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ABSTRACT
In this paper, we examine the conditions under which the capital asset pricing model (CAPM) holds with heterogeneous proba-
bility weighting. Using the generalised Wang transform within rank-dependent expected utility, we show that CAPM holds for 
heterogeneous risk-averse investors, while the security market line theorem (SMLT) applies to heterogeneous loss-averse inves-
tors. However, CAPM under loss aversion requires homogeneous investors. Revisiting skewness pricing, we find that probability 
weighting, rather than the S-shaped value function, drives skewness overpricing. The preference for skewed assets stems from 
the high distorted mean under probability weighting.
JEL Classification: G12, G40

1   |   Introduction

Probability weighting, also referred to as probability distortion, 
is a key aspect that distinguishes non-expected utility theory 
from traditional expected utility theory. This concept explains 
how individuals assign decision weights to events rather than re-
lying solely on objective ones. Experimental studies consistently 
show that individuals tend to overweight the probabilities of 
extreme events while underweighting those of moderate events 
(Kahneman and Tversky  1979; Tversky and Kahneman  1992; 
Dimmock et al. 2021). In financial markets, probability weight-
ing has been linked to various asset pricing anomalies, such as 
skewness pricing, under-diversification in household portfolios, 
and the equity premium puzzle (Polkovnichenko 2005; Barberis 
and Huang 2008; Bordalo et al. 2013; Dimmock et al. 2021).

A crucial question when applying non-expected utility to fi-
nance is whether the Capital Asset Pricing Model (CAPM), a 

fundamental framework in asset pricing, remains valid under 
probability distortion. In their seminal work, Barberis and 
Huang (2008) show that CAPM holds within the cumulative 
prospect theory (CPT) framework, especially when inves-
tors' preferences align with the value function and weight-
ing function introduced by Tversky and Kahneman  (1992). 
However, two important issues have often been overlooked 
in Barberis and Huang (2008) and subsequent studies. First, 
most research assumes homogeneous probability weight-
ing across individuals, although several studies have re-
vealed significant heterogeneity in weighting functions 
(Gonzalez and Wu  1999; Bleichrodt and Pinto  2000; Bruhin 
et al. 2010; Dimmock et al. 2021; Andrikogiannopoulou and 
Papakonstantinou 2021). For example, Bruhin et al. (2010) find 
that nearly 20% of individuals weight probabilities linearly and 
80% do so non-linearly, demonstrating considerable variation 
within the probability distortion groups. Second, individuals 
may exhibit diverse value functions and do not consistently 
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follow the S-shaped value function. Levy et al. (2003) employ 
the stochastic dominance approach to test the S-shaped value 
function, finding that at least 50%–86% of the choices reject 
the assumption of the S-shaped value function. Similarly, 
Malul et  al.  (2013) find that only one-third of the individu-
als behave as predicted by the S-shaped value function. Given 
these findings, the heterogeneity in both probability weight-
ing functions and value functions should be considered when 
testing the validity of CAPM.

This paper aims to contribute to the literature by developing 
a CAPM that incorporates heterogeneous probability weight-
ing and varied value functions. To address the aforemen-
tioned issues, our model introduces three distinct features 
that differentiate it from previous research. First, we employ 
the generalised Wang transform (GWT), proposed by Sun 
et al. (2023), as the probability weighting function, providing 
greater flexibility in capturing diverse probability weighting 
shapes and enhanced tractability in theoretical models com-
pared to conventional functions (Tversky and Kahneman 1992; 
Prelec  1998). By adjusting its parameters, GWT accommo-
dates both linear and non-linear probability weighting, in-
cluding S-shaped, inverse S-shaped, and diagonal weighting 
functions. The unique normality invariance property of GWT 
ensures that asset returns remain normally distributed after 
distortion, a feature critical for extending CAPM. Second, we 
account for heterogeneity in value functions and incorporate 
reference points and loss aversion without imposing specific 
functional forms, thereby preserving generality. Our model 
does not prescribe a particular structure for the value func-
tion; instead, it assumes that investors exhibit greater sensitiv-
ity to changes in the loss domain than in the gain domain. This 
flexibility allows our model to accommodate a wide range of 
value functions within the framework of non-expected utility. 
Third, we adopt the rank-dependent expected utility (RDEU) 
rather than CPT as our framework, allowing us to leverage 
the GWT's normality invariance while maintaining core ele-
ments of prospect theory, such as loss aversion and probability 
weighting. Although our model operates within an alternative 
framework, our results offer insights into CAPM under pros-
pect theory. We find that when investors exhibit risk aversion 
and hold heterogeneous probability weighting, the CAPM 
can still hold. However, for loss-averse investors, while the 
Security Market Line Theorem (SMLT) remains valid under 
heterogeneous probability weighting functions and value 
functions, CAPM requires homogeneity in both functions. 
This suggests a substitution effect between risk attitude and 
probability attitude. Our results shed light on the mechanism 
proposed by Yaari  (1987), indicating that probability weight-
ing endogenously represents the risk attitude in preferences.

Additionally, as an extension of the results, our paper relaxes 
the assumption of normal distribution for asset returns and re-
visits skewness pricing. Building on our CAPM model, we em-
ploy GWT as the probability weighting function and consider 
both risk-averse and loss-averse investor models. Our study 
contributes to the existing literature in three key ways. First, 
we demonstrate that the preferences for skewness are primar-
ily driven by probability weighting rather than the shape of the 
value function. Our results show that even for risk-averse inves-
tors, probability weighting will lead to the overpricing of skewed 

assets. Second, we analyse the different effects of likelihood in-
sensitivity and probability attitudes (optimism/pessimism) on 
skewness pricing. We find that optimistic attitudes amplify the 
overpricing of positively skewed securities, whereas sufficiently 
pessimistic attitudes can rationalise pricing, even in the pres-
ence of high probability distortion. Finally, we compare the orig-
inal and transformed distributions of the market portfolio and 
the skewed portfolio, finding that the overpricing of skewed as-
sets is driven by the high distorted mean of the skewed portfolio.

This paper mainly contributes to two strands of literature. The 
first thread is the theoretical studies in asset pricing within non-
expected utility theories. Prior research focuses on whether and 
how the pricing principle can be affected by the behaviour as-
sumptions proposed by prospect theory (Levy et al. 2003; Levy 
and Levy 2004; Barberis and Huang 2008; Driessen et al. 2021). 
These studies suggest that the CAPM, or SMLT, can be compat-
ible with probability weighting under specific weighting func-
tions and value functions. However, there is no clear answer 
to the conditions required for the CAPM to hold under proba-
bility distortion. Our paper extends this line of research by em-
ploying the GWT as the probability weighting function in the 
CAPM. We show that with multivariate normally distributed 
securities, the CAPM can hold with risk-averse investors with 
heterogeneous weighting and value functions. Additionally, we 
demonstrate that the SMLT can hold under heterogeneous prob-
ability weighting and loss-averse value functions, nesting the 
CPT value function as a special case.

Second, our paper adds to the literature on skewness pricing. 
Empirical studies have consistently shown that investors fa-
vour positively skewed, lottery-like securities (Mitton and 
Vorkink 2007; Kumar 2009; Boyer et al. 2010; Bali et al. 2011; 
Blau et al. 2020; Jiang et al. 2020). This phenomenon has been 
interpreted through different perspectives, such as prospect the-
ory (Brunnermeier and Parker 2005; Brunnermeier et al. 2007; 
Barberis and Huang 2008), salience theory (Bordalo et al. 2013) 
and social network features and transmission bias (Han 
et al. 2022). Compared to prior literature, our paper highlights 
the influence of probability weighting over the value function in 
explaining the overpricing of skewness. Of the two main compo-
nents of probability weighting—likelihood sensitivity and prob-
abilistic attitudes, we find that the latter factor, especially the 
optimistic attitude, contributes to the skewness pricing. Lastly, 
we attribute the preference for skewness to the differences be-
tween the original asset distribution and the transformed distri-
bution after probability weighting.

The structure of the paper is as follows. Section 2 introduces the 
probability weighting function GWT and the framework of our 
RDEU model, and discusses the differences and similarities be-
tween our model and CPT. Section 3 presents the proof of CAPM 
with GWT as the probability weighting function. Section 4 re-
visits the overpricing of skewed securities under the framework 
provided in Section 3. Section 5 concludes the paper.

2   |   Theoretical Background

In this section, we present the theoretical background 
of the paper. In Section  2.1, we introduce a new class of 
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distortion operators, the Generalised Wang Transformation. 
In Section 2.2, we review the classic model RDEU and incor-
porate the key elements of cumulative prospect theory (CPT) 
into the model.

2.1   |   Generalised Wang Transform

Identifying a probability weighting function that accurately cap-
tures individuals' sensitivity to probabilities has been a central 
issue in NEU. One widely recognised characteristic of prob-
ability weighting is differential sensitivity to extreme versus 
moderate events, known as likelihood insensitivity. Although 
the inverse S-shaped probability weighting function proposed 
by Tversky and Kahneman  (1992) has gained significant sup-
port, some studies indicate that individuals can also exhibit S-
shaped probability distortions (Humphrey and Verschoor 2004; 
Polkovnichenko and Zhao 2013). The inverse S-shaped weight-
ing suggests higher sensitivity to extreme events compared to 
intermediate ones, whereas the S-shaped weighting implies the 
opposite. Another important aspect of probability weighting is 
the asymmetric distortion of extreme events. For instance, in 
lottery scenarios, individuals often overweight the best possible 
outcomes relative to the worst, while in the context of signifi-
cant risks, they tend to overweight the worst outcomes over the 
best. This characteristic, known as probability attitudes, was 
defined by Quiggin (1982) and further examined by Abdellaoui 
et  al.  (2010). Specifically, probability attitudes are defined as 
follows:

Definition 1.  (Probability attitude). If, for all p, a weighting 
function g( ⋅ ) satisfies g(p) > ( < )1 − g(1 − p), an individual is 
pessimistic (optimistic) since the worst (best) outcomes are, on 
average, overweighted.

In this paper, we use the generalised Wang transform (GWT) 
as the probability weighting function to characterise both 
likelihood sensitivity and probability attitudes in probability 
weighting. GWT, which extends the original Wang transform 
(Wang  2000), was first introduced by Wang  (2002) and thor-
oughly analysed by Sun et al. (2023). The GWT can be expressed 
as follows:

where, � ∈ (0, + ∞), � ∈ ℝ, and Φ( ⋅ ) represents the cumulative 
distribution function of standard normal distribution.

GWT has two parameters, � and α, which control its curvature 
and elevation, respectively (see Figure 1). These parameters pro-
vide flexibility in the shape of the probability weighting func-
tion, capturing likelihood insensitivity and probabilistic attitude 
independently.

The curvature parameter, �, reflects likelihood insensitivity by 
indicating the degree of probability distortion between extreme 
and moderate events. A value of 𝜅 < 1 results in overweighting 
extreme events and underweighting moderate ones, producing 
an inverse S-shaped probability weighting function. In contrast, 
a value of 𝜅 > 1 leads to underweighting extreme events and 
overweighting moderate events, yielding an S-shaped weighting 
function. When � = 1 and � = 0, the GWT forms a diagonal line, 
representing no probability distortion. Figure 1a illustrates the 
GWT for different values of �.

The elevation parameter, �, represents the probabilistic atti-
tude, ranging from optimism to pessimism. As � increases, 
the decision weights on the probability of the worst outcomes 
become higher than that of the best outcomes (see Figure 1b). 

(1)g�,�( ⋅ ) = Φ
(
�Φ−1( ⋅ ) + �

)

FIGURE 1    |    These figures illustrate how GWT changes with variations in κ and α. Figure (a) shows an inverse S-shaped weighting function when 
κ < 1 and an S-shaped weighting function when κ > 1, with a lower κ resulting in more overweighting at probabilities near 0 and 1. Figure (b) demon-
strates that an increase in α elevates the function across all probabilities. As depicted in both figures, the function becomes linear when κ = 1 and 
α = 0. [Colour figure can be viewed at wileyonlinelibrary.com]
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According to Definition 1, a negative � indicates an optimistic 
probabilistic attitude, while a positive � corresponds to a pes-
simistic attitude. When � = 0, the probability attitude is con-
sidered neutral.

A unique feature of the GWT, distinguishing it from other 
probability weighting functions, is its normality invariance; 
specifically, GWT transforms any normal distribution into 
another normal distribution. This property is formalised in 
Proposition 1.

Proposition 1.  (Normality invariance). If X ∼ N
(
�, �2

)
, the 

cumulative distribution function of the random variable X ∗ is 
given by FX∗ (x) = g�,�

(
FX (x)

)
, then X ∗ is also normally distributed 

X ∗ ∼ N
(
� −

�

�
�, �

2

�2

)
.

Proposition 1 grants GWT a computational advantage over tra-
ditional probability weighting functions in financial analyses 
where normality is a common assumption. In our model, this 
property facilitates the derivation of closed-form solutions. Sun 
et  al.  (2023) provide an in-depth discussion of the properties 
of GWT.

Additionally, with specific values for the parameters � and 
�, GWT can closely approximate distortion functions estab-
lished in the classic literature, such as those by Tversky and 
Kahneman  (1992). Figure  2 illustrates how the GWT model 
replicates the probability weighting function of CPT, that is, 
w(p) = x�

[
x�+(1−x)�

] 1
�

, proposed in previous literature. Figure 2a,b 

shows the fitting of the GWT model to the probability weighting 
function suggested in Tversky and Kahneman (1992) for the loss 

FIGURE 2    |    These figures present the scenario where the GWT fits the probability weighting function w(p) = x�

[
x�+(1−x)�

] 1
�

 in Cumulative Prospect 

Theory (CPT). We choose the appropriate parameters κ and α to minimise ∫ 1

0

(
g�,�(p)−w(p)

)2
dp. [Colour figure can be viewed at wileyonlinelibrary.

com]
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domain (� = 0.69) and the gain domain (� = 0.61), respectively. 
As depicted, the intersection of the GWT function with the diag-
onal line falls within the interval (0.3,0.4). To facilitate compar-
isons with the findings in Barberis and Huang (2008), we adopt 
� = 0.65 in subsequent sections. Figure  2c presents the fitting 
with � = 0.65, corresponding to parameter values � = 0.6175 
and � = − 0.1459.1

2.2   |   A Review and Discussion of RDEU

In this paper, we adopt the Rank-Dependent Expected Utility 
(RDEU) model as proposed by Quiggin  (1982). To provide a 
clearer understanding, we begin by reviewing the fundamental 
structure of the RDEU model. Suppose an agent i is evaluating 
a gamble � with support (a, b), where − ∞ ⩽ a < b ⩽ + ∞. The 
cumulative and decumulative distribution functions of � are 
denoted by F�( ⋅ ) and F�( ⋅ ), respectively. Agent i's sensitivities 
to outcomes and probabilities are described by a continuously 
increasing utility function ui:ℝ→ ℝ and a non-decreasing, con-
tinuous probability weighting function gi: [0, 1]→ [0, 1], respec-
tively, with gi(0) = 0 and gi(1) = 1. The RDEU of the gamble � 
for the agent i is then given by:

In the subsequent sections, we adopt GWT as the probabil-
ity weighting function for agents, allowing for heterogeneity 
in the probability distortion operator of different investors. 
Regarding utility functions, we consider two scenarios: (1) in-
vestors are risk-averse (RA), and (2) investors are loss averse 
(LA). The preferences of risk-averse investors are character-
ised as follows:

where, ui(x) is increasing and strictly concave. Regarding the 
preferences of loss-averse investors, we need to incorporate cer-
tain elements of the Cumulative Prospect Theory (CPT). We re-
place the utility function with a value function to incorporate 
key elements of CPT, specifically reference points and loss aver-
sion. We define �̂ ≡ � − x0 as the relative gain and loss, where 
x0 represents the reference point such that a ⩽ x0 ⩽ b. Let vi(x) 
denote the value function of agent i, noting that agents may have 
distinct value functions. The adapted RDEU of the gamble � for 
the agent i is as follows:

The advantage of the RDEU model is that it addresses viola-
tions of first-order stochastic dominance, a common issue in 
traditional probability weighting models. Additionally, the 
RDEU model applies a single probability weighting function 
across both loss and gain domains, avoiding the need for 

separate functions. This unified approach allows us to lever-
age the normality invariance of GWT, facilitating the deri-
vation of closed-form solutions in the model. Specifically, if 
the gamble � is normally distributed, the distorted cumula-
tive distribution function g�,�

(
F�(x)

)
 will also be normal, as 

will g�,�
(
F
�̂
(x)

)
.

3   |   CAPM Under Probability Weighting

The Capital Asset Pricing Model (CAPM) is regarded as one of 
the most essential models in finance theory. However, its un-
derlying assumptions, particularly the Expected Utility (EU) 
hypothesis, have been widely debated. A key question in be-
havioural finance is whether CAPM holds when the EU as-
sumption is violated. In this section, we examine CAPM under 
probability weighting by applying the GWT as the probability 
weighting function. Additionally, we introduce heterogeneity in 
both probability weighting functions and value functions across 
investors and consider two scenarios: first, where investors are 
risk-averse toward all outcomes, and second, where they are 
loss-averse. Security payoffs are assumed to be multivariate 
normally distributed, an assumption that will be relaxed in 
Section 4.

3.1   |   Risk-Averse Investors With Probability 
Weighting

We begin by retaining most of the traditional CAPM as-
sumptions as outlined by Sharpe  (1964), Lintner  (1965), and 
Mossin  (1966), including a one-period investment horizon, 
risk-averse investors, and multivariate normally distributed 
asset payoffs, except the assumption of homogeneous beliefs. 
We allow investors' preferences to be represented by RDEU 
with varying probability weighting functions. This approach 
enables investors to hold diverse expectations about risky 
securities.

We consider a one-period economy consisting of two dates, 
date 0 and date 1. All investors trade at t = 0 and consume 
at t = 1. The economy is frictionless and has no trading con-
straints. There is one risk-free asset with a constant return 
Rf  and J  risky assets. There are i = 1, … , I investors in the 
market.

Assumption 1.  Asset return. The return of the jth risky 
security in the market at date 1 is denoted as R̃j. We denote 
�R ≡

(
�R1, �R2, ⋯ , �RJ

)⊤

. The return vector of risky assets R̃ is 
multivariate normally distributed, that is R̃ ∼ N(�,Σ), where 
𝜇 ≡

(
𝜇1,𝜇2, ⋯ ,𝜇J

)⊤ with �j as the objective mean of R̃j, and Σ 
represents the objective variance–covariance matrix. The secu-
rities are highly divisible and liquid, and the supply of each risky 
security is strictly positive.

Assumption 2.  Risk aversion. All investors are strictly risk-
averse. The utility function ui( ⋅ ) of investor i is increasing and 
strictly concave.

Our approach diverges from the traditional CAPM by incorpo-
rating probability weighting into investor behaviour. Unlike the 

(2)RDEUi[�] =

b

∫
a

ui(x)dgi
(
F�(x)

)

(3)RDEURA
i [�] =

b

∫
a

ui(x)dg�i ,�i
(
F�(x)

)

(4)RDEULA
i

[
�̂

]
=

b

∫
a

vi(x)dg�i ,�i
(
F
�̂
(x)

)
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classic model, which assumes homogeneous beliefs and that in-
vestors form expectations of terminal wealth based on objective 
risk distributions, our model posits that investors evaluate pros-
pects using distorted probabilities rather than objective ones. 
This shift acknowledges the role of subjective probability assess-
ments in shaping investment decisions.

Assumption 3.  Probability weighting and heterogeneous per-
ceptions. The decision weights over the terminal wealth of inves-
tor i are determined by the probability weighting function in the 
form of GWT in Equation (1) with parameters 𝜅 i > 0 and �i ∈ ℝ

. These weighting functions may vary across investors and are 
not necessarily identical for all.

Assumption 3 allows investors to distort probabilities in dif-
ferent ways. Under Assumption 3, investors are not required 
to hold identical, accurate beliefs about the returns on risky 
assets. Instead, they may make decisions based on a per-
ceived distribution that does not necessarily match the actual 
distribution.

Each investor is endowed with a strictly positive initial wealth 
W0i > 0. Let ̃Wi denote the terminal wealth of investor i. Investor 
i's investment strategy is given by the wealth allocation vector 
wi ≡

(
wi1,wi2, ⋯ ,wiJ

)⊤, where wij denotes portion of wealth 
allocated to the jth risky security by investor i. Thus, the final 
wealth of investor i can be expressed as

Investor i needs to select the optimal investment strategy wi to 
maximise her rank-dependent utility. Accordingly, the optimi-
zation problem is formulated as follows:

where, FW̃i
( ⋅ ) represents the cumulative distribution function 

of W̃ i.

By solving the optimisation problem, we demonstrate in 
Theorem 1 that CAPM still holds.

Theorem 1.  Under the Assumptions 1–3, CAPM holds, that is

where, � j ≡
Cov

(
R̃j ,R̃M

)

Var
(
R̃M

) , and R̃M denotes the market return.

Remark 1.  Theorem  1 does not require the weighting func-
tion to follow an inverse-S shape. Depending on the value of the 
parameter �, our model's weighting function can exhibit various 
forms: an inverse-S shape (0 < 𝜅 < 1), be linear (� = 1, � = 0), 
concave (𝜅 = 1, 𝛼 > 0), convex (𝜅 = 1, 𝛼 < 0), or even an S shape 
(𝜅 > 1).

Remark 2.  Theorem 1 does not impose any specific require-
ment on �i, which represents the probabilistic attitude. The 

parameter �i can be either negative or positive, indicating that 
an investor assigns greater weight to either the best or worst out-
comes, respectively. Additionally, investors can hold heteroge-
nous probabilistic attitudes, allowing for a scenario where some 
investors maintain an optimistic attitude while others adopt a 
pessimistic one.

Remark 3.  Specifically, assuming � i = 1 yields the CAPM 
under the Wang transform, while setting �i = 0 reduces 
Theorem  1 to the traditional CAPM. Our framework encom-
passes both as special cases.

Theorem 1 extends the traditional CAPM by relaxing the as-
sumptions of homogeneous beliefs and replacing objective 
probabilities with distorted probabilities. Despite investors' 
altered perceptions due to probability weighting, CAPM re-
mains valid. Furthermore, there are no restrictions on the 
parameters of GWT; in other words, both the shape and the 
probabilistic attitudes represented by GWT are unrestricted. 
Each investor can overweight or underweight the tail event 
and may adopt either an optimistic or pessimistic probability 
attitude. Therefore, Theorem  1 demonstrates that under the 
assumption of normality in asset returns and risk-averse in-
vestors whose perceptions of final wealth remain normally 
distributed, CAPM holds regardless of how probabilities are 
distorted.

The reason CAPM still holds is that the market portfolio re-
mains unchanged after the probability distortion introduced 
by GWT and the efficient frontier is also preserved. Given the 
expression of GWT in Equation (1), it can be verified that, for a 
given level of risk, a portfolio with a higher return than others 
will still achieve the highest transformed expected return for 
the defined level of transformed risk. When combined with a 
risk-free asset, this result implies the same tangent line, as the 
portfolios along this line continue to outperform others, even 
under the transformed distribution. Thus, the market portfo-
lio, or the tangent portfolio, is uniquely determined, leading 
to CAPM.

3.2   |   Loss-Averse Investors With Probability 
Weighting

In this subsection, we further relax the assumption of risk-
averse investors by replacing the utility function with a value 
function that incorporates key features of the value function in 
CPT, including the reference point and loss aversion. We allow 
flexibility in the functional form of the value function to pre-
serve generality.

We consider the same economic setting as in the risk-aversion 
case. The setup for investors is modified as follows: Investor 
i's preference is characterised by their value function vi(x) and 
probability weighting function g�i ,�i ( ⋅ ). The value function vi( ⋅ ) 
captures the investor's loss aversion, as presented in the follow-
ing assumption:

Assumption 2′.  Loss aversion. The value function of inves-
tor i, that is, vi( ⋅ ), is increasing and concave over the gain, and 
satisfies that vi� (−x) ⩾ vi� (x) for x ∈ (0, ∞) and vi(0) = 0.

(5)�Wi =W0i

(
1 + Rf

)
+ w⊤

i

(
�R − Rf 1

)

(6)max
wi

RDEURA
i

[
W̃ i

]
=

∞

∫
−∞

ui(x)dg� i ,�i

(
FW̃i

(x)
)

E
(
R̃j

)
− Rf = � j

[
E
(
R̃M

)
− Rf

]
, j = 1, … , J
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Assumption  2′ establishes the framework for investors' loss 
aversion. When investors are loss-averse, they experience 
greater pain from a loss than pleasure from an equivalent 
gain. As a result, investors display higher sensitivity to losses 
than to gains of the same magnitude, leading to a steeper 
slope in the loss domain compared to the gain domain in the 
value function. Notably, risk aversion is a special case under 
Assumption 2′.

In addition, Assumption 2′ implies that investors take zero as 
the reference point. If the reference point were not zero, it could 
be shifted to zero through transformations in the RDEU frame-
work. Moreover, Assumption 2′ does not request a specific form 
on the value function, allowing it to accommodate most value 
functions in NEU that characterise loss aversion, such as the S-
shaped value function in CPT.

Moreover, we introduce an additional assumption regarding the 
investors' probabilistic attitudes.

Assumption 4.  Pessimistic or neutral probabilistic attitude. 
Investors hold pessimistic or neutral probabilistic attitudes, that 
is, 𝜅 i > 0 and �i ⩾ 0 for i = 1, ⋯ , I.

Assumption  4 presents the setup for investors' proba-
bility attitudes. We assume that investors' elevation pa-
rameter, denoted by �, is non-negative. This implies that 
investors assign greater weight to worst outcomes, exhibit-
ing a form of probabilistic pessimism. While Assumption  2′ 
relaxed the requirements for the value function, here we 
impose stricter conditions on the probability weighting 
function.

Because the utility is defined over gains and losses, we denote 
the measure of gain and loss as Ŵ i as follows

where, W0i

(
1 + Rf

)
 is the reference wealth level.

The investor needs to select her optimal trading strategy wi to 
maximise her utility

where, FŴi
(x) represents the cumulative distribution function 

of Ŵ i.

Given the above assumptions, the adapted RDEU of the final 
wealth Ŵ i can be represented as follows.2

Equation (8) resembles the Choquet utility in Schmeidler (1986, 
1989), suggesting how expected utility can be represented with 
nonaddictive probability. The position of Ŵ 0i does not affect the 
utility, indicating that a random choice of reference point is fea-
sible in our model.

With the alternative Assumption  2′, we prove the Security 
Market Line Theorem for loss-averse investors in Theorem  2 
(see proof in Appendix A.2).

Theorem 2.  Under the Assumptions 1, 2′, 3, 4, and the util-
ity expression in Equation (8), if �i = 0 and vi� (−x) = vi� (x) for 
x ∈ (0, ∞) do not hold simultaneously, Security Market Line 
Theorem (SMLT) stands, that is:

where, � j ≡
Cov

(
R̃j ,R̃M

)

Var
(
R̃M

) , and R̃M denotes the market return.

Remark 4.  Theorem  2 suggests that investors with hetero-
geneous probability weightings under GWT agree on the same 
mean–variance efficient frontier, thereby implying the existence 
of SMLT in equilibrium. However, unlike Theorem 1, the opti-
mization problem for Theorem 2 is not formally defined, and the 
investor's decision problem may lack a solution. As a result, the 
CAPM does not hold.3

Remark 5.  The requirement �i ⩾ 0 for i = 1, ⋯ , I is intro-
duced in Theorem 2. This implies that all investors are required 
to assign greater weight to potentially worst outcomes than to 
the best outcomes. Since Theorem  2 differs from Theorem  1 
only by relaxing the risk-aversion assumption, the additional re-
quirement on probability attitudes serves as a compensatory ad-
justment. This suggests that a pessimistic probabilistic attitude 
functions similarly to risk aversion in deriving SMLT.

In classical literature, the value function in CPT captures the 
characteristic of loss aversion among investors, whereas the 
utility function in Rank-Dependent Expected Utility (RDEU) 
assumes risk aversion. By incorporating the concepts of loss aver-
sion and reference points into RDEU, we find that the SMLT still 
holds. This result extends the findings of Levy et al. (2003), who 
proved the SMLT under an S-shaped value function. Notably, 
Theorem 2 requires the elevation parameter in GWT to be non-
negative, whereas Theorem 1 imposes no such restriction. This 
is because, when the concavity of the value function is restricted 
to the gain domain only, the probabilistic attitude must become 
more pessimistic. The finding implies that a pessimistic proba-
bilistic attitude and a risk-averse attitude are interchangeable, 
consistent with the dual theory.

The SMLT holds under heterogenous value functions; however, the 
CAPM necessitates additional assumptions on the value function.

Assumption 2″.  The value function of all investors, that is, 
v( ⋅ ), is increasing and concave over the gain, and satisfies that 
v�(−x) ⩾ v�(x) for x ∈ (0, ∞) and v(0) = 0. In addition, the value 
function is divisible, that is:

Ŵ i ≡ W̃ i −W0i

(
1 + Rf

)

(7)max
wi

Vi

(
Ŵ i

)
≡ RDEULA

i

[
Ŵ

]
=

∞

�
−∞

vi(x)dg�i ,�i

(
FŴ i

(x)
)

(8)

Vi

(
Ŵ i

)
= vi

(
Ŵ 0i

)
−

Ŵ 0i

∫
−∞

g�i ,�i

(
FŴ i

(t)
)
dvi(t)

+

∞

∫
Ŵ 0i

[
1−g�i ,�i

(
FŴi

(t)
)]
dvi(t), Ŵ 0i∈ℝ

E
(
R̃j

)
− Rf = � j

[
E
(
R̃M

)
− Rf

]
, j = 1, … , J
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where, a is a constant and m(a) is increasing with a.

Assumption 5.  Homogeneous investors. All investors are 
homogeneous. That is, they share the same utility function or 
value function and have the same parameters in GWT as the 
probability weighting function.

Corollary 1.  Under the Assumptions 1, 2″, 3, 4, and 5, and 
the utility expression in Equation (8), CAPM holds with excess 
market return R̂M ≡ R̃M − Rf  satisfying V

(
R̂M

)
= 0. In addition, 

when � = 0, v�(−x) > v�(x) for x ∈ (0, ∞); when v�(−x) = v�(x) for 
x ∈ (0, ∞), 𝛼 > 0.

Corollary 1 suggests that when the value function is divisible 
and homogeneous, CAPM holds. Barberis and Huang  (2008) 
proved CAPM using the value function and weighting functions 
proposed by Tversky and Kahneman (1992). In this paper, we 
show that CAPM can also hold under RDEU with GWT with-
out imposing a specific functional form on the value function. 
However, the homogenous assumption on the value function 
cannot be relaxed.

3.3   |   Implications of CAPM With Generalised 
Wang Transform

Theorems 1 and 2 prove that CAPM and SMLT remain valid 
under heterogeneous beliefs. Compared to the traditional 
CAPM, our paper indicates that such pricing principles do 
not necessarily rely on homogeneous correct beliefs among 
all investors. Theorem 1 demonstrates that CAPM will hold, 
and the probability weighting function can adopt various 
shapes and heterogeneous probabilistic attitudes, provided 
that investors are risk-averse. Therefore, our model not only 
nests the traditional CAPM as a special case but also extends 
its applicability to scenarios with probability weighting. 
Theorem 2 further shows that when investors are loss-averse, 
SMLT holds as long as they maintain a pessimistic probabi-
listic attitude. Compared to Theorem  1, Theorem  2 relaxes 
the risk-aversion assumption while imposing a stricter con-
dition on the probability weighting function. This aligns 
with the dual theory proposed by Yaari  (1987), which sug-
gests that the utility function and probability weighting 
function both capture the risk attitudes of people and can be 
interchangeable.

A critical assumption in our model is that the objective dis-
tributions of asset returns are normally distributed, and the 
probability weighting function takes the form of GWT. These 
assumptions are equivalent to stating that both the objective 
and the transformed distributions of asset returns follow a nor-
mal distribution. This is because GWT is the only probability 
weighting function that preserves normality after distortion. 
Therefore, if both the original and distorted distributions are 
normal, the probability weighting function must necessarily 
take the form of GWT. Notably, GWT can also be applied to 
scenarios where the objective distribution is not normal, which 
will be discussed in the next section.

4   |   Preference for Skewness: Pricing Implications 
and Transformed Distributions

In this section, we relax the assumption of normal distribution 
and attempt to explore how non-normally distributed securi-
ties are priced under probability weighting. Previous literature 
has shown that lottery-like securities tend to be overpriced in 
the financial market (Kumar  2009; Kumar et  al.  2011; Han 
and Kumar  2013; Gao and Lin  2015; An et  al.  2020; Blau 
et  al.  2020; Dimmock et  al.  2021). Among these studies, 
Barberis and Huang  (2008) proposed a framework based on 
CPT to explain skewness overpricing from the perspective of 
probability weighting. In their framework, the preferences of 
investors are characterised by an S-shaped value function and 
two different probability weighting functions toward gains 
and losses. However, it remains challenging to distinguish 
whether the overpricing of skewed assets arises primarily 
from the value function or the probability weighting. To ad-
dress this, our paper examines two scenarios: in the first, we 
assume investors are risk-averse, and in the second, investors 
are loss-averse. In both cases, investors are subject to proba-
bility weighting.

The model setup is similar to Section 3 but with a few mod-
ifications. In addition to the risk-free asset and those nor-
mally distributed risky assets, we incorporate one positively 
skewed asset into the framework. Following Barberis and 
Huang  (2008), the following assumption about the skewed 
asset is introduced.

Assumption 6.  Independent skewed asset. The payoff of the 
skewed asset is binomial distributed with (L, q; 0, 1 − q).4 Denote 
the price of the skewed asset as pn. The return of the skewed 
asset conforms to a binomial distribution as follows

The excess return of the skewed asset is defined as 
R̂n ≡ R̃n −

(
1 + Rf

)
. The return of the skewed asset is indepen-

dent of the return of the J risky securities. The supply of the 
skewed security is infinitesimal relative to the total supply of 
the risky securities.

In addition, to simplify the framework, we assume identical 
investors, as specified in Assumption 5 and impose the short-
selling constraint.

Assumption 7.  Short-selling constraint. Short-selling is not 
allowed.

4.1   |   Risk-Averse Investors With Probability 
Weighting

We first consider risk-averse investors and discuss how the 
skewed asset is priced. Before introducing the skewed security, 
under Assumptions 1–3, 5 and Theorem 1, all investors in this 
economy are expected to hold the same market portfolio with its 
return denoted by R̃M. The market excess return of the market 

v
(
aR̂

)
= m(a)v

(
R̂
)

R̃n ∼

(
L

pn
, q; 0, 1 − q

)
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portfolio, defined as R̂M ≡ R̃M − Rf , follows a normal distribu-
tion N

(
�M , �

2
M

)
.

The decision problem is described by whether investors are 
willing to hold an additional positively skewed asset. We as-
sume that investors hold the same amount of market portfolio 
as before. A fair price should ensure that investors are indif-
ferent in including or excluding the skewed security in their 
portfolios. This framework characterises the heterogeneous 
holdings of investors in the market and facilitates the compar-
ison with the loss aversion case. The constrained optimisation 
problem for investors is given by:

where, xM and xn are the wealth allocated to the market portfolio 
and the skewed asset, respectively, the superscript ∗ denotes the 
optimal allocation, W0 represents the initial wealth and U ( ⋅ ) rep-
resents the rank-dependent expected utility, that is:

where, F( ⋅ ) is the cumulative distribution function of terminal 
wealth W̃ . The utility function u( ⋅ ) takes the form of CARA util-
ity function, that is:

where, 𝜂 > 0 represents the risk aversion parameter.

The optimised wealth allocations for the market portfolio and 
the skewed asset can be determined sequentially. With the 
CARA utility function and GWT, the optimisation problem for 
the wealth allocation to the market portfolio is equivalent to the 
following maximisation problem:

Note that xM > 0 since the market portfolio is in positive supply.

The optimization problem above establishes a one-to-one cor-
respondence between the optimal holding x∗

M
 and the expected 

market excess return �M. For simplicity, we set x∗
M
= 1. In this 

case, x ≡ xn ∕x
∗
M
= xn represents the fraction of wealth allocated 

to the skewed security relative to the optimal wealth allocated to 
the market portfolio. With the CARA utility function, the con-
strained optimization problem for the skewed security can be 
rewritten as follows:

where, x∗ is the optimal wealth allocation ratio of the skewed 
security relative to the market portfolio.

We solve this constrained optimization problem numerically. 
First, we specify the parameters in the utility function and 
probability weighting function. For the utility function u( ⋅ ), 
we set � = 0.16, where a positive � reflects the risk-averse atti-
tude of investors. For the probability weighting function GWT, 
we use the parameters � = 0.1459 and � = 0.6175, representing 
a pessimistic probabilistic attitude. These parameter values 
approximate the weighting function proposed by Tversky and 
Kahneman (1992) over the gain domain, as implied by the dual 
operator. Regarding the market portfolio, the standard deviation 
of the excess return is set to �M = 0.15, and the risk-free rate 
is Rf = 0.02. Given these values, the expected excess return is 
�M = 0.0449 at x∗

M
= 1. Lastly, for the skewed security, we take 

L = 10 and q = 0.1, meaning this skewed security offers a signif-
icant payoff at a low probability. As probability q decreases, the 
skewness of this security strictly increases.

We use numerical integration to solve the price of the skewed 
security. We find that a price of pn = 1.4061 satisfies this require-
ment of this constrained optimization problem, with the optimal 
strategy occurring at x∗ = 0.1379. Then, the expected excess re-
turn for the skewed security is calculated as follows:

So the expected return of the skewed asset 
is E

(
R̃n

)
− 1 = − 0.2888.

The negative expected excess return of skewed security implies 
a strong preference for skewness by investors. Thus, even when 
investors are risk-averse, probability weighting will lead to the 
overpricing of the skewed asset.

4.2   |   Loss-Averse Investors With Probability 
Weighting

In this section, we investigate the pricing of skewed secu-
rity when investors are loss-averse. Following Tversky and 
Kahneman (1992), we suppose that all investors share a value 
function defined as follows:

where parameters � ∈ (0, 1) and 𝜆 > 1. The parameter � mea-
sures the degree of risk aversion, with 𝛾 < 1 indicating that in-
vestors are risk-averse over gains and risk-seeking over losses. 
The parameter � represents the degree of loss aversion, where 
𝜆 > 1 reflects a higher sensitivity to changes in losses compared 
to gains. The value function kinks at the reference point w = 0, 
with concavity over gains and convexity over losses.

Following Barberis and Huang  (2008), the equilibrium is de-
fined as follows:

U
(
W0

(
1+Rf

)
+x∗M

�RM

)
=U

(
W0

(
1+Rf

)
+x∗M

�RM +x∗n
�Rn

)

U
(
W0

(
1+Rf

)
+xM�RM

)
<U

(
W0

(
1+Rf

)
+x∗M

�RM

)
for xM ≠ x∗M

U
(
W0

(
1+Rf

)
+x∗M

�RM +xn�Rn

)
<U

(
W0

(
1+Rf

)
+x∗M

�RM +x∗n
�Rn

)
for 0< xn≠ x

∗
n

U
(
W̃

)
≡ RDEU

(
W̃

)
=

∞

�
−∞

u(w)dg�,�(F(w))

u(W ) = − e−�W

(9)max
xM > 0

W0 +
(
xM𝜇M − | xM |

𝛼

𝜅
𝜎M

)
−
1

2
𝜂x2M

𝜎2
M

𝜅2

U
(
�RM

)
=U

(
�RM +x∗�Rn

)

U
(
�RM +x�Rn

)
<U

(
�RM +x∗�Rn

)
for 0< x≠ x∗

E
(
R̂n

)
=
qL

pn
−
(
1 + Rf

)
=
0.1 × 10

1.4061
− 1.02 = − 0.3088

v(w) =

{
w𝛾 , w⩾0

−𝜆(−w)𝛾 , w<0
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where, V ( ⋅ ) is given in Equation  (8). The optimization prob-
lem stated in Equations (9–12) implies a heterogeneous hold-
ings equilibrium. In the equilibrium, two groups of identical 
investors achieve maximum utility with their respective po-
sitions. The first group holds a combination of the risk-free 
asset and the market portfolio, which consists of the J  nor-
mally distributed assets. The second group holds a combi-
nation of the risk-free asset, the market portfolio, and a long 
position in the skewed asset. Therefore, there is no incentive 
for any investor to alter the strategy. The key feature of the 
equilibrium is that the prices of the original J  risky assets 
remain unaffected after the introduction of the new skewed 
asset.5

As in the previous scenario, we first specify the parameters 
in the value function and probability weighting function and 
then solve the equilibrium numerically. For the value function 
v( ⋅ ), we take � = 0.88 and � = 2.25. For the probability weighting 
function GWT, the parameters are the same as in the risk-averse 
scenario: � = 0.1459 and � = 0.6175. The variance of the excess 
return of the market portfolio is the same as in the risk-averse 
scenario, that is, �M = 0.15. Different from the risk-averse model, 
the mean of the expected excess return is �M = 0.1169, deter-
mined by solving the equilibrium condition V

(
R̂M

)
= 0. The 

risk-free rate and the parameters for the skewed asset are the 
same as in the risk-averse model.

In this equilibrium, the price of the skewed asset, pn = 0.6357, 
satisfies the equilibrium conditions for the skewed security 
with q = 0.1. Investors holding the market portfolio achieve 
the same utility as those who hold an amount x = 0.0695 of 
skewed securities. The expected excess return for the skewed 
security is

The expected net return is E
(
R̃n

)
− 1 = − 0.0561. Therefore, 

the loss-averse investors also show a strong preference for posi-
tively skewed assets.

4.3   |   Discussions on Skewness Pricing

In this section, we analyse the factors influencing skewness 
pricing, measured by the expected excess return. A negative 
expected excess return indicates that investors are overpric-
ing the skewed security. We begin by examining the asset's 
skewness and the risk attitude embedded in the value func-
tion, followed by an exploration of two key characteristics of 
probability weighting—likelihood insensitivity and probabi-
listic attitudes.

Figure 3 illustrates how the expected excess return changes with 
the asset's skewness and the risk parameters in the risk-aversion 
model and the loss-aversion model. From Figure 3a,a′, we can 
find that as the security becomes more positively skewed, that is, 
when q is smaller, the skewed asset is more overpriced. As q in-
creases, the skewness decreases, and the expected excess return 
is back to zero. The risk attitude is represented by the parameter 
� in the risk-aversion model, and by � and � in the loss-aversion 
model. An increase in � indicates a stronger risk-averse attitude 
in the risk-aversion model, while an increase in � reflects a less 
risk-averse attitude toward gains and a less risk-seeking attitude 
toward losses. The parameter � captures the degree of loss aver-
sion. As � increases, investors become more sensitive to changes 
in losses compared to gains. Both Figure  3b,b′ demonstrates 
that as investors become more risk-averse, the overpricing of 
skewness diminishes. This occurs because higher risk aversion 
toward gains reduces the marginal utility of large gains, mak-
ing the skewed asset less appealing, thereby lowering its price. 
Figure 3b″ shows that greater loss aversion further reduces the 
overpricing of the skewed asset.

As observed in the risk-averse model, the overpricing of skewed 
assets is primarily driven by probability weighting rather than the 
S-shaped value function. We now examine the effects of different 
factors in probability weighting on skewness pricing. Given the 
characteristics of GWT, we focus on likelihood insensitivity and 
probabilistic attitudes, which are captured by the parameters � or 
� in GWT. Figure 4 shows how these characteristics influence the 
return of the skewed security in both risk-averse and loss-averse 
models. From these panels, we can find that as � or � drops, the 
skewed asset becomes more overpriced. Specifically, a decrease 
in the curvature parameter � indicates that investors are more 
overweighting the extreme events and underweighting the mid-
dle events, thus investors are more drawn to the positively skewed 
asset. Similarly, a decrease in � leads investors to overweight the 
best outcomes compared to the worst outcomes, further enhanc-
ing their preference for positively skewed assets. Interestingly, as 
� increases, the overpricing of skewness diminishes even when 
𝜅 > 0. This suggests that the skewness pricing is a joint result of 
both overall probability distortion and probabilistic attitude. When 
investors have a pessimistic attitude, it offsets the effect of distor-
tion toward extreme events, leading to more rational pricing of a 
positively skewed asset.

4.4   |   Implications of Transformed Distribution

From the above results, we can see that whether investors are 
risk-averse or loss-averse does not alter the main results. A 
positively skewed asset, traded by either a risk-averse or a loss-
averse agent who overweights extreme payoffs, will be over-
priced. Therefore, probability weighting plays a crucial role in 
the pricing of skewness. Note that probability weighting bridges 
the original risk distribution and the transformed risk distribu-
tion. Therefore, the transformed distribution of a skewed asset 
is critical in determining its price. However, existing literature 
has seldom discussed how probability weighting affects the 
transformed distribution of a skewed asset. In this section, we 
attempt to address this question by exploring how probability 
weighting changes the transformed distribution and its implica-
tions for the skewness pricing.

(10)V
(
R̂M

)
= V

(
R̂M + x∗R̂n

)
= 0

(11)V
(
�RM + x�Rn

)
< V

(
�RM + x∗�Rn

)
for 0 < x ≠ x∗

(12)V
(
�Rn

)
< V

(
�RM

)

E
(
R̂n

)
=
qL

pn
−
(
1 + Rf

)
=
0.06 × 10

0.6357
− 1.02 = − 0.0761

 10991158, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ijfe.3148 by N

ational U
niversity O

f Ireland M
aynooth, W

iley O
nline L

ibrary on [09/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



11 of 18

FIGURE 3    |    These panels show how the expected excess return varies with the changes in the asset's skewness and the risk parameters in the 
risk-aversion model and the loss-aversion model. Panels (a, a′) present the expected excess return E(R̂n) of the skewed security with respect to prob-
ability q in the risk-aversion model and loss-aversion model. As q decreases, the skewness increases, leading to lower and negative expected excess 
returns in both models. Panel (b) is presented twice in the second and third rows for comparison with panels (b′, b″). Panels (b, b′) demonstrate that 
the expected excess return increases with risk aversion. Panel (b″) shows that the expected excess increases with loss aversion. These panels confirm 
consistent pricing implications of skewness and risk attitudes across both models. [Colour figure can be viewed at wileyonlinelibrary.com]
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We examine two portfolios in the heterogeneous equilibrium: the 
market portfolio and the skewed portfolio, which is constructed 
by combining the market portfolio with the skewed security. We 
then compare the objective and transformed cumulative distri-
butions of these two portfolios. Figure 4 illustrates the objective 
cumulative distributions and transformed cumulative distribu-
tions for these two portfolios with x = 0.0695 and pn = 0.6357.

According to the EU, investors prefer the market portfolio over 
the skewed portfolio in a mean–variance framework because 
adding an independent security with a negative excess expected 
return to the market portfolio reduces the expected payoff and 
increases risk. However, if investors are subject to probability 
weighting, their preferences may shift. This is because probabil-
ity weighting has a more significant effect on the distribution of 
the skewed portfolio than on the market portfolio. Specifically, 
the skewed portfolio has a higher probability for extreme high 
payoff than the market portfolio. Therefore, as the probability of 

extreme high payoff is amplified, the skewed portfolio achieves 
a higher distorted mean than the market portfolio, thus increas-
ing its attractiveness to investors. We can observe the change in 
mean from Figure 5. In fact, the difference between distorted 
mean and objective mean can be expressed as follows

Therefore, the difference in the area between the transformed 
distribution and the objective distribution illustrates the dis-
parity between the distorted mean and the objective mean. As 
shown in Figure 5, the mean change for the skewed portfolio 
is larger than that for the market portfolio. For a more accurate 
calculation, we denote the excess return of the skewed portfolio 
as R̂p. The distorted mean and distorted standard deviation of 
the skewed portfolio are:

Eg�,� (R) − E(R) =

∞

∫
−∞

[
F(R) − g�,�(F(R))

]
dR

FIGURE 4    |    These panels illustrate how the expected excess return varies with the changes in GWT parameters. Panels (a, a′) show that a higher 
curvature (lower κ) results in a lower expected excess return. Panels (b, b′) display that a more optimistic attitude, represented by a lower α, leads to 
a lower expected excess return. [Colour figure can be viewed at wileyonlinelibrary.com]
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where, Fx(R) ≡ P
{
R̂M + R̂n ⩽ R

}
 represents the cumulative dis-

tribution function of the skewed portfolio's excess return with a 
proportion x in the skewed security. Meanwhile, the distorted 
mean and distorted standard deviation of the market portfo-
lio are:

Even though the skewed portfolio has a larger volatility than 
the market portfolio, the mean of the skewed portfolio is higher. 
Therefore, the overpricing of the skewed asset is driven by the 
high distorted mean of the skewed portfolio.

Our previous results have shown that investors with lower risk 
aversion or lower loss aversion exhibit stronger preferences for 
skewed securities. This phenomenon can be understood from 
the perspective of transformed distributions. When investors 
are less risk-averse or less loss-averse, they care more about 
the mean rather than the volatility. Therefore, they prefer the 
skewed portfolio to the market portfolio.

Finally, the characteristics of probability weighting significantly 
influence the transformed distribution characteristics. Figure 6 
shows the distorted expected return as the parameters � and � 
of the weighting function are varied. The price is set such that 
the skewed portfolio has the same expected return as the mar-
ket portfolio. We can see that both � and � are negatively cor-
related with the distorted mean, implying a stronger appeal of 
the skewed portfolio under a more optimistic or more distorted 
probabilistic attitude. This occurs because greater overall dis-
tortion, represented by a decrease in �, leads to a more severe 
overweighting on extreme payoffs, thereby increasing the dis-
torted mean of the skewed portfolio. Similarly, a more optimistic 

Eg�,�

[
R̂p

]
=

∞

�
−∞

Rdg�,�
(
Fx(R)

)
=0.1397

�g�,�

[
R̂p

]
≡

∞

�
−∞

(
R−Eg�,�

[
R̂p

])2
dg�,�

(
Fx(R)

)
=0.4872

Eg�,�

[
R̂M

]
=�M −

�

�
�M =0.0815

�g�,�

[
R̂M

]
=
1

�
�M =0.2429

FIGURE 5    |    This figure plots the original cumulative distribution 
functions and distorted cumulative distribution functions for the mar-
ket portfolio and the skewed portfolio. Both distorted cumulative distri-
bution functions are lower over larger returns and higher over smaller 
returns compared to the original ones, indicating the increased volatili-
ty of distorted distributions. The cumulative distribution of the skewed 
portfolio is much lower over larger returns after distortion compared to 
that of the market portfolio, reflecting a greater distortion of large pay-
offs in the skewed portfolio. [Colour figure can be viewed at wileyon-
linelibrary.com]

FIGURE 6    |    These two panels plot the distorted expected excess return of the market portfolio and the skewed portfolio. The price of the skewed 
security is set at pn = 0.5882 to ensure that both portfolios have the same expected return. Investors are assumed to hold a positive position in the 
skewed asset, with x = 0.0695. The left panel shows the changes in the distorted returns with varying κ, while the right panel displays the distorted 
returns with varying α. In both panels, the skewed portfolio demonstrates a higher distorted expected return and exhibits greater sensitivity to prob-
ability weighting. [Colour figure can be viewed at wileyonlinelibrary.com]
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attitude, reflected by a reduction in �, implies that the decision 
weights on the best outcomes are more heavily overweighted 
compared to the worst outcomes, further elevating the distorted 
mean of the skewed portfolio. Therefore, the overpricing of the 
skewed asset reflects a higher perceived mean of the skewed 
portfolio by investors.

5   |   Conclusions

In this paper, we investigate the pricing implications of prob-
ability weighting on CAPM and skewness pricing, employing 
the GWT within the framework of RDEU. CAPM and SMLT 
are derived under two distinct scenarios: risk aversion and loss 
aversion. In both cases, we assume heterogeneous probability 
weighting and value functions among investors. There is no 
restriction on the shape of the probability weighting function 
in the risk aversion model to ensure CAPM, while in the loss-
aversion scenario, a probabilistic pessimistic attitude is neces-
sary to ensure SMLT.

Our analysis of skewness pricing emphasises the critical role of 
probability weighting in skewness overpricing, as opposed to 
the influence of an S-shaped value function. We further illus-
trate investors' preference for skewness through the perspec-
tive of transformed distribution, highlighting that the distorted 
mean is a key determinant of investors' preference.
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Endnotes

	1	In the following chapters, the parameter values we use are 
� = 0.6175, � = − 0.1459, that is, we have taken the dual operator of 
the original operator g−�,� (p) = 1 − g�,� (1 − p).

	2	For the proof, please refer to Appendix  A.2. In 
the proof, we employed a technical assumption: 
x∞ limvi(x)g�i ,�i (F(x)) + x∞ limvi(x)

[
1 − g�i ,�i (1 − F(x))

]
= 0.

	3	Drawing on Levy et al. (2003), we explain the potential failure of equi-
librium in the Appendix S1.

	4	A binomial distribution (L, q; 0, 1 − q) generates L with a probability q 
and generates 0 with a probability 1 − q.

	5	This feature has been illustrated in the appendix in Barberis and 
Huang (2008).
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Appendix A

Proof of Theorem 1

Given Assumptions 1–3, the budget constraint for investor i  is:

which conforms to a normal distribution.

We construct W̃
∗

i  as follows:

Then, we have:

and

Note that the distribution of W̃
∗

i  is the same as the distorted distribution 
of the terminal wealth W̃ i under g�i ,�i ( ⋅ ), and W̃

∗

i  maintains the features 
of the original covariance. So we obtain the following equation between 
the expectation and distorted expectation:

for a monotonic utility function ui.

Therefore, the investor's optimal problem is equivalent to:

The first order condition of Equation (A1) is:

Because u( ⋅ ) is increasing and strictly concave, the second order condi-
tion must be satisfied.

Notice that:

Using the definition of a covariance and the first-order condition, we 
have:

�Wi =W0i

(
1 + Rf

)
+ w⊤

i

(
�R − Rf

)
∼ N

(
W0i

(
1 + Rf

)
+ w⊤

i

(
𝜇 − Rf 1

)
,w⊤

i Σwi
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�W
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i =
1

𝜅 i

[
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which is equivalent to:

From the construction of W̃
∗

i , we know that W̃
∗

i  and R̃ are multivariate 
normally distributed. Then from Stein's lemma, we obtain:

Combing the Equations (A2) and (A3), we have:

then:

Notice that Cov
(
�Wi, �R

)
= Cov

(
w⊤
i
�R, �R

)
= Σwi, so we have:

Define 𝜃i ≡
𝛼i
𝜅 i

1√
w⊤
i
Σwi

−
1

𝜅2
i

E
�
u� �

i

�
�W

∗

i

��

E
�
u�
i

�
�W

∗

i

�� . When �i ≠ 0, the above equation 

could be rewritten as:

We consider the situation when � ≠ Rf 1. Then, �i ≠ 0 for any i . 
Summarising the equations over i = 1, ⋯ , I, we have:

where, M̃ ≡
∑I

i=1 W̃ i =WM0

�
1 + R̃M

�
. Therefore,

when 
∑I

i=1 �
−1
i ≠ 0.

Notice that Cov
(
R̃M , R̃

)
= ΣwM. If 

∑I
i=1 �

−1
i = 0, wM = 0, which means 

that the market value of any risky security is 0. It cannot hold with a 
positive supply and positive price of each risky security. Then,

where, w⊤
M
Cov

(
�RM , �R

)
= 𝜎2

(
�RM

)
. Then, we have

Therefore, CAPM holds.

Proof of Theorem 2

Proof of Equation (8):

Since g�,�(p) is right-continuous, the dual operator 
1 − g�,�(p) = g�,−�(1 − p), and the decumulative distribution function 
F(x) = 1 − F(x), we rearrange the total utility V

(
Ŵ

)
 as,

We integrate by parts to get

and

Summing Equations (A4) and (A5) up, we obtain:

Therefore, if x∞ l̂imv(x)g�,�(F(x)) + x∞ l̂imv(x)g�,−�(1 − F(x)) = 0, then 
Equation (8) holds.

Proof of Theorem 2:

Our proof gets the idea from Barberis and Huang  (2008) to give the 
first-order stochastic dominance (FSD) and second-order stochastic 
dominance (SSD) over normal distributions under probability weight-
ing. Three propositions, A1, A2, and A3, are needed here to reach the 
conclusion, and we prove them one by one.

Proposition A1.  The preference satisfy the first-order stochastic dom-
inance property. That is, if W̃ 1 first-order stochastically dominates W̃ 2

, then V
(
W̃ 1

)
⩾ V

(
W̃ 2

)
. Moreover, if W̃ 1 strictly first-order dominates 

W̃ 2 , then V
(
�W 1

)
> V

(
�W 2

)
.

Proof of Proposition A1:

Since W̃ 1 first-order stochastically dominates W̃ 2, F1(x) ⩽ F2(x) for 
all x ∈ R, where Fk( ⋅ ) is the cumulative distribution function for W̃ k. 
Because g�,�( ⋅ ) is strictly increasing, g�,�

(
F1(x)

)
⩽ g�,�

(
F2(x)

)
. We see 
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�
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⎜
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+
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�
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]x=Ŵ 0

x=−∞
−
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g�,�
(
Fk(x)

)
 as a transformed cumulative distribution function, thus the 

first-order stochastic dominance property holds if the first-order sto-
chastic dominance property holds before the distortion.

Proposition A2.  Take two distributions, Ŵ 1 and Ŵ 2, and suppose 
that:

	 i.	 E
(
Ŵ 1

)
= E

(
Ŵ 2

)
⩾ 0;

	 ii.	 Ŵ 1 and Ŵ 2 are both symmetrically distributed;

	iii.	 Ŵ 1 and Ŵ 2 satisfy a single-crossing property; so that if Fk( ⋅ ) is the 
cumulative distribution function for Ŵ k (k = 1, 2.), there exists z 
such that F1(x) ⩽ F2(x) for x < z and F1(x) ⩾ F2(x) for x > z.

And we require some weak conditions for the value function v( ⋅ ):

	 iv.	 x∞ l̂imv(x)g�,�(F(x)) + x∞ l̂imv(x)g�,−�(1 − F(x)) = 0, so that 
Equation (8) holds.

	 v.	 For x ∈ ( − ∞ , 0), v�(x) ⩾ v�(−x).

	 vi.	 For x ∈ [0, ∞), v(x) is concave.

	 vii.	 v(0) = 0.

Further, for the probability weighting function g�,�( ⋅ ), we requires that.

	viii.	 𝛼 > 0. Or, � = 0, if E
(
�W 1

)
= E

(
�W 2

)
> 0, or v�(x) > v�(−x) for 

x ∈ ( − ∞ , 0).

Then, V
(
Ŵ 1

)
⩾ V

(
Ŵ 2

)
. If, furthermore, the inequalities in condition 

(iii) hold strictly for some x, then V
(
�W 1

)
> V

(
�W 2

)
.

Proof of Proposition A2:

For Ŵ k , k = 1, 2, with the same mean � ⩾ 0, we have:

where,

Applying the change of variable x = 2� − x� to equations VB
(
Ŵ

+

k

)
 

and VC
(
Ŵ

+

k

)
 and noting that, since the distribution are symmetric, 

1 − Fk(x) = Fk(2� − x) = F
(
x�
)
, we have:

and

Thus, we have:

So, using g�,�(p) = 1 − g�,−�(1 − p), we can get the difference of V
(
Ŵ 1

)
 

and V
(
Ŵ 2

)
 as:

Because Ŵ 1 and Ŵ 2 are symmetric, the condition (iii) only holds for 
z = �. This means that F1(x) ⩽ F2(x) for x < 𝜇, which derives that 
g�,�

(
F2(x)

)
− g�,�

(
F1(x)

)
⩾ 0 and g�,−�

(
F2(x)

)
− g�,−�

(
F1(x)

)
⩾ 0.

For x ∈ [0,�], since v( ⋅ ) is concave and increasing, we also have 
v�(x) > v�(2𝜇 − x) > 0. And for x ∈ ( − ∞ , 0), under condition (v) and 
(vi), we must have v�(x) ⩾ v�(−x) ⩾ v�(2𝜇 − x) > 0. Thus, to show 
V
(
Ŵ 1

)
⩾ V

(
Ŵ 2

)
, it would be sufficient to show that:

We define the function as follows:

Then we have:

Since p < 1

2
 and 𝛼 > 0, we have 𝜅Φ−1(p) < 0 and thus 

𝜙
(
𝜅Φ−1(p) + 𝛼

)
> 𝜙

(
𝜅Φ−1(p) − 𝛼

)
. Then we get dh(p)

dp
> 0, and 

consequently

If F1(x) < F2(x), the inequality holds strictly, which complete the strict 
inequality of V

(
�W 1

)
> V

(
�W 2

)
.

If � = 0, the equality holds anyway, 
g�,�

(
F2(x)

)
− g�,�

(
F1(x)

)
= g�,−�

(
F2(x)

)
− g�,−�

(
F1(x)

)
 for x ∈ ( − ∞ ,�).

The comparison attributes to value function. Since v�(x) > v�(2𝜇 − x), 
proposition A2 holds.

Proposition A3.  Under the preference and probability weighting func-
tion, assume the assumptions hold. If W̃  is normally distributed with 
mean � and variance �2

W
, then V

(
W̃

)
 can be written as a function of �W 

and �2
W

, F
(
�W , �

2
W

)
. Moreover, for any �2

W
, F

(
�W , �

2
W

)
 is strictly increas-

ing with �W; and for any �W ⩾ 0, F
(
�W , �

2
W

)
 is strictly decreasing in �2

W
.

Proof for Proposition A3:

Since every normal distribution is fully specified by its mean and vari-
ance, we can write V

(
W̃

)
= F

(
�W , �

2
W

)
. Proposition  A1 implies that 

F
(
�W , �

2
W

)
 is strictly increasing in �W. Now consider any pair of normal 

wealth distributions, W̃ 1 and W̃ 2, with the same nonnegative mean but 
different variance. These two wealth distributions satisfy conditions 
(i)–(iii) in Proposition A2. That proposition therefore implies that, for 
any �W ⩾ 0, F

(
�W , �

2
W

)
 is strictly decreasing in �2

W
.

Proof of Theorem 2 (Continued):

Proposition  A1–A3 depicts a class of upward indifference curves in 
mean/standard deviation plane. With a risk-free asset, investors would 

V
(
Ŵ k

)
= V

(
Ŵ

−

k

)
+ VA

(
Ŵ

+

k

)
+ VB

(
Ŵ

+

k

)
+ VC

(
Ŵ

+

k

)
, k = 1, 2

V
(
Ŵ

−

k

)
= −

0

∫
−∞

g�,�
(
Fk(x)

)
v�(x)dx, VA

(
Ŵ

+

k

)
=

�

∫
0

[
1−g�,�

(
Fk(x)

)]
v�(x)dx

VB

(
Ŵ

+

k

)
=

2�

∫
�

[
1−g�,�

(
Fk(x)

)]
v�(x)dx, VC

(
Ŵ

+

k

)
=

∞

∫
2�

[
1−g�,�

(
Fk(x)

)]
v�(x)dx

VB

(
Ŵ

+

k

)
=

�

∫
0

g�,−�
(
Fk(x)

)
v�(2� − x)dx, k = 1, 2

VC

(
Ŵ

+

k

)
=

0

∫
−∞

g�,−�
(
Fk(x)

)
v�(2� − x)dx, k = 1, 2

V
(
Ŵ k

)
=

�

∫
0

[
g�,−�

(
Fk(x)

)
v�(2�−x)+

[
1−g�,�

(
Fk(x)

)]
v�(x)

]
dx

+

0

∫
−∞

[
g�,−�

(
Fk(x)

)
v�(2�−x)−g�,�

(
Fk(x)

)
v�(x)

]
dx, k=1, 2

V
(
Ŵ 1

)
−V

(
Ŵ 2

)
=

�

∫
0

[[
g�,�

(
F2(x)

)
−g�,�

(
F1(x)

)]
v�(x)−

[
g�,−�

(
F2(x)

)
−g�,−�

(
F1(x)

)]
v�(2�−x)

]
dx

+

0

∫
−∞

[[
g�,�

(
F2(x)

)
−g�,�

(
F1(x)

)]
v�(x)−

[
g�,−�

(
F2(x)

)
−g�,−�

(
F1(x)

)]
v�(2�−x)

]
dx

g�,�
(
F2(x)

)
− g�,�

(
F1(x)

)
⩾ g�,−�

(
F2(x)

)
− g�,−�

(
F1(x)

)
, for x ∈ ( − ∞ ,�)

h(p) = g𝜅,𝛼(p) − g𝜅,−𝛼(p), for p <
1

2

dh(p)

dp
=
dg�,�(p)

dp
−
dg�,−�(p)

dp
=

�

�
(
Φ−1(p)

)
[
�
(
�Φ−1(p) + �

)
− �

(
�Φ−1(p) − �

)]

h
(
F2(x)

)
⩾ h

(
F1(x)

)

g�,�
(
F2(x)

)
− g�,−�

(
F2(x)

)
⩾ g�,�

(
F1(x)

)
− g�,−�

(
F1(x)

)

g�,�
(
F2(x)

)
− g�,�

(
F1(x)

)
⩾ g�,−�

(
F2(x)

)
− g�,−�

(
F1(x)

)
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choose a combined portfolio of risk-free asset and tangency portfolio, 
which is also the market portfolio. Notice that for any investor, the 
choice is the same tangency portfolio no matter what utility function 
and which GWT they hold. So the heterogenous perception does not af-
fect their choice. Thus Security Market Line Theorem holds.

Proof of Corollary 1:

If the value function v( ⋅ ) satisfies that v
(
W0xMR̂

)
= m

(
W0xM

)
v
(
R̂
)

, we 
would have the utility is

Given that the m
(
W0xM

)
 is strictly increasing with xM, the equilibrium, 

if exists, must satisfy that

Otherwise, investors would choose to long or short infinitely.

If investors are identical, the above equation V
(
R̂
)
= 0 and the Security 

Market Line Theorem construct J non-redundant equations in J non-
redundant unknowns prices for each risky security. Hence we can solve 
the equations to get the market prices.

With these conditions, we solve for the equilibrium prices, and therefore 
there exists a market equilibrium. For more details, see Barberis and 
Huang (2008).

V
(
Ŵ

)
= m

(
W0xM

)
V
(
R̂
)

V
(
R̂
)
= 0
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