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Abstract—This paper introduces a novel three-dimensional
electromagnetic (EM) solver, grounded in theory and enhanced
by integrating a convolutional neural network (CNN) with the
finite-difference time-domain (FDTD) method. The proposed
solver is designed for efficient and precise full-wave simula-
tion of large-scale structures. By substituting the traditional
operators in the FDTD method with convolutional operators,
our approach maintains the accuracy and stability inherent to
the FDTD method, while also being ideally suited for parallel
computations. Compared to existing models, our proposed CNN-
FDTD solver demonstrates improved accuracy, efficiency, and
flexibility. Numerical validations confirm its superior stability
and computational efficiency.

I. INTRODUCTION

Numerical methods play a crucial role in electromagnetic
(EM) simulations, enabling precise modeling and analysis of
wave propagation interactions across a range of complex appli-
cations, including antenna design, medical imaging techniques,
and wireless communications. Among these methods, the
finite-difference time-domain (FDTD) method stands out for
its simplicity, adaptability to complex media, and exceptional
parallel computational efficiency, making it a popular choice
in the field.

However, when dealing with electrically large objects, the
FDTD method encounters limitations. The requirement for fine
meshes leads to prolonged simulation time and substantial
computational memory demands. To overcome these obstacles,
various strategies have been explored, including hybrid FDTD
methods, subgridding techniques, and parallel algorithms [1],
[2]. Concurrently, the advent of machine learning (ML) tech-
nologies like convolutional neural networks (CNN) and recur-
rent neural networks (RNN) has spurred interest in merging
ML with EM simulation [3], [4]. This integration could
elevate EM engineering through advanced frameworks and
extensive matrix operations in specialized libraries. However,
this approach faces its own set of challenges, particularly in
terms of interpretability and generalization, as most ML-EM
solutions are often highly specialized.

In response to these challenges, we propose a stable, in-
terpretable, and flexible physics-oriented CNN-FDTD solver,
suitable for various differential schemes. By integrating CNN
operators into the classic FDTD framework, our proposed
CNN-FDTD scheme not only achieves high parallel efficiency
in massively parallel computing architectures but also retains

the inherent accuracy and stability of the FDTD method.

II. METHODOLOGY

A. The FDTD Method

Here, we focus on a rectangular system at a specific time
step, denoted as t. In the finite-difference time-domain (FDTD)
framework, the electric and magnetic field components are
discretized in both spatial and temporal domains. Second-
order differential operators are used for approximation. To
briefly demonstrate iterative formulas in the FDTD method, we
consider Ex and Hy as a representative set of electromagnetic
components since the remaining field components follow a
similar methodology. The updated formulas are written as
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where Ex,y,z and Hx,y,z denote electric fields and magnetic
fields in the x, y and z direction, respectively. ε is the
permittivity, σ is the electric conductivity and µ denotes the
permeability of the medium. Besides, m = (i, j, k+1/2), CA,
CB, CP , and CQ are defined as

CA(m) =
1− σ(m)∆t/ (2ε(m))

1 + σ(m)∆t/ (2ε(m))

CB(m) =
∆t/ε(m)

1 + σ(m)∆t/ (2ε(m))

CP (m) =
1− σm(m)∆t/ (2µ(m))

1 + σm(m)∆t/ (2µ(m))

CQ(m) =
∆t/µ(m)

1 + σm(m)∆t/ (2µ(m))

(2)
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B. The CNN-FDTD Framework

Noticing a similarity in the local operations performed on
components at each pixel within Yee’s grids and those in a
convolutional layer, the framework of the CNN is naturally
integrated with the iterative process of the FDTD method. Our
approach involves a set of convolutional operations consisting
of the shift & add operator, the Hadamard product, and
the summation operator. These operations are strategically
employed to replace differential operators, material-related
parameters, and summation elements in the FDTD method,
respectively. The implementation is as follows:

• Shift & Add Layer: This convolutional layer is designed
to shift input feature maps by a specified number of
pixels. With particular parameters, the shifting can be in
any direction. Subsequently, each pixel of the shifted map
is added to its corresponding pixel in either the original
or another shifted map. Considering the consistency of
the field components makes this layer the perfect choice
to do the spatial iteration in our proposed scheme.

• Hadamard Product Layer: In this layer, the Hadamard
operator is employed to perform the element-wise mul-
tiplication of two matrices of identical dimensions. By
incorporating material-related parameters, we construct
the Hadamard product layer with kernels CA, CB, CP ,
and CQ, effectively embedding material properties into
the computational process.

• Summation Layer: Playing a pivotal role in integrat-
ing information from different layers, this layer uti-
lizes weighted coefficients to process inputs. Taking
the (1, 1/∆y,−1/∆x) as an example, Et

x yields Et+1
x

through the summation layer, preparing it for the sub-
sequent time step. Unlike pooling layers that reduce the
spatial resolution, the summation operator preserves the
spatial dimensions of feature maps.

In the proposed scheme, a distinct advantage is that no
training process is needed, as each convolutional operator is
rigorously derived from updating equations. This also stands
in contrast to other CNN-FDTD methods, which utilize convo-
lutional layers at a cellular level, for our operator-level scheme
offers enhanced flexibility, which means that it can be easily
applied to any differential framework.

III. NUMERICAL RESULTS AND DISCUSSION

The validation of the proposed CNN-FDTD scheme uses
the simulation of the specific absorption rate (SAR) of a
human head [1], which is exposed to a 900 MHz Gaussian
pulse. The setup of this simulation is depicted in Fig. 1. The
computational domain for this study is discretized into a grid
of 280 × 380 × 215 cells along the x, y, and z directions,
respectively. This discretization results in a total of 22.876
million cells in the computational domain. The simulation was
carried out over 3000 time steps.

The SAR calculated by the CNN-FDTD method and the
proposed SBP-SAT FDTD method is depicted in Fig. 2, which
verifies the consistency with the proposed CNN-FDTD scheme
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Fig. 1. The mesh configuration of the human head model in the simulation.
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Fig. 2. The SAR calculated by (a) the FDTD method and (b) the CNN-
FDTD method.

TABLE I
PERFORMANCE COMPARISON: FDTD ON CPU VS. CNN-FDTD ON GPU.

FDTD on a CPU CNN-FDTD on a GPU
Iterations per Second (it/s) 0.116 5.47

and the FDTD method. A significant enhancement of the
efficiency is clearly shown in Table. 1 where the proposed
method demonstrates an impressive 47-time increase in the
simulation speed compared to the traditional approach.

IV. CONCLUSION

In this paper, we have implemented the FDTD method
within a CNN framework. Through the rigorous correspon-
dence at the operator level between the CNN and the FDTD
method, we have developed a fully interpretable and adaptable
machine learning-based FDTD method. In future research, the
proposed scheme is expected to be extended with modules for
applications in complex scenarios.
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