
Quantifying Activity and Collaboration Levels
in Programming Assignments

James F. Power

Department of Computer Science

Maynooth University, Ireland

james.power@mu.ie

John Waldron

School of Computer Science & Statistics

Trinity College Dublin, Ireland

john.waldron@tcd.ie

ABSTRACT
This paper presents an experience report from a third-year under-

graduate compiler design course that is taught as part of a four

year computer science degree. We analyse data from a study of

practical assignments, evaluated in the context of take-home for-

mative assignments and a supervised summative examination. We

implement metrics to quantify the degrees of similarity between

submissions for programming assignments, as well as measuring

the level of activity. We present the results of our study, and discuss

the utility of these metrics for our teaching practice.

CCS CONCEPTS
• Social and professional topics → Computer science education;
• Software and its engineering → Compilers.

KEYWORDS
Programming assignments, program similarity, Jaccard index

ACM Reference Format:
James F. Power and John Waldron. 2019. Quantifying Activity and Collabo-

ration Levels in Programming Assignments. In Innovation and Technology in
Computer Science Education (ITiCSE ’19), July 15–17, 2019, Aberdeen, Scotland
UK. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3304221.

3319769

1 INTRODUCTION
In this paper we present an experience report describing the de-

ployment of an automated assessment and data collection system

in a Compiler Design module given to Computer Science degree

students in their third year of study. The module has a practical

emphasis involving a series of six programming assignments using

the flex and bison tools. With a class size of 96 during the twelve

week module, over half a million lines of code were submitted. The

only practical way to grade and provide timely feedback for this

scale of work is automated assessment.

We present our analysis of the data extracted from electronic

records of the student interaction with the learning technology

used. We measure the frequency and quantity of interactions with

the automated system and how this effects results. One important

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland UK
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6301-3/19/07. . . $15.00

https://doi.org/10.1145/3304221.3319769

question with large class sizes and automated assessment is the

degree of collaboration or plagiarism that may arise. We describe

various different measures that can be used to compare code sub-

missions and also algorithms and implementations to efficiently

analyse approximately 12 Megabytes of source code.

In Section 2 of this paper we briefly review the background to

our approach and the related work on automated assessment and

similarity measures. In Section 3 we describe in more detail the

compiler design module, the programming assignments and the

technology we have developed to handle the large volume of sub-

mitted code. We elaborate on an algorithm to compare two different

files in the context of compiler design, and its implementation. Here

we also present a broad summary of the characteristics of our data.

In Section 4 we reflect on our techniques and study how they relate

to outcomes as measured by both formative and summative assess-

ments. Section 5 describes dynamically generated graphical results

which we believe best indicate instances of similarity between pro-

grams that merit further investigation and enable the instructor to

provide relevant feedback.

2 BACKGROUND AND RELATEDWORK
Issues related to assessment in Computer Science courses have

received much attention in recent years, particularly in relation to

automated assessment, and we only attempt a brief review of some

of the main approaches here.

2.1 Automated assessment
A large number of different systems exist to assign marks to code,

typically based on testing [6], but also potentially using quality

metrics and other features [19, 21]. In addition to their use in stan-

dard introductory programming courses, automated assessment

tools have recently been used for topics as diverse as databases [11],

graphics [20] and functional programming [2].

A principal advantage of automated assessment is that it facili-

tates increased frequency of formative assessment, even for large

class groups. This learning experience can be enhanced by provid-

ing more targeted automated feedback [10] and, as a side-effect, can

provide a large body of data that can be used for learning analytics

[8]. Even for summative assessment it has been argued that auto-

mated assessment for programming provides an environment that

is closer to the code-and-test loop used in realistic programming

scenarios [9].

Formative assessment typically occurs during a course and is

directed at enhancing, rather than evaluating, student learning [3].

Often such assessment is awarded low marks and takes the form of

take-home exams, as is the case for this paper. One of the challenges

with such assessment, particularly in the context of automation,

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

112

https://doi.org/10.1145/3304221.3319769
https://doi.org/10.1145/3304221.3319769
https://doi.org/10.1145/3304221.3319769
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3304221.3319769&domain=pdf&date_stamp=2019-07-02

Table 1: Summary of the programming assignments. There were six programming assignments over 11 weeks. The averages
show the number of attempts per student and the average number of lines-of-code (LOC) per attempt.

Total Total Avg. LOC in LOC per

Assignment Week Kind Students Files attempts total attempt

1 even 2 flex 95 857 9 17 867 21

2 comments 3 flex 91 2 640 29 63 266 24

3 plates 4 flex 91 3 848 42 178 663 46

4 roman 6 flex/bison 86 2 197 13 98 960 90

5 romcalc 9 flex/bison 84 1 911 12 161 526 170

6 calcwithvariables 11 flex/bison 71 972 7 48 081 98

is the possibility of plagiarism [4, 5] and the difficulty of ensuring

academic integrity in the assessment process [15]. An alternative

is to insist on supervised examinations, possibly also involving

automated assessment [13].

In recent years, the use of automated assessment systems has

also allowed instructors to collect a large amount of information,

and some of this can be relevant in analysing student behaviour.

For example, one study of students on an introductory Java course

showed that the number of attempts at an exercise correlates bet-

ter with performance on a final exam than the actual results of

the exercise [1]. Another approach used start and end times for

submissions, along with a similarity measure, as one element in

identifying possible patterns of collaboration [7]. Recently, a study

combined similarity measures and submission information to cal-

culate a ‘plagiarism probability’ index for code [17].

One feature of many of these measures is that they are very

fragile to the level of student knowledge of their use. For example,

if students know the basic parameters of the algorithm being used

to detect plagiarism, they can take measures to defeat it. Similarly,

if students know that indices on the differences between first and

final attempts are being calculated, it would be straightforward to

ensure that this value is maximised.

2.2 Measuring similarity
There are many ways of measuring similarity between two doc-

uments and/or programs and the options have been extensively

discussed in the literature [4, 14]. For our purposes, we were dealing

with a relatively limited corpus of mixed-language submissions,

and we wanted a simple and easy-to-interpret measure. We chose

initially to use the Jaccard similarity index [16], later generalising

this to an instance of the Tversky index.

The initial step is to represent a document as a set (of words,

tokens, lines etc.). Given two programs represented by sets X and

Y , their Jaccard similarity index is defined as:

J (X ,Y) =
|X ∩ Y |

|X ∪ Y |

The Jaccard index is symmetric, so J (A,B) = J (B,A), which can be

a problem when the sizes of the sets are not similar. For example,

adding more lines to just one of the programs would decrease the

similarity index for both. In order to compensate for this, we used

an asymmetric index, where we normalised by the number of lines

in the first program only.

That is we calculated the similarity between two sets as

S (X ,Y) =
|X ∩ Y |

|X |

More formally, both of these are instances of the Tversky index

[18], defined as:

S (X ,Y) =
|X ∩ Y |

|X ∩ Y | + α |X − Y | + β |Y − X |

The index is defined by two parameters α , β ≥ 0. The Jaccard

index puts α = β = 1, whereas we put α = 1, β = 0 so that

additional (different) elements in set Y would not change the index

for X .

3 CONTEXT
The module Compiler Design is a one-semester, 12 week, module

taken by ninety-six students in the third year of a Computer Science

degree at Trinity College Dublin. The module has a practical em-

phasis, and students study tools designed for writers of compilers

and interpreters which are also useful for many other applications.

The module is relevant for any application that looks for patterns

in its input or has an input or command language.

The module is assessed using a summative invigilated written

examination at the end of the semester worth 80%, along with six

formative take-home programming assignments during the module,

worth a total of 20%.

3.1 Automatic assessment system
A survey of attendees at SIGCSE 2015 showed that the majority

of attendees that use automation often or extensively also use

homegrown tools [19], and we use this approach as well. All the

programming assignments are submitted and marked automati-

cally using a virtual learning environment and course management

system called codemark which has been developed internally in

Trinity College Dublin.

codemark is written in a combination of PHP and HTML for

the front end. The back end is a combination of the relevant pro-

gramming tools, Unix utilities and shell scripts. It runs on a Citirix

XenServer which is a hypervisor platform that enables the creation

and management of virtualised server infrastructure.

codemark allows students to submit programming assignments

using PHP forms. Either code can be pasted directly into a web page

form for smaller programs or uploaded in an archive file for larger

tasks or those involving multiple files. It then uses the programming

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

113

even comments plates roman romcalc calcwithvariables

Projects

0

25

50

75

100

125

150

175

200

225

N
u

m
b

er
of

at
te

m
p

ts

Figure 1: Activity per assignment, measured in terms of the
number of attempts per student for each assignment.

tools to analyse the code for syntax errors and if none are found the

resulting program is run against multiple test cases and a mark is

automatically awarded based on the number of successful results.

3.2 The assignments
During the module the students study the use of the flex and bison
tools [12]. Both these tools are code generators: flex takes as input

a specification consisting of regular expressions and generates the

source code for a lexical analyser, while bison takes as input a

specification consisting of a context-free grammar and generates

the source code for a parser. In both cases, the user may add snippets

of C code interwoven with the specification, or whole segments of

C code at the beginning or end of the file.

There are six formative programming assignments distributed

throughout the module, and summarised in Table 1. There are

three lexical analysis assignments (just using flex) and three lexical
analysis/parsing assignments (using both flex and bison tools). In

total the students submit six flex files and three bison files, and may

make multiple submissions up to the assignment deadline.

Table 1 also list some basic metrics for each assignment to quan-

tify the size of the data. For each assignment, Table 1 shows the

number of students that attempted the assignment (a total of 96 stu-

dents registered for the module) and the overall total number of files

and lines of code (LOC) submitted for that assignment. Throughout

this paper, we use ‘code’ to mean the flex/bison specifications (and

embedded C code) submitted by the student, but not the code that

is generated by these tools.

Table 1 also shows two averages for each assignment: the average

number of attempts per student, and the average number of LOC per

attempt. Overall, the codemark system analysed 12,425 flex/bison

source files submitted during the module, comprising 568,363 lines

of code and totalling 11.8 Megabytes of data.

3.3 Processing the data
Each time a student submits an assignment for marking, the sub-

mission is logged and the files are stored by the codemark system,

allowing us to study the level of activity during the module. Figure

1 contains a violin plot for each assignment that shows the distribu-

tion of the level of activity. In Figure 1 each violin plot represents

the level of activity measured in terms of the number of submissions

for each student. The white dot shows the median and the black

bar shows the inter-quartile range.

Figure 1 shows that the level of activity reached a peak for the

third assignment, and decreased substantially thereafter. We specu-

late that the lower level of interactions in the first assignment was

due to it being relatively easy, and the decrease after the third as-

signment was due to time pressures on the students as the semester

proceeded. This is also reflected in the drop-off in the number of

students doing each assignment from 95 to 71 as shown in Table 1.

We experimented with different algorithms to measure code simi-

larity, essentially varying the Tversky index with different values of

α and β . We did not compare submissions for different assignments

and restricted ourselves to only the final submission for each as-

signment. Initially we developed a prototype implementation using

the Unix sort and comm tools but this proved prohibitively compu-

tationally expensive, so we implemented the analyses in Python,

giving a run-time in seconds. This made it feasible to perform many

variations of the analysis.

In order to allow for trivial modifications to the code, we pre-

processed it by removing blank lines and multiple white-space

sequences, particularly in the middle of lines. We chose to split the

programs based on lines (rather than words or characters) since

both flex and bison lead naturally to line-oriented specifications.

Because of the relative terseness of these specifications, as shown

by the average LOC counts in Table 1, and the natural structuring

due to using the same grammar, we felt that a word-oriented count

would produce too many false positive matches. Since the variants

of the Tversky index are based on comparing sets, duplicate lines

in a program were automatically excluded.

Figure 2 presents a summary of the data analysed for three

measures of similarity between programs: raw line counts, the

Jaccard index, and the Tversky index. In each case we compare

the final submission for each student for each of the 9 programs

submitted, resulting in 63,814 pairwise comparisons (or 31,907 for

the symmetric measures). The histograms in Figure 2 show that the

Tversky index provides a greater degree of discrimination between

programs for our data set.

We also analysed results with various Tversky index threshold

settings and we heuristically decided on 75% to be a reasonable

compromise between precision and recall. Due to the syntax of flex
and bison programs we would expect a certain number of lines to

be identical and not indicative of plagiarism.

As shown in the histogram in Figure 2 only a relatively small

number of submissions showed a Tversky score above our threshold,

suggesting that the vast majority of the students worked indepen-

dently on the assignments.

4 ANALYSING THE DATA
In this section we present an analysis of the data collected during

the module. This data included student marks in the assessment

and final exam, student programs collected during the module, and

the dates and times these files were submitted. To make the analysis

manageable, we concentrate on four measures, calculated for each

student and normalised as a percentage:

• Formative: the total marks for the formative assessment,

comprised of the six take-home assignments described in

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

114

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

No. of lines

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F
re

q
u

en
cy

0 10 20 30 40 50 60 70 80 90 100

Jaccard Index

0.00

0.01

0.02

0.03

0.04

0.05

F
re

q
u

en
cy

0 10 20 30 40 50 60 70 80 90 100

Tversky Index

0.000

0.005

0.010

0.015

0.020

0.025

0.030

F
re

q
u

en
cy

Figure 2: Distribution of similarity measures. These three histograms show the distribution of three similarity measures for
the data set studied in this paper. Note that the vertical axis is on a different scale for each histogram.

40 50 60 70 80 90 100

Formative

40

50

60

70

80

90

100

S
u

m
m

at
iv

e

0 20 40 60 80 100

InActivity

50

60

70

80

90

100

C
ol

la
b

or
at

io
n

40 50 60 70 80 90 100

Formative

0

20

40

60

80

100

In
A

ct
iv

it
y

40 50 60 70 80 90 100

Formative

50

60

70

80

90

100

C
ol

la
b

or
at

io
n

40 50 60 70 80 90 100

Summative

0

20

40

60

80

100

In
A

ct
iv

it
y

40 50 60 70 80 90 100

Summative

50

60

70

80

90

100

C
ol

la
b

or
at

io
n

Figure 3: Six scatter-plots showing the relationships between the summative and formativemarks, and the indices of inactivity
and similarity. Each mark on the graph represents data for one student.

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

115

−40 −20 0 20 40

Formative - Summative

0

20

40

60

80

100

In
A

ct
iv

it
y

−40 −20 0 20 40

Formative - Summative

50

60

70

80

90

100

C
ol

la
b

or
at

io
n

Figure 4: Two scatter-plots showing the relationship between the difference in the formative and summative marks, with the
activity (left) and similarity indices (right).

Section 3. Each assignment was automatically assessed using

the codemark system, themark awardedwas their best mark

for that assignment, and this was then averaged over the six

assignments.

• Summative: themark in the summative exam, an invigilated

written examination given at the end of the module.

• Collaboration: a measure of the degree to which a student’s

code was similar that of other students. For each assignment,

we took the maximum similarity measure between a stu-

dent’s code and that of other students, and averaged this

over the number of assignments attempted by the student.

• Activity: We measured a student’s activity by calculating

the total number of submissions over the duration of the

module. This was then normalised by dividing by the maxi-

mum number of submissions (407 in total for one student)

and expressed as a percentage. When analysing the data we

found it simpler to express this as an inactivity measure,

which is just the activity measure subtracted from 100.

Figure 3 contains six scatter-plots, showing the relationships

between these four measures. Each mark on a plot represents the

data for one student. Since relatively few students scored under

40% in the exam marks, we have minimised the formative and

summative marks at 40% to better highlight the data. The minimum

collaboration level reported for any student was 50%. By definition,

the minimum activity level is 0%, the value for the most active

student.

The two scatter-plots on the first row of Figure 3 depict the re-

lationship between the exam and non-exam marks. The first plot

shows the relationship between formative and summative marks.

Both of these sets of marks were relatively high overall, since this

is a third-year module taken by experienced students. We were par-

ticularly interested in those students who did well in the formative

exams but then did poorly in the summative exam, those in the

bottom-right of the first plot. We identified the 10 students nearest

the bottom-right corner and examined their other measures manu-

ally, but could not distinguish any particular trend. The scatter-plot

on the right of the first row of Figure 3 plots collaboration against

inactivity. Again, examining those with collaboration levels over

75% did not show any identifiable trend in terms of activity.

The second and third rows of Figure 3 examine the relation-

ships between the non-exam measures and the exam measures.

We had speculated that students with high inactivity or high col-

laboration would exhibit poorer summative marks overall than

formative marks, but a visual examination of the data in Figure 3

does not support this. While we examined individual cases, and

experimented with modifications to our measures, we did not feel

that more sophisticated statistical techniques were warranted on

this data.

One other hypothesis we investigated was that students who

exhibited a large difference between their formative and summative

marks might also have distinctive patterns in their levels of activity

or collaboration. To visualise this, Figure 4 has two scatter-plots,

showing the relationship between the non-exam measures and

the difference in the two exam measures. Students on the right of

these two plots are those who increased their mark between forma-

tive and summative exams. Again, there is not a clear relationship

between these students and either the inactivity or collaboration

measures. We performed a one-sided Mann-Whitney U test using

the difference (<= 0 and > 0) as a classifier for both activity and col-

laboration, and confirmed that this is not an informative classifier

in this case.

5 COLLABORATION GRAPHS
The overall measures summarised in Section 4 did not allow us to

make general statements regarding the predictive capabilities of

the measures we used. However, the results are still interesting on

an individual level, and could be used to provide information to the

instructor during the course.

The codemark system provides a large amount of data, and it

can be difficult to pick out interesting features on a per-student

basis. After experimenting with a number of possibilities, we have

found it most useful to visualise the levels of collaboration using a

collaboration graph, an example of which is shown in Figure 5. This

graph is generated automatically from the data analysis elements

of our code, and the visualisation is produced using the Graphviz
graph visualisation software using the circo layout engine.1

1
Graphviz version 2.38.0, available from https://graphviz.org/

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

116

https://graphviz.org/

43 / 16 @ 52.57 115 / 54 @ 51.75
l=100%

y=100%

l=100%
y=100%

135 / 2 @ 73.69 44 / 4 @ 50.53
l=100%

y=100%l=100%

y=100%

76 / 6 @ 49.77

53 / 16 @ 55.91

l=89%

142 / 28 @ 49.97

l=89%
212 / 4 @ 49.99

l=89% l=93%

l=90%

l=90%l=78%

l=76%l=96%y=97%

l=78%

l=76%

l=96% y=96%

270 / 92 @ 50.75

147 / 30 @ 52.56

l=84%

125 / 28 @ 51.07
l=88%

l=81%l=77%

l=88%

l=80%

51 / 12 @ 64.85

l=84%

53 / 2 @ 69.74 136 / 2 @ 48.51
l=100%

y=96%l=96%

y=90%

55 / 14 @ 46.96 110 / 12 @ 43.61l=81%

60 / 12 @ 48.72

84 / 36 @ 48.63

l=79%

144 / 26 @ 45.64

l=79%

83 / 8 @ 53.05

l=79%

384 / 58 @ 52.49

l=79%

97 / 6 @ 50.51

l=84%

137 / 8 @ 50.61l=84%

41 / 22 @ 51.42

l=79%

232 / 6 @ 51.48

l=79%

246 / 2 @ 45.69

l=84%

63 / 30 @ 53.55

l=79%

73 / 6 @ 53.54

l=79%

114 / 10 @ 55.74

l=79%

104 / 30 @ 53.54

l=79%
l=79%

l=84%

l=84%

l=84%

l=84%

l=84%

l=84%

l=84%

l=84%

l=84%l=95%

l=84%

l=89%

l=83%

l=83%

l=78%
l=78%

l=78%

l=77%

l=84%

l=84%

l=84%

l=84%

l=84%

l=79%

l=84%

l=84%

l=84%

l=84%
l=84%

l=84%

l=84%

l=77%

l=82%

l=77%

l=86%

l=77%

l=86%
l=77%

l=82%

l=86%

l=79%

l=84%

l=84%

l=84%

l=84%

l=84%

l=84%

l=79%

l=84%

l=84%

l=84%l=84%

l=84%

l=84%

l=77%

l=82%

l=91%

l=86%

l=82%

l=86%

l=86%

l=81%

l=86%

l=86%

l=86%

l=76%

l=81%

l=81%

l=86%

l=76%

l=90%

l=90%

l=81%

l=82%

l=82%

l=82%

l=82%

l=82%

l=86%
l=86%

l=76%

l=81%

l=76%

l=76%

l=76%

l=90%

l=76%

l=76%

l=76%

l=76%
l=81%

l=76%

73 / 8 @ 43.9

103 / 2 @ 52.96

l=76%
162 / 16 @ 44.81

l=76%

65 / 4 @ 50.98

l=86%

l=84%

l=100%
y=100%

l=95%

202 / 22 @ 46.8

l=79%
l=84%

l=100%
y=99%

l=95%

l=79%

l=86%

l=86%

l=86%

l=76%

398 / 30 @ 48.9 359 / 28 @ 57.49l=91%
l=91%

347 / 20 @ 52.67 86 / 20 @ 51.79
l=100%

y=100%

l=100%y=100%

l=86%

l=76%

l=100%
186 / 6 @ 50.56

l=76%

53 / 22 @ 50.58l=76%

l=82%

l=86%

88 / 8 @ 43.93

71 / 11 @ 55.76

l=76%
y=88%

l=76%

l=90%
y=87%

39 / 6 @ 58.39

164 / 10 @ 43.9

l=81%
y=87%

130 / 16 @ 49.56

y=81% y=84%

y=79%

258 / 20 @ 49.9 20 / 2 @ 58.54
l=100%

y=82%l=100%

y=83%

138 / 16 @ 56.04 39 / 8 @ 49.79l=89%99 / 10 @ 54.88 l=82%

356 / 38 @ 52.93 147 / 36 @ 51.46l=81%

69 / 8 @ 52.44

l=76%

l=76% l=76%

167 / 36 @ 49.47

y=78%

y=79%y=81%

y=89%

y=89%

y=81%

Figure 5: An example of a collaboration graph for the fifth assignment. Each node represents a student, and each (directed)
edge represents the maximum similarity level from one student to the other, thresholded at 75%.

Figure 5 contains a directed graph, where the nodes represent

students, and the edges represent a collaboration from one student

to another, based on our collaboration measure. We have deleted

identifying details from this example, but the student number would

normally be included in each node. The collaboration has been

thresholded at 75%, as discussed earlier in Section 3.3, but this can

be changed, with a lower threshold producing more edges.

As can be seen from the overall structure of Figure 5, the collab-

oration graph quickly identifies groups of students who have high

levels of similarity between their submissions, and the weighting

on the edges gives an indication as to the level of collaboration. The

graph in Figure 5 shows one large collaboration on the bottom-left,

a heavily connected network of 14 students. A number of other

smaller collaborative groups are also shown, as are collaborations

between two students.

When analysing the collaboration networks we found it useful

to have extra information available to help with identifying more

likely instances of copying. Thus, in each node we print activity

information, showing the overall level of activity, the level of ac-

tivity for this assignment, and the time (in days since the start of

the module) of the last submission. For example, the node in the

bottom-left of the graph is labelled “356 / 38 @ 52.93”, meaning that

this student has 356 submissions overall, 38 in this project, and the

last submission was toward the end of day 52 of the module.

In general we interpret high activity and early submission as

more favourable indicators of a student’s engagement, and are

interested in situations where these metrics differ between collab-

orating students. We would not advocate using these metrics on

their own, but rather as an indicator of situations that merit further

investigation.

6 REFLECTION
In this paper we have described our use of an automated system,

codemark, to provide assessment and data analysis for a third-year

Compiler Design module. As such, it contributes to a growing body

of knowledge on the use of such systems, both in introductory

programming courses and at more advanced levels [2, 11, 20].

It should be noted that these results are based on a single group

of students, so generalising these results would require further

studies using different groups. We hope to explore this issue in

future work to provide a broader context for our analysis.

Ourwork demonstrates the feasibility of deploying such software

for a large class group with an intensive assessment schedule. It

also indicates the difficulty of choosing suitable metrics that can

provide insight on the large body of data collected. Because of our

analytical techniques and associated software implementation, it is

now practical for the instructor to see this information in real time

and to conduct appropriate interventions. It is our thesis that the

best policy must be based on a well-informed personal intervention

after manual inspection of the data, and our work here is intended

to provide a foundation for that approach.

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

117

REFERENCES
[1] Alireza Ahadi, Raymond Lister, and Arto Vihavainen. 2016. On the Number

of Attempts Students Made on Some Online Programming Exercises During

Semester and their Subsequent Performance on Final Exam Questions. In ACM
Conference on Innovation and Technology in Computer Science Education. Arequipa,
Peru, 218–223.

[2] Luciana Benotti, Federico Aloi, Franco Bulgarelli, and Marcos J. Gomez. 2018.

The Effect of a Web-based Coding Tool with Automatic Feedback on Students’

Performance and Perceptions. In 49th ACM Technical Symposium on Computer
Science Education. Baltimore, MD, USA, 2–7.

[3] Benjamin S. Bloom, Thomas Hasting, and George Madaus. 1971. Handbook of
formative and summative evaluation of student learning. McGraw-Hill, New York,

USA.

[4] Paul Clough. 2003. Old and new challenges in automatic plagiarism detection.
Technical Report. Department of Information Studies, University of Sheffield.

[5] Charlie Daly and Jane Horgan. 2005. A Technique for Detecting Plagiarism in

Computer Code. Comput. J. 48, 6 (2005), 662–666.
[6] Charlie Daly and JohnWaldron. 2004. Assessing the Assessment of Programming

Ability. SIGCSE Bull. 36, 1 (March 2004), 210–213.

[7] Arto Hellas, Juho Leinonen, and Petri Ihantola. 2017. Plagiarism in Take-home

Exams: Help-seeking, Collaboration, and Systematic Cheating. InACMConference
on Innovation and Technology in Computer Science Education. Bologna, Italy, 238–
243.

[8] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,

Stephen H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,

Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo,

and Daniel Toll. 2015. Educational Data Mining and Learning Analytics in

Programming: Literature Review and Case Studies. In ITiCSE on Working Group
Reports. Vilnius, Lithuania, 41–63.

[9] An Ju, Ben Mehne, Andrew Halle, and Armando Fox. 2018. In-class coding-based

summative assessments: tools, challenges, and experience. In 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education. Larnaca,
Cyprus, 75–80.

[10] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2016. Towards a Systematic

Review of Automated Feedback Generation for Programming Exercises. In ACM
Conference on Innovation and Technology in Computer Science Education. Arequipa,

Peru, 41–46.

[11] Anthony Kleerekoper and Andrew Schofield. 2018. SQL tester: an online SQL

assessment tool and its impact. In 23rd Annual ACM Conference on Innovation
and Technology in Computer Science Education. Larnaca, Cyprus, 87–92.

[12] John Levine. 2009. Flex & Bison. O’Reilly Media, Sebastopol, CA, USA.

[13] Phil Maguire, Rebecca Maguire, and Robert Kelly. 2017. Using automatic machine

assessment to teach computer programming. Computer Science Education 27, 3-4

(2017), 197–214.

[14] Chanchal Kumar Roy and James R. Cordy. 2007. A Survey on Software Clone
Detection Research. Technical Report No. 2007-541. School of Computing, Queen’s

University at Kingston, , Ontario, Canada.

[15] Judy Sheard, Simon, Matthew Butler, Katrina Falkner, Michael Morgan, and

Amali Weerasinghe. 2017. Strategies for Maintaining Academic Integrity in

First-Year Computing Courses. In ACM Conference on Innovation and Technology
in Computer Science Education. Bologna, Italy, 244–249.

[16] Kwangho Song, Jihong Min, Gayoung Lee, Sang Chul Shin, and Yoo-Sung Kim.

2015. An Improvement of Plagiarized Area Detection System Using Jaccard

Correlation Coefficient Distance Algorithm. Computer Science and Information
Technology 3, 3 (2015), 76–80.

[17] Narjes Tahaei and David C. Noelle. 2018. Automated Plagiarism Detection for

Computer Programming Exercises Based on Patterns of Resubmission. In ACM
Conference on International Computing Education Research. Espoo, Finland, 178–
186.

[18] A. Tversky. 1977. Features of similarity. Psychological Review 84, 14 (1977),

327–352.

[19] Chris Wilcox. 2016. Testing Strategies for the Automated Grading of Student

Programs. In 47th ACM Technical Symposium on Computing Science Education.
Memphis, Tennessee, USA, 437–442.

[20] Burkhard C. Wünsche, Zhen Chen, Lindsay Alexander Shaw, Thomas Suselo,

Kai-Cheung Leung, Davis Dimalen, Wannes van der Mark, Andrew Luxton-Reilly,

and Richard Lobb. 2018. Automatic assessment of OpenGL computer graphics

assignments. In 23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education. Larnaca, Cyprus, 81–86.

[21] Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Judith Bishop. 2015. Ed-

ucational Software Engineering: Where Software Engineering, Education, and

Gaming Meet. In Computer Games and Software Engineering. CRC Press, 113–133.

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

118

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Automated assessment
	2.2 Measuring similarity

	3 Context
	3.1 Automatic assessment system
	3.2 The assignments
	3.3 Processing the data

	4 Analysing the data
	5 Collaboration Graphs
	6 Reflection
	References

