∈ H(i+1)( mod t)

such that d(u, v) = q in Dt . From the digraph Dt , we know that deg+
(u) = 2 and deg−

(v) = 2. Hence

u is the starting vertex of an s − arc and v is the ending vertex of an s − arc. Therefore 1 � u � t and

s − (t − 1) � v � s.

Since in Dt , we have u
q→ v, then in Ds,n we have u

qt→ v and this directed walk does not go through

the arc 1 → s.

In Ds,n, the directed path from vertex u to vertex v without going through the arc 1 → s is of the

form u
l1−→1

1→n
n−s→ s

l2→ v, where l1, l2 � t − 1. Thus

n − s + 1 � qt � n − s + 1 + (t − 1) + (t − 1), and

n − s + 1 � qt � n − s + (t − 1) + t.

Hence⌈
n − s

t

⌉
� q �

⌈
n − s

t

⌉
+ 1.

Therefore the distance between any two neighbour cycles of length s/t is � n−s
t � or � n−s

t � + 1. �

3.2. The case s is even

Lemma 3.5. LetDbeaprimitivedigraph that containsDs,n asa subgraph,where s is thegirthofD, gcd(n, s) =
1 and s is even. If D contains another cycle of length p, where s � p < n. Then k(D) < K(n, s).
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Proof. Let Cp be the cycle of length p in the primitive digraph D.

Case 1: Suppose gcd(s, p) = r, with r < s
3
. Then by Corollary 2.9 we have k(D) < K(n, s).

Case2: Supposegcd(s, p) = s
3
. IfCs ∩ Cp /= ∅,wearealsodonebyCorollary2.9. IfCs ∩ Cp = ∅, consider

D
s
3 . There are s

3
cycles of length 3 and s

3
cycles of length 3p

s . Let p′ = 3p
s . For u, v ∈ V(D

s
3 ), luv � n − 3.

Hence

ku,v

(
D

s
3

)
�

(
3 − 1

2

)
p′ + n − 3

= p′ + n − 3.

Since p � n − s, p′ � 3n
s − 3, we have

ku,v(D) � s

3
(n + p′ − 3) � ns

3
+ n − 2s < k(n, s) + n − s.

Case 3. gcd(s, p) = s
2
. Since s is even, then n is odd. We know there is only one pair of vertices

u, v ∈ V(Ds,n) such that ku,v(Ds,n) = k(n, s) + n − s, and they are vertex n and n − s
2
. Consider the digraph

D
s
2 . It is easy to see that vertices n and n − s

2
are consecutive vertices on the Hamilton cycle in the

digraph D
s
2 , and there are s

2
cycles of length 2 and s

2
cycles of length p′ respectively, where p′ = 2p

s and

p′ is odd (since p = s
2
p′). Let p′ = 2t + 1 for some nonnegative integer t. For vertex n − s

2
, we can find

a vertex w such that the directed walk from vertex n − s
2
to vertex w is a path through both cycles of

length 2 and p′, and l(n − s
2
,w) � n − p′. Since inD

s
2 , we have n

1→n − s
2
. Then l(n,w) − l(n − s

2
,w) = 1

and l(n,w) � n − p′ + 1. Therefore in the digraph D
s
2 , we have

n
l(n,w)+2t−→ w and

n − s

2

l
(
n− s

2
,w

)+p′
−→ w.

Thus kn,n− s
2

(
D

s
2

)
� n; and hence

kn,n− s
2
(D) �

(
s

2

)
n < k(n, s) + n − s.

Case 4. gcd(s, p) = s. Suppose p = ts, where 1 � t < n
s .

If t = 1, then p = s. If the cycle Cp is formed from s vertices that are not consecutive on the Hamilton

cycle, then by Lemma 2.6, there exists another cycle of length q such that gcd(s, q) � s
2
. For this case,

from the previous results we know that kn,n− s
2
(D)k(n, s) + n − s.

If the cycleCp is formedby joiningvertex i to vertex (i + s − 1)(modn),where i /= 1, thenconsider the

subgraphDp,n. Note that since i /= 1, although p = s, butCp /= Cs. ThereforeDp,n /= Ds,n. InDp,n, the upper

bound is attained for only one pair of vertices, and they are vertex i − 1 and vertex (i + s − 2)(modn).

Since i − 1 /= n, we have kn,n− s
2
(Dp,n) < K(n, s). Therefore in the digraph D, we also have

kn,n− s
2
(D) < k(n, s) + n − s.

Now suppose that t > 1, then s < n
2
. If Cs ∩ Cp /= ∅, there is at least one vertex w belonging to the

cycle Cp such that s + 1 � w � n − s
2

− 1. Otherwise the cycle Cp only has to contain vertices between

vertex s to vertex 1 and n to n − s
2

+ 1. But there are only s + s
2
such vertices and s + s

2
< p. Hence

for vertex n − s
2
, we have l(n − s

2
,w) < n − 3s

2
. Then l(n,w) < n − s and l(n,w) − l(n − s

2
) = s

2
. In Ds,n,

when n > 3s
2
, we get

n
n−s−→ s

(
n−1
2

)
s

−→ s and

n − s

2

n− 3s
2−→ s

s
2
n−→ s.

When n < 3s
2
, we have



M. Akelbek, S. Kirkland / Linear Algebra and its Applications 430 (2009) 1099–1110 1105

n
n−s−→ s

(
n−1
2

)
s

−→ s and

n − s

2

n− s
2
+n−s−→ s

(
s
2
−1

)
n−→ s.

Note that n−1
2

� n−1
s � t and let n−1

2
= t + t′. Then

(
n−1
2

)
s = p + t′s, where p = st. Hence

n
l(n,w)−→ w

p+t′s−→ w and

n − s

2

l
(
n− s

2
,w

)
−→ w

s
2
n−→w.

Therefore kn,n− s
2
(D) � l(n,w) + p + t′s < k(n, s) + n − s.

If Cs ∩ Cp = ∅, for vertex n − s
2
we can find a vertex w ∈ Cp such that l(n − s

2
,w) � n − s − p. Then

l(n,w) � n − s − p + s
2
and l(n,w) − l(n − s

2
,w) = s

2
. Since n−1

2
� n−1

s � t, let n−1
2

≡ t′(modt). For a

nonnegative integer hwe have n−1
2

= th + t′. If p′ = 0, then
(
n−1
2

)
s = hts = hp, and so

n
l(n,w)−→ w

hp−→w and

n − s

2

l
(
n− s

2
,w

)
−→ w

s
2
n−→w.

Therefore kn,n− s
2
(D) � hp + l(n,w) < k(n, s) + n − s.

If t′ /= 0, t > t′ > 0, we know that

s

2
n −

(
n − 1

2

)
s = s

2

or equivalently

(th + t′)s − s

2
n = − s

2
.

Adding (t − p′)s on both sides, we get

hts + t′s + (t − t′)s − s

2
n = − s

2
+ (t − t′)s

or

(h + 1)ts −
(
s

2
n + (t − t′ − 1)s

)
= s

2
.

Therefore we have

n
l(n,w)−→ w

s
2
n+(t−t′−1)s−→ w and

n − s

2

l
(
n− s

2
,w

)
−→ w

(h+1)p−→ w.

Then kn,n− s
2
(D) � s

2
n + (t − t′ − 1)s + l(n,w) � s

2
n + (t − t′ − 1)s + n − s − p =

(
n−1
2

)
s + n − s −

t′s < k(n, s) + n − s, as desired. �

Theorem 3.6. Let D be a primitive digraph of order n and girth s, where s is even. Then k(D) = K(n, s) if

and only if D = Ds,n and gcd(n, s) = 1.

3.3. The case s is odd

Lemma 3.7. Let D be a primitive digraph that contains Ds,n as a subgraph,where gcd(n, s) = 1, s is odd and

s � 3. If D contains a cycle of length p with gcd(s, p) � s
3
, then k(D) < K(n, s).
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Proof. Case 1. gcd(s, p) = l, l < s
3
. Then by Corollary 2.9 k(D) < k(n, s) + n − s.

Case 2. gcd(s, p) = s
3
. If Cs ∩ Cp /= ∅, we are done by Corollary 2.9. If Cs ∩ Cp = ∅, consider D s

3 . There

are s
3
cycles of length 3 and s

3
cycles of length 3p

s , let p′ = 3p
s . For u, v ∈ V(D

s
3 ), we have luv � n − 3.

Hence

ku,v

(
D

s
3

)
�

(
3 − 1

2

)
p′ + n − 3 = p′ + n − 3.

Since p � n − s and p′ � 3n
s − 3, we get

ku,v(D) � s

3
(n + p′ − 3) � ns

3
+ n − 2s < k(n, s) + n − s. �

Next we consider a primitive digraph D that contains Ds,n as a subgraph, where gcd(s,n) = 1 and s

is odd, and where the digraph D also contains another cycle of length pwith gcd(s, p) = s.

Lemma 3.8. Let D be a primitive digraph that contains Ds,n as a subgraph,where gcd(s,n) = 1, s is odd and

s � 3. Suppose that the digraph D also contains another cycle of length p with gcd(s, p) = s. If Cs ∩ Cp /= ∅,
then k(D) < K(n, s).

Proof. Suppose that p = ts and that u is a vertex of Ds,n such that knu(D) =
(
s−1
2

)
n + n − s.

If u /∈ Cs, then in the digraph Ds,n we have

n
n−s−→ s

(
s−1
2

)
n

−→ s and

u
u−s−→ s

ms−→ s,

wherem is a positive integer such that ms −
(
s−1
2

)
n = n − u.

If there is a vertex w such that s + 1 � w � u and it belongs to the cycle Cp, then choose w as the

double-cycle vertexofu andn. Thenwehave l(u,w) < u − s, l(n,w) < n − s and l(n,w) − l(u,w) = n − u.

Also since ms > n > p and p = ts, then ms = p + t′s for some nonnegative integer t′. Then

n
l(n,w)−→ w

(
s−1
2

)
n

−→ w and

u
l(u,w)−→ w

p+t′s−→ w.

Thus kn,u(D) �
(
s−1
2

)
n + l(n,w) < k(n, s) + n − s.

Otherwise there is an arc fromvertex j , u < j � n, to vertex i, 1 � i � s. Thenwe can get fromvertex

n to a vertex i on the cycle Cs in less than n − s steps. Therefore kn,u(D) < k(n, s) + n − s.

Next consider u ∈ Cs. If p = s, suppose that the cycle Cp is formed from s consecutive vertices as in

Fig. 3.

If v = u + 1, then l(n,w) < n − s and l(u,w) = s /= n − s. Therefore kn,u(D) < k(n, s) + n − s. If v /=
u + 1, then consider the subgraph Dp,n. In Dp,n, for some vertex v′ we have kv−1,v′ (Dp,n) = K(n, s). Since

v − 1 /= u,n, then kn,u(Dp,n) < k(n, s) + n − s. Therefore kn,u(D) < k(n, s) + n − s.

If the cycle Cp is not formed from s consecutive vertices, then by Lemma 2.6, there exists a cycle of

length q such that gcd(s, q) � s
3
. In that case, by Lemma 3.7, we have k(D) < k(n, s) + n − s.

If p > s, then take the first vertexw on cycle Cp from vertex n as the double-cycle vertex of u and n.

Since p � 2s, l(n,w) � n − 2s. Since l(u,n) < s, then l(u,w) < n − s.

In the digraph Ds,n, there is a vertex u′, u < u′ < n, such that d(u,n) = d(n,u′) = n − u′, kn,u′ (D) =
k(n, s) + n − s and

n
n−s−→ s

(
s−1
2

)
n

−→ s and

u′ u′−s−→ s
ms−→ s,
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1

nu

s

v

v+s

Fig. 3. Ds,n ∪ {v → v + s}.

wherems −
(
s−1
2

)
n = n − u′. Sincems > n > p, thenms = p + ts for some nonnegative integer t. In the

digraph D we have

n
l(n,w)−→ w

p+ts−→w and

u
l(u,w)−→ w

(
s−1
2

)
n

−→ w,

where l(u,w) − l(n,w) = n − u′. Therefore kn,u(D) �
(
s−1
2

)
n + l(u,w) <

(
s−1
2

)
n + n − s. �

Lemma 3.9. Let D be a primitive digraph that contains Ds,n as a subgraph, suppose that s is odd, s � 3, and

that there is another cycle of length p such that Cs ∩ Cp = ∅ and gcd(s, p) = s. If the cycle of length p is not

formed from p consecutive vertices on the Hamilton cycle, then k(D) < K(n, s).

Proof. Since the cycle of length p is not formed from p consecutive vertices on the Hamilton cycle,

then there exists an arc from vertex i to vertex j, where s + 1 � i < j � n and j > i + 1. Then for any

two vertices u, v ∈ V(D), we can get to vertices s1, s2 ∈ Cs in less than n − s − 1 steps. Therefore k(D) �
k(n, s) + n − s − 1. �

The only remaining case is that D is a digraph constructed from Ds,n by adding an arc from vertex

u to vertex u + ms − 1, where s is odd, s � 3, s < u < n − ms + 1 and m is a positive integer such that

1 � m � n−u+1
s .

Recall that in (3) we define the positive integer r as follows

r ≡
{ n

2
(mods), if s is odd, n is even,

n−s
2

(mods), if both s and n are odd.

In both cases n − 2r can be divided by s. Let

h = n − 2r

s
. (5)

Note that in Ds,n, h + 1 is the number of pair of vertices whose local scrambling indices are K(n, s).
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Lemma 3.10. Let D be a digraph constructed from Ds,n, s � 3, by adding an arc from vertex u to vertex

u + ms − 1, where s < u < n − ms + 1. Then kn,n−r−ts(D) = K(n, s) if and only if u = n − r − ts + 1 and
n+h
2

− t − 1 ≡ 0(modm).

Proof. For the digraph D = Ds,n, the local scrambling index of n and n − r − ts is K(n, s) when 0 � t �
n−2r
s . We only consider those pairs of vertices.

Suppose that u = n − r − ts + 1 for some t. From the digraph we know that

n
r+ts−ms−→ n − r − ts + ms and

n − r − ts
n−ms−→ n − r − ts + ms

and n − ms − (r + ts − ms) = n − r − ts = r + (h − t)s, since n = 2r + hs. When n is even,(
n + h

2
− t

)
s −

(
s − 1

2

)
n = r + (h − t)s.

Supposem − 1 − q is the smallest nonnegative integer such that
(
n+h
2

− t + m − 1 − q
)
s canbedivided

by p = ms, where 0 � q � m − 1. Then

n
r+ts−ms−→ n − r − ts + ms

(
n+h
2

−t+m−1−q
)
s

−→ n − r − ts + ms

and

n − r − ts
n−ms−→ n − r − ts + ms

(
s−1
2

)
n+(m−1−q)s

−→ n − r − ts + ms.

Therefore kn,n−r−ts(D) =
(
s−1
2

)
n + n − s − qs.

Since
(
n+h
2

− t + m − 1 − q
)
s can be divided by p = ms, then

n + h

2
− t − 1 ≡ q(modm).

Therefore if n+h
2

− t − 1 ≡ 0(modm), we have

kn,n−r−ts(D) = K(n, s).

If n+h
2

− t − 1 /≡ 0(modm), then kn,n−r−ts < K(n, s).

Next we consider all other pairs of vertices n and u such that kn,u(Ds,n) = K(n, s).

If u /= n − r − ts + 1, let v = u + ms − 1. Consider the following three cases.

Case 1. n − r − ts + 1 < u. We have

n
n−v→ v and

n − r − ts
n−r−ts+n−v→ v.

In addition we have n − r − ts + (n − v) − (n − v) = n − r − ts = r + (h − t)s. Then we obtain

n
n−v−→ v

(
n+h
2

−t+m−1−q
)
s

−→ v and

n − r − ts
n−r−ts+n−v−→ v

(
s−1
2

)
n+(m−1−q)s

−→ v.

Therefore kn,n−r−ts(D) = n − r − ts + (n − v) +
(
s−1
2

)
n + (m − 1 − q)s < n − ms +

(
s−1
2

)
n + (m − 1

− q)s =
(
s−1
2

)
n + n − s − qs � k(n, s) + n − s.

Case 2. n − r − ts > v. We have

n
n−v→ v and

n − r − ts
n−r−ts−v→ v,
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and n − v − (n − r − ts − v) = r + ts. Also(
n − h

2
+ t

)
s −

(
s − 1

2

)
n = r + ts.

Then

n
n−v−→ v

(
s−1
2

)
n+(m−1−q)s

−→ v and

n − r − ts
n−r−ts−v−→ v

(
n−h
2

−t+m−1−q
)
s

−→ v.

Thereforekn,n−r−ts(D) = n − v +
(
s−1
2

)
n + (m − 1 − q)s < n − ms +

(
s−1
2

)
n + (m − 1 − q)s =

(
s−1
2

)
n +

n − s − qs � k(n, s) + n − s.

Case 3. u � n − r − ts � v. Choose v as the double-cycle vertex of n and n − r − ts. Then

n
n−v−→ v and

n − r − ts
n−r−ts−u+1−→ v.

If n − v > n − r − ts − u + 1, since n − v − (n − r − ts − u + 1) = r + ts − (v − u + 1) = r + (t − m)s and

v > ms, then

kn,n−r−ts(D) �
(
s − 1

2

)
n + n − v + (m − 1 − q)s

=
(
s − 1

2

)
n + n − s − v + ms − qs

< k(n, s) + n − s.

If n − v < n − r − ts − u + 1, then n − r − ts − u + 1 − (n − v) = −r − ts + v − u + 1 = −r − ts + ms =
s − r + (m − 1 − t)s. Then(

s − 1

2

)
n −

(⌊
n

2

⌋
− t′

)
s = s − r + (m − 1 − t)s

for some integer t′. Therefore

kn,n−r−ts(D) �
(
s − 1

2

)
n + n − v + (m − 1 − q)s

=
(
s − 1

2

)
n + n − s − v + ms − qs < k(n, s) + n − s. �

Lemma 3.11. Let D be a digraph constructed from Ds,n(s � 3) by adding arcs from vertex ui to vertex

ui + mis − 1, where ui > s,mi � 1, i = 1, 2 and u1 /= u2. Then k(D) < K(n, s).

Proof. Let Di, i = 1, 2, be the subgraph of D that contains Ds,n and the cycle of length mis, then by

Lemma 3.10, we know that there is at most one pair of vertices, vertex n and vertex ui − 1, such that

kn,ui−1(Di) = K(n, s). Since u1 /= u2, In the digraph D, we have kn,ui−1(D) < K(n, s). �

Concluding the above results, we have the following theorem.

Theorem 3.12. Let D be a primitive digraph of order n and girth s, where s is odd and s � 3. Then k(D) =
K(n, s) if and only if gcd(n, s) = 1 and D = Ds,n or,D = Ds,n ∪ {n − r − ts + 1 → n − r − ts + ms} for some

m ∈ N and some t ∈ {1, 2, . . . , n−2r
s − 1} such that n+h

2
− t − 1 ≡ 0(modm), where r and h are as in (3)

and (5).
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