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Abstract

This thesis explores cosmological structure formation through the Schrödinger-

Poisson (SP) framework, building on the foundational work of Widrow and Kaiser

[3]. By treating dark matter as a wave-like field, the SP formalism provides a

novel perspective that addresses challenges in traditional approaches, such as the

Zel’dovich approximation’s (ZA) failure in nonlinear regimes. The main contri-

butions of this work lie in advancing theoretical understanding, developing com-

putational techniques, and applying the SP framework to foundational models of

cosmic evolution.

The thesis begins by outlining the limitations of the standard ΛCDM paradigm

and establishes the SP system as an alternative framework. A detailed study of

cosmic voids demonstrates the SP method’s ability to model void expansion be-

yond shell-crossing, naturally accommodating multistreaming regions using wave

interference effects. These features circumvent the unphysical predictions of

particle-based and traditional fluid models.

A key innovation introduced in this thesis is the exploration of viscosity within

the SP framework, resulting in a novel scaling solution analogous to the Reynolds

number in classical fluid dynamics. This insight enriches our understanding of

how small-scale quantum effects influence large-scale structure formation. Fur-

thermore, the SP formalism is evaluated as a reconstruction tool for cosmological

initial conditions. Preliminary results show its potential to outperform standard

methods in certain scenarios, particularly in simplified power-law universes, while
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maintaining competitive accuracy in ΛCDM contexts.

The findings underscore the versatility of the SP approach, not only as a

theoretical tool for understanding dark matter dynamics but also as a practical

method for reconstructing initial conditions and analysing observational data.

The thesis concludes by highlighting potential applications, including filament

dynamics, redshift-space reconstructions, and the integration of SP into future

observational pipelines, particularly in the context of upcoming surveys like Eu-

clid and DESI.

Through its contributions, this thesis advances both theoretical and compu-

tational cosmology, demonstrating the promise of the Schrödinger-Poisson frame-

work as a powerful tool for exploring the complex dynamics of the universe.
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Chapter 1

Introduction

From the ancient world until the 19th century, natural philosophy was the term

used for what we now call physics. It represented humanity’s attempt to make

sense of the natural world, blending observation, logic, and speculation. Over

time, as our tools and methods evolved, this broad field gave rise to the specialised

sciences we recognize today, including physics, chemistry, and biology. Within

the realm of modern physics lies the study of one of humanity’s most profound

questions: the origin, structure, and ultimate fate of the observable universe.

This field, now known as physical cosmology, continues the ancient pursuit of

understanding the cosmos, albeit with the precision of mathematics and the power

of advanced technology.

Cosmology sits at the intersection of science and philosophy, where empir-

ical data meets existential wonder. While it is firmly rooted in the scientific

method—analysing cosmic microwave background radiation, mapping the distri-

bution of galaxies, and simulating the evolution of structure—it remains deeply

tied to humanity’s age-old questions about existence. How did the universe be-

gin? Why does it have the structure we observe? What is its ultimate fate? These

are not merely scientific inquiries but also reflections of our innate curiosity and

search for meaning.

1
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The shared scope of cosmology and philosophy brings the narrative of natural

philosophy full circle. In many ways, cosmology continues the work of ancient

thinkers like Aristotle, who envisioned the outer realms as part of a grand, inter-

connected whole, and later philosophers like Kant, who speculated on the vast-

ness and eternity of space. What distinguishes modern cosmology is its empirical

foundation: observations from telescopes, satellites, and detectors have turned

abstract ideas into testable theories, transforming speculation into knowledge.

Beyond its scientific achievements, cosmology profoundly influences human

nature and society. By situating us within a vast, dynamic universe, it reshapes

our perspective on existence. The realisation that we inhabit a planet orbiting an

average star in a galaxy among billions has a humbling effect, fostering a sense of

interconnectedness and shared destiny. At the same time, cosmology inspires a

sense of awe. Concepts like the Big Bang, dark matter, and black holes challenge

the boundaries of human imagination, compelling us to think beyond the confines

of everyday experience.

Moreover, the progress of cosmology reflects the evolution of human ingenuity.

From the development of the telescope by Galileo to the launch of the James Webb

Space Telescope, our pursuit of the cosmos has driven technological innovation

and international collaboration. It is a testament to humanity’s resilience and

creativity, showing how we can transcend divisions to seek answers to universal

questions.

As we delve deeper into the mysteries of the universe, cosmology remains a

bridge between what is known and the infinite unknown. It reminds us of our

origins while pointing toward our potential. In doing so, it reaffirms the timeless

connection between science and philosophy, bringing us back to the very essence

of natural philosophy. The search for understanding the cosmos is, at its core, a

search for understanding ourselves.
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1.1 Cosmological Context

The standard model of modern physical cosmology is known as ΛCDM . Named

after the the cosmological constant Λ and cold dark matter (CDM). The cos-

mological constant, initially known as Einstein’s biggest blunder, now dominates

modern cosmology. The cosmological constant first appears in Einstein’s General

Theory of Relativity [6]. In general relativity (GR), events in space-time are la-

belled by coordinates xµ = (ct, x, y, z), where c is the speed of light in a vacuum.

The invariant infinitesimal space-time interval ds between two events is given by

ds2 = gµνdx
µdxν , (1.1)

where repeated indices are summed over (known as Einstein summation conven-

tion), and gµν is the metric tensor that describes the geometry of space-time. GR

relates the geometry of space-time to the contents of the universe by the field

equations

Rµν −
1

2
gµνR− Λgµν =

8πG

c4
Tµν , (1.2)

where G is Newton’s graviational constant [7], Rµν is the Ricci tensor, R is the

Ricci scalar, Tµν is the total energy-momentum of the universe and Λ is the

cosmological constant. The Ricci tensor is constructed from the second derivatives

of the metric tensor and encodes how volumes deviate from flat space due to

curvature.

The cosmological constant was initially introduced by Einstein on the right-

hand side of the field equation to create a static universe, which was believed

at the time. An expanding universe was not considered until Hubble [8] showed
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that galaxies were receeding from us with a velocity proportional to their dis-

tance from us (Hubble’s Law), causing Einstein to remove Λ from his equations.

It was then later discovered by the Supernova Cosmology Project that not only

is the universe expanding, but its expansion is accelerated [9, 10]. Thus, the

reintroduction of Λ to the famous equations.

To maintain the current level of accelerated expansion, Λ is required to account

for approximately 68% of the total energy density of the of the universe. The

exact nature of this energy density remains unknown, thus named dark energy.

The rest of the universe is made up of matter; with ordinary matter (baryons)

accounting for < 5%, and cold dark matter making up the remaining 26%. Dark,

to keep the same naming convention as with dark energy; we don’t know what

it’s made of. Cold generally referes to weakly interacting. Thus, ΛCDM . These

percentages are estimated by based on Planck’s observations of the Cosmic Mi-

crowave Background (CMB) Radiation [11].

ΛCDM relies on the Cosmological Principle, which assumes that the universe

is homogeneous and isotropic on large scales. We ask that all positions and

directions in the universe be equivalent. We are not special. The Cosmological

Principle can be reformulated as “the part of the universe we can see is a fair

sample” and “the universe is knowable”, Keel [12]. This is a strong philosophical

assumption. However, this can be tested.

We began by measuring the Cosmic Microwave Background (CMB) Radiation,

with COBE [13, 14], establishing that it is blackbody radiation. The CMB is

the relic radiation from the early universe, when photons and matter decoupled.

Photon decoupling is known as the surface of last scattering. At this epoch the

universe had cooled enough for neutral Hydrogen to form, making it transparent

to radiation, thus decoupling. The CMB is a nearly perfect blackbody, with only

microscopic anisotropies from which the the primordial density fluctuations grew

into the vast structure we see today.
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Figure 1.1: Temperature fluctuations of the CMB. The red dots depict the mea-
surements with error bars as taken by Planck. The green curve is the best fit of
the standard model of cosmology. Image credit to the Planck Collaboration and
ESA [17].

Instrumentation improved with WMAP [15]. And even better with Planck

[11, 16]. Figure 1.1 shows the angular power spectrum of these measurements

plotted on what a ΛCDM model with the best fit parameters predicts. The

temperature power spectrum (Figure 1.1) is a statistical representation of how

temperature fluctuations vary across different angular scales on the sky.

Though this is a great success, it had also pointed us toward new challenges.

With the measurements of the CMB becoming more precise so are the measure-

ments of the Hubble Constant, H0 = ȧ/a|now. Recent measurements from the

CMB give H0 = 67.66± 0.42 (km/s)/Mpc [16]. However, if we measure H0 more

directly, with Cepheids [18] for example, we get H0 = 73.2 ± 1.3 (km/s)/Mpc.

These measurements disagree at 4.4σ, beyond a plausible level of chance, see

Riess [18]. The disagreement of these measurements is known as the Hubble Ten-

sion and is cause for great concern in the community. This is the largest piece

of evidence we have for the failure of ΛCDM . Some propose this can be solved
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Figure 1.2: Image of the Large-Scale Structure (LSS) of the Universe as taken by
the Sloan Digital Sky Survey [22]

with physics beyond ΛCDM , such as Modified Newtonian Dynamics (MOND)

[19, 20] or a time-dependent Λ = Λ(t) [21].

Further evidence challenging the validity of the ΛCDM model is emerging,

specifically in large-scale structure. Figure 1.2 is an image from the Sloan Digital

Sky Survey [22] which shows the rich hierarchical structure of the cosmic web, as

theorised by ΛCDM . However, it hides a multitude of unsolved problems beneath

the surface.

Issues with Galaxies and Galaxy clustering

The small-scale structure problem refers to the inconsistencies between the pre-

dictions of ΛCDM and observations on sub-galactic scales. Key issues include the

missing satellites problem (the overprediction of small satellite galaxies), the too

big to fail problem (massive dark matter haloes predicted by simulations failing

to host observed galaxies) and the cusp-core problem (discrepancy in the density



Chapter 1. Introduction 7

profiles of dark matter haloes).

CDM predicts a rich heirarchical structure formation, meaning smaller struc-

tures form first and merge to create larger ones. This leads to the expectation

of hundreds of small satellite galaxies orbiting larger galaxies. Fewer than 50

satellite galaxies have been identified around the Milky Way, far fewer than the

hundreds predicted, shown by the Milky Way Census, Drlica-Wagner et al. [23].

This implies either a limitation in the ΛCDM model and gaps in our understand-

ing of galaxy formation, or such satellite galaxies are too faint to be observed, for

an undetermined reason. For a more in depth read on missing satellites see; e.g.

Mateo et al.[24], Moore [25], Klypin et al. [26].

Included in the rich hierarchical structure expected from ΛCDM, are very

massive dark matter sub-haloes. The model predicts the existence of several

dark matter sub-haloes that are too massive to avoid forming, yet correspond-

ing luminous galaxies are not observed. Unlike missing satellites, it would be

impossible for too-big-to-fail galaxies to be unobservable, see Boylan-Kolchin et

al.[27].

There is a discrepancy between the inferred dark matter density profiles of

low-mass galaxies from observations and the density profiles predicted by cos-

mological simulations. With few exceptions, cosmological simulations form dark

matter haloes with steeply increasing density at small radii, “cuspy” dark matter

distributions. Meanwhile, the rotation curves of most observed dwarf galaxies

suggest that they have a flat central dark matter density profile, they have a

“core”.

The evidence suggests that the observations are unlikely to become more

cuspy as we improve our techniques, equipment and understanding, Moore [28].

Therefore many efforts are being made to adjust cosmological simulations to move

towards a theory that forms dark matter haloes with cores; see e.g. Koudmani

et. al. [29].
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Other issues of the ΛCDM model come from particle physics such as no direct

detection or no evidence for super-symmetry.

1.2 Background Cosmology

This thesis has been conducted in a Friedman-Lemâıtre-Robertson-Walker (FLRW)

Universe [30].

This means that the universe is assumed to be spatially homogeneous and

isotropic (The Cosmological Principle). This means that we operate under the

assumption that the following metric is the metric for our universe

ds2 = −c2 dt2 + a(t)2
[

dr2

1− κr2
+ r2 dΩ2

]
, (1.3)

where,

dΩ2 = dθ2 + sin2 θ dϕ2.

The parameter κ determines the curvature of the space-time. κ =
{
−1, 0, 1

}
yeilds a

{
open, flat, closed

}
universe. The time coordinate t is Cosmological

Proper Time, which measures time as if from the perspective of an observer co-

moving with the universe from the beginning of time. The expansion of the

universe is accounted for by a(t), known as the Cosmic Scale Factor. The dy-

namics of a FLRW universe are determined by the Einstein gravitational field

equations,
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3
( ȧ
a

)2
= 8πGρ− 3κc2

a2
+ Λc2, (1.4)

ä

a
= −4πG

3

(
ρ+ 3

p

c2

)
+

Λc2

3
, (1.5)

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
. (1.6)

These equations are known as the Friedman equations [31, 32] (when considered

in a FLRW universe) and determine the time evolution of the cosmic scale factor

a(t), the dots denote a derivative with respect to proper time t. These equations

therefore, describe the global expansion (or contraction) of the universe. It is

convenient to define the Hubble parameter H = ȧ/a and the density parameter

Ω = 8πGρ/3H2. A suffix of “0” on any of the defined parameters denote the

present epoch t = t0.

1.3 Structure Formation

This section will give the necessary background for structure formation in cosmol-

ogy to understand the work presented in this thesis. In this thesis we primarily

work within the Newtonian approximation for the dynamical equations in either

Eulerian or Lagrangian formalisms. Works that proved useful for writing this

section are; Peebles [33], Islam [34], Ma and Bertschinger [35], Hawking [36],

Kodama and Sasaki[37], Bernardeau [38].

The theory of structure formation is the central theme of this thesis. We wish

to understand how the universe evolved from an almost homogeneous state, as

evidenced by CMB, to the complex and diverse structure of the cosmic web we

see today (Figure 1.2).

In the early universe, slight quantum fluctuations during the inflationary

epoch seeded these density perturbations. As the universe expanded and cooled,
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these fluctuations grew over time through gravitational instability, a process

where overdense regions attract more matter, becoming denser and forming po-

tential wells for galaxies and larger structures. This theory is supported by two

major observational pillars, the CMB and large-scale galaxy surveys, and further

understood by numerical simulations.

The growth of structure is driven by the competition between gravitational

attraction and the expansion of the universe. The nature of both dark matter

and dark energy being crucial in understanding what’s going on. This thesis does

not touch on the nature of dark energy, but has some skin in the game on the

nature of dark matter. The current leading theory on the nature of dark matter

is the Cold Dark Matter (CDM) model. Its simplicity and success at describing

observations has lead to its rise to fame. However, it is not without its issues, as

seen in earlier sections.

This Section aims to walk the reader through a brief history and outline of

structure formation.

1.3.1 Vlasov Equation

Our story begins with the Vlasov Equation [39], also often referred to as the

collisionless Boltzmann eqaution. It is a fundamental equation which describes

the evolution of the distribution function of a system of particles under the influ-

ence of a collection of forces. Typically, gravitationl and electromagnetic forces

are those included in the Vlasov equation. However, for this thesis, we will only

consider the graviational forces.

We start by imagining a sea of identical collisionless particles moving under

a potential V , that interact only by gravity. The Newtonian equations of motion

for such particles with position r = r(t) are
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dr

dt
= u(t), (1.7)

du

dt
= −∇V, (1.8)

where u = u(r, t) is the velocity of the a particle and V = V (r, t) is the previously

mentioned gravitational potential in which the particles are moving under. The

potential is caculated from the density field ρ = ρ(r, t), created by our particles,

via the Poisson Equation [6, 7, 40],

∇2V = 4πGρ− Λc2. (1.9)

Here, Λ is the cosmological constant, c is the speed of light, and G is the gravi-

tational constant.

To make our lives easier, we will consider everything in comoving coordinates

x = x(t), where r = ax, and a(t) is the scale factor of the universe normalised to

unity at the present epoch. As well as comoving coordinates, it is very convenient

to work in terms of peculiar velocity v = v(x, t), which is the velocity of these

particles relative to the expansion of the universe. Using comoving coordinates,

we see

u = Hr + aẋ = u+ v. (1.10)

Here, H = ȧ/a is the Hubble parameter and u is the expansion velocity of the

universe, as described above in Section 1.2.

Similarly, we can describe a peculiar gravitational potential, V = V + Vp,

where V is the potential in the background and Vp is the peculiar potential.
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Using the Friedman eqautions, the comoving equations of motion become

dx

dt
=

p

ma2
, (1.11)

dp

dt
= −m∇xVp, (1.12)

with p = p(x, t) being the momentum (subscript p denoting peculiar), and sub-

script x denoting the comoving gradient. We can now define a Poisson equation

similarly,

∇2V = 4πGa2ρδ, (1.13)

dropping subscripts and assuming we are comoving from context, among other

notational cues. ρ is the background density, and δ is the density contrast

δ ≡ ρ− ρ

ρ
. (1.14)

Now if we expand this into phase-space, with a phase-space distribution function

f = f(x,p, t), where all particles are found when f is integrated over d3xd3p.

Invoking Louville’s Theorem, vanishing total derivative of f , we find ourselves at

the Vlasov Equation:

∂f

∂t
+

p

ma2
· ∇f −m∇xΦ · ∇pf = 0. (1.15)

The Vlasov Equation (1.15), describes the evolution of a phase-space distri-

bution of particles, including Poisson Equation (1.13), under a gravitational field.
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The first building block in describing structure formation in cosmology.

1.3.2 Eulerian Formalism

Eulerian Formalism, treats all of the particles we imagined in Section 1.3.1 as a

fluid, which makes solving Equation (1.15) much easier. In order to describe such

a fluid we need the standard Eulerian fluid equations [41]; Euler’s equation,

∂v

∂t
+ (v ·∇)v +

1

ρ
p+∇V = 0, (1.16)

the continuity equation,

∂ρ

∂t
+∇ · (ρv) = 0, (1.17)

which are moments of the Vlasov Equation (1.15), when v is derived from f . We

consider these equations with Poisson’s Equation (1.9), describing Newtonian

gravity. The Newtonian treatment of cosmic structure is still expected to be

valid in expanding world models, given the perturbations are sufficiently small;

see Buchert [42]. Sufficiently small meaning perturbations are on a length scale

much smaller than the Hubble Horizon dH = c/H. This is the distance at which

the recessional velocity of an object due to the expansion of the universe equals to

the speed of light. Objects within the Hubble Horizon have recessional velocities

less than c. Beyond this radius, objects recede faster than c, as allowed by general

relativity.
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Linear Perturbation Theory - Euler

The process for handling perturbations is to linearise the Euler, continuity and

poisson equations by perturbing physical quantities defined as functions of Eu-

lerian coordinates. The near-isotropy of the CMB radiation signifies that CDM

density perturbations must have been of small amplitude |δ| ≪ 1 at the time of

last scattering. At the present epoch, the Cosmological Principle implies that

density fluctuations must be much smaller than the mean density on suitably

large scales, therefore, it is a good approximation to only consider first-order (lin-

ear) terms in the perturbative expansions. Expanding ρ, v and ϕ linearly yeilds

the following equation,

∂δ

∂t
= −1

a
∇x · v, (1.18)

which can be solved, with a suitable choice of boundary conditions, yielding,

δ = − 1

aHf
∇x · v. (1.19)

The function f ≃ Ω0.55
0 is a fitting formula to the full solution in [33]. The

linearized Euler and Poisson equations are

∂v

∂t
+
ȧ

a
v = − 1

ρa
∇xp−

1

a
∇xV, (1.20)

∇2
xV = 4πGa2ρ0δ. (1.21)

In Equations (1.19-1.21), |v|, |V |, |δ| << 1. Ignoring pressure forces we can use

these equations to obtain an evolution equation for δ,
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δ̈ + 2Hδ̇ − 3

2
ΩH2δ = 0. (1.22)

The general solution to Equation (1.22) is

δ = D+(t)A(x) +D−(t)B(x), (1.23)

where A(x) and B(x) are determined from the initial conditions, and D±(t)

satisfy

D̈± + 2HḊ± − 4πGρD± = 0. (1.24)

Heath [43] showed that the solutions to the growing mode D+ and decaying mode

D− are

D+ ∝ H

∫
da

(aH)3
, (1.25)

D− ∝ H. (1.26)

It is conventional to neglect the decaying mode D− since only the growing mode

is responsible for the formation of cosmic structure via gravitational instability.

Therefore, we will just write D+ = D for convenience.

The integral in Equation (1.25) can be directly evaluated in the cosmologically

relevant case of a spatially flat universe with Ωm + ΩΛ = 1 :
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D ∝ 5

6
Bα(5/6, 2/3)

(Ωm,0

ΩΛ,0

)1/3(
1 +

Ωm,0

ΩΛ,0a3

)1/2
, (1.27)

where Bα is the incomplete beta function (Paris [44]). In mathematics, the Eu-

ler integral is a special function closely related to the gamma function and the

binomial coefficients. The incomplete beta function,

Bα(a, b) =

∫ α

0

ta−1(1− t)b−1dt, (1.28)

is a generalisation of the solution to the Euler integral (also known as the beta

function). The term α = α(a), in our case, is defined by

α =
ΩΛ,0a

3

Ωm,0 + ΩΛ,0a3
. (1.29)

The solution to Equation (1.22) then becomes

δ = Dδi, (1.30)

which is known as the Linear Growth Law. Here δi = δ(x, ti) is some initial

CDM density perturbation and the constant of proportionality is chosen so that

Di = D(ti) = 1. The linear growth factor D approaches a constant at late times

and thus it follows from the linear growth law that the growth of CDM density

perturbations slows to a halt. This is because the dominant cosmological constant

drives the expansion of the universe too rapidly for matter to respond.

The linearised fluid approach provides and excellent description of gravita-
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tional instability while the amplitude of the fluctuations remain small |δ| ≪ 1.

This condition will eventually be violated as density perturbations grow. In

hierarchical clustering scenarios, such as CDM, where a significant amount of

small-scale power survives the radiation era, fluctuations first become non-linear

(|δ| ∼ 1) on small scales, with progressively larger scales entering the non-linear

regime as the Universe evolves. However, on sufficiently large scales, the ampli-

tude of density perturbations remains small and linear perturbation theory still

applies.

The above can only be used for a single Fourier mode of the density field δ.

This is not realistic. The more realistic scenario is that we would have a super-

position of waves, resulting from some kind of stochastic process in which the

density field would be a superposition of multiple Fourier modes with different

amplitudes, see Soda and Suto [45]. A statistical description of the initial pertur-

bations is therefore required, and any comparison with observations will also need

to be statistical. It is predicted by versions of the inflationary scenario for the

very early universe that the initial density fluctuations are Gaussian in nature,

with perturbations of the Fourier modes having random phases.

In the linear regime, each Fourier mode evolves independently, but in reality,

Fourier modes couple to each other, leading to shifts in the phases of the Fourier

components (Scherrer et al. [46]). As a result of the mode-coupling, the distribu-

tion loses its Gaussian nature. In order to describe the non-Gaussian properties

it is necessary to go into the non-linear regime.

1.3.3 Lagrangian Formalism

The Eulerian formalism deals with the dynamics on a macroscopic scale, dealing

with holistic features of the fluid, e.g. density and velocity fields. Alternatively,

one can follow the trajectories of individual fluid elements, this is the Lagrangian

approach. In this regime, the trajectory of a singular fluid element is x = x(q, t)
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where the Lagrangian coordinate q is the initial comoving position of the fluid

element.

The Zel’dovich Approximation

The Zel’dovich Approximation (ZA) is the widely used analytical approximation

in cosmology. Proposed by Zel’dovich [47], it provides an intuitive and mathe-

matically straightforward way to understand how intial density fluctuations in

the early universe evolve. The ZA models matter as a collection of particles that

move along trajectories determined by the intial gravitational potential, making

it particular useful to describe the formation of filaments and sheets in the cosmic

web. White [48] shows that the ZA can be used to calculate the two-point cor-

relation function and provides a good fit to N-body simulations. Grinstein and

Wise [49] provide an interesting discussion on when ZA is an appropriate regime.

The Eulerian coordinates at time t are given in terms of the Lagrangian co-

ordinates,

r(q, t) = a(t)[q + b(t)s(q)], (1.31)

where a(t) is the cosmic scale factor, b(t) describes the evolution of a perturbation

in the linear regime, and is defined by

b̈+ 2
( ȧ
a

)
ḃ− 4πGρb = 0. (1.32)

It is clear to see that this is very similar to the linear growth equation (1.24) above.

Equation (1.24) is defined in terms of the density contrast, whereas, here we define

b for a density field. In a flat matter-dominated universe b ∝ t2/3. Where s(q)

in Equation (1.31) is the displacement, described by the initial velocity potential

ϕ0,
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∇ϕ0(q) = s(q). (1.33)

Mass conservation requires ρ(r, t)dr = ρ0dq, so the Eulerian density field as a

function of Lagrangian coordinates is

ρ(q, t) = ρ0

∣∣∣∣∂q∂r
∣∣∣∣ = ρ

∣∣∣∣δij − b(t)
∂si
∂qj

∣∣∣∣−1

(1.34)

where ρ = (a0/a)
3ρ0. Here ∂r

∂q
is the deformation tensor, which accounts for

the gravitational evolution of the density field. Due to the nature of s(q), the

deformation tensor is a real symmetric matrix with eigenvectors that define a set

of three principal (orthogonal) axes. Rewriting Equation (1.34) in terms of the

eigenvalues −α(q), −β(q) and −γ(q), we get

ρ(q, t) =
ρ

[1− b(t)α(q)][1− b(t)β(q)][1− b(t)γ(q)]
. (1.35)

While this approximation is very accurate in the linear regime, it breaks down

in the non-linear. Shell-crossing is the moment different particle trajectories

intersect. If we look only in one dimension, the Zel’dovich approximation is exact

up until shell-crossing. Figure 1.3 shows how this can happen. At shell-crossing,

multiple streams of matter begin to occupy the same spatial location, resulting in

a multivalued velocity field, this is known as multistreaming. Figure 1.3 depicts

the multi-streaming region. This marks the onset of highly nonlinear evolution,

where the approximation’s linear assumptions about particle motion fail. The

difficulty in predicting the displacement beyond the linear regime undermines

the approximation’s validity and can no longer predict the growth of structures

such as haloes or filaments accurately.

In this regime, gravitational dynamics dominate, and the simple assumptions

of the ZA no longer suffice. Accurately modeling the evolution of structures re-

quires more sophisticated approaches, often relying on N-body simulations, which
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Figure 1.3: Illustration of the Zel’dovich approximation after shell-crossing. The
top panel shows the density field, see the undefined nature of the density field
at the boundary of the multistreaming region. The bottom panel shows how the
initial coordinate maps to the later coordinate. The dashed line and solid line
show two different possibilities for that trajectory.

numerically solve for the gravitational interactions between millions of particles to

capture the complex, nonlinear behavior of matter after shell-crossing. However,

N-body simulations can be computationally expensive and may obscure some of

the underlying physical insights.

This limitation opens the door for alternative frameworks, such as the wave-

mechanical approach, which we introduce as a complementary perspective to the

ZA. By treating dark matter as a classical wave function, this method incorporates

interference patterns and quantum pressure effects, offering new insights into

structure formation, particularly on small scales. In the rest of this section and

subsequent chapters, we will use the ZA as a baseline, contrasting it with our

proposed wave-mechanical approach. This comparison will help highlight the

strengths and weaknesses of each method and underscore the potential advantages

of adopting a quantum-inspired framework for understanding cosmic evolution.
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1.4 Thesis Motivation and Outline

The title of this thesis suggests the main topic of this thesis is the theory of large-

scale structure (Figure 1.2) formation, from a wave-mechanical perspective. In

particular, we are interested in how this wave mechanical approach can be used to

explain key features of structure formation, and provide a new perspective from

which to frame our understanding of phenomena observed.

The formation of structure via gravitational instability is well understood in

the linear regime, when density fluctuations are much smaller than the mean

density. However, galaxies and galaxy clusters are fluctuations far beyond the

mean. We need to go beyond linear theory to understand the formation of such

objects.

In an era dominated by large-scale simulations and extensive galaxy surveys,

it’s crucial to remember the value of toy models. These models distill complex

behaviour into essential insights, offering a deeper understanding of key phenom-

ena. Consider, for example, the significance of this Doroshkevich study [50] on

galaxy clustering by focussing solely on the simplicity and power of the spherical

collapse model.

Having established the fundamental results of cosmological structure forma-

tion to date, this thesis wishes to acomplish the following:

• To provide the necessary background and context to understand the wave-

mechanical approach for structure formation as it is used in this thesis and in

the literature. We wish to provide the reader with the tools to compare and

contrast this method to our industry gold standard Lagrangian Perturbation

Theory (LPT); see Buchert [51].

• To use the wave-mechanical approach to formulate a new approximation

scheme that is capable of evolving cosmic voids beyond shell-crossing and

into the non-linear regime.
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• To carry out a detailed investigation of the role of the “viscosity” parameter

ν, including a scaling solution of the system. The viscosity parameter is an

integral part of the wave-mechanical framework, whether it be as a coarse

grain or as a function of ℏ and mass, therefore it is very useful to investigate.

• To determine if the wave-mechanical model would be a viable candidate to

replace the current method of initial condition reconstruction (Zel’dovich-

Bernoulli).

• To identify other structure formation problems this method could poten-

tially tackle, along with provide a path for which to extend the work in

this thesis to implement these methods into a simulation or observation

pipeline.

The outline of the thesis is as follows:

Chapter 2 introduces the Schrödinger-Poisson (SP) framework for treating

cosmological structure formation. We re-establish previously studied results such

as free-particle collapse and spherical collapse. Comapring these to the ZA and

discussing the implications of these results.

In Chapter 3 we investigate the implications of modelling an isolated void

in this regime. Highlighting the benefits this regime has for void analysis, and

discussing further implications of this model.

Chapter 4 extends the fluid mechanical analogies and introduces a scaling

solution analogous to the Reynolds number.

In Chapter 5 we use the SP model to reconstruct initial conditions from which

cosmological structure has formed. We also compare this method to previously

and currently used methods.

Chapter 6 concludes the findings of this thesis, analyses the implications of

the work presented and discusses some areas to continue and extend this work.
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A Wave Mechanical Perspective

This approach was first proposed in the cosmological context by Widrow and

Kaiser [3] and has subsequently generated a great deal of interest, see e.g. Uhle-

mann et al. [52], Gosença et al. [53], Gough et al. [54, 55] and for a relativistic

extension see Widrow [56]. This approach treats dark matter as a massive scalar

field, described by a wave function evolving according to a modified Schrödinger

equation, while the grvaitational potential is determined by the Poisson equation

1.9. This regime describes a dark matter with a wave-like nature, key features

of this being interference effects, solitonic cores and suppression of small scale

structure. It serves as a natural extension to classical fluid theory, while allowing

for a description beyond the linear, making it an interesting contrast to particle

based theory. This approach not only serves as a theoretical tool to circumvent

issues with small scale structure and non-linear discriptions, it is also a promising

canditate for the nature of dark matter itself.

2.1 The Schrödinger - Poisson System

Coles shows in [57, 58] that the wave mechanical approach introduced by Widrow

and Kaiser can be linked to the Eulerian Fluid approach described in Section 1.3.2.

To see this we need to first assume an irrotational comoving velocity field,

23
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v = ∇xϕ, (2.1)

which is gauranteed by Kelvin’s circulation thoerem if the primordial vortic-

ity vanishes and there is no shell-crossing. We note that, as mentioned by [55,

59], that a posteriori the purely wave-mechanical system can actually generate

localised and quantised vorticity Inserting Equation (2.1) into the Euler Equa-

tion (1.16) and integrating we get the Bernoulli Equation (also derived by Euler

in [41])

∂ϕ

∂t
+

1

2
(∇ϕ)2 = −V. (2.2)

Applying the Madelung Transformation [60] takes us from the classical fluid ap-

proach into the realm of wave mechanics. Letting ψ = αeiϕ/ν , where ρ = ψψ∗ =

α2. This gives

iν
∂ψ

∂t
= −ν

2

2
∇2ψ + V ψ + Pψ, (2.3)

where,

P =
ν2

2

∇2|ψ|
|ψ|

. (2.4)

from Equations (1.17) and (2.2).

Equation (2.3) is a Schrödinger-like Equation, with potential V , ν acting as

ℏ/m with the addition of non-linear term P . The limit ν → 0 corresponds to the
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Wentzel-Kramers-Brillouin (WKB) limit for the wave equation where quantum

effects are small and the system behaves alomst classically; see Spiegel [61] and

Johnston et al. [62] for further details. In the cosmological context we take V

to be the gravitational potential determined via the Poisson Equation (now in

comoving coordinates)

∇2V = 4πGρ, (2.5)

and we get the , the Schrödinger-Poisson (SP) system of coupled Partial Differ-

ential Equations (PDEs).

Although ψ is governed by the same equation as the evolution of a single-

particle wave function, that is not how it should be interpreted here. In particular,

|ψ|2 represents a physical density not a probability density, and its evolution is

completely unitary - there is nothing like the wave-function collapse that occurs

in standard quantum mechanics in this system.

It’s important to note a crucial advantage of this description, namely that

because ρ = |ψ|2 the condition that ρ ≥ 0 is automatically enforced if one applies,

e.g., perturbation theory to ψ. This is not the case for approaches based on

standard Eulerian perturbation theory applied to δ = (ρ − ρ0)/ρ0 which predict

ρ < 0 when δ < −1 and are therefore very unsuitable for describing voids. Note

also that because the wavefunction describes a delocalized particle there are no

singularities analogous to the caustics that form in the ZA.

The non-linear term, P , in Equation (2.3) is known as the quantum pressure.

It is difficult to see where this name comes from. Some combine P and V to

create a new effective potential for the system. However, we find it more useful

to refer to it as a pressure, because it acts like a pressure in the sense that it acts

like an opposing force to the gravitational collapse in a similar way a pressure
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would act like this in gas. In saying this, it is not essential that P be kept in

Equation (2.3), as P = 0 describes a purely wave-mechanical system. One can

then conclude that the SP system is extremely versitile in describing cosmological

structure formation. Keeping P as its defined in Equation (2.4), is consistent

with the Eulerian fluid description for CDM, and setting P = 0 describes a

wave-mechanical dark matter particle, often called Fuzzy Dark Matter (FDM).

Furthermore, if we wish to use SP to describe FDM, ν in Equation (2.3) must

be

ν =
ℏ
m
, (2.6)

where m ∼ 10−22eV/c2. Dark matter particles with this mass have a deBroglie

wavelength that is cosmologically significant, hence the fuzzy in FDM; see for

example Schwabe et al. [63], Dentler et al. [64], Hui [65] and references therein.

Similarly to the quantum pressure, ν can be as described in Equation (2.6),

or it can be used a coarse-graining tool. In this thesis we keep the discussion as

general as possible to account for either interpretation (FDM or Eulerian Fluid).

On the matter of using ν as a coarse grain tool, larger ν leads to waveier solu-

tions. We wish to strike a balance between accuracy to the fluid description and

smaller ν making calculations more difficult, but more on that later (Chapter 4).

2.2 One-dimensional “Free Particle” Collapse

In the previous section (Section 2.1), we concluded with a system of two coupled

PDEs in Equations (2.3) and (2.5), which is not exactly solvable in its current

state. Even with the use of computational methods, coupled systems of PDEs are

notoriously difficult to solve. In this subsection, we will utilse the fact that the

potential changes very slowly to ignore it, essentially. We use the approximation
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where the gravitational potential is calculated at each time-step, but not included

in the Schrödinger equation explicitly. In other words, the gravitational potential

is updated as the fluid moves but the effect of this evolution of the fluid motion is

ignored. This has the effect that the fluid moves as a collection of free particles,

a shortcut that has shown to be remarkably accurate for some applications; see

Short and Coles [66], Coles and Spencer [67]. Here, we demonstate here this for

reference in later chapters.

We also ignore the quantum pressure term in Equation (2.3) for the free

particle theory. Using similar reasoning to the gravitational potential, we notice

that P (Equation (2.4)) changes very slowly when compared to the density field ρ.

Therefore, we conclude that it will not affect the evolution of the system greatly,

at least in early timesteps. We will say more about this later.

I want to stress that the free particle approximation is very effective due to

implications of Equation (2.2). We see that the gravitational potential is encoded

into the velocity potential in the initial instance, and then the free particle ap-

proximation functions similar to the ZA, where the particles get an initial “kick”

due to gravity, and then evolve.

I will only show this result in (1 + 1)D, as a proof of concept, and note that

it is possible to extend into (3 + 1)D.

The free particle equations are as follows,

iν
dψ

dt
= −ν

2

2

d2ψ

dx2
, (2.7)

d2V

dx2
= 4πG|ψ|2. (2.8)

It is clear in Equations (2.7) and (2.8) that the system is now decoupled, and

much easier to solve.

Figure 2.1 shows the solution to Equations (2.7) and (2.8) for three different
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Figure 2.1: In this figure, we can see the Zel’dovich Approximation (orange) and
Schrödinger-Poisson Formalism (Blue) compared for a simple one dimensional
collapse of a plane wave, with period of 2π. The columns depict 3 different
timesteps and the rows depict 3 different values of our scale parameter ν, which
the Zel’dovich is not affected by.
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values of the scale parameter ν to demonstrate its effect on the evolution of the

system, along with showing the differences with between the SP system and ZA.

It is clear in Figure 2.1 that at early timesteps there is little difference between

the two different systems, but as we get closer to shell-crossing we can see the two

diverge. The main take-away from this comparison is that at the point of shell-

crossing ZA becomes undefined and blows up, whereas the wave-nature of the

SP particles kicks in and the particles in different streams begin to interfere with

each other and we no longer have an undefined density field post-shell crossing.

This is the main motivation for using SP over ZA. It is also interesting to note,

that while ZA is becoming singular at the centre of the overdensity, SP spreads

out as it is interfering with itself. This becomes more relevant when we consider

one of the current issues with CDM being the cusp-core porblem, an FDM field

described by SP would not have this issue.

2.2.1 Spherical Collapse

As shown in Section 2.2, SP is useful for peering into the multistreaming region.

As well as one-dimensional Cartesian analysis, it is a useful exercise to look at

one-dimensional spherical analysis, since [50] showed that matter condensations

around large perturbations were nearly spherical. As well as being able to predict

that the typical mass, size and density of galaxy clusters should have a roughly

similar density as their collapse. Due to this result, we can learn a lot about early

density perturbations by analysing the end-point of a simple spherical collapse

model.

The ideas for this section were presented in Johnston et al. [62], and should

be consulted for more details of what’s to follow.

To understand the collapse of a spherical overdensity, we turn our attention

to the so called top-hat model, as shown in Figure 2.2. It is called this because

it kind of looks like a top-hat, with a small sphere in the center, which is the
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Figure 2.2: Top hat diagram for spherical collapse. The inner region is the
overdense region, the shell is a thin layer of vacuum separating the overdensity
from the rest of the universe, which is the outer region. We model the inner
region as a closed universe and the outer region as a flat universe.

overdense region, a thin layer of vacuum to separate this region from the rest of

the universe which surrounds the over dense region.

We separate the inner region from the outer region with this shell in our

theoretical model because this region is where we would expect a multistreaming

region to occur, and this is quite difficult to work with.

The overdense reion is modelled by a closed universe. Full details of the

calculation are found in [62]. The rest of the universe is assumed to be flat and

the solution to this is found with the solution to the closed universe.

The aformentioned solutions are only valid in this very specific case which is

great but not the most useful. To get a more useful understanding of the problem

we need to solve the system more generally.

To solve this system in three dimensions is very computationally intensive,

but to make it more manageable we can make some assumptions. If we assume

that the object will remain spherically symmetric as it collapses we can get a
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one-dimensional solution to a three-dimensional problem. The equations to the

spherically symetric problem are as follows,

iν
∂ψ

∂t
= −ν

2

2

(
∂2ψ

∂r2
+

2

r

∂ψ

∂r

)
+ V ψ + Pψ, (2.9)

which is obtained from Equation (2.3), and Equation (2.5) becomes

∂2V

∂r2
+

2

r

∂V

∂r
= 4πG|ψ|2. (2.10)

These analytic solutions are valid because we consider a thin shell of vacuum

between the two fluids so that we don’t have issues with the multistreaming

region. This is a great way to get an analytic solution but is not the most

physical description. To get a more physical solution, without having to consider

the multistreaming region, we can split the fluid in two again, but this time

without the vacuum shell. Now with a two-fluid description we have a new

system of equations;

iν
∂ψ1

∂t
= −ν

2

2

(
∂2ψ1

∂r2
+

2

r

∂ψ1

∂r

)
+ V ψ1 + Pψ1, (2.11)

iν
∂ψ2

∂t
= −ν

2

2

(
∂2ψ2

∂r2
+

2

r

∂ψ2

∂r

)
+ V ψ2 + Pψ2, (2.12)

∂2V

∂r2
+

2

r

∂V

∂r
= 4πG

(
|ψ1|2 + |ψ2|2

)
. (2.13)

I constructed the initial conditions to align as well as possible to the top-

hat model described by Figure 2.2, this can be seen in Figure 2.3. The initial

gravitational field is calculated from Equation (2.13), and shown in Figure 2.4.

The velocity potential for fluids one and two are given to be quadratic and quartic
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Figure 2.3: Initial conditions for density field of two fluid collapse.

respectively, as this is what we would expect for these fluids with this gravitational

potential. The velocity potential is shown in Figure 2.5.

The system of Equations (2.11-2.13) were solved by a finite-difference method

and appropriate boundary conditions [62] to produce the results seen in Fig-

ures 2.6-2.8.

The two-fluid approach is particularaly compelling becuase it allows for a

detailed examination of the multistreaming region. The two fluid model, as pre-

sented in [62] acts like a window into the multistreaming region, and allows us to

analytically go beyond shell crossing in this particular case.

Having established the foundational principles and key results that frame this

work, we now turn to their implications and explore how they inform the central

questions of wave-mechanical structure formation. With the results of spherical

collapse in mind, we turn our attention to an analogous result of examining the

evoltuion of an isolated void in a similar expression as the results presented in this

section. Icke [68] found that the spherically symmetric model is more applicable

to model voids than collapse due to the Bubble Theorem, which states that voids
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Figure 2.4: Initial gravitational potential for density field in Figure 2.3.

Figure 2.5: Initial velocity potential for two fluid spherical collapse.
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Figure 2.6: Late time-step density field for two fluid spherical collapse.

Figure 2.7: Late time-step velocity potential field for two fluid spherical collapse.



Chapter 2. A Wave Mechanical Perspective 35

Figure 2.8: Late time-step graviational potential for the two fluid spherical col-
lapse.

tend to become more spherically symmteric as they expand. Of course, this is

more applicable in the slightly unrealistic isolated void case, which is the focus

of the next chapter.

However, we don’t let the limitations of simple models disuade us from un-

dertaking a study, Doroshkevich’s work helped establish a statistical and dy-

namical framework for understanding galaxy clustering and large-scale structure.

It bridged the gap between early cosmological perturbations and the observed

distribution of galaxies, making it a foundational contribution to modern cosmol-

ogy. His insights into anisotropic collapse and tidal torques remain integral to

theoretical and computational models of structure formation.

Thus, the another key theme of this thesis will be the study of simple semi-

analtic models with the goal of gaining some insight, which could later inform

more complex models, theories and techniques.



Chapter 3

Evolution of Cosmic Voids

It was first demonstrated by Lynden-Bell [69] and Lin, Mestel and Shu [70] that

density inhomegeneities are likely to collapse in such a way that any slight depar-

ture from sphericity is systematically magnified in evolution. However, the case

for the void is the opposite. The same argument for loss of sphericity holds for

voids, except that it is reversed. So while the condensations collapse, the voids

expand. Centrella and Melott [71] showed that as the void becomes bigger, its

asphericities will tend to disappear. This result is often referred to as the “Bubble

Theorem”, Icke [68, 72, 73]; also see [74] for more numerical calculations.

The expansion of a spherically symmetric void is therefore more realistic than

the collapse of a spherically symmetric over-density. Moreover, [71] shows that

condensations are more likely to form sheets or filaments as they collapse, forming

the Cosmic Web, leading to voids dominating space in terms of volume fraction.

As well as these physical aspects of void evolution, White [75] shows that voids

contain information about the entire hierarchy of n-point correlation functions at

all orders. For these reasons, among others, a great deal of interest has been

generated in the behaviour of cosmic voids; see e.g. Sheth and Weygaert [76],

Bos et al. [77], Achitouv et al. [78], Demchenko et al. [79] and Pisani et al. [80].

In this Chapter, I detail the interesting case of evolution of cosmic voids by

36
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Figure 3.1: The centre (white) region is underdense, the outermost (light grey)
region is flat space surrounding the underdense region. Between these two regions
(dark grey) is a shell of overdensity, that forms as the void evolves.

the Schrödinger-Poisson formalism, introduced in [4]. The case presented in this

Chapter compliments the previously explained spherical collapse, see Section 2.2.1

and [62].

3.1 Analytic model of an isolated void

Figure 3.1 shows a simple isolated void. Similarly to [62] the outermost region

depicted in Figure 3.1 is flat space, simply the “rest of the universe” surrounding

the innermost underdense region, the void. The underdense space is modelled

by an open universe, expanding. When the underdensity expands, it pushes into

the flat space surrounding it, resulting in a shell of overdense space encasing the

void.
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3.1.1 Spatially flat universe

For the following we assume a flat universe (with κ = 0). We begin here by taking

the well known cosmological result for the evolution of the density field under a

globally defined cosmic time, t, given by

ρ(t) ≡ |ψ|2 = Λc2

8πG
cosech2

(3
2

√
Λc2

3
t
)
. (3.1)

Under spherical symmetry the Laplacian operator is simply

∇2 ≡ ∂2

∂r2
+

2

r

∂

∂r
,

where r here is now the radial variable r = |x|. This density evolution obtained

previously can be substituted into Equation (2.5) to obtain an equation for the

gravitational potential V . This allows the calculation of ϕ by substitution into

Equation (2.3), resulting in the wave-function ψ, as shown in [62]:

V =
Λc2

12
(coth2(λt)− 3)r2, (3.2)

and

ψ =

√
Λc2

8πG
cosech (λt) exp

( i
v

√
Λc2

12
coth [λt] r2

)
, (3.3)

where λ ≡ 3
2

√
Λc2/3. We therefore also find

ϕ =

√
Λc2

12
coth(λt)r2. (3.4)
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Also following [62], a series expansion of ρ = α2 and ϕ/r2 about Λ = 0 provides

the well known results of ρ ∝ t2 and V = r2/9t2 for this particular case.

3.1.2 Open Universe

Working in a similar way to Section 3.1.1, we find solutions for a universe with

negative curvature, κ = −1, an open universe, to be

ρ =
γ

A3(cosh(η)− 1)3
, (3.5)

V =

{
Gπγ

12A3
[
sinh

(
η
2

)]3
}
r2, (3.6)

and

ψ =
C

√
2A
[
sinh

(
η
2

)]3 exp [ ivC coth
(η
2

)
cosech

(η
2

)
r2
]
, (3.7)

where A ≡ 4πGρ0/3, C = γ1/2/4A, µ = 3M/4π and γ is a constant. For a

simpler derivation we have converted to conformal time by using adη = dt where

a is the scale factor of the open universe.

Having established this simple solution we can now proceed to study the

dynamics of a void, taking into account the fact that the density surrounding the

void will not remain homogeneous as the interior expands.

Using the solutions described in both Sections 3.1.1 and 3.1.2 above, we aim to

construct an analytical model of an isolated void in one-dimension. We construct

the model of the void with an inner region and an outer fluid separated by a

shell. The inner fluid is modeled by the open universe solutions and the outer

fluid is modeled by the flat universe solutions. Both fluids are evolved completely
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independently and the overall behaviour inferred from there. Both fluids are

homogeneous but the fluid in the inner region is less dense than the outer fluid

so we expect it to expand quicker, pushing into the surrounding medium and

evacuating the void.

Using the cosmological solutions shown above, and following the same pro-

cedure as [62], we compute an expression for the expansion of the radii of both

sections of the void, in conformal time η. We have Ro for the open-universe

section of the void and Rf for flat universe section of the void.

Ro = µ1/3 2A

γ1/3
(sinh2(η/2)), (3.8)

Rf = B (sinh(η)− η)2/3 , (3.9)

where B is a free parameter corresponding to the inital conformal time η0 when

the configuration is set up, at which point Ro = Rf . The evolution is illustrated

by Figure 3.2 which shows the evolution of each of these radii with respect to

conformal time with an arbitrary scaling on the vertical axis just to show that

the inner region of the void expands much quicker than the outer region, and

an overlapping region develops after some time as the inner void expands into a

region that was previously in the space exterior to the void.

It is clear that this is not enough to truly model the behaviour of Schrödinger

fluids around a void, since this system cannot be solved exactly in this case.

Therefore, the system requires numerical methods to get a solution.

3.2 The Zel’dovich void

To best be able to understand the evolution of voids within SP, it makes sense

that we would compare how voids behave in this regime with how they behave
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Figure 3.2: The evolution with respect to conformal time of the radius of an
underdense region as modelled by an open universe (blue) and the radius of
the flat space which occupies the region surrounding the underdensity (orange),
plotted on a log scale.

in the popular and effective Zel’dovich approximation, for which full details were

shown in Section 1.3.3.

Simplifying Equation (1.35), to one which describes a one-dimensional comov-

ing density field,

ρ(q, t) =
ρ0

1− b(t)∂s
∂q

, (3.10)

while continuing to use b(t), as described by Equation (1.32), as our time coor-

dinate for ZA.

Modelling void expansion with ZA is a challenge, since shell-crossing effec-

tively occurs immediately. As the void begins to evacuate, the matter on the

“edge” of the void pushes into the the rest of the matter that forms the “walls”

of the void. This creates a little bump on the edge of the void. This bump at-
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Figure 3.3: Initial compensated void (left), initial velocity potential (right).

tracts a small amount to matter to it, thus creating a multistreaming region at

the edge of the void as it expands. As we know, multistreaming regions are not

handled well by the Zel’dovich approximation, and this model of the void breaks

down.

Figure 3.3 shows ideal initial conditions for a compensated void density field

and velocity potential. A compensated void is such that the mean density is

set to be 1. To get this shape we used a smoothed tanh function. See Spencer

and Coles [67] for motivation on this chosen velocity potential. We are using

periodic boundary conditions, with the void placed significantly far away from

the boundary so that we have an effective boundary-at-infinity, to truly have an

isolated void.

Figure 3.4 shows three different timesteps of evolution of these intial conditions

by ZA. It is clear that ZA is only valid for very early time-steps. It models the

forming of the “shell” very well, but fails to capture the expansion of the void,

as once shell-crossing occurs it form these two peaks at the “edge” of the void

where the multistreaming region exists.

3.3 The “free-particle” void

Using the same initial conditions as for ZA (Figure 3.3), we wish to compare

its evolution as a collection of free particles as described in Section 2.2 to the
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Figure 3.4: Three time-steps of the evolution of a void under the Zel’dovich
approximation.
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Zel’dovich void. Figure 3.5 shows three time-steps of void evolution in both

regimes. The top plot shows that the free partilce void and ZA agree for early

time-steps. However, the centre plot shows both regimes diverging. Both regimes

form peaks at the edge of the void, creating the necessary conditions to form

multistreaming region in these peaks. Figure 3.4 showed the Zel’dovich void

breaking down and failing to effectively model the behaviour expected after shell-

crossing. The bottom plot of Figure 3.5 shows that once the interference effects

from the wave-mechanical approximation kick in, the evolution is not hindered by

the existance of shell-crossing, and we can effectively model the void expansion.

These interference effects are an important part of SP dynamics, and occur in

the multistreaming region, see [52, 67] for further details. This is contrasting to

the collapse model, in collapse we find shell crossing inside the collapsed object,

however in the void case shell-crossing occurs outside of the void. This provokes

the idea that the model of the void in this case could be thought of as more

accurate as the inner void is unaffected by shell-crossing complications.

We also remark that a field level model is better suited to modelling voids as

opposed to a particle model. Uniform resolution is a key feature of field models,

they permit more accurate modeling of the empty regions, compared to particle

models where the resolution is best where there are particles and we effectively

have no resolution in void regions.

We can conclude that even the most basic of wave-mechanical approximations

(free-particle) is more effective at modelling a one-dimensional isolated void. But

why stop there? SP has more complexity and when used to its full potential,

could further improve its ability to model such objects. In the next section,

we compare the inclusion of the P , the quantum pressure term, and re-coupling

Equations (2.7) and (2.8).
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Figure 3.5: Three stages of evolution of the free particle void (blue, solid) with the
Zel’dovich void layered over it (orange, dashed), where possible. The first plot is
an early timestep. The second is an intermediate timestep before shell-crossing.
The third plot is after shell-crossing.
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3.4 Including Other terms

The free particle approximation works well, as shown in Sections 2.2 and 3.3.

The free particle approximation, models the behaviour of the void and collapse

quite accurately for simple models, however, it is important to note that while

using this approximation we are neglecting terms that could improve our result

and understanding of these systems. In this section, I will show results similar

to that of the previous section, but including either the potential, the pressure or

both.

3.4.1 Potential

It is important to detail the difficulties of implementing the inclusion of a potential

term. Including the potential term, turns the problem from a PDE problem to a

coupled PDE problem, which is exponentially more difficult.

We can circumvent the complexity of the coupled PDE problem by calculat-

ing the gravitational potential of the intial condition and including a constant

gravitational potential, V0 instead of solving the coupled PDE problem. This

method has the benefits of the free particle approximation’s ease and speed on

a computational front, but still encapsulates some of the additional dynamics of

including a potential. The second derivative nature of the potential ensures that

it is changing very slowly compared to that of the density field, leading us to

believe that including only V0 will still add significantly to our model.

Figure 3.6 shows that early on in the evolution of the void (top) in this regime

we deviate from the free particle approximation. In both earlier timesteps (top,

center) shown here in Figure 3.6 we see that the free particle approximation, when

compared to the inclusion of the potential, shows traits more like that of the ZA

(see Figure 3.4), the sharp peaks at the edge of the void, and the slower void

expansion. It is only in late times (bottom) that we begin to see a differentiation
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Figure 3.6: Comparison for how the gravitational potential affects the evolution
of the SP void when included in 3 different ways. V = 0 (blue), V = V0 (orange),
V = V (t) (green). The three plots are taken at the same timesteps as the three
plots in Figure 3.5
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between the method used for including the potential. Including only the intial

potential V0 (orange) empties out the void, and is showing to expand slightly

slower than that of the time-dependent potential (green). The time-dependent

potential is not completely evacuating the void, and is forming some (small)

structure, within the empty region of the void. This is the most realistic picture

of the void out of the three. The gravitational potential accelerates the expansion

of the void, as expected. Even in this simple model, we see that the void is not

totally evacuated with the inclusion of a time-dependent potential, more similar

to what we observe in our universe today.

We also conclude that the inclusion of an intial potential is a very attractive

method moving forward, as it is as computationally intensive as the free particle

approximation, but shows behaviours much more similar to that of the time-

dependent potential.

Not considered here, however, it could be worthwile including V (or P , or

both) in a similar way to the Zel’dovich-Bernoulli method, detailed later in Chap-

ter 5. To save time on computation, but to limit loss of accuracy, V would

be calcuated and updated at a convenient interval of timesteps (e.g. every 50

timesteps).

3.4.2 Quantum Pressure

Inclduing the quantum pressure term P , dissassociates this model from FDM,

and is now a wave-mechanical approximation for CDM. The second derivative

nature of P as described by Equation (2.4), means that P changes very slowly

compared to ρ, so we expect this to have little effect on the evolution of the void.

Figure 3.7 shows the evolution of the SP void (left), with P included (orange)

and P = 0 (blue). Figure 3.7 also shows the isolated quantum pressure (right)

at these same timesteps. It is clear from Figure 3.7 that including P has little to

no affect on the evolution of the void.
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Figure 3.7: Comparison of including the quantum pressure term (left column)
in the evolution of the SP void, where the timesteps shown are the same as
Figure 3.5. The isolated quantum pressure term for the SP void (right column),
at the same timesteps as the left.



Chapter 3. Evolution of Cosmic Voids 50

The scale on the right column plots shows how small the contributions from

P are to the evolution, as well as most of the contribution from P being on the

empty regions of the void, with some action happening right at the edge of the

void, but still very negligible. We can therefore conclude that one can safely

neglect quantum pressure when considering the evolution of isolated voids.

The question of its impact on other aspects of this model are still undeter-

mined. Considering P as a pressure, can further link this model with its ancestors

in fluid dynamics. We can also extend the fluid dynamical analogy by consider-

ing ν in Equation (2.3) as a viscosity, considering that ν is expressed in units of

kinematic viscosity. These ideas are explored more in Chapter 4.



Chapter 4

Analogies with Fluid Dynamics

We follow on from the analysis in Chapter 3 on the quantum pressure by consid-

ering it more seriously as a pressure in the fluid analogy of this model. We discuss

to which extent a quantum pressure can indeed be interpreted as a pressure in the

fluid analogy. Pressure in fluids is typically split into two catgeories, hydrostatic

and dynamic pressure. Hydrostatic pressure refers to the pressure of a fluid that

is not moving; dynamic pressure refers to pressure of a moving fluid in a closed

body of fluid. Considering cosmological fluids are not in a closed container but

are definitely moving, they fall under hydrostatic in this case, similarly to that of

the ocean being a hydrostatic fluid, where the pressure changes due to the mo-

tion of the fluid are negligible. Pressure within fluids can be calculated in many

situations by the Bernoulli Equation (2.2). However, this equation required the

fluid be an ideal fluid, requiring the fluid have zero viscosity.

It has been previously remarked that the coefficient ν, from the Madeulung

Transformation, has the same dimensions as kinematic viscosity; see, for example

Short and Coles [66, 81] for a discussion. This is particularaly interesting in

the context of the so called adhesion approximation [82], an extension of the

Zel’dovich approximation achieved by introducting an effective viscosity term to

make particles “stick” at shell-crossing. An extension of this model is presented

51
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by Jones [83] and analysed from a wave-mechanical perspective in [62].

Assuming a potential flow, the velocity field v can be expressed as ∇ϕ, the

adhesion approximation reduces to the following equation for ϕ:

∂ϕ

∂τ
− 1

2
|∇ϕ|2 + µ∇2ϕ = 0, (4.1)

where µ is the (constant) viscosity. It is shown in [66] that the same in the

wave-mechanical representation has the following form,

∂ϕ

∂τ
− 1

2
|∇ϕ|2 + P = 0, (4.2)

where P is the quantum pressure as described in Equation (2.4). There is an

important role played by ν in the dynamics of this system, just as µ does in the

former case. Further connections between the adhesion model and SP approach

are explored in [84].

The question thus arises, to which extent can we treat ν as a descriptor of

vsicosity in a quantum system. The viscosity of a fluid is its ability to resist

change in shape. It quantifies the internal friction of the fluid; see Stokes [85].

It is a common train of thought that viscosity refers to a “stickiness” of a fluid.

More viscous fluids stick to themselves more than inviscid fluids.

Viscous fluids are often associated with vorticity, and our representation re-

quires a potential flow, for which the vorticity is zero by definition. On the other

hand, there is a sizable liturature [86] on the subject of potential flows in viscous

fluids, so we feel it is worth taking this discussion further, though we are limited

in what we can expanding the description of velocity fields beyond the current

simple form. An example of an application of this general approach to a fluid

with viscosity is given in [59].
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4.1 Viscosity and the Navier-Stokes Equations

The full form of the Navier-Stokes equation takes the following form,

∂v

∂t
+ (v ·∇)v +

∇P

ρ
− ∇ · σ

ρ
= 0, (4.3)

where σ is the viscous stress tensor,

σij = η

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3
δij
∂vk
∂xk

)
+ ζδij

∂vk
∂xk

, (4.4)

in which ζ is the bulk viscosity, η is the shear viscosity and vi are components of

the velocity field v, and we use Einstein’s summation convention to sum over k

here.

The first point to be made is that there is little point in talking about fluid

analogies wihtout including a full classical description. We define the material

derivative for velocities in a fluid to be

D

Dt
=

∂

∂t
+ v ·∇, (4.5)

and we can rewrite the Navier-Stokes equation using the material derivative,

ρ
Dv

Dt
= −∇P +∇ · σ. (4.6)

We also need to include a description of heat transfer, including viscous dissipa-

tion, and associated as entropy production, which requires the introduction of a

temperature T and entropy s, as well as thermal conductivity κ. The general
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form being

ρT
Ds

Dt
= ∇ · κ∇T +

η

2

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3
δij∇ · v

)2

+ ζ
(
bm∇ · v

)2
, (4.7)

in which ∇ · κ∇T represents thermal conductivity, and the other two terms

describe viscous dissipation. To construct a full fluid analogy would therefore

involve complexities beyond the scope of this work. However, we can attempt

to extract a better description by starting with the Schrödinger equation and

working towards the fluid analogy. We are guided by Fernández de Córdoba et

al. [87] to whom we refer the reader for further comments.

Consider the Schrödinger equation for a particle of massm in a time-independent

potential V (x),

iℏ
∂ψ

∂t
+

ℏ2

2m
∇2ψ − V ψ = 0, (4.8)

for which we can make the Madelung transformation in the following form

ψ = ψ0e
S+iϕ = ψ0Ne

iϕ, (4.9)

where ψ0 is a normalisation constant. It can be included in N , but it is useful

to keep separate for the description of the Boltzmann entropy, assumed to only

depend on density,

S = kB ln

(∣∣∣∣ ψψ0

∣∣∣∣2
)
, (4.10)
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which is related to S.

We choose to define density ρ = m|ψ|2.

There is a natural length scale, λ = |ψ0|2/3, that arises due to the normalisa-

tion of ψ. This leads to

ρ =
m

λ3
e2S =

m

λ3
N2. (4.11)

Thus, we now have two equations as a result of the Madelung transformation,

∂S

∂t
+

ℏ
m
∇ ·∇ϕ+

ℏ2

2m
∇2ϕ = 0, (4.12)

and

ℏ
∂ϕ

∂t
+

ℏ
2m

(∇ϕ)2 + V + U = 0, (4.13)

where,

U = − ℏ2

2m

∇2N

N
= − ℏ2

2m
[(∇S)2 +∇2S], (4.14)

which we will name the quantum potential. In the general case, V , could be

an external potential, or as we have used it in this thesis, the gravitational po-

tential. Taking the gradient of Equation (4.13), and defining the velocity field

v = ℏ/m∇ϕ, we get

∂v

∂t
+ (v ·∇)v +

1

m
∇(U + V ) = 0. (4.15)

It is argued in [87] that in order to make Equation (4.15) compatible with a
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pressureless Navier-Stokes equation,

Dv

Dt
=

4η

3ρ
∇2v = 0, (4.16)

here, we also combine bulk and shear viscosity to one term, η → ζ + 4η/3, it is

necessary to impose two separate conditions. First,

∇P

ρ
=

∇V

m
, (4.17)

which is tantamount to the assumption that we are dealing with hydrostatic

pressure, and also means that if V = 0, we must have P = 0, for consistency.

Second, we must identify the term in U with the viscosity, i.e.

1

m
∇U = −η

ρ
∇2v. (4.18)

These conditions imply that the gradient of the quantum potential must exactly

balance the viscosity term in the equations of motion. Internal frictional forces

arising in a system described by these equations are therefore inherently wave-like

in nature. Equation (4.18) yeilds

η

ρ
∇2v = − 1

m
∇U = − 1

m
∇
(
−ℏ2

2m

∇2N

N

)
, (4.19)

Thus, the viscosity term is in general spatially dependent and very complicated,

but of order ℏ, which is the salient point. If we want to describe this system

using the Navier-Stokes equations (which have constant η) we have to take the
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classical limit ℏ → 0 and that spatial variations of ψ are small. This, in turn,

means that ∇2ϕ ≃ 0, which is easy to show and requires that the fluid be almost

incompressible, and the flow be almost isentropic (negligible entropy production).

One could go further by analysing the behaviour found in the one-dimensional

calculations presented in Chapter 2. We can then replace the partial derivatives

by ordinary derivatives, and reduce v to one spatial dimension v and write

η(x) = ρ(x)
A(x)

B(x)
, (4.20)

where,

ρ(x) =
m

λ
N2, (4.21)

A(x) = − ℏ2

2m2

d

dx

(
1

N

d2N

dx2

)
= − ℏ2

2m2

d

dx

[(
dS

dx

)2

+
d2S

dx2

]
(4.22)

and

B(x) =
d2v

dx2
=

d2

dx2

(
ℏ
m

dϕ

dx

)
=

ℏ
m

d3ϕ

dx3
. (4.23)

We can immediately see that this definition of η is of order ℏ. Therefore, for a

qualitative understanding, we need not include factors of λ, m or ℏ. We only

need

|η(x)| ∝
N2 d

dx

(
1
N

d2N
dx2

)
d3ϕ
dx3

=
N d3N

dx3 − d2N
dx2

dN
dx

d3ϕ
dx3

. (4.24)

Assuming a given form ofN(x) and ϕ(x) would straighforwardly given an effective

value behaviour of η(x) for a given configuration, if one were interested in doing
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so.

Therefore we cannot find similar system of equations to the SP system defined

in Chapter 2 in the full Navier-Stokes viscous regime. The system found in this

section is only consistent in the ℏ → 0 limit, in which case η → ∞. This case

is not irrelevant, it is, for example, the limit taken in analytic treatments of the

adhesion model.

4.2 Wave Propagation in Viscous Fluids

When considering the validity of a viscosity in these wave mechanical cosmic

fluids, it makes sense to consider propagation of waves within such fluid. The

internal friction as a consequence of having a viscosity, causes dissipation of energy

and dampens waves as they travel through the fluid. This results in attenuation

of amplitude over distance, often known as the attenuation of sound.

To determine an attenuation of sound for cosmic fluids we begin with con-

servation of both mass and momentum. Conservation of mass is given by the

Continuity Equation,

∂ρ

∂t
+∇ · (ρv) = 0, (4.25)

and conservation of momentum is given by,

ρ
Dv

Dt
+∇P =

4µ

3
∇2v. (4.26)

The dynamic viscosity is included in Equation (4.26) as µ. Dynamic viscosity

relates to kinematic viscosity by µ = νρ. We use ν here instead of η (as in

Equations (4.3) and (4.4)) to consider ν as it appears in the SP system as the
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kinematic viscosity for this analysis.

For fluids, the equation of state relates pressure, density and entropy, by

expressing pressure as a function of density and entropy. For cosmic fluids we

have the pressure as a function of density in the form of the quantum pressure,

P =
ν2

2

∇2(
√
ρ)

√
ρ

. (4.27)

To move forward with this as our equation of state, we will use the more conve-

nient form

P = ν2

(
∇2ρ

2ρ
−
(
∇ρ
2ρ

)2
)

(4.28)

4.2.1 Small-signal approximation for attenuation of sound

For convenience and brevity we will use notation where the subscript denotes

derivative, for example,

ρt =
∂ρ

∂t
.

Sound waves typically disturb the fluid only around a small region, therefore,

the quantities associated with sound, excess pressure, excess density and particle

velocity can be assumed to be small and of first order. Assuming

|δρ| ≪ ρ0, (4.29)

where ρ0 is the background density and does not depend on x and t. Now in one
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dimension for simplicity, the continuity Equation (4.25) can be expanded to the

following,

δρt + vδρx + vxρ0 + vxδρ = 0. (4.30)

It can be seen that this reduces to

δρt + vxρ0 = 0, (4.31)

by keeping only first-order terms. Following the same procedure, we can see that

equation Equation (4.26) becomes

ρ0vt + Px =
4ν

3
ρ0vxx, (4.32)

and Equation (4.28) becomes

P =
ν2

4

δρxx
ρ0 + δρ

. (4.33)

The small signal approximation is summarised by Equations (4.31-4.33). Com-

bining these equations to find a final form of the viscous wave equation, from
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Equation (4.32) we get,

ρ0vx = −δρt,

ρ0vxx = −δρtx,

ρ0vtx = −δρtt,

ρ0vxxx = −δρtxx,

(4.34)

Differentiating Equation (4.32) with respect to x and use identities found in

Equation (4.34) to get,

−δρtt + Pxx = −4ν

3
δρtxx (4.35)

Differentiating Equation (4.33) with respect to t and discarding any higher order

terms we get,

Pt =
ν2

4

δρtxx
ρ0 + 2δρ

. (4.36)

Rearranging gives,

δρtxx =
4

ν2
ρ0Pt. (4.37)

Substituting into Equation (4.35) gives,

−δρtt + Pxx = −16

3ν
ρ0Pt. (4.38)

Then, differentiating with respect to x twice gives,

−δρttxx + Pxxxx = −16

3ν
ρ0Ptxx (4.39)
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Differentiating Equation (4.37) with respect to t,

δρttxx =
4

ν2
ρ0Ptt. (4.40)

Combining Equations (4.39) and (4.40) to get the final form of the viscous wave

equation

ν2

4
Pxxxx − ρ0Ptt −

4ν

3
ρ0Ptxx. (4.41)

To solve Equation (4.41) it is fair to assume a general wave solution and look for

a particular solution. Assume,

P = P0e
i(ωt−kx). (4.42)

We seek a dispersion relation (k = k(ω)) of the form,

k = β − iα, (4.43)

where α will be the attenuation coefficient, and β will define the phase velocity

c = ω/β.

Solving Equation (4.41) with Equation (4.42) for k(ω) gives

k = ±
2
√
ρ0ω
√

ν2

4
+ i4ν

3
ρ0ω√

ν4

16
+ 16ν2

9
ρ20ω

2

. (4.44)

Clearly, this is a complicated expression from which α is not easily extracted. We
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found that α takes the following form,

α = ∓
2
√
ρ0ω(

ν4

16
+ 16ν2

9
ρ20ω

2
)1/4 sin

(
arctan

(
4ρ0ω

3ν

))
. (4.45)

However complicated α may be, the key here is that it exists and can be found

by specifying initial conditions. The existance of attenuation of sound waves in

an FDM fluid could impact the way density perturbations evolve in the early

universe. The damping of sound waves might suppress the formation of small-

scales structures, contrary to the predictions of CDM.

4.3 Reynolds number

Now having an analogy to viscosity for SP fluids, we can also define a Reynolds

number analogy for them, we first introduced this for SP fluids in my first paper

[4]. We define the Reynolds number,

R =
ul

ν
, (4.46)

as introduced by Stokes [88], popularised by Reynolds [89], but named by Som-

merfeld [90], where u is a velocity, l a length scale, and ν the viscosity. All three

components are chosen to be reasonably associated with the motion. Although ν

is now well defined, it is not clear how one would define the other two quantities.

There are many velocity quantities present in this model and it is not exactly

clear which one we should choose. There is a momentum associated with the

wave-function, but this is not uniform in space and it is not clear how one could

convert this to a single number.

There is also the issue of a length-scale associated with the motion. It may be

obvious that we choose to use the size of the object we are studying, however, in

dealing with both collapse and void expansion this length is constantly changing
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(Also, this length is only unique in one-dimension, but we will stick to one-

dimension for this work.)

For our work on this scaling in [4] we chose the initial size of the void to be

the length. For the velocity, we measured an expansion speed for the void.

Expansion Speed

It can be seen in Figures 3.5 and 3.6 that the edges of the void move outwards

as we increase the timestep. The peak created at the edge of the void serves as a

positional marker for the edge of the void, so we measure the change in position

of this peak over change in timestep. These peaks are sharply defined, at least

until the strong interference pattern develops after shell-crossing.

Figure 4.1: The position of the maximum value of the density field plotted against
timestep. Maximum value of the density field taken to be the “edge” of the void.

Figure 4.1 shows the position of these peaks as a function of timestep. It is

interesting to note, that Figure 4.1 shows an almost linear relationship between

time and position with some jumps once the interference pattern starts to develop.

This indicates a free expansion of the void region discussed by e.g. [74, 91]. At
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very late times one expects a void embedded in a baryonic fluid to enter an

adiabatic phase described by the Sedov solution for blast waves [92], but the

physical behaviour of the quantum fluid described here would probably be quite

different and in any case we only look at the initial phase of the expansion here.

With all of the parameters defined, not perfectly, but in a systematically

consistent way for void expansion, we now must test the reliability of a pseudo-

Reynolds number. Does this system behave in a way that a Reynolds number

would even make sense?

To test the reliability of this pseudo-Reynolds number, we looked at the rela-

tionships between the quantities used to define it. Since u is the calculated value

vpeak, we started by fixing l, and comparing various ν values with the vpeak pro-

duced by this. As seen in Figure 4.2 it is clear that ν and vpeak are proportional

to one another.

Figure 4.2: Peak velocity of a one dimensional SP void as measured in Figure 4.1,
plotted against viscosity parameter ν

Then we fixed ν and calculated vpeak for various l values and as seen in Fig-

ure 4.3, it is clear that l and vpeak have an inversely proportional relationship.
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Figure 4.3: Peak velocity of a one dimensional SP void plotted against its length
scale.

Due to the nature of how vpeak is calculated it is not possible to fix u and look at

the relationship between ν and l, but this suffices for a quick illustration.

However, this definition of the Reynolds number is only valid for voids. We

wish to define a Reynolds number which can be assigned to many different types

of motion of cosmic fluids. Continuing to use the length scale to be the size of

the object as our length-scale. This becomes more difficult in higher dimensions,

but we will stick to one dimension.

The question of velocity for other types of motion in this regime is not so clear.

In one-dimensional collapse, for example, we don’t have an expansion speed, and

it would be difficult to define a similar collapse speed. To overcome this we’ve

opted to choose the peak positive velocity at the moment of shell-crossing. We

find this by extracting the velocity field from the velocity potential at the moment

of shell-crossing, at the location of the most positive peak. We believe this is a

velocity which encapsulates the dynamics of the fluid at an important moment

in the evolution.
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Figure 4.4: Positive peak velocity at shell-crossing measured for different values
of viscosity for one-dimensional SP collapse.

Continuing with the importance of the moment at which shell-crossing occurs,

we also choose our length to be the distance between peaks of the object at this

time. Similarly, as for the void, we wish to see if it is reasonable to define a

Reynolds number with these parameters for one-dimensional collapse.

Figure 4.4 shows the relationship between viscosity and velocity for one-

dimensional collapse of a Schrödinger fluid. However small, we still see a positive

linear relationship. Similarly, Figure 4.5 shows a positive linear relationship be-

tween viscosity and length. Each parameter has the appropriate relationship to

deduce a Reynolds number can be calculated for these quantities, and a scaling

solution exists.

With a Reynolds number defined for one-dimensional collapse and one-dimensional

void expansion, this is a sufficient proof of concept for a reynolds number of cos-

mic fluids. For example, in our code units, we calculated the Reynolds number for

the void evolution shown in Figure 3.5. This cosmic fluid has a viscosity ν = 0.05,

initial void size l = 2.0 and expansion speed u = 1.55. This results in a Reynolds
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Figure 4.5: length at shell-crossing measured for different values of viscosity for
one-dimensional collapse of an SP fluid.

number R = 62.0. This is equivalent to a void spanning 30Mpc, expanding with

a speed of 27kms−1 and a viscosity of ν = 4 × 1010km2s−1. Both the size and

speed of this void are possible in the observable universe; for the viscosity of such

more realistic cosmic fluids we turn to Gibson [93].

This thesis wishes to push the limitations of the SP formalism beyond its cur-

rent state. Chapter 4, discusses the limitations of the fluid analogy by attempting

a Navier-Stokes focussed version of the Madelung Transformation that initially

gave us the SP system, analysing the implications of considering the quantum

pressure as a pressure, and discussing the possibility of a scaling solution via the

viscosity parameter and a psuedo-Reynolds number. In the next chapter, we wish

to push this model in another way. Chapter 5 attempts a proof-of-concept recon-

struction of initial condition density field maps of the early universe. We use the

hard test of map reconstruction to test the validity of the SP approximation as

a model for large-scale structure formation.



Chapter 5

Reconstruction

Recovering the initial density and velocity fields of the universe from present ob-

servations is one of the most important tasks in cosmology. These fields contain

information about the physical processes which operated in the early universe. It

is easy to follow the initial density and velocity fluctuations in the linear regime.

However, the non-linear gravitational evolution at recent epochs makes this re-

covery more challenging, and we can no longer reproduce the initial conditions

by analytical means exactly. A popular method for recovering the growing mode

of the initial fluctuations of a cosmological gravitating system from the present

large-scale density field is based on the Bernoulli Equation (2.2) for evolution of

the velocity potential in the Zel’dovich approximation (Section 1.3.3), first pro-

posed by Nusser & Dekel [94]. For a further discussion and good description

of the Zel’dovich Bernoulli (ZB) method, see [95]. It is useful to have a full

map reconstruction of both the density field and the velocity field. This is often

referred to as field reconstruction or map reconstruction, of initial conditions.

Galaxy surveys provide three-dimensional redshift-space maps of the large-scale

structure of the universe that contain anisotropies along the line of sight due

to redshift space distortions (RSD) [96] (stemming from gravitationally-induced

peculiar velocities). Therefore, our observations are not independent of how we

69
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observe them and it is incredibly important to reconstruct the map of the galaxy

survey in real space.

The Alcock-Paczynski effect (AP) [97] (differential geometrical stretching along

and transverse to the line of sight of the cosmological model used to translate

redshifts to distances), makes it difficult to know if we are reconstructing the real

space map correctly. The Baryon Acoustic Oscillation (BAO) peak provides a

feature in the galaxy clustering power spectrum that is unaffected by RSD and

therefore allows us check the accuracy of the cosmological model used to translate

between real and redshift space. The power spectrum is best understood as the

Fourier transform of the autocorrelation function of the density contrast. It de-

scribes how density fluctuations vary with scale, providing a statistical measure

of structure formation.

There are various methods used to reconstruct in all meanings of the word

in the field of cosmology. The most popular being the Zel’dovich Bernoulli (ZB)

which is used to analyse large data sets for big collaborations; see [98–100]. Many

people have turned the problem into an optimization problem, see; [101, 102].

And many have tasked this same optimisation problem to neural networks, for

example [103].

In this chapter, I will discuss the implications of using the Schrödinger-Poisson

model, as described in Section 2.1, as a possible method of recovering the initial

conditions of the universe, namely the map reconstruction of the density and the

velocity fields. In this section we will compare the robustness of SP reconstruction

to that of ZB reconstruction and linear fluid approach (LFA).

Linearised Fluid Approach

The use of linear approximations to reconstruct the initial conditions of the uni-

verse stems from the early theoretical framework for understanding large-scale

structure formation. This approach builds on the assumption that the universe
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began with small initial density fluctuations, which grew over time due to gravi-

tational instability. As seen in Section 1.3 linear perturbation theory is our first

line of defence.

We saw in Section 1.3.2 that in the linear regime, we get evolution by means

of a linear growth factor, as described by Equation (1.30). In this case, to recon-

struct past maps we reverse the order of our time coordinate Drev = D(−t) and

we evolve a “final state” backward by the same law,

δ = Drevδf . (5.1)

LFA is quite a simple approach and can only be used when density fluctuations

are low, |δ| << 1. They are also still quite effective in low density regions and on

very large scales, where fluctuations remain low. Their computational simplicity

often means they are the only means by which we can do reasonable analysis when

resources are low. They also provide the basis for which more complicated models

are built up from. The Zel’dovich-Bernoulli (ZB) method builds upon the LFA

by incorperating the non-linear dynamics of the Zel’dovich approximation and

a Bernoulli-like condition, enabling more accurate reconstruction in moderately

non-linear regimes.

Zel’dovich-Bernoulli

As the name suggests, the Zel’dovich-Bernoulli (ZB) method uses a technique

that combines the Zel’dovich Approximation (Section 1.3.3) for tracing the evo-

lution of cosmic structure with a Bernoulli-like constraint (Equation (2.2)) to

account for non-linear gravitational dynamics. It employs an iterative approach,

re-calculating the velocity potential at regular intervals to recover the initial den-

sity field. This reasonably captures the non-linear gravitational effects while
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remaining computationally efficient. For an insight into the capabilities of this

model see White [104].

Time-reversal symmetry implies that reversing the direction of time also re-

verses the motion of the particles within the system. Since velocity is defined as

∂x
∂t
, reversing time changes the sign of the time variable, thus inducing a change in

sign of the velocity as well, v → −v. In the ZA, the velocity field is responsible

for generating the displacement vector (Section 1.3.3), therefore, to invoke the

change of sign needed in the velocity field we reverse the sign of the eigenvalues

of the deformation tensor, which yields a ZB reconstructed density field given by,

ρrec(q, t) =
ρ

[1 + b(t)α(q)][1 + b(t)β(q)][1 + b(t)γ(q)]
. (5.2)

The ZB method, while quite effective, has its limitations. Since ZB builds on

ZA, it inherits its weaknesses such as its inability to handle multi-stream flows

and difficulty with virialised structures. However, it is more accurate than the ZA

because of the Bernoulli-like condition that updates and provides a situationally

more accurate displacement field at appropriate intervals.

The Zel’dovich approximation, as described by Equation (1.31), can be written

in the Eulerian formalism by using the convective derivative, that relates the

Lagrangian regime to the Eulerian,

d

dt
≡ ∂

∂t

∣∣∣
q
=

∂

∂t

∣∣∣
x
+ (v · ∇x), (5.3)

in comoving coordinates. This implies that Equation (1.31) is equivalent to

∂v

∂t
+ (v · ∇x)v = 0, (5.4)
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which guarantees a velocity potential, v = ∇xϕ.

Using the linear growth law (Equation (1.30)) to invert the continuity equation

(1.17), we can deduce that ϕ satisfies

δ = D∇2ϕ. (5.5)

This same Bernoulli condition can also be applied to SP reconstruction. How-

ever, it is only necessary in SP reconstruction to use this to find the initial con-

dition, since SP updates the velocity potential as it evolves the state.

5.1 Reconstructing with Schrödinger-Poisson

There are many advantages to using the SP approach for reconstruction. Its abil-

ity to naturally model the full phase-space distribution of dark matter without

the need for artificial assumptions about particle crossing or smoothing. This is

hugely advantageous in the highly non-linear regime, where the previous more

traditional methods struggle. The reversibility of the Schrödinger equation al-

lows for a more detailed phase-space reconstruction than either LFA or ZB. The

likelihood of FDM as a dark matter candidate does not need to feature in this

section as SP continues to be a useful tool inspite of these possibilities. Of course,

the reality of the nature of dark matter will greatly inform which is the best re-

construction model in the future as our ability to model structure formation is

the backbone of reconstuction.

The SP method does not disappoint in terms of computational simplicity. It

is more complicated and time consuming than the traditional LFA or ZB, but

not by anything significant enough to dissuade users from using it.
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5.1.1 Time-reversal of the Schrödinger Equation

In quantum mechanics it is widely accepted that time-reversal is possible. It is

more possible here than anywhere else in physics, since we don’t have to deal

with entropy. This is part of the reason why reversing time in this model is so

much more attractive. Time reversal in quantum mechanics is done by applying

the time-reversal operator.

We wish to consider taking ψ(x,−t) as a solution to the Schrödinger Equation

2.3. This is not possible since the Schrödinger equation is first order in time, so

the left hand side would change sign under t → −t but the right hand side does

not. However, if we take the complex conjugate of Equation (2.3), we can see that

ψ∗(x,−t) is a solution to the Schrödinger equation, since the complex conjugation

changes the sign of i on the left hand side, which compensates for the change in

sign t→ −t. Therefore, we define time-reversed motion of this model by the rule

ψr(x, t) = ψ∗(x,−t) = √
ρe−iϕ/ν , (5.6)

where, subscript r stands for reversed.

This is interesting because taking the complex conjugate ψ∗, in the context of

this thesis, refers to changing the direction of the velocity potential. So, in order

to move the particles backwards in time, we reverse the direction of time, and also

reverse the direction of the velocities. It is also interesting to note that since the

velocity potential is linked to the gravitational potential, we are also reversing that

as well. A more in-depth discussion on time reversal in quantum mechanics and

the Time-Reversal Operator is discussed in many texts on quantum mechanics

such as [105].

With all of this in mind, our Schrödinger equation becomes,
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iν
∂ψr

∂t
=
ν2

2
∇2ψr + V ψr. (5.7)

Inspiration for this work

The work in this chapter has been inspired by work done by Short in his the-

sis, [106]. His thesis explores the free-particle approximation as an alternative

to methods popular at the time. It includes a chapter with a more rigorous

mathematical analysis and a reconstruction comparison of different methods on

GADGET N-body simulations. Short ran GADGET locally and thus his analysis

was conducted on a more simple power law power spectrum. The work in this

thesis expands upon Short’s work by conducting a similar reconstruction analysis

on IllustrisTNG [107], which employs ΛCDM .

Similarly to Figures 5.4 and 5.6 Short compares the ability of the different

approximations at different smoothing radii and different redshifts. Figure 5.1

shows point-by-point comparisons of the reconstructed density contrast δ with

a Gaussian filter smoothing radius of g = 8h−1Mpc, at 3 different redshifts.

Similarly, Figure 5.2 shows point-by-point comparisons of the same but with a

smoothing radius of g = 4h−1Mpc.

It is clear from both Figure 5.1 and Figure 5.2 that the free particle approxi-

mation greatly out-performs both the Zel’dovich-Bernoulli approximation and the

Linearised Fluid Approach at both smoothing radii and all three reconstructed

redshifts for a power-law power spectrum. Given these results it is clear that

further analysis was needed to test the validity of the free-particle approximation

and further again the Schrödinger-Poisson approach.
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Figure 5.1: Point-by-point comparison of reconstructed density contrast δ and
the intial condition with 8h−1Mpc smoothing. Image credit to [106]

5.2 The Real Test: N-body simulations

We used the results of the illustrisTNG suite of cosmological galaxy formulation

simulations [107]. Each simulation in illustrisTNG evolves a large swatch of a

mock Universe from high redshift until the present day while taking into account

a wide range of physical processes that drive galaxy formation. The project

consists of three volumes and 18 simulations in total. Three physical simulation

box sizes with cubic volumes of roughly 50, 100 and 300Mpc side length, which

are referred to as TNG50, TNG100 and TNG300, respectively, in the catalog.

All of the simulations have “dark matter only” counterparts to their “baryonic

physics” counterparts, which are the runs which account for many different types

of physical processes. The dark matter only simulations give predictions for how

the large-scale structure, the clustering of galaxies, shapes of haloes and so forth

would evolve in a universe constructed of only dark matter.
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Figure 5.2: Point-by-point comparison of reconstructed density contrast δ and
initial condition with 4h−1Mpc smoothing. Image credit to [106]
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Volume [Mpc3] 51.73

Lbox [Mpc/h] 35
N - 21603

m [M⊙] 4.5× 105

Table 5.1: Specifications of TNG50 simulations.

While including all of the baryonic physics in the simulation is very important

for a lot of physics, for us it is not particularly useful as this work wishes to

reconstruct the large-scale struture of the universe, which is modelled very well

by only considering dark matter. Therefore, for this work we have chosen to use

only “dark matter only” counterparts to the TNG50 simulations.

The specifics of the TNG50-dark simulations are seen in Table 5.1. TNG50

contains roughly 100 Milky Way mass-analogs, one massive galaxy cluster (∼

1014M⊙), a Virgo-like analog and dozens of group sized haloes at 1013M⊙. The

key science drivers of TNG50 focus on present day (z = 0), but also at earlier

epochs, from cosmic noon (z ∼ 2) through reionisation (z ∼ 6).

For the purpose of proof of concept, we have decided to model SP for re-

construction in 2 + 1 dimensions. The bulk of the analysis has been done on a

two-dimensional slice of TNG50-2-dark. To demonstrate that this is a somewhat

random choice, various slices from TNG50-2,3,4-dark are shown in Figure 5.7 at

the end of this chapter. Two-dimensional slices were taken by taking Lbox/10

thick sections and flattening them to form a two-dimensional density field ρ.

With the ’final’ density field compiled from the particle data, we used the

Bernoulli-like condition (Equation (5.5)) to construct the initial velocity potential

field from the ’final’ particle density field. With both the velocity and density

information of the “final state” we can begin reconstructing.

Before starting this analysis of the models effectivness at reconstructing initial

conditions from N-body simulations, we ran some preliminary tests on toy models

in real and redshift space just to test that the code actually worked and could

recover a simple initial condition set by us. Once, we were satisfied with these
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early tests, we began our analysis on results from illustrisTNG.

Smoothing

There is a level of smoothing necessary for all of the methods described above as

we must smooth over highly non-linear regions where the linear and semi-linear

approximations are unreliable and cannot be expected to produce a meaningful

result. Figure 5.3 shows the same slice from the N-body simulation smoothed

using a Gaussian filter of three different radii, g.

Figure 5.3: Initial condition from N-body simulation with 3 different smoothing
radii. Gaussian filters of g = 870h−1kpc (left), g = 2h−1Mpc (center), g =
4h−1Mpc (right). Plotted on a log scale so it is easier to see the structure and
the difference in the smoothing factors.

Each of these were evolved backwards in time by three different regimes, SP,

ZB and LFA, as described above in their respective sections. To compare these

schemes, Figure 5.4 shows a point-by-point comparison of the density field of each

scheme to the N-body simulation of the appropriate snapshot for the evolution.

Density fields are plotted and compared on a log scale so their differences are

more clear bye eye. We also wish to assign a singular number which encompasses

how well these schemes could recover their N-body initial state. For this we refer

to the Pearson product-moment correlation coefficient [108],
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r =
Σ(xi − x)(yi − y)√
Σ(xi − x)2Σ(yi − y)2

, (5.8)

where xi, yi are the individual data points and x, y are the mean average of the

data points.

The r-value for each density field is below in Table 5.2, where all r-values are

compared and contrasted with the constraints of each reconstruction.

SP ZB LFA

Figure 5.4: Point-by-point comparison of base 10 log density fields reconstructed
by the three approximation schemes, each column shows a different methods of
reconstruction; SP (first column), ZB (second column), and LFA (third column).
Each row depicts a different level of smoothing applied to the initial condition
(Figure 5.3); g = 4h−1Mpc (first row), g = 2h−1Mpc (second row), and g =
870h−1kpc (third row). These plots show a sample of the data randomly selected
with uniformly distributed p = 1/642, to be comparable to Figures 5.1 and 5.2.
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It is clear that in row 1 of Figure 5.4 that all approximations can reasonably

well recover the intial state with smoothing radius g = 4h−1Mpc. In row 2 of

Figure 5.4 we cannot distinguish between SP and ZB reconstruction and we can

see in Table 5.2 that 4 significant figures are needed to distinguish between the

two regimes. It is at the lowest smoothing radius, g = 870h−1kpc, that we begin

to see large differences between the capabilities of the different approximations.

We conclude, by eye, that at the lowest smoothing SP better reconstructs the

initial state that the other two approximate schemes. LFA is unable to predict

the initial state at this smoothing radius as the structures are highly non-linear.

As we move to more non-linear initial density fields the SP and ZB models better

predict the initial state, which is to be expected.

In the SP method there exits another level of smoothing built into the model.

The viscosity parameter, ν, can in some ways act like a smoothing. Larger ν

means our waves have a larger wavelength, and smaller ν gives a smaller wave-

length. Figure 5.5 shows a point-by-point comparison of SP reconstruction with

three different values of ν.

We chose to use g = 2h−1Mpc as our smoothing radius, to best be able to

see the difference between ν values. Using different values of ν does not have a

huge affect on the reconstruction, since we need 3 significant figures in r-value to

distinguish between them. With this in mind, for the rest of the analysis we have

chosen to continue using the ν value which gives us the best correlation, ν = 0.01.

We understand that in order to truly know the best value of ν we would need to

carry out a full optimisation, but for our proof of concept this will be sufficient.

Redshift

The above scatter plots all refer to a reconstruction of redshift z = 0.5 from z = 0,

we also wish to compare the abilities of the approximate schemes to reconstruct

higher redshifts. Figure 5.6 shows similar point-by-point comparison plots as seen
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Figure 5.5: Point-by-point comparison of SP reconstruction with different values
of ν; ν = 0.1 (top), ν = 0.05 (center), ν = 0.01 (bottom).
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in the subsection above.

SP ZB LFA

Figure 5.6: Point-by-point comparison of three approximation scheme density
field reconstructions with N-body simulation appropriate snapshot density field.
Each column shows a different methods of reconstruction; SP (first column), ZB
(second column), and LFA (third column). Each row depicts a reconstruction of
a different redshift of the same 2D slice of TNG50-2-Dark. First row z = 0.5,
second row z = 1.0, third row z = 2.0. These plots show a sample of the data
randomly selected with uniformly distributed p = 1/642, to be comparable to
Figures 5.1, 5.2 and 5.4.

For this analysis, we chose a smoothing radius of g = 4h−1Mpc, as we believe

this best shows the difference between approximations, without putting too much

strain on the system by using the lowest smoothing radius. It is clear by eye that

all three approximations perform worse as they attempt to reconstruct higher

redshifts. It can be seen in Table 5.2 that SP better reconstructs the initial density

field at higher redshifts. This is what we expect, as we reconstruct further back
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Correlation values r
Method Smoothing

[h−1Mpc] σ
Redshift z r-value

LFA 0.87 0.5 0.7665
LFA 2 0.5 0.8876
LFA 4 0.5 0.9444
SP (ν = 0.01) 2 0.5 0.8787
SP (ν = 0.1) 2 0.5 0.8817
SP (ν = 0.05) 2 0.5 0.8816
SP (ν = 0.1) 0.87 0.5 0.7780
SP (ν = 0.1) 10 0.5 0.9441
ZB 0.87 0.5 0.7684
ZB 2 0.5 0.8882
ZB 4 0.5 0.9948
LFA 2 1.0 0.7392
LFA 2 2.0 0.5587
SP (ν = 0.1) 4 2.0 0.7126
SP (ν = 0.1) 2 1.0 0.7504
SP (ν = 0.1) 2 2.0 0.5772
ZB 2 1.0 0.7411
ZB 4 2.0 0.7093

Table 5.2: Tabel of r values for different methods, smoothings and redshifts.

in time, the linear/semi-linear regimes are not capable of predicting the evolution

of fluctuations. Whereas, SP is more capable of going into the non-linear and

better predicting the fluctuations at these times.

It seems that the SP approximation is minimally better than the current

schemes for reconstructing smoothed density fields to redshifts up to z = 2.0. We

acknowledge that this is not a full analysis or optimisation and with such this

scheme could be an improvement upon the current regime.

We conclude this section by acknowledging that SP does not necessarily out

perform the next best thing (ZB) for ΛCDM reconstruction, but it remains com-

petitive, being able to reconstruct at each smoothing radius and tested redshift

at least as good as ZB. It is important to note that field reconstruction is a

challenging exercise in reconstruction, and that testing it with a point-by-point

comparison is a very hard test as the field needs to match the initial condition in
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both position and magnitude, and small deviations for this have a significant im-

pact on the correlation number. It is difficult to know whether SP reconstruction

would shine brighter in redshift space or power spectrum reconstruction. There-

fore, with the other advantages of using SP over ZB we believe that we cannot

yet rule out SP as a viable next candidate for reconstruction.

We also wish to highlight that in a truly ΛFDM universe, SP might be a better

candidate. To make any sort of conclusion on this statement one would need to

conduct a similar analysis to what is presented above on an FDM simulation,

such as [109].

The point-by-point comparison plots shown in Figures 5.4-5.6 are sampled

from a larger data-set, for easier comphrension by eye, and for easier comparison

with Figure 5.1. Point-by-point comparison plots including the full data-set are

included in the Appendix (Chapter A).
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Figure 5.7: Gallery of simulation snapshots



Chapter 6

Conclusion

6.1 Summary

This thesis explored cosmological structure formation through the lens of wave

mechanics, following the pioneering work of Widrow and Kaiser [3]. At its core,

the main achievement of this work has been to advance the understanding of

simple, foundational models using the SP framework. Developing the insights

provided by such models is a crucial step in constructing a comprehensive un-

derstanding of the universe as a whole. Without these fundamental insights,

it becomes challenging to bridge the gap between theoretical abstractions and

the complexities of observed phenomena. Doroshkevich’s seminal work [50], for

instance, illustrated the power of such models by establishing a statistical and dy-

namical framework for understanding galaxy clustering and large-scale structure.

His work bridged the divide between early cosmological perturbations and the

observed distribution of galaxies, forming a cornerstone of modern cosmology.

Similarly, this thesis contributes to advancing theoretical understanding while

addressing practical challenges in modeling and simulation.

By framing the evolution of large-scale structures within the SP system, this

research highlights the unique strengths of the wave-mechanical approach. In

87



Chapter 6. Conclusion 88

particular, this formalism naturally integrates the multistreaming behavior of

underdense regions with the wave-like nature and interference effects inherent

to the SP framework. This ability sets it apart from traditional methods, such

as the ZA, which often fail to accurately model post-shell-crossing phenomena.

Furthermore, the SP approach avoids the resolution issues faced by particle-based

simulations when modeling cosmic voids, offering a continuous description of the

density field that remains well-defined even in underdense regions.

The introduction in Chapter 1 provided the necessary context for this work

by reviewing the theoretical foundations of structure formation and identifying

limitations in the standard ΛCDM model. Chapter 2 outlined the mathemati-

cal background of the SP system and established key results that underpinned

subsequent chapters.

Chapter 3 presented a detailed exploration of cosmic voids within the SP

framework. By focusing on the evolution of an isolated void, this study demon-

strated the method’s ability to model void expansion beyond shell-crossing while

maintaining physical consistency. Unlike traditional approaches, the SP system

circumvents the singularities inherent to ZA and captures the multistreaming re-

gion with wave-like interference patterns. This highlights the unique strength

of the SP formalism in studying void dynamics, an area of growing importance

given the dominant volume fraction of voids in the cosmic web.

In Chapter 4, we extended the SP framework by incorporating viscosity and

exploring its limitations in relation to full Navier-Stokes dynamics. The introduc-

tion of viscosity provided a means to model internal energy dissipation, leading

to a description of wave propagation in these systems. A key result was the

identification of a novel scaling solution, analogous to the Reynolds number in

classical fluid dynamics. The broader analysis of viscosity within the SP frame-

work revealed fundamental insights into the interplay between small-scale wave

effects and large-scale structure evolution. Collectively, these results deepen our
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understanding of how perturbations grow and interact, offering a more compre-

hensive picture of structure formation in the nonlinear regime where traditional

methods face significant challenges.

Chapter 5 explored the SP framework as a tool for reconstructing initial condi-

tions in cosmological simulations. While this investigation was primarily a proof

of concept, the results were promising. In a universe governed by power-law power

spectra, SP significantly outperformed the standard ZB approach. In modern

ΛCDM contexts, the SP method matched the performance of ZB while main-

taining competitive accuracy in non-linear regimes. These findings suggest the

potential of SP as a robust alternative for initial condition reconstruction, though

further work is needed to explore its full capabilities, particularly in redshift-space

reconstructions.

The collective findings of this thesis underscore the profound impact of adopt-

ing a wave-mechanical perspective in cosmology. By bridging the gap between

classical fluid models and quantum-inspired approaches, this work lays a solid

foundation for a deeper understanding of the universe’s formation and evolution.

Moreover, the SP framework provides a versatile tool for addressing longstand-

ing challenges in computational cosmology, offering a physically grounded and

mathematically elegant description of structure formation.

The future of FDM research is particularly exciting, as it offers a compelling

alternative to CDM while addressing key challenges in small-scale structure for-

mation. Recent advancements, such as the first full hydrodynamical simulations

of FDM by Nori et al. [109], mark a turning point in the field. Observationally, the

next generation of cosmological surveys promises to play a pivotal role in testing

FDM predictions. The Euclid mission, for instance, aims to map the geometry

of the dark universe through high-precision measurements of galaxy clustering

and weak gravitational lensing. Such data will be invaluable for probing FDM’s

unique imprint on the cosmic web and void dynamics. Complementary efforts
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from the Dark Energy Spectroscopic Instrument (DESI) and the Vera C. Rubin

Observatory’s Legacy Survey of Space and Time (LSST) will further constrain

cosmological parameters, offering a clearer picture of FDM’s viability as a dark

matter candidate.

The convergence of advanced simulations, refined theoretical models, and

cutting-edge observational capabilities promises to shed new light on the nature

of dark matter. By integrating these efforts, the field is poised to redefine our

understanding of cosmic structure formation and the fundamental forces shaping

the universe.

6.2 Future Work

• Applications to Filament Dynamics

While the Schrödinger-Poisson (SP) framework has proven effective in mod-

eling isolated voids and spherical collapse, an exciting avenue of exploration

would be its application to the dynamics of cosmic filaments. For instance,

SP could replace ZA in analyses similar to those conducted by Feldbrugge

et al. [110] and Gough et al. [55]. Additionally, replacing CDM with FDM

in cosmological simulations could yield new insights into filament formation

and evolution [109].

• Incorporating Self-Interacting Terms in the Schrödinger Equation

A deeper exploration of the Schrödinger Equation (SE) could involve the

inclusion of self-interacting potentials. By “turning on” various interaction

terms, we could investigate how different types of FDM particles behave

under such modifications. This approach would enable a broader exami-

nation of the parameter space for FDM and its implications for structure

formation.
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• Power Spectrum and Redshift-Space Reconstruction

There is significant potential to test the SP framework’s performance in

reconstructing the power spectrum and redshift-space maps. A proof-of-

concept study could compare SP-based reconstructions to existing methods,

building on the analysis conducted in Chapter 5. Such an investigation

could determine whether SP offers improved accuracy or new advantages

for these types of reconstructions.

• Full Optimisation for Reconstruction

While this thesis demonstrated the SP framework in two dimensions as a

proof of concept, a fully optimised, three-dimensional reconstruction tech-

nique would be necessary for real-world applications. This development

would require addressing computational challenges and ensuring the method’s

scalability and robustness for observational datasets.

• Integration with Observational Data

Should the SP framework prove superior for reconstruction, the next step

would be to develop a pipeline for integrating it into observational analyses.

This would involve testing the method’s efficacy in reconstructing initial

conditions from real-world data and evaluating its potential as a model

for dark matter. For instance, an SP-based ΛFDM framework could serve

as a promising candidate for explaining cosmic structure formation and

evolution.
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Full Data Plots

Figure A.1: Full resolution point-by-point comparison of SP reconstruction with
different values of ν; ν = 0.1 (top), ν = 0.05 (center), and ν = 0.01 (bottom)

92
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SP ZB

Figure A.2: Full resolution point-by-
point comparison of SP reconstruc-
tion with different values of g; g =
4h−1Mpc (top), g = 2h−1Mpc (cen-
ter), and g = 870h−1kpc (bottom)

Figure A.3: Full resolution point-by-
point comparison of ZB reconstruc-
tion with different values of g; g =
4h−1Mpc (top), g = 2h−1Mpc (cen-
ter), and g = 870h−1kpc (bottom)
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LFA SP

Figure A.4: Full resolution point-
by-point comparison of LFA recon-
struction with different values of g;
g = 4h−1Mpc (top), g = 2h−1Mpc
(center), and g = 870h−1kpc (bot-
tom)

Figure A.5: Full resolution point-by-
point comparison of SP reconstruc-
tion of different redshift initial con-
ditions z; z = 0.5 (top), z = 1.0
(center), z = 2.0 (bottom). fill this
space
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ZB LFA

Figure A.6: Full resolution point-by-
point comparison of ZB reconstruc-
tion of different redshift initial condi-
tions z; z = 0.5 (top), z = 1.0 (cen-
ter), z = 2.0 (bottom).

Figure A.7: Full resolution point-by-
point comparison of LFA reconstruc-
tion of different redshift initial condi-
tions z; z = 0.5 (top), z = 1.0 (cen-
ter), z = 2.0 (bottom).



Bibliography

[1] The SAO Astrophysics Data System. url: https://ui.adsabs.harvard.

edu/.

[2] arXiv ¿ astro-ph. url: https://arxiv.org/list/astro-ph/new.

[3] Lawrence M. Widrow and Nick Kaiser. “Using the Schrödinger Equation to

Simulate Collisionless Matter”. In: Astrophysical Journal Letters (1993).

doi: https://doi.org/10.1086/187073.

[4] Aoibhinn Gallagher and Peter Coles. “Evolution of Cosmic Voids in the

Schrödinger-Poisson Formalism”. In: The Open Journal of Astrophysics

(2022). doi: 10.21105/astro.2208.13851.

[5] Peter Coles and Aoibhinn Gallagher. “Classical Fluid Analogies for Schrödinger-

Newton Systems”. In: preprint (2025). arXiv: 2507.08583 [astro-ph.CO].

url: https://arxiv.org/abs/2507.08583.

[6] A. Einstein. “Die Grundlage der allgemeinen Relativitätstheorie [The Foun-

dation of the General Theory of Relativity]”. In: Annalen Der Physik in

German 354 (1916). doi: 10.1002/andp.19163540702.

[7] Isaac Newton, Andrew Motte, and N.W. Chittenden. Newton’s Principia.

The mathematical principles of natural philosophy. New-York, D Adee,

1848, http://hdl.loc.gov/loc.gdc/scd0001.00035669784.

96

https://ui.adsabs.harvard.edu/
https://ui.adsabs.harvard.edu/
https://arxiv.org/list/astro-ph/new
https://doi.org/https://doi.org/10.1086/187073
https://doi.org/10.21105/astro.2208.13851
https://arxiv.org/abs/2507.08583
https://arxiv.org/abs/2507.08583
https://doi.org/10.1002/andp.19163540702


Bibliography 97

[8] Edwin Hubble. “A Relation between Distance and Radial Velocity among

Extra-Galactic Nebulae”. In: Proceedings of the National Academy of Sci-

ence 15.3 (Mar. 1929), pp. 168–173. doi: 10.1073/pnas.15.3.168.

[9] S. Perlmutter et al. “Measurements of Ω and Λ from 42 High-Redshift

Supernovae”. In: The Astrophysical Journal 517.2 (June 1999), p. 565.

doi: 10.1086/307221. url: https://dx.doi.org/10.1086/307221.

[10] Gerson Goldhaber. “The Acceleration of the Expansion of the Universe:

A Brief Early History of the Supernova Cosmology Project (SCP)”. In:

Sources and Detection of Dark Matter and Dark Energy in the Universe.

Ed. by David B. Cline. Vol. 1166. American Institute of Physics Conference

Series. AIP, Sept. 2009, pp. 53–72. doi: 10.1063/1.3232196.

[11] Planck Collaboration. “Planck 2015 results: XI. CMB power spectra, like-

lihoods, and robustenss of parameters”. In: Astronomy and Astrophysics

594.A11 (Sept. 2016). doi: 10.1051/0004-6361/20156926.

[12] William C. Keel. The Road to galaxy formation. Springer Praxis Books,

2007. isbn: 9783540725350.

[13] G. F. Smoot et al. “Structure in the COBE Differential Microwave Ra-

diometer First-Year Maps”. In: The Astrophysical Journal Letters 396

(1992).

[14] C. L. Bennett et al. “Four-Year COBE* DMR Cosmic Microwave Back-

ground Observations: Maps and Basic Results”. In: The Astrophysical

Journal 464.1 (June 1996), p. L1. doi: 10.1086/310075. url: https:

//dx.doi.org/10.1086/310075.

[15] G. Hinshaw et al. “Nine-year Wilkinson Microwave Anisotropy Probe

(WMAP) Observations: Cosmological Parameter Results”. In: The As-

trophysical Journal Supplement Series 208.2, 19 (Oct. 2013), p. 19. doi:

10.1088/0067-0049/208/2/19. arXiv: 1212.5226 [astro-ph.CO].

https://doi.org/10.1073/pnas.15.3.168
https://doi.org/10.1086/307221
https://dx.doi.org/10.1086/307221
https://doi.org/10.1063/1.3232196
https://doi.org/10.1051/0004-6361/20156926
https://doi.org/10.1086/310075
https://dx.doi.org/10.1086/310075
https://dx.doi.org/10.1086/310075
https://doi.org/10.1088/0067-0049/208/2/19
https://arxiv.org/abs/1212.5226


Bibliography 98

[16] Planck Collaboration. “Planck 2018 results - V. CMB power spectra and

likelihoods”. In: Astronomy and Astrophysics 641 (2020), A5. doi: 10.

1051/0004-6361/201936386. url: https://doi.org/10.1051/0004-

6361/201936386.

[17] The Planck Collaboration. The Angular Power Spectrum. 2013. url: https:

//www.esa.int/ESA_Multimedia/Images/2013/03/Planck_Power_

Spectrum.

[18] Adam G. Riess et al. “Large Magellanic Cloud Cephid Standards Provide a

1% Foundation for the Determination of the Hubble Constant and stronger

Evidence for Physics beyond ΛCDM ”. In: The Astrophysical Journal 876.1

(May 2019). doi: 10.3847/1538-4357ab1422.

[19] M. Milgrom. “A modification of the Newtonian dynamics as an alternative

to the hidden mass hypothesis”. In: The Astrophysical Journal 270 (1983),

pp. 365–370. doi: 10.1086/161130.

[20] M. Milgrom. “A modification of the Newtonain dynamics - Implications

for galaxies”. In: The Astrophysical Journal 270 (1983), pp. 371–383. doi:

10.1086/161131.
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