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Abstract

Stable Isotope Mixing Models (SIMMs) are important for ecologists. They allow
for the study of animal diets via measurement of biologically relevant stable iso-
topes. These measurements can be used to estimate the contribution of different
food sources to an animals diet. Knowledge of an animals diet is important when
we wish to conserve species, as we need to know what food they rely on. Knowl-
edge of an animals diet can be used to quantify an animals niche and to assess
competition between species. SIMMs are also widely used in studies on pollution
and air quality, where they may be referred to as ‘source apportionment’, ‘end
member analysis’, or ‘mass balance analysis’ models.

However, SIMMs are currently mainly run using Markov chain Monte Carlo (MCMC),
which, while guaranteed to converge, can be prohibitively slow, requiring millions
of iterations in order to reach convergence if the model is complex. In this thesis
we have developed new tools for running SIMMs via Variational Bayes. This al-
lows for a speed improvement ranging between two and one hundred times when
compared to MCMC while still obtaining comparable results.

The work in this thesis is divided into 3 chapters, each focusing on a different R
package. Separate R packages were implemented for ease-of-use for non-expert
users as well as to allow past work using these packages to be replicable in fu-
ture. The packages are all designed for ecologists and individuals without a robust
statistical background, with detailed vignettes and examples included in the pack-
ages.

Chapter 3 in this thesis focuses on simmr, an R package for running SIMMs. simmr
allows users to choose between running models through MCMC or through Fixed

ix



Abstract

Form Variational Bayes. simmr is designed for ease of use for non-expert users and
has built-in plotting and summary functions.

Chapter 4 in this thesis focuses on cosimmr, an R package developed for running
SIMMs with fixed covariates included. This package is developed using Variational
Bayes and offers up to a one order of magnitude speed improvement over other
packages. cosimmr has built-in predict and plotting functions and allows for users
to easily visualise their results.

Chapter 5 focuses on cosimmrSTAN, an R package developed which utilises STANs
Variational Bayes functionality in order to run complex SIMMs with fixed and/or
random effects, as well as allowing the hierarchical fitting of food sources or the use
of raw source data. cosimmrSTAN offers between 70-100 times speed improvement
over other packages.

These speed improvements mean that ecologists can use SIMMs more easily, with
accessible packages and quicker turnaround for results. This also means model
comparison becomes more accessible, with users able to run multiple models
quickly and compare results between them in order to make better informed de-
cisions about covariate inclusion. Ultimately, use of these packages will allow for
more comprehensive analyses of animal diets, and will allow users to gain insights
into species’ role in the ecosystem.
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CHAPTER 1
Introduction

In this introduction, we discuss the motivations behind the work presented in this thesis
and provide an overview of the material discussed in the following chapters.

1.1 Motivation
Knowledge of an animal’s diet is essential if we wish to conserve a species, or if
we wish to know how that species is interacting in its ecosystem. Climate change
has been shown to have an impact on habitats and food web structure (Lurgi
et al., 2012; Albouy et al., 2014; Thompson et al., 2023), and human activities are
recognised as a main driver of climate change (Lee et al., 2023). Food webs and
the interactions between species in these habitats are changing due to the impact
of humans. The extinction of species can drive changes in species interaction
and in the diets of species. While it is important to know about the food web
and trophic interactions in a habitat in order to manage it and conserve species,
these interactions can often be complex (Polis, 1991) and difficult to observe and
quantify.

Instead, isotopic data may be used in order to estimate the proportional contri-
bution that different foods make to an animal’s diet, without needing prolonged
direct observation or human interaction. Isotopic measurements can also be useful
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when looking at the niche of an animal. Hutchinson (1957) described the niche as
an ‘n-dimensional hypervolume’, and so, by looking instead at the isotopic niche
(which is shown to correlate with the niche; Newsome et al., 2007), we can compare
species over time and see when invasive species are occupying a similar niche to
(and thus competing with) native species.

Stable Isotope Mixing Models (SIMMs) are commonly used in ecology to study the
proportional contribution that different sources make to an animal’s diet. SIMMs
are widely used and cited, and are a useful way to learn information about a system
without having to observe the habitat for a long time, as this risks impacting the
behaviour of the organisms present. Stable isotopes are useful for studying animal
diets as they can provide information about trophic level (DeNiro and Epstein,
1978; Minagawa and Wada, 1984), or indicate marine or terrestrial origin of sources
(Peterson and Fry, 1987). Some recent examples where SIMMs have been used
include Pérez-Ramallo et al. (2024), where stable isotopes were used to examine
the diets of members of an early religious order in 12th to 15th Century Spain,
concluding that the order were likely members of the nobility or elite due to the
food they had access to; Thibault et al. (2024), where simmr (Chapter 3) was used
to look at the diet of Dugongs (Dugong dugon) and how diet varies between male
and females; and Lipscombe et al. (2024), where a seasonal shift in the diet of
immature white sharks (Carcharodon carcharias) was observed.

Markov chain Monte Carlo (MCMC) is a popular method for running SIMMs.
MCMC is a sampling algorithm and while it is always guaranteed to converge, it
can take millions of iterations to do so. This computational limitation means that
SIMMs can be slow to run, especially if the model is more complex. This forms the
motivation for this thesis: we aim to implement SIMMs using Variational Bayes.
Variational Bayes is an optimisation-based technique and can therefore offer a
speed improvement over sampling-based methods. In this thesis we use three dif-
ferent versions of Variational Bayes: Fixed Form Variational Bayes (Salimans and
Knowles, 2013), Variational Bayes with Cholesky Decomposed Variance (Titsias
and Lázaro-Gredilla, 2014; Tan and Nott, 2018), and Automatic Differentiation
Variational Inference (Kucukelbir et al., 2015). Generally, Variational Bayes works
by specifying a variational posterior, and then minimising the Kullback-Leibler
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(Kullback and Leibler, 1951) divergence between the true posterior and the ap-
proximate variational posterior. Throughout this thesis we use several different
types of Variational Bayes, which involve slightly different variational posteriors.
The full description of these models is provided in sections 3.A and 4.A.

1.2 Thesis Outline
The primary aim of this thesis is to demonstrate the use of Variational Bayes
(VB) in speeding up the fitting of SIMMs. We present VB as an alternative
to Markov chain Monte Carlo (MCMC), which, while guaranteed to converge,
can be prohibitively slow. In this thesis we show that Variational Bayes obtains
comparable results to MCMC, but in a fraction of the time. This allows for users
to speed up model fitting, as well as offering the option to fit multiple models with
different covariates to investigate the best-fitting model for their system. Secondly,
we aim to fit more complex SIMMs by allowing for users to include fixed or random
covariates, or a combination of the two. This allows for users to gain a deeper
understanding into the system that they are studying, by allowing for them to
see how the proportion that sources contribute to mixtures change across different
measured covariates. While software is available for fitting SIMMs with random or
fixed covariates, it uses MCMC which can be impractically slow for users. We show
between a 2- to 100-fold improvement in speed over current software when fitting
these more complex models. We also offer users the options of selecting different
error terms, allowing for users to customise their model if they wish. If covariates
are relevant to a model then excluding them violates the assumption that our data
are independent and means we do not get an accurate model for our data. Thirdly,
throughout this thesis we focus on making software accessible for non-expert users.
Built-in predict and plotting functions in the packages developed throughout this
thesis means that insights about covariates and how the proportions that sources
contribute to mixtures change across covariates are easily accessible for users.
Vignettes designed to accompany the packages described in this thesis allows for
users to easily run their own datasets through the packages developed.

This thesis is organised as follows: In Chapter 2 we discuss the statistical and
biological background to SIMMs, describing the main statistical model used as
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the basis for the chapters that follow, as well as the biological assumptions made
when running these models. We also outline some of the most common terminology
used in SIMMs.

In Chapter 3 we implement a standard SIMM using Variational Bayes. This is
implemented as an R package called simmr. The R package is designed for ease-
of-use, so users do not need to know the intricacies of Variational Bayes in order to
use it. simmr also allows for users to run SIMMs using MCMC, and this chapter
uses the geese data from Inger et al. (2006) as a case study to illustrate the use
of simmr. This chapter highlights the useful functions within the simmr package
as well as the package’s ease-of-use and the fact that FFVB produces equivalent
results to MCMC in a shorter timeframe.

Chapter 4 discusses the R package cosimmr. Again this package is designed for
ease-of-use and users do not need to know specific details about the VB algorithm
in order to be able to run it. This package specifically uses Variational Bayes with
Cholesky Decomposed Variance and the algorithm is discussed in the chapter. This
package allows for users to include covariates as fixed effects and has a function
developed to allow users to predict proportions for covariates not present in the
original data set. We use a simulated case study to illustrate the functioning of
the package as well as three case studies based on real data. These three studies
are also carried out in MixSIAR, an R package which allows for the inclusion of
covariates but is based around Markov chain Monte Carlo. Using these 3 studies
we show that VB allows for models to run in a much faster timeframe (offering up
to 1 order of magnitude speed increase over MCMC).

In Chapter 5 we present cosimmrSTAN, which makes use of STAN’s (Carpenter
et al., 2017) VB functionality in order to run SIMMs with either fixed or random
effects. This package also allows users to fit sources hierarchically or to supply
raw source data if they wish. This addition allows for users to run more complex
models, while the use of VB ensures that the models can be run quickly. This
chapter also uses three case studies run through both cosimmrSTAN and MixSIAR,
to highlight the speed improvement conferred by the use of Variational Bayes, and
we see between a 70-100 times speed improvement when using cosimmrSTAN, while
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obtaining comparable results.

Finally, in Chapter 6 we conclude this thesis and remark on limitations within
these chapters as well as potential avenues for future expansion of this work. All
proposed methods in this thesis were implemented using the R (R Core Team,
2021) software and are accessible on Github via three public repositories. The
repositories https://github.com/emmagovan/simmr_paper_SIMM_packag
e_scripts, https://github.com/emmagovan/cosimmr_paper, and https:
//github.com/emmagovan/cosimmrSTAN_paper are related to Chapters 3, 4,
and 5, respectively. Within these repositories we have made available R scripts
required to produce all analyses and plots presented in this thesis. Additionally,
all datasets are publicly available via the above R packages. simmr and cosimmr
are available on CRAN at the following urls: https://cran.r-project.org
/web/packages/simmr/index.html and https://cran.r-project.org/w
eb/packages/cosimmr/index.html and cosimmrSTAN is available on Github:
https://github.com/emmagovan/cosimmrSTAN.
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CHAPTER 2
A brief introduction to Stable

Isotope Mixing Models

In this chapter, we provide a brief introduction to Stable Isotope Mixing Models, ex-
plaining the statistical and biological assumptions, and some of the common terminology
that will feature in the chapters that follow.

2.1 Introduction: What is a SIMM?
Stable Isotope Mixing Models (SIMMs) are commonly used in the study of animal
diets (Phillips, 2001) and utilise stable isotopes to calculate how different food
sources contribute to the diet of an animal, the idea being that the tissues in an
animal are a proportional combination of the foods that they eat, or equivalently
“you are what you eat” (DeNiro and Epstein, 1978). It is important if we wish to
conserve species that we know what foods they rely on. Knowledge of an animal’s
diet is important when studying invasive species (Vander Zanden et al., 1999). If
we note that an invasive species has a very similar diet to a native species, then we
can hypothesise that these species will compete (due to the Competitive Exclusion
Principle; Hardin, 1960) and the invasive species may drive the native species to
extinction (Webb et al., 2002) or they may co-exist, if one species changes its
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behaviour (Jackson and Britton, 2014). Changes in food-web structure can be
indirectly observed through isotopes (Schmidt et al., 2007). A change in location
in iso-space can indicate that a species’ behaviour is changing (Jackson et al.,
2012). Iso-space is a term used throughout this thesis. It is a way of thinking
about isotopic data - where we think of an n-dimensional space with each axis
representing an isotopic ratio, and consumers can be located at a point in this
space, based on their isotopic values. Consumers close in iso-space have similar
isotopic values and therefore likely have similar diets. Iso-space can be visualised
by creating iso-space plots, which are shown throughout this thesis. In Figure 2.1
we can see a 2-isotope iso-space plot (also referred to as a Tracers plot) which
also shows the mixing polygon drawn in red. If we wish to run a SIMM then our
mixtures should all lie within the mixing polygon which is created by joining the
outermost points of each source. If our mixtures do not all lie within this mixing
polygon then it is an indicator that there is an issue with our data. The data in
this example are explained and run through a SIMM in Section 2.8.

Mixing Models allow users to see how different sources contribute to a ‘mixture’.
Generally throughout this thesis we will be using animals as ‘mixtures’ as we wish
to know how different foods contribute to the animal’s diet. The tracers we use in
order to see these contributions are usually stable isotopes of biologically relevant
elements, hence the name Stable Isotope Mixing Models, but other tracers can
be used, such as fatty acids. ‘Mixtures’ are also referred to as ‘consumers’. The
food eaten is more generally referred to as ‘sources’. SIMMs can be used in the
study of pollution and air quality, as well as in geological contexts. SIMMs can be
referred to as ‘source apportionment models’ (Hopke, 1991), ‘end member analysis’
(Hooper et al., 1990), or ‘mass balance analysis’ (Miller et al., 1972) depending on
the context and field in which they are being used. SIMMs are widely used across
these different fields and software for running SIMMs are very popular and widely
downloaded.

2.2 Stable Isotopes
Stable Isotopes are commonly used in mixing models when examining animal diets,
or more generally, the composition of mixtures. Isotopes are atoms with a different
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Figure 2.1: Iso-space plot showing measurements for Carbon-13 on the x-axis and
Nitrogen-15 on the y-axis. The mixing polygon is drawn in red.

number of neutrons than the standard element. Stable isotopes are called stable
as they do not radioactively decay. Isotopes can be incorporated into tissues in
different ratios (relative to the ‘standard’ element) (Farquhar et al., 1989), and
this is why they are useful for looking at biological systems. The most common
isotopes used in SIMMs are: Carbon-13; and Nitrogen-15. These isotopes can
indicate if something is of a marine or a terrestrial origin: marine plants get car-
bon/nitrogen from water, whereas terrestrial plants obtain their nitrogen from soil
and carbon from air (Peterson and Fry, 1987). Carbon and Nitrogen can show if
sources are from different trophic levels, because of enrichment up the food chain
due to preferential retention of one isotope over another (DeNiro and Epstein, 1978;
Minagawa and Wada, 1984). Other isotopes can be used, for example: hydrogen
can indicate autochthonous (energy is coming from within the ecosystem) vs al-
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lochthonous (energy is coming from materials imported into the ecosystem) zones
in freshwater systems; coupled hydrogen and oxygen measurements are often used
(Vander Zanden et al., 2016) as the ratios of these elements can often be linked,
and so it is less intensive to measure them together. Sulphur isotopes are used,
for example in the study of the Caribbean spiny lobster, Panulirus argus (Higgs
et al., 2016). In this case sulphur was used as the lobsters were known to feed
on clams that host chemoautotrophic bacteria which oxidise sulphur (Caro et al.,
2009), and so this food source had lower sulphur relative to the other samples.
Strontium can be used in indicating the ages of rocks (Newsome et al., 2007).

Hutchinson (1957) refers to ‘the niche’ as an “n-dimensional hypervolume” where
every axis refers to a measurable environmental variable, such as temperature, lat-
itude, altitude, humidity and so on. However this definition, whilst very important
in ecology, is impossible to quantify. Instead, isotopic niche can be used as a proxy
(Newsome et al., 2007) and can be used for comparing niche width (Bearhop et al.,
2004). It is shown that isotopic variation reflects variation in the diet of consumers
(Arnoldi et al., 2023). Use of isotopes allows us to quantify the niche in a way
that is not possible otherwise.

Isotopes are generally standardised and represented using δ notation as parts-per-
mille (δ). The equation for δHX is as follows (Fry, 2006):

δHX =
(

Rsample

Rstandard

− 1
)

× 1000

where :

• X = the element in question

• H = the mass of the heavy isotope of that element

• Rsample = the ratio of the heavy to the light isotope for the element in the
sample we are interested in

• Rstandard = the standard measurement of the ratio of the heavy to the light
isotope for the element
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Iso-space plots are a standard tool in SIMMs. Each axis represents a tracer (most
commonly an isotope measured in parts-per-mille as stated above) and both the
mixture and sources can be plotted. These plots are useful as tools before running
SIMMs as a consumer must lie within the polygon created by joining the outermost
points of each source in order for proportions to be able to be estimated. A 1-
isotope iso-space plot can be seen in Figure 2.2. For this example our mixtures
need to lie between the leftmost error bar of A and the rightmost error bar of
C. The error bars represent the error in the source measurement. A two-isotope
example can be seen in Section 2.8 in Figure 2.3.

Mixtures

A

B

C

−10 −5 0 5 10
iso1

Tracers plot

Figure 2.2: Iso-space plot showing measurements for 1 isotope. Food sources A,
B, and C are plotted as well as the mixtures.

Individuals are represented by points on this plot. They represent a single mea-
surement of an individual. These individuals are members of the same species and
the aim is to find which sources are the main contributors to their diet. Sources are
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mean sd
deviance 40.466 3.481

A 0.149 0.068
B 0.245 0.135
C 0.606 0.085

sd[iso1] 2.103 0.788

Table 2.1: Results obtained showing mean and standard deviation estimates for
each food source as well as the error on iso1 for the 1-isotope example.

sampled multiple times and are therefore represented by bars to display the error.
This example is run through a SIMM in Chapter 3 but the results are displayed
below in Table 2.1:

We can see both from the results and from the iso-space plot that C makes up
the majority of the diet in this case - our data points lie close to C in iso-space.
We can also see that we are most unsure about how much of source B they are
eating - the points in iso-space could be brought leftwards by consuming A, or by
consuming B.

2.3 The Statistical Model behind SIMMs
2.3.1 The simplest model
Our aim when running SIMMs is to estimate the proportion of each source k (of
K total sources) that are contributing to our mixtures. The data gathered is yij

which is the isotope value of individual i on isotope j. Each sample might be
collected via blood, or from other tissues, depending on the time frame we wish
to look at. We assume that yij, conditional on the parameters, follows a normal
distribution set out as follows:

yij ∼ N

(
K∑

k=1
pksikj, σ2

j

)

where:

• yij = tracer value of individual i on tracer j

• pk = proportion of source k in the diet (of K total sources)
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• sikj = source value of tracer j for individual i eating source k

Our aim is to estimate pk and its uncertainty. We want to make this model
more biologically accurate, as well as marginalising over s (Moore and Semmens,
2008) in order to make it computationally less intensive. It is common to assume
sijk ∼ N(µs,jk, σ2

s,jk), where sijk is an individual level random effect. The biological
considerations we must make are in relation to Trophic Discrimination Factors and
Concentration Dependence.

2.3.2 Trophic Discrimination Factors (TDFs)
Trophic Discrimination Factors account for the fact that when an animal con-
sumes and assimilates the food into its own tissues, the processes involved in this
will affect the isotopic ratio in the tissue of consumers. ‘Heavy’ isotopes (that
is, isotopes with more neutrons) may be lost more or less than ‘light’ versions,
depending on the metabolic process occurring (Inger and Bearhop, 2008). For
example, Nitrogen-15 is preferentially retained over ‘standard’ nitrogen when pro-
teinous wastes are excreted by animals (Minagawa and Wada, 1984), and similarly
Carbon-13 is enriched due to respiration (DeNiro and Epstein, 1978). Thus a TDF
correction factor is used to adjust the isotopic values up or down to correct for
this change. TDFs can be applied to the mixture values themselves in the isospace
plot, or to the food sources. In Figure 2.2 the former is equivalent to shifting the
mixture values left or right, and the latter to shifting the food sources (A, B or C)
left or right. Since the latter is more flexible, allowing for different food sources
to have differing TDF values, we apply this approach to the models and software
used throughout this thesis.

Finding suitable TDF values to use can be a challenging problem. A common but
expensive method is to calculate them in the lab. The idea is to feed an animal a
diet of known isotopic signature and allow their tissues to come to equilibrium. If
the TDF was zero and they used all the food solely in tissue formation, then we
would expect their tissue to have the exact same isotopic signature as the food.
Instead, they will be offset from the isotopic signature of the food, and this offset
gives us the TDF. However, this method is often not practical depending on the
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species you are dealing with. Instead, an examination of the literature is often
carried out and TDF values of related species are used. SIDER (Healy et al.,
2018) is an R package developed with an inbuilt dataset, allowing users to input
their species and, based on the phylogenetic relatedness, obtain TDF values for
their species. Because TDFs usually account for biological activity, they are less
relevant when using SIMMs to study pollution or other non-biotic systems.

2.3.3 Concentration Dependence
Concentration dependence removes the assumption that a source contributes to
each tracer equally (Phillips and Koch, 2002). A source can be particularly rich
in one tracer and lacking in another, so concentration dependence assumes that a
sources contribution is proportional to the product of the contributed mass and
the elemental concentration of that source. It can also be the case that different
tissues within an organism contain different levels of each tracer. As an example,
Ben-David and Schell (2001) note that lean beef tissue and beef fat have similar
levels of δ15N , but quite different δ13C levels. In this case, depending on the
tracer and tissue sample taken, we could obtain relatively different estimates of
the animals diet. Dietary proteins or lipids might be preferentially routed to
synthesis of bodily proteins or lipids respectively, and if bodily proteins are taken
as the sample, this would result in dietary proteins being over-emphasised in the
diet estimation (Phillips and Koch, 2002).

2.4 A more biologically accurate model
We obtain a more biologically accurate model by accounting for both TDFs and
concentration dependence, as well as a model that is computationally less intensive,
by marginalising over s (Moore and Semmens, 2008).

yij ∼ N

(∑K
k=1 pkqkj(µskj + µckj)∑K

k=1 pkqkj

,

∑K
k=1 p2

kq2
kj(σ2

skj + σ2
ckj)∑K

k=1 p2
kq2

kj

+ σ2
j

)
(2.1)

where:

• yij = tracer value of individual i on tracer j
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• pk = proportion of source k

• qkj = concentration dependence for source k on tracer j

• µskj = mean isotopic value of source k on tracer j

• µckj = mean TDF value of source k on tracer j

• σ2
skj = variance of source k on tracer j

• σ2
ckj = variance of TDF of source k on tracer j

Again, in this model, our aim is to estimate p and σj. qkj, µskj, µckj, σ2
skj and σ2

ckj

are known.

pk here represents the proportion of each source k eaten, and is constrained so∑
k pik = 1. We use a Centralised Log-Ratio (CLR; Aitchison (1986)) link function

on p so that:

[p1, ..., pK ] =
[

exp(f1)∑
S exp(fs)

, . . . ,
exp(fK)∑
S exp(fs)

]

We perform this transformation as it is much easier to model fik because it is
unconstrained and we can use a normal prior (so fk ∼ MV N(µf , σf )), which is
what is used in Chapter 3, or we can include fixed or random covariates (where
fik = Xiβ0k or fik = Xiβ0k + Ziβ1k) as we do in Chapters 4 and 5.

2.5 Bayesian Methods
We fit this model in a Bayesian framework. Bayes’ Theorem is as follows:

p(θ | x) = p(x | θ) × p(θ)
p(x)

where θ represents parameters, and x represents data. Our aim is to get the poste-
rior probability distribution, which is p(θ | x), or the probability of the parameters
given the data. The likelihood is the probability of observing the data x given
the parameters θ (or p(x | θ), and the prior p(θ) represents external knowledge
about the parameters. In our case this could represent previous experiments, or
information about the diet of the animal that is already known.
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The full Bayesian model that we fit for the non-covariate model (Chapter 3) is
therefore:

π(pik, σ2
j | yij, µsc,kj, σ2

sc,kj, qkj, Xi, Zi) ∝
N∏

i=1

J∏
j=1

K∏
k=1

π(yij | pik, µsc,kj, σ2
sc,kj, qkj, σ2

j )

×
J∏

j=1
π(σ2

j )

×
K∏

k=1
π(fk)

where µsc,kj = µs,kj + µc,kj, σ2
sc,kj = σ2

s,kj + σ2
c,kj, and qkj are known. We place a

prior distribution of 1
σ2

j
∼ Ga(a0, b0), where a, b = 1 as default, but this can be

adjusted by the user. We set p(fk) = MV N(µf0, Σf0) as default. In later chapters
we change this to allow for f to account for covariates (See sections 4.2 and 5.2.2).
The Gamma prior is weakly informative which ensures the prior doesn’t strongly
affect the results. Inclusion of an informative prior will alter results and would
only be recommended if there is strong prior knowledge.

Markov chain Monte Carlo (MCMC) (implemented via JAGS; Plummer, 2003) is
commonly used in the fitting of SIMMs. MCMC is a sampling-based algorithm
and thus can be slow, sometimes requiring millions of iterations in order to reach
convergence. Instead, throughout this thesis we propose the use of Variational
Bayes (VB; also referred to as Variational Inference or Variational Approximation),
which is an optimisation-based technique. Our aim generally is to create a posterior
distribution p(θ | y), which is proportional to the likelihood times the prior, or
p(y | θ) × p(θ). With VB, we approximate our posterior distribution with a
variational posterior, referred to as qλ(θ). This usually means we can use a simpler
distribution, one that is easier to work with. We then optimise qλ(θ) by minimising
the Kullback-Leibler (KL; Kullback and Leibler, 1951) divergence between qλ(θ)
and p(θ | y). Full details of the VB algorithm are provided in Sections 3.A and
4.A, but briefly, for simmr we use Fixed-Form Variational Bayes (Salimans and
Knowles, 2013), and we set our variational posteriors as so: qλ(θ) = q(f)q( 1

σ2
j
),

where q(f) ≡ MV N(µf , Σf ) and q( 1
σ2

j
) ≡ Ga(a, b), and so λ = (µf , Σf , a, b). We

then iteratively update λ to minimise the KL divergence.
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2.6 Current SIMM software
There have been many different software packages developed for the running of
SIMMs. One of the earliest was IsoSource (Phillips and Gregg, 2003). This tested
every combination of sources in 1% increments and presented feasible solutions. It
did not offer posterior distributions, but instead offered the distribution of possible
solutions. Isosource did not account for TDFs nor concentration dependence. For
a 1-isotope system and 3 sources, IsoSource presents possible solutions for the
equation: δM = pAδA +pBδB +pCδC , where δM = the isotopic ratio of the mixture,
δA,...,C = the isotopic ratio for sources A, B, and C, and pA,...,C = proportion of
each source A, B, and C consumed.

MixSIR (Moore and Semmens, 2008) used a Bayesian framework to estimate pro-
portions using importance resampling. It did provide users with a posterior dis-
tribution. It is implemented in MATLAB (Inc., 2022). Users gained the ability
to incorporate prior information using MixSIR. MixSIR also allowed for the inclu-
sion of TDF data. MixSIR did not include the residual error term σj included in
Equation 2.1. MixSIR operates using a sampling-importance-resampling algorithm
(DB, 1988).

SIAR (Parnell et al., 2010) was based around Markov chain Monte Carlo and in-
cluded a residual error term as well as the ability to incorporate prior information.
SIAR allowed for the inclusion of TDFs and concentration dependence. Users were
also able to incorporate prior information. It was built as an R package, and used
the same model described in Equation 2.1. SIAR is no longer updated and simmr
(discussed in Chapter 3) was developed as a replacement.

FRUITS (Fernandes et al., 2014) allowed for the inclusion of concentration de-
pendence and TDFs. Prior information can be included by the user. It also uses
MCMC for model fitting. FRUITS is implemented using Visual Basic (Balena and
Fawcette, 1999) and is available as a stand-alone computer programme.

MixSIAR (Stock et al., 2018) is one of the most recent developments in SIMM
software. It is Bayesian, using custom JAGS (Just Another Gibbs Sampler, Plum-
mer, 2003) files for each model run. MixSIAR allows for the inclusion of TDFs,
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concentration dependence, and fixed and random covariates. It introduced an ex-
tra multiplicative error term to account for consumer specialisation, and uses this
in place of the residual error σj. Alternatively users can just use process error or
just residual error. However, MixSIAR can be difficult for novice users and it is
very slow when studying complex data sets, which may result in users preferring
quicker, simpler models, over more complex, but more accurate models.

2.7 Practical recommendations when running
SIMMs

There are some things that are important to consider when using SIMMs. Phillips
et al. (2014) provides a guide to these recommendations and considerations that are
important, and the most important considerations are summarised in this section.
It is important to account for tissue turnover when sampling an mixture and their
sources. Different tissues can take different times to turnover, for example the
half-life of carbon was found to be 6.4 days in liver and 47.5 days in hair (Tieszen
et al., 1983a). The otoliths of Atlantic cod, Gadus morhua may provide insights
into the lifetime diet of the fish (Radtke et al., 1996). Blood has been shown to
provide both short and longer-term information on diet when it is split into plasma
and cellular components (Hobson and Clark, 1993). It is important that mixtures
and their sources are sampled at the correct time relative to one another (Phillips
et al., 2014).

There are some assumptions that are made when running SIMMs - for example
it is assumed that the user knows all of the different food sources an animal is
eating (Phillips et al., 2014), or more generally that the user knows all sources
contributing to a mixture. If these are missing then it can alter the shape of
the mixing polygon and could result in inaccurate results. It can happen that
sources lie close together in iso-space - for example if they are closely related
species of plants. It may be harder for the model to distinguish between these
sources and therefore the model may provide a wider estimate of consumption for
both sources. Users have the option of combining these sources if they wish. It
is generally recommended that the SIMM is run with all sources and they can
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then be combined a posteriori if the user wishes. If sources are similar and related
and so can be grouped as a ‘functional group’ then combining a priori can result
in more interpretable results, if there is a sensible biological basis for doing so.
Combining sources a posteriori is the general recommendation if there is no good
biological reason for grouping (Phillips et al., 2005).

2.8 A Simple Example
To illustrate SIMMs I will use a simple example from Inger et al. (2006). These
data are used for illustration in later chapters. This example is based around
data for Brent Geese Branta bernicla hrota, collected at eight time periods over
two winters at Strangford Lough, Northern Ireland. The isospace plot is seen in
Figure 2.3. Here we see the isotope values for the geese (at timepoint 1), along
with the isotope values (and error bars) for each of the food sources consumed by
the geese. We can see that the geese are lying relatively close to Zostera spp. in
iso-space, so we might speculate that a large proportion of their diet is comprised
of Zostera spp. at this moment in time.

When we run a SIMM using these data (i.e. by fitting equation 2.1 and estimating
pk), we find out that their diet is approximately 60% Zostera spp. We can see
an output from simmr in Figure 2.4. This shows the estimate on the diagonal
for each food source consumed as well as the uncertainty. On the off-diagonals
it shows the correlation between different food sources. Sources generally are
negatively correlated as if the model estimates that an animal eating more of one
food is consistent with the data it has to compensate by reducing the amount
consumed of another. In this example we see the highest negative correlation
betweenZostera spp and Enteromorpha, as they are close in iso-space. The model
cannot distinguish between Enteromorpha and U. lactuca which results in a lower
correlation between the two. We see a low positive correlation between Zostera
spp and Grass as if an individual is eating one, then they can also be eating the
other in order to end up lying between the two sources in iso-space.

Inger et al. (2006) concludes by stating that these data can be used to ensure
that when protecting Brent Geese, that grasslands, as well as intertidal areas, are
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Figure 2.3: Iso-space plot showing Carbon ratio on the x-axis and Nitrogen on
the y-axis. Food sources are plotted as well as mixtures.

conserved, as grasslands become more important to the species later in the winter.
This highlights the use of SIMMs - knowing what food an animal depends on is
essential when we wish to protect that species.

2.9 Summary
In this chapter, we discussed Stable Isotope Mixing Models, and examined the
biological and chemical processes underlying these models. We looked at the basic
statistical model and how this is expanded to become more biologically accurate,
by incorporating TDFs and concentration dependence, as well as being made math-
ematically simpler. We looked at software that has been developed for running
SIMMs, as well as factors that are important for users to consider when running
SIMMs. Finally, we looked at the Geese example from Inger et al. (2006), which
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Figure 2.4: Plot created by simmr (Chapter 3) showing posterior distributions for
pk on the diagonal, contour plots of the posterior between pk and pj on the upper
half, and correlation values between pk and pj for k ̸= j on the lower half.

is used in future chapters to illustrate how the packages within work.
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CHAPTER 3
simmr: A package for fitting

Stable Isotope Mixing Models in
R

We introduce an R package for fitting Stable Isotope Mixing Models via both Markov
chain Monte Carlo and Variational Bayes. The package is mainly used for estimating
dietary contributions from food sources taken via measurements of stable isotope ratios
from animals. It can also be used to estimate proportional contributions of a mixture
from known sources, for example apportionment of river sediment, amongst many other
use cases. The package contains a simple structure which allows non-expert users to
interface with the package, with most of the computational complexity hidden behind
the main fitting functions. In this paper we detail the background to these functions and
provide case studies on how the package should be used. Further examples are available
in the online package vignettes.

3.1 Introduction
Stable Isotope Mixing Models (SIMMs) are a useful tool for ecologists, especially in
the reconstruction of animal diets (DeNiro and Epstein, 1978). Starting from stable
isotope measurements of animal tissues and their food sources, mixing models
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allow for estimation of the proportional composition of their food sources in their
diet (McKechnie, 2004). Stable isotope ratios represent the difference in relative
abundance of non-radiogenic, stable isotopes expressed as the ratio of an isotope’s
"heavy" form of an element versus a "light" form relative to an internationally
accepted standard. These stable isotope ratios can vary geo-spatially and across
the different levels of food webs (Hobson, 1999). Isotopic data can be obtained
relatively easily and allow for many different aspects of diet to be analysed, for
example across timescales or locations, depending on the sampled tissues. Typical
ecological applications include quantifying animal diets (Peterson and Fry, 1987),
and estimating the origins of migratory animals (Hobson, 1999). Whilst isotope
ratios were the original data used for these models, other data are used (see later
discussion on end member analysis), so these data are referred to more generically
as tracers in the simmr package. Similarly, the consumers (usually animals) are
referred to more generically as mixtures.

SIMMs require data from both the mixtures being studied as well as all of their
sources (for example, the foods they are consuming when we are looking at animal
diets). When studying animals, the data can be obtained via tissue samples, such
as blood or feathers, depending on the time-frame being studied. For example,
isotopes from food are assimilated quickly into tissues with rapid turnover rates
such as blood and so this provides a relatively recent estimate of their diet (Tieszen
et al., 1983b); metabolically inactive tissues such as feathers or hair preserve an
isotopic record of the diet at the time they were grown (Inger and Bearhop, 2008),
and samples from otoliths may provide an overview of the diet of a fish over their
lifetime (Radtke et al., 1996) with successive layers of the tissue being a record of
diet through time. Typically, empiricists will make an assumption that a consumer
(the mixture) is at equilibrium with its food sources in order to estimate the dietary
proportions at a fixed time point. Similarly, users of mixing models are required
to assume that all of the potential food sources have been sampled and included
in the model (Phillips et al., 2014). A final parameter that needs to be known
or estimated is the trophic discrimination factor (or trophic enrichment factor),
which describes the change in isotope ratio between the diet and assimilation
into consumer proteins. This can be estimated from captive studies of the same
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species, literature searches of closely related or functionally similar species or in
some cases using the software package SIDER (Healy et al., 2018), which uses a
Bayesian imputation approach to estimate TDFs of unknown species in relation
to known TDF values from a built-in database.

Our paper covers the maths behind the models used for SIMM analysis in the R
(R Core Team, 2021) package simmr. We demonstrate how to use the package
with an example of Brent Geese data from Inger et al. (2006). The package aims
to provide a set of powerful tools, but with a simple to use interface which allows
beginners to run models sensibly whilst also allowing advanced users full access to
all posterior quantities of the back-end Bayesian model.

The basic mathematical equation for a statistical SIMM is:

y =
K∑

k=1
pksk + ϵ

where y is the mixture value, pk are the proportions associated with source k (of
K total sources), sk is the source tracer value for source k, and ϵ is a residual
term. In this over-simplification of the model (see Section 3.4 for a more complete
version), sk is an individual level random effect with a given mean and standard
deviation, sk ∼ N(µsk, σ2

sk), and the key task of the model is to estimate the pk

proportions. We call y the mixture value for each individual, but they can also be
referred to as the consumer value or end member value in the literature.

There are now a number of software tools for fitting SIMMs, which are discussed
in detail in Section 3.3. Whilst these models are mainly used to study the pro-
portional contribution that different foods make up in an animal’s diet, SIMMs
can also be used in a wide range of different scenarios. These include the study
of a Late Pleistocene bear (Mychajliw et al., 2020), which confirmed its trophic
position is similar to other bears of the same species, and the study of crop usage
in Iron Age settlements (Styring et al., 2022). We expand on this set of examples
below.

Models mathematically identical to SIMMs are also used in many other areas.
These are often known as ‘end member analysis’, ‘mass balance analysis’, or ‘source
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apportionment’. Hopke (1991) is an early review of source apportionment mod-
els. It uses linear equations and a least-squares method for running these models.
Henry (1997) explores different methods of running these models, such as a ge-
ometrical approach. Prior knowledge is then incorporated in Billheimer (2001),
which is Bayesian based, and a non-additive error structure is also adopted. Park
et al. (2001) incorporates temporal dependence and adopts a Markov chain Monte
Carlo (MCMC) approach to estimate parameters. Lingwall et al. (2008) uses a
Dirichlet prior distribution to allow flexible specification of prior information. The
European Union has published several guides on use of source apportionment with
receptor models in studies (e.g., Belis et al., 2019; Mircea et al., 2020).

End member analysis is generally employed by geologists and is used to estimate
how different water sources contribute to a mixture. Examples include Soulsby
et al. (2003), which employs MCMC methods to study runoff sources during storms
in Scotland. Brewer et al. (2011) employs MCMC methods to study runoff sources.
Their model allows for consideration of random effects, such as comparison across
years. Palmer and Douglas (2008) operates using MCMC and estimates the pro-
portion that different water sources have contributed to sediment samples. Liu
et al. (2020) adopts a maximum likelihood method to estimate water sources.
Their method employs a multivariate statistical approach to allow for uncertainty
in the concentration of end-members, or sources. The end-members contributing
to the mixture are first identified and then the proportion that each contributes
is calculated. Tao et al. (2021) proposes a maximum distance analysis method
that estimates both the number and spectral signatures of end-members, which
means that it is not essential to know the number and identity of end-members in
advance in order for a model to be run.

Another term commonly employed for SIMMs is that of mass balance modelling.
The term is often used for apportioning sources of pollution. Christensen (2004)
evaluates several of these methods, for example weighted least squares and the
method of moments. In Campodonico et al. (2019) a log-ratio technique is used
to analyse how elements move during chemical weathering. Cooper et al. (2014)
uses SIMM-related modelling to study suspended particulate matter. They look
at several different models and provide comparison and advice on choosing an
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3.2. A short guide to fitting SIMMs using simmr

appropriate model. Code is provided for one of their models.

Our package simmr implements mixing models via both Markov chain Monte Carlo
(MCMC) algorithms (via JAGS (Just Another Gibbs Sampler, Plummer, 2003))
and faster Fixed Form Variational Bayes (FFVB). It is not designed to be more
fully featured than other R packages that fit SIMMs, rather we aim for a simple
unified data structure that enables both non-experts and advanced users to access
the tools they need. FFVB is introduced as a foundation to enable much faster
fitting of SIMMS, where MCMC can be prohibitively slow. The data structure
needed for running SIMMs can be complex, using multiple different data frames
of different dimensions, but simmr makes it easy to read in the data and subse-
quently create plots and model output. We use a Snake case naming convention
for consistency and follow the ‘tidyverse’ (Wickham et al., 2019) style guide. We
aim to keep the number of functions to a minimum and use S3 classes for access
to summary and plot commands. Our visualisations are carefully selected for style
and colour choices, and easily produced through built-in functions using ggplot2
(Wickham, 2016). We aim to make all our functions easily extendable so that
advanced users can create more complicated outputs.

SIMMs are widely used and applicable in many areas. Thus the R packages for
running them are frequently downloaded and have received thousands of citations
between them. Figure 3.1 shows the citation rates of the main papers used for
SIMMs and the number of downloads of the associated R packages.

3.2 A short guide to fitting SIMMs using simmr
The first step in using simmr is to install and load the package:

R> install.packages("simmr")
R> library("simmr")

simmr requires the user to provide mixture data (y), source means (µsk), and
source standard deviations (σsk). Other variables can be included as described in
Section 3.4. The data is read into R using the simmr_load function. We will use
an artificially generated dataset for illustration:
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Figure 3.1: Barplot on the left showing the number of citations papers describing
SIMMs software have received on Google Scholar and barplot on the right showing
the number of downloads that packages using stable isotope mixing models have
obtained (download numbers obtained via the cranlogs package (Csárdi, 2019))
(figures correct as of 9th June 2023).

R> y = data.frame(iso1 = c(4, 4.5, 5, 7, 6, 2, 3, 3.5, 5.5, 6.5))
R> mu_s = matrix(c(-10, 0, 10), ncol = 1, nrow = 3)
R> sigma_s = matrix(c(1, 1, 1), ncol = 1, nrow = 3)
R> s_names = c("A", "B", "C")

These artificially simple data have measurements of one isotope ratio, named ‘iso1‘
and three food sources, labelled A, B, and C. Loading the data into simmr creates
an object of class simmr_in:

R> simmr_in_1 = simmr_load(
+ mixtures = y,
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3.2. A short guide to fitting SIMMs using simmr

+ source_names = s_names,
+ source_means = mu_s,
+ source_sds = sigma_s)

We recommend that the user plot these data on an ‘iso-space’ plot before running
any model. The iso-space plot shows the isotope(s) ratio on the x (and potentially
y) axes. In this case, with one isotope, we need to check that the mixture values lie
between the two most extreme values of the food sources on the iso-space plot for
the mathematical model to give a reasonable fit to the data. With two isotopes its
important to check that the mixture lies within the polygon that can be drawn by
joining the food sources with straight lines. The shape created by joining the food
sources is referred to as the mixing polygon. The iso-space plot can be generated
by running the code:

R> plot(simmr_in_1)

Figure 3.2 shows the iso-space plot for this simple example, which shows the mix-
tures lie within the values of the most extreme food sources.The SIMM can then
be fitted via MCMC using the simmr_mcmc function, which produces an object of
class simmr_output and mcmc:

R> simmr_out_1 = simmr_mcmc(simmr_in_1)

When running simmr_mcmc the first step after running the model is to check con-
vergence. This can be performed by running the following code:

R> summary(simmr_out_1, type = "diagnostics")

Summary for 1
Gelman diagnostics - these values should all be close to 1.
If not, try a longer run of simmr_mcmc.
deviance A B C sd[iso1]

1 1 1 1 1
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Figure 3.2: Simple iso-space plot produced by simmr. The isotope ratios are
presented on the x-axis. A, B, and C represent different food sources (with error
bars included) and the purple dots represent the mixture values.

The values in the diagnostics should all be close to 1.

simmr produces both textual and graphical summaries of the model run. Starting
with the textual summaries, we can get tables of the means, standard deviations
and credible intervals (the Bayesian equivalent of a confidence interval) with:

R> summary(simmr_out_1, type = "statistics")

Summary for 1
mean sd

deviance 40.466 3.481
A 0.149 0.068
B 0.245 0.135
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C 0.606 0.085
sd[iso1] 2.103 0.788

This summary provides the mean and standard deviation estimates for the propor-
tion of each food (A, B, and C) that these individuals are eating. It also provides
an estimate of the marginal residual error of the isotope ratio (iso1 in this case).
Here we can see food C is estimated to make up approximately 61% of these an-
imals’ diet. This finding matches the iso-space plot where the consumer isotope
ratios are closest to the values for source C.

simmr has built-in functions to allow for visualisation of the results of these models
once they have been run. There are multiple options for plotting the output, but
perhaps the most useful is the matrix plot:

R> plot(simmr_out_1, type = "matrix")

Figure 3.3 shows histograms of the posterior distribution for the dietary propor-
tions of each source on the diagonal, contour plots of the posterior relationship
between the dietary proportions of each food source on the upper-right portion of
the plot, and the posterior correlation between the sources on the lower-left portion
of the plot. Large negative correlations indicate that the model cannot discern be-
tween the two sources; for example they may lie close together in iso-space. Large
positive correlations are also possible when there are multiple competing sources.
In general, high correlations (negative or positive) are indicative of the model being
unable to determine which food sources are being consumed, though the marginal
standard deviations can still be narrow. In this case the large negative correla-
tions exist because there is only a single isotope and the model cannot discern, for
example, which of sources A and B are pulling the mixture values to the left of
source C.
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Figure 3.3: Matrix plot generated from Markov chain Monte Carlo run on Stable
Isotope Mixing Model with 1 isotope. Histograms are presented along the diagonal
showing the estimated proportion of each food source (A, B, and C) consumed by
the individual. The upper-right section shows contour plots. The lower-left section
gives correlation values.

3.3 Other software for fitting stable isotope
mixing models

There have been many different software tools developed for the study of Stable
Isotope Mixing Models (SIMMs). Table 3.1 gives a summary of these tools with a
short description. The methods behind these tools includes both Frequentist and
Bayesian approaches, and a variety of different fitting techniques. For reference, we
provide code to fit our case study data (Section 3.6) using some of these packages
at https://github.com/emmagovan/simmr_paper_SIMM_package_scripts.

The first widely available software for fitting SIMMs was IsoSource (Phillips and
Gregg, 2003), which worked by generating all possible combinations of dietary
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Package Language Reference Description

Isosource Visual Ba-
sic

Phillips and
Gregg (2003)

Calculates all possible source combina-
tions and returns feasible solutions

MixSIR MATLAB Moore and Sem-
mens (2008)

Bayesian - Uses a sampling-importance-
resampling algorithm

siar R Parnell et al.
(2010)

Bayesian - uses Markov chain Monte
Carlo (MCMC) for its fitting algorithm

FRUITS Visual Ba-
sic

Fernandes et al.
(2014)

Bayesian - allows for consideration of di-
etary routing. Operates based on Markov
chain Monte Carlo simulations.

MixSIAR R Stock et al.
(2018)

Bayesian - allows for consideration of
fixed and random effects

simmr R This paper Bayesian - can use either MCMC or fixed
form variational Bayes (FFVB)

Table 3.1
Overview of different software for running Stable Isotope Mixing Models

proportions that would add to give the isotopic value of the individuals being
studied, and presenting all possible combinations to the user. The recommendation
was to report the distribution of solutions to avoid any misinterpretation of results.
IsoSource was implemented in Visual Basic (Balena and Fawcette, 1999) via the
IsoSource computer programme. Whilst IsoSource did not account for many
of the intricacies of SIMMs, it was based on several previously developed ideas
including concentration dependence, which provides the proportion of each element
directly in the food source, (IsoConc; Phillips and Koch, 2002) and residual error
(IsoError; Phillips and Gregg, 2001).

MixSIR (Moore and Semmens, 2008) was later developed and was the first to
use a Bayesian framework, based on importance resampling, to estimate dietary
proportions. MixSIR works by generating many vectors of possible proportional
source contribution and calculating importance weights to determine the posterior
distribution. MixSIR is implemented in MATLAB (Inc., 2022). It allows for several
extensions over IsoSource including the ability to account for uncertainty, and
incorporation of prior information. See Section 3.4 for a full description of these
terms.
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SIAR (Parnell et al., 2010) used a Bayesian framework but with Markov chain
Monte Carlo (MCMC) as the fitting algorithm. It includes a residual error term
and many of the extensions included in MixSIR. The R package is now defunct
but maintained on GitHub for backwards compatibility. We have designed simmr
to be a replacement for the SIAR software.

The FRUITS model (Fernandes et al., 2014) further extended the work by allowing
the user to account for the concentration of different food fractions within each
food source. FRUITS can also account for a diet-to-tissue signal offset which ac-
counts for different tissues containing different ratios of isotopes, which is the same
as concentration dependence discussed in Section 3.4. It also simplifies the incor-
poration of prior information. FRUITS is implemented in proglangVisual Basic via
the FRUITS computer programme.

The most recent and perhaps most powerful R package, MixSIAR (Stock et al.,
2018), is Bayesian, and allows for consideration of both fixed and random effect
covariates on the dietary proportions amongst other extensions. MixSIAR works
by creating a custom JAGS file for each model run. The package has a number of
example data sets included and produces a wide array of output plots and summary
statistics. However the model may not be appropriate for novice users and is very
slow for complex data sets; which provides the motivation for development of
simmr and the incorporation of FFVB.

3.4 Mathematical background of mixing models
The full model implemented in simmr for fitting a SIMM is:

yij ∼ N

(∑K
k=1 pkqjk(µs,jk + µc,jk)∑K

k=1 pkqjk

,

∑K
k=1 p2

kq2
jk(σ2

s,jk + σ2
c,jk)

(∑K
k=1 pkqjk)2 + σ2

j

)

where:

• yij are the mixture values for individual i on tracer j,

• µs,jk and σs,jk are the mean and standard deviation of the source values for
source k on tracer j,
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• µc,jk and σc,jk are the mean and standard deviation of the trophic discrimi-
nation factors(TFFs or "corrections") for source k on tracer j,

• qjk represents concentration dependence for tracer j on source k,

• pk are the proportions of each source k contributing to the mixture value

• σj is the residual standard deviation on tracer j.

The values y, µs,jk, σs,jk, qjk, µc,jk, and σc,jk are all given to the model as data.

The key extension of this model compared to the simple example given in Section
3.2 are that the model now includes multiple tracers, and corrects the proportions
for Trophic Discrimination Factors (TDFs) and concentration dependence. As
outlined above, TDFs account for the differential loss of one isotope over the
other during the assimilation of diet into consumer proteins (Inger and Bearhop,
2008). Different tissues have different macronutrient compositions so TDFs can
vary by tissue within a single consumer. Likewise different dietary items contain
different elemental proportions (e.g., fats and carbohydrates contain little or no
nitrogen when compared to proteins) and a concentration dependence correction
can account for this (Phillips and Koch, 2002). The standard model assumes that
a source contributes both elements (in the case of 2 isotopes) equally. Thus a
concentration dependence value provides the proportion of that element directly
in the food source (Phillips and Koch, 2002).

As before, the goal of the model fit is to estimate the posterior distribution of
p given the data. As we fit the model using the Bayesian paradigm, prior dis-
tributions are required for the parameters. The prior for p follows a Centralised
Log-Ratio (CLR) distribution (Aitchison, 1986):

[p1, ...pk] =
[

exp(f1)∑
j exp(fj)

, . . . ,
exp(fK)∑
j exp(fj)

]

f is then given a multivariate normal (MVN) distribution:

f ∼ MV N(µ0, Σ0)
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The values of µ0 and Σ0 can then be set as vague (the defaults are µ0 = 0 and
Σ0 = I) or tuned for informative prior situations (see later functions prior_viz
and simmr_elicit). The prior distribution on σ is set as vague and gamma:

σ ∼ Ga(a, b)

where a and b are small values. If correction values and concentration are to be
used, they must also be provided by the user though they are not necessary to run
the model (note: these should be applied in study of animal diets and migration,
where TDFs in particular are needed in order to make appropriate inferences).
Once the model is run it will then provide posterior samples for p, the proportion
of each source in the mixture (for example the proportion of each food in the
animals diet). Posterior distributions are also available for the parameters σj

which, although are not of primary interest, can also provide some guidance as to
the quality of the model fit since they quantify the size of the residual error.

3.5 Fitting SIMMs
3.5.1 Fitting using MCMC
The simmr_mcmc function allows the user to run their data through a mixing
model coded using JAGS. The function has preset general priors for p, which can
be altered by the user if they wish. The number of chains, iterations, burn-in
period, and thinning can also be edited by the user, and are set to sensible default
values otherwise.

The JAGS code for this model is provided as a model string inside the R function.
The parameters saved when this model is run are p and σ. The output is assigned
the class simmr_output. This allows for the package to use one plot function
to plot inputs and outputs from both MCMC and FFVB. The function will pick
out groups and run a separate MCMC algorithm for each one if needed. These
groups can be represented by any categorical variable provided as part of the data.
Grouping structures might include: demographic divisions such as age or sex, the
same animals measured at different times of year; different packs within the same
species; or populations of the same species living in different habitat types.
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Often SIMMs need to be run on just a single consumer isotope observation, in
which case the residual term becomes unnecessary. In cases where only a single
observation is provided to simmr_load the model uses a prior for σj with high
prior mass on zero. This is termed a ‘simmr solo‘ run. All the output plots and
summaries work on this structure exactly as they do on a standard simmr run.

3.5.2 Fitting using VB
The simmr_ffvb function can be used if the user wishes to fit a SIMM using
Fixed Form Variational Bayes (FFVB). FFVB works by approximating the full
posterior using a simpler distribution (Pati et al., 2018). As it is an optimisation
routine, it has the potential to run much faster than MCMC which relies on random
sampling. FFVB aims to minimise Kullback-Leibler (KL; Kullback and Leibler,
1951) divergence between the posterior and the VB approximation. We provide a
more detailed description of the FFVB fitting approach we use in Appendix 3.A.

Whilst the fitting method for FFVB is fundamentally different to the MCMC
approach, the code still produces posterior samples of p and σ, and the output
is assigned the class simmr_output as above. The user should not notice any
difference in fitting using the two approaches, though fitting complicated models
using FFVB should be faster than MCMC.

3.6 Case study: Brent Geese
This section provides code and explanation for running a two-isotope model in
simmr with data in groups, in this case data on geese gathered at different times
of year. The dataset is from Inger et al. (2006) and is provided as a sample data
set within simmr. To begin we load in the package:

R> library("simmr")

In this example, our mixture is the geese, the sources are the food the geese eat and
the tracers are δ13C and δ15N . simmr requires the user to supply consumer data,
the source means, and the source standard deviations. Trophic Discrimination
Factors (TDFs) and concentration dependence are included in this example. The
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data is read into R using the simmr_load function. simmr has the ability to
perform repeated runs on data sets if the data is separated into different groups. In
simmr a separate model run will be performed for each group provided a grouping
variable is given to simmr_load.

This data set can be called from the simmr package and an overview of the data
can be seen via str:

R> str(geese_data)

List of 9
$ mixtures : num [1:251, 1:2] -11.4 -11.9 -10.6 -11.2 -11.7 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:2] "d13C_Pl" "d15N_Pl"

$ tracer_names : chr [1:2] "d13C" "d15N"
$ source_names : chr [1:4] "Zostera" "Grass" "U.lactuca"
"Enteromorpha"
$ source_means : num [1:4, 1:2] -11.17 -30.88 -11.17 -14.06 6.49
...
$ source_sds : num [1:4, 1:2] 1.21 0.64 1.96 1.17 1.46 2.27 1.11
0.83
$ correction_sds : num [1:4, 1:2] 0.63 0.63 0.63 0.63 0.74 0.74 0.74
0.74
$ concentration_means: num [1:4, 1:2] 0.36 0.4 0.21 0.18 0.03 0.04 0.02
0.01
$ correction_means : num [1:4, 1:2] 1.63 1.63 1.63 1.63 3.54 3.54 3.54
3.54
$ groups : chr [1:251] "Period 1" "Period 1" "Period 1"
"Period 1" ...

The data can then be used to create an object of class simmr_in:

R> simmr_groups = with(geese_data,
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+ simmr_load(mixtures = mixtures,
+ source_names = source_names,
+ source_means = source_means,
+ source_sds = source_sds,
+ correction_means = correction_means,
+ correction_sds = correction_sds,
+ concentration_means = concentration_means,
+ group = groups))

We create the recommended iso-space plot to ensure all the mixtures lie inside the
mixing polygon defined by the sources. group specifies which groups we want to
plot. xlab and ylab allow for editing of the x and y axes labels. The following
code creates an iso-space plot displaying groups 1 to 8. The axes labels are edited
here to include the parts-per-mille sign.

R> plot(simmr_groups,
+ group = 1:8,
+ xlab = expression(paste(delta^13, "C (per mille)", sep = "")),
+ ylab = expression(paste(delta^15, "N (per mille)", sep = "")),
+ title = "Iso-space plot of Inger et al Geese data",
+ mix_name = "Geese")

The iso-space plot can be viewed in Figure 3.4 and it can be seen that all the data
lies within the mixing polygon. The SIMM can be run either through JAGS or
FFVB. The code is as follows:

R> simmr_groups_out = simmr_mcmc(simmr_groups)
R> simmr_groups_out_ffvb = simmr_ffvb(simmr_groups)

This runs each group independently. Future work could include the use of covari-
ates, to allow for all 8 groups to be run together.

The first step after running simmr_mcmc is to check convergence, which can be
performed by running the code:
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Figure 3.4: Iso-space plot of the eight groups of geese as well as their food sources.

R> summary(simmr_groups_out, type = "diagnostics")

It is important that all the diagnostic values are close to 1 - if not, a longer
simmr_mcmc run is recommended. The diagnostic values are Gelman-Rubin statis-
tics (Gelman and Rubin, 1992) and should tend towards 1 if convergence has
occurred. simmr can produce textual summaries of the model run, an example of
which can be seen below. Options within this function include quantiles, statistics,
and correlations.

R> summary(simmr_groups_out,
+ type = "quantiles",
+ group = 1)

Summary for Period 1
2.5% 25% 50% 75% 97.5%

deviance 52.775 56.292 59.347 63.174 72.727
Zostera 0.308 0.474 0.562 0.651 0.808
Grass 0.027 0.056 0.073 0.091 0.137
U.lactuca 0.022 0.076 0.134 0.208 0.376
Enteromorpha 0.024 0.099 0.183 0.298 0.534
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sd[d13C_Pl] 0.551 1.135 1.543 2.056 3.849
sd[d15N_Pl] 0.272 0.646 0.935 1.347 2.563

R> summary(simmr_groups_out_ffvb,
+ type = "quantiles",
+ group = 1)

Summary for Period 1

2.5% 25% 50% 75% 97.5%
Zostera 0.316 0.528 0.636 0.724 0.850
Grass 0.022 0.042 0.057 0.076 0.130
U.lactuca 0.023 0.069 0.118 0.188 0.402
Enteromorpha 0.022 0.075 0.138 0.238 0.540
d13C_Pl 0.463 0.682 0.887 1.193 2.510
d15N_Pl 0.447 0.628 0.777 1.020 1.896

The outputs are slightly different depending on whether the model has been run
via MCMC or FFVB. For example, diagnostic values are only applicable for check-
ing convergence of the MCMC run. For FFVB, we do not specify the number of
iterations like we do with MCMC; instead we have implemented a stopping crite-
rion in the underlying FFVB algorithm, which stops the run when the change in
parameters between iterations falls below a specified threshold.

simmr has built-in functions to allow for visualisation of the results of these mod-
els once they have been run. Options for plots include matrix plots, boxplots,
histograms, and density plots. The code for running a boxplot is as follows:

R> plot(simmr_groups_out,
+ type = "boxplot",
+ group = 2,
+ title = "simmr output group 2")
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Figure 3.5: Boxplot of geese group 2 food proportion estimates generated from
MCMC run.

R> plot(simmr_groups_out,
+ type = "matrix",
+ group = 6,
+ title = "simmr output group 6")

Figure 3.5 shows boxplots which show the proportion each food source is estimated
to make up of the animals diet. The boxplot allows for easy visualisation of the
proportions. Figure 3.6 shows the histograms of source proportions on the diago-
nal, contour plots of the relationship between the sources on the upper diagonal,
and the correlation between the sources on the lower diagonal. In this case, we can
see that the geese are consuming mostly Enteromorpha spp, some Ulva lactuca and
Grass, and hardly any Zostera spp. The compare_groups and compare_sources
functions in simmr allow for comparison of source consumption across different
groups or sources. Below and in Figure 3.7 we show the output of comparing the
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Figure 3.6: Matrix plot of geese group 6 generated from the MCMC run. The
diagonal contains histograms showing the estimated proportion of each food. The
upper section shows contour plots. The lower section gives correlation values.

proportions of Zostera spp between groups 1 and 2:

R> compare_groups(simmr_groups_out, source = "Zostera", groups = 1:2)

Prob (proportion of Zostera in group Period 1 > proportion
of Zostera in group Period 2) = 0.999

Beyond the main functions for plotting and summarising SIMMs, simmr contains
other functions that may be useful for the user in interpreting output or guiding
model development. prior_viz allows for visualisation of the priors set for the
data versus the eventual posterior, and saves the data in a data frame if the user
wishes to create their own plots. The function can be especially helpful when some
food sources do not provide knowledge about diet and so the posterior dietary
proportion reverts to the prior. Figure 3.8 shows the results of using the function
on the data above with the following code:

R> prior <- prior_viz(simmr_groups_out, group = 1)

41



3.6. Brent Geese

0.00

0.25

0.50

0.75

Period 1 Period 2
Group

P
ro

po
rt

io
n

Comparison of dietary proportions for groups 
 Period 1  and  Period 2  for source  Zostera

Figure 3.7: Boxplot comparing proportion of Zostera in diet in Period 1 versus
Period 2.

In Figure 3.8 we can see that the algorithm is able to learn more about Zostera spp.
and Grass as they are the most distinct sources. Enteromorpha and U. lactuca are
closer in iso-space and less distinct and so they revert to the prior.

The simmr_elicit function allows the user to input informative prior informa-
tion to the model and can be used with both the MCMC and FFVB functions.
This function requires users to input a vector of proportion means and a vector of
proportion standard deviations. Prior information about the dietary proportions
might come from sources such as direct observation, faeces, stomach contents, or
prey remains (Moore and Semmens (2008), Franco-Trecu et al. (2013), Hertz et al.
(2017)). Finding appropriate prior values for the latent multivariate normal distri-
bution parameters (µ0 and Σ0) can be hard since the prior information is usually
available in the dietary proportion space. The function thus runs an optimisa-
tion routine to match provided dietary proportions to optimal values of µ0 and
Σ0 and provides these to the user so that they can be added as arguments to e.g.,
simmr_mcmc. The prior_viz function can then be used to see the effect of these
prior assumptions on the posterior.

When sources lie in similar locations on the iso-space plots it is sometimes desir-
able to combine sources together. The simmr package allows the user to choose
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Figure 3.8: Four density plots showing the posterior and prior of each of the four
food sources (Zostera, Grass, Ulva lactuca, and Enteromorpha).

which sources to combine a posteriori using the combine_sources function. The
advantage of combining such sources is that the negative covariance between their
estimated proportions will reduce the variance of the resulting summed source
contribution. The output of combine_sources is also of class simmr_output and
so can be used with all other plotting and summary functions.

For a final check of the model fit, the function posterior_predictive creates the
posterior predictive distribution of the observations and plots this for each obser-
vation. For models that fit well we would expect, for example, 50% of observations
to be within the 50% posterior predictive distribution. The function re-runs the
JAGS code for the model but with an extra likelihood term inserted to extract the
posterior predictive distribution. These values are returned from the function to
enable more advanced use of the posterior predictive. The output is seen in Figure
3.9.
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Figure 3.9: Posterior predictive distribution of the observations for geese data
group one, probability interval = 0.5

3.7 Discussion
Our package simmr allows analysis of basic SIMMs using either MCMC or FFVB
algorithms. It is a convenient tool with built-in class objects that allows analysis
to be performed easily. Plots and summaries are simple to produce and the class
system makes it easy to process data, even though the underlying data structure
can be relatively complex for non-R users.

There are a number of assumptions made which are common to many of these
models. Probably the most fundamental is that the consumer is at equilibrium
with their food and that their diet is static. In a dynamic system, clearly this
assumption is always violated, but careful interpretation of the results can still
yield valid insights by shifting the considered time window over which the diet is
quantified using SIMMs (Arnoldi et al., 2023). We assume that we know all the
food sources that the animal is eating. If a food source is missing it can affect the
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shape of the mixing polygon and the resulting diet composition obtained by the
model (Phillips et al., 2014). It is highly recommended that the user views the
iso-space plot before running the model to ensure that the data points lie within
the mixing polygon created by the food sources. If the food sources do not lie
within the mixing polygon, it can indicate that a food source has been missed.
However, all data lying within the mixing polygon does not guarantee every food
source has been found. It is important to consider the biology of the organism,
how robust sampling was, and to ensure samples have been obtained of every food
the organism eats. Similar assumptions would apply if studying other systems.

There are a number of areas where the user will need to make decisions, for ex-
ample, whether or not to exclude outliers, and whether food sources should be
combined. Combining sources can be done through the combine_sources func-
tion provided by simmr but it is recommended that this is performed a posteriori,
if it is to be performed, and that there is a sound biological basis for doing so.

Our new package has the advantage that the models are quick to run, easy to use,
and have several built in checks. We have built-in functions which allow customis-
able high quality plots to be produced that allow for sources to be combined a
posteriori and for sources and groups to be compared. Future plans include ex-
pansion of this package to allow it to run with more complex models, and include
random and fixed effects.
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Appendix

3.A Fixed Form Variational Bayes Algorithm
We use the FFVB algorithm of (Tran et al., 2021). If we define the joint set of
parameters as θ = (f, τ) where τ = σ−2 then we write our factorised variational
posterior as:

qλ(θ) = q(f)q(τ)

where λ = (µf , Σf , c, d)T is the set of hyper-parameters associated with the varia-
tional posteriors:

q(f) ≡ MV N(µf , Σf )

q(τ) ≡ Ga(c, d)

To start the algorithm, initial values are required for λ(0) (we use parentheti-
cal super-scripts to denote iterations.), the sample size S, the adaptive learning
weights (β1, β2), the fixed learning rate ϵ0, the threshold α, the rolling window size
tW and the maximum patience P .

Define h to be the log of the joint distribution up to the constant of proportionality:

h(θ) = log (p(y|θ)p(θ))

and hλ to be the log of the ratio between the joint and the VB posterior:

hλ(θ) = log
(

p(y|θ)p(θ)
qλ(θ)

)
= h(θ) − log qλ(θ)
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The initialisation stage proceeds with:

1. Generate samples from θs ∼ qλ(0)(θ) for s = 1, ...S

2. Compute the unbiased estimate of the lower bound gradient:

̂∇λLB(λ(0)) = 1
S

S∑
s=1

∇λ[log(qλ(θs))] ◦ hλ(θs)
∣∣∣∣∣
λ=λ(0)

where ◦ indicates element-wise multiplication

3. Set

ḡ0 := ∇λLB(λ(0))

ν̄0 := ḡ2
0

ḡ = g0

ν̄ = ν0

4. Estimate the control variate ci for the ith element of λ as:

ci = Cov (∇λi
[log(qλ(θ))]hλ(θ), ∇λi

[log(qλ(θ))])
V ar(∇λi

[log(qλ(θ))])

across the samples generated in step 1

5. Set t = 1, patience = 0, and ‘stop = FALSE‘.

Now the algorithm runs with:

1. Generate samples from θs ∼ qλ(t)(θ) for s = 1, ...S

2. Compute the unbiased estimate of the lower bound gradient:

gt := ̂∇λLB(λ(t)) = 1
S

S∑
s=1

∇λ[log(qλ(θs))] ◦ (hλ(θs) − c)
∣∣∣∣∣
λ=λ(t)

where ◦ indicates element-wise multiplication.
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3. Estimate the new control variate ci for the ith element of λ as:

ci = Cov (∇λi
[log(qλ(θ))]hλ(θ), ∇λi

[log(qλ(θ))])
V ar(∇λi

[log(qλ(θ))])

across the samples generated in step 1

4. Compute:

vt = g2
t

ḡ = β1ḡ + (1 − β1)gt

v̄ = β2v̄ + (1 − β2)vt

5. Update the learning rate:

lt = min(ϵ0, ϵ0
α

t
)

and the variational hyper-parameters:

λ(t+1) = λ(t) + lt
ḡ√
v̄

6. Compute the lower bound estimate:

L̂B(λ(t)) := 1
S

S∑
s=1

hλ(t)(θs)

7. If t ≥ tW compute the moving average LB

LBt−tW +1 := 1
tW

tW∑
k=1

L̂B(λ(t−k+1))

If LBt−tW +1 ≥ max(L̄B) patience = 0, else patience = patience +1

8. If patience ≥ P, ‘stop = TRUE‘

9. Set t := t + 1
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CHAPTER 4
cosimmr: an R package for fast
fitting of Stable Isotope Mixing

Models with covariates

The study of animal diets and the proportional contribution that different foods make to
their diets is an important task in ecology. Stable Isotope Mixing Models (SIMMs) are
an important tool for studying an animal’s diet and understanding how the animal in-
teracts with its environment. We present cosimmr, a new R package designed to include
covariates when estimating diet proportions in SIMMs, with simple functions to produce
plots and summary statistics. The inclusion of covariates allows for users to perform a
more in-depth analysis of their system and to gain new insights into the diets of the
organisms being studied. A common problem with the previous generation of SIMMs
is that they are very slow to produce a posterior distribution of dietary estimates, es-
pecially for more complex model structures, such as when covariates are included. The
widely-used Markov chain Monte Carlo (MCMC) algorithm used by many traditional
SIMMs often requires a very large number of iterations to reach convergence. In con-
trast, cosimmr uses Fixed Form Variational Bayes (FFVB), which we demonstrate gives
up to an order of magnitude speed improvement with no discernible loss of accuracy.
We provide a full mathematical description of the model, which includes corrections
for trophic discrimination and concentration dependence, and evaluate its performance
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against the state of the art MixSIAR model. Whilst MCMC is guaranteed to converge
to the posterior distribution in the long term, FFVB converges to an approximation
of the posterior distribution, which may lead to sub-optimal performance. However we
show that the package produces equivalent results in a fraction of the time for all the
examples on which we test. The package is designed to be user-friendly and is based on
the existing simmr framework.

4.1 Introduction
Stable Isotope Mixing Models (SIMMs) are commonly used in ecology to study the
proportional contribution that different foods make to an animal’s diet (Phillips,
2012). This information can be important as it allows scientists to look at diet,
which resources are important for different species (McDonald et al., 2020), and
consequently niche overlap and competition (Teixeira et al., 2021; Aksu et al.,
2023), as well as being useful in looking at trophic position and energy flow in
an ecosystem (Manlick and Newsome, 2022). These models have been extensively
used by ecologists over the past 20 years with recent papers revealing the foraging
behaviour in Dugongs (Thibault et al., 2024), overlap in trophic niche between
native and non-native species of carp (Aksu et al., 2023), and assessment of nursery
areas used by the scalloped hammerhead shark (Paez-Rosas et al., 2024). SIMMs
have been shown to produce results comparable to direct observation (Swan et al.,
2020). The approach relies on the fact that the stable isotopes of several elements,
but most usefully those of hydrogen(δ2H), carbon (δ13C), nitrogen (δ15N) and
sulphur (δ34S), are incorporated into animal tissues from the diet in a predicable
manner (Inger and Bearhop, 2008). Thus, if the isotope ratios of potential dietary
items are known then animal diets can be reconstructed from the stable isotope
ratios from proteinaceous tissues using SIMMs. cosimmr is a new R package (R
Core Team, 2021) developed to allow for the fast running of SIMMs, especially but
not limited to those that include covariates. It has been designed to be easy to use
for non-expert R users, with S3 classes used throughout. SIMMs are widely used
and cited in other fields, such as geology (Munoz et al., 2019) and pollution studies
(Zaryab et al., 2022), amongst many others. In other scientific areas, SIMMs and
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similar models can be referred to in the literature as ‘source apportionment models’
(Hopke, 1991), ‘end member analysis’ (Hooper et al., 1990), or ‘mass balance
analysis’ (Miller et al., 1972). Further discussion of these models can be found in
Govan et al. (2023).

The basic mathematical equation for a statistical SIMM is:

y =
K∑

k=1
pksk + ϵ.

Here y is the mixture (consumer tissues) value (for example, the δ13C or δ15N

values for the species we wish to study), pk are the proportions contributed by
each source (dietary item) k (of K total sources), sk is the source tracer value for
source k, and ϵ is a residual term. The parameters pk are usually the main focus of
scientific interest. These models are commonly expanded in diet analyses to allow
for processes that cause the mixture and source tracer values to differ besides
the source proportions, such as Trophic Discrimination Factors (TDFs; Inger and
Bearhop, 2008) and concentration dependence (Phillips and Koch, 2002). Other
expansions include process error on the dietary proportions (Moore and Semmens,
2008) as well as hierarchical source fitting (Ward et al., 2010). The models are
further made richer by incorporating random effects on the source values (Semmens
et al., 2009). Here, whilst we include many of these extensions, our focus is on
the inclusion of covariate dependence on the proportions pk. The restriction that
these must sum to unity (i.e. a simplex) makes their estimation more complex,
and specialist link functions are required to map their values on to covariates. We
provide a more detailed explanation of the mathematical model behind cosimmr
in Section 4.2.

Modern SIMMs are fitted using the standard tools of Bayesian inference. Most
commonly this involves using Markov chain Monte Carlo (MCMC) to obtain sam-
ples from the posterior. For complex models with covariates this can be extremely
slow, with models requiring millions of posterior samples and taking several days
to converge, if they converge at all. By contrast in cosimmr we use Fixed Form
Variational Bayes (FFVB), specifically Gaussian Variational Bayes with Cholesky
Decomposed Variance (Titsias and Lázaro-Gredilla, 2014; Tan and Nott, 2018).
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FFVB is an optimisation-based algorithm which works by first defining the form
of the posterior distribution (here a multivariate normal distribution), and then
minimising the Kullback-Leibler divergence between this VB approximation and
the true posterior distribution. More details on the assumed distributions used
in cosimmr can be found in Section 4.3. The main advantage of using FFVB,
and thus of cosimmr, is that it works by optimisation rather than sampling, and
therefore can be much faster to produce a posterior distribution. However, con-
vergence issues can still occur (Yao et al., 2018). Our approach gives cosimmr a
key advantage over other packages, which tend to use JAGS (Plummer, 2003) to
implement the MCMC algorithm. Additionally, cosimmr runs using C++ code
via Rcpp (Eddelbuettel and François, 2011) which allows for an additional speed
boost.

SIMMs have been a popular method for studying animal diets, with thousands
of citations across different papers, and many packages have been developed in
order to make this easier. Some of the most popular packages are listed below. A
summary is also provided in Table 4.1.1.

• Isosource (Phillips and Gregg, 2003) was one of the earliest developed pack-
ages for running SIMMs. It worked by simulating possible values of each
proportion to produce many potential combinations of proportions. Impor-
tantly, it lacked an explicit statistical basis.

• MixSIR (Moore and Semmens, 2008) adopted a Bayesian framework and al-
lowed for the inclusion of Trophic Discrimination Factors (TDFs). MixSIR
utilised Importance Sampling, generating many samples of possible propor-
tion combinations and calculating importance weights to produce the final
posterior sample. MixSIR also allowed for the inclusion of prior information
and allowed uncertainty to be incorporated into SIMMs.

• SIAR (Parnell et al., 2010) was developed as an R package. It utilised Markov
chain Monte Carlo (MCMC) sampling. SIAR also included a residual com-
ponent ϵ in the model. SIAR is no longer updated and simmr was developed
to replace it.
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• simmr (Govan et al., 2023) is an R package that follows a Bayesian frame-
work, and provides the option of using either JAGS (Just Another Gibbs
Sampler; Plummer, 2003) or Fixed Form Variational Bayes (FFVB; Tran
et al., 2021) for running the models. simmr allows for the inclusion of concen-
tration dependence and Trophic Discrimination Factors but does not allow
for covariates on the dietary proportions.

• FRUITS (Fernandes et al., 2014) allowed for the inclusion of concentration
dependence and prior information in a Bayesian framework. FRUITS is
encoded in Visual Basic and runs via the FRUITS computer programme.
This package simplifies the incorporation of prior information.

• IsotopeR (Hopkins III and Ferguson, 2012) adopted a Bayesian framework
and allowed for inclusion of concentration dependence and TDFs, and also
includes covariance. It uses MCMC for running the models.

• MixSIAR (Stock et al., 2018) is an R package that fits models in JAGS.
MixSIAR allows for the inclusion of covariates as fixed, random, or continu-
ous effects. It fits the source means hierarchically, either using raw data or
sample statistics (means, variances, and sample sizes).

Software Language Algorithm TDFs Concentration
Dependence Covariates Prior

Info Comments Hierarchical/
Source Fitting Reference

Isosource Visual Basic Trial and Error N N N N Frequentist N Phillips and Gregg (2003)
simmr R MCMC and FFVB Y Y N Y Ease-Of-Use Design N Govan et al. (2023)

FRUITS Visual Basic MCMC Y Y N Y - N Fernandes et al. (2014)
IsotopeR R MCMC Y Y N Y Hierarchical Model Y Hopkins III and Ferguson (2012)
MixSIAR R MCMC Y Y Y Y Allows for Raw Data Y Stock et al. (2018)
cosimmr R FFVB Y Y Y Y Aims for Speed N This Paper

Table 4.1.1: Table showing summary of current SIMM software and the features
they offer

TDFs (Trophic Discrimination Factors) account for the fact that consumers may
differentially lose ‘light’ versions of isotopes with respect to ‘heavy’ versions dur-
ing the process of assimilation (Inger and Bearhop, 2008). Thus, while TDFs
are important in ecological applications, they have less relevance to geological or
pollution-based applications as these same processes do not occur (although simi-
lar processes such as isotopic fractionation may need to be accounted for). TDFs
can be calculated in the lab, or calculated mathematically, such as in Greer et al.
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(2015). Alternatively SIDER (Healy et al., 2018) is an R package that allows for
estimates of TDFs based on phylogenetic relatedness of species. Estimates can
also be obtained from the scientific literature.

Concentration dependence accounts for the fact that different food sources can
contribute proportionally different amounts of each isotope (Phillips and Koch,
2002). The standard two-isotope model assumes all food sources contribute both
isotopes equally. However, there are often occasions where a food source can be
rich in one isotope and poor in another, thus not contributing equally to both. In-
stead, concentration dependence assumes a source’s contribution to each isotope
is proportional to the mass of the food source times the elemental concentration
of the isotope within the food source. Inclusion of concentration depedence facil-
itates conversion between consideration of either the total mass of food sources
assimilated and the mass of specific elements within them.

The inclusion of covariates in the SIMM allows users to avoid pseudo-replication
(Hurlbert, 1984), because if a covariate is important to the diet proportions, its
exclusion violates the assumption that all mixtures are independently and iden-
tically distributed. Including covariates in SIMMs allows users to determine the
potentially causal relationships between covariates and diet proportions. Although
the model returns these coefficients, they are only available in a transformed space
(via the link function) and not directly interpretable. We have designed cosimmr
to produce interpretable output in ‘coefficient space’ where users can determine
the direction of the relationship and evaluate uncertainty, and also in ‘proportion
space’ (p-space) which allows users to see the effect of the covariate directly on the
dietary proportions. These tools are defined via a predict function that to allow
the user to predict dietary proportions based on combinations of covariates that
may not necessarily be present in the original dataset. We follow the ‘tidyverse’
(Wickham et al., 2019) style guide, with the Snake case naming convention and
S3 classes used throughout. Being able to evaluate the model at new values of the
covariates allows for a more detailed picture to be seen. Uncertainty intervals, in
the form of Bayesian credible intervals, are provided for all estimated quantities.
Advanced users have access to the full posterior distributions as created by the
FFVB algorithm.
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4.2. Statistical approaches to stable isotope mixing models

The data required by cosimmr can be illustrated by Figure 4.1.1. This example
is discussed more fully in Section 4.6.3. This figure shows an ‘iso-space’ plot
generated by cosimmr. It shows each individual plotted in iso-space, with the
axes representing δ13C and δ15N . The diet sources (Marine and Freshwater in this
case) are also plotted on the graph. It is important that all individuals lie within
the mixing polygon created by the source means. If they do not, it indicates that
the mixing system does not follow the model assumptions. Possible reasons for
observations lying outside the mixing polygon include: issues with data collection;
inaccurate TDFs; or missing food sources, amongst others. However, note that
the mixing polygon vertices are sample means subject to sampling error, so there
is some uncertainty in their exact position. Hierarchical Bayesian models allow
for the source means to deviate from the source sample means by maximizing
the likelihood of the source and mixture tracer data together (Ward et al., 2010;
Hopkins III and Ferguson, 2012; Stock et al., 2018).

4.2 Statistical approaches to stable isotope
mixing models

The fundamental SIMM we fit can be written as:

yij =
K∑

k=1
pk(xi)qjk(sijk + cijk) + ϵij

Where:

• yij are the mixture/consumer tracer values of individual i for tracer j,

• pk(xi) are the proportions of each source k contributing to the mixture value
at each covariate value xi where xi is an L-vector of covariate values for
individual i,

• qjk represents the concentration dependence for tracer j on source k,

• sijk is the consumed source value by individual i of the food source k on
tracer j,

55



4.2. Statistical approaches to stable isotope mixing models

5.0

7.5

10.0

12.5

−30 −25 −20 −15

δ13C (per mille)

δ15
N

 (
pe

r 
m

ill
e)

Length

100

200

300

Freshwater

Marine

Mixtures

Isospace plot of Nifong et al Alligator data

Figure 4.1.1: Iso-space plot for Alligator dataset (discussed in Section 4.6.3).
Individuals are represented by circles coloured by covariate (length) and their
isotope-ratio values are adjusted by TDFs. Two diet sources, Freshwater and
Marine, are represented by a black triangle and blue circle, respectively, with 1
standard deviation also plotted. The axes on this plot are the Carbon-13 and
Nitrogen-15 ratios of the isotope with respect to the ‘standard’ measurement.

• cijk is the trophic discrimination factor of individual i for source k on tracer
j

• ϵij is the residual error for individual i on tracer j

We index individuals as i = 1, . . . , N , tracers as j = 1, . . . , J , and sources as k =
1, . . . , K. We assume there are l = 1, . . . , L covariates so that xi = {xi1, . . . , xiL}.
For notational brevity we write pk(xi) as pik. It is common to make the prior
assumptions that ϵij ∼ N(0, σ2

j ), sijk ∼ N(µs,jk, σ2
s,jk), and cijk ∼ N(µc,jk, σ2

c,jk).
Here µs,jk, µc,jk, σs,jk, σc,jk may be assumed fixed as they are commonly available
from other data sources, or learnt as part of a Bayesian hierarchical model. The
residual standard deviation σj is usually given a Uniform or (inverse) Gamma
weakly informative prior. Other approaches have used multivariate normal distri-
butions for these terms (e.g. Hopkins III and Ferguson, 2012; Parnell et al., 2013;
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Stock et al., 2018) but these are not implemented in cosimmr as yet. The model of
Stock et al. (2018) adds an additional multiplicative parameter to the first variance
term to account for the assimilation of food items according to whether organisms
are specialising in certain regions of the source probability distribution. Follow-
ing their approach, we give the parameter ξ a U(0, 20) prior when this additional
process error is required. A table of prior values set can be seen at 4.2.1.

Term Prior
ξ U(0,20)

βkl N(0,1)
1

σj
Ga(1,1)

Table 4.2.1: Table showing default priors used in cosimmr

The source and TDF random effects add an additional burden of 2KJ parameters
into the model which can cause a significant computational slowdown. Moore
and Semmens (2008) proposed proposed marginalising across these parameters to
produce a more complex, but more computationally tractable likelihood:

yij ∼ N

(∑K
k=1 pikqkjµsc,kj∑K

k=1 pikqkj

,

∑K
k=1 p2

ikq2
kjσ

2
sc,kj∑K

k=1 p2
ikq2

kj

+ σ2
j

)

where µsc,kj = µs,kj + µc,kj and σ2
sc,kj = σ2

s,kj + σ2
c,kj.

The remaining prior distribution is that of the pik terms which must retain the
constraint that ∑k pik = 1, but also allow for the terms to be dependent on the co-
variates xi. We use a Centralised Log-Ratio (CLR; Aitchison (1986)) link function
so that:

[pi1, ...piK ] =
[

exp(fi1)∑
j exp(fij)

, . . . ,
exp(fiK)∑
j exp(fij)

]
This prior has the advantage that the resulting terms fik are unconstrained and
made to depend directly on xi. We model this dependence linearly, but exten-
sions that capture more nuanced dependence seem like a fruitful avenue for future
research. We thus set: fik = xT

i βk. In other words, we can write the proportion
for individual i consuming food k as pik = CLR(xT

i βk). where the parameters βk
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model the dependence of the covariates across source k. We require a further prior
distribution on βk to ensure identifiability. By default we thus set βkl ∼ N(0, 1).
By default we also scale the covariates. Users can use un-scaled covariates if
they wish but caution is advised. In certain circumstances where prior informa-
tion is available on the βkl values we may use an informative prior of the form
βkl ∼ N(µβ,kl, σ2

β,kl). The prior distribution for β can be changed by the user in
cosimmr via the cosimmr_ffvb function.

4.3 The Fixed Form Variational Bayes
Algorithm

Fixed Form Variational Bayes (FFVB) is an optimisation-based algorithm that
aims to approximate the posterior distribution of a Bayesian model in a pre-
defined form (Salimans and Knowles, 2013). It aims to finds the parameters of the
‘closest’ probability distribution to that of the true posterior. Unlike traditional
MCMC sampling methods, the greedy nature of the optimisation can usually find
this approximate posterior far faster. In cosimmr we use a sub-type of FFVB
known as Gaussian Variational Bayes with Cholesky decomposed covariance (Tit-
sias and Lázaro-Gredilla, 2014; Tan and Nott, 2018). To avoid becoming diverted
in mathematical detail, we defer a full description of our approach to Appendix
4.A. However here we provide an intuitive guide to how the fitting process works.

Our model assumes that the joint posterior distribution of all the parameters is
multivariate normal. The parameters for our model are β, and σ2, representing
the regression parameters across sources and covariates, and the residual variances
across tracers. Recall that p is a deterministic function of β so not included in the
algorithm. Since the variances are all restricted to be positive, we model these on
the log scale. We thus write θ = {β, log(σ2)} = {β11, . . . , βKL, log(σ2

1), . . . , log(σ2
J)}

as the set of parameters for which we want a posterior.

For FFVB we need to define the form of the posterior distribution. We use:

θ ∼ MV N(µθ, Σθ)

where µθ and Σθ are the mean and covariance matrix of the approximated posterior
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4.3. The Fixed Form Variational Bayes Algorithm

distribution. To avoid the positive semi-definite constraints on Σθ we model the
Cholesky decomposition of this matrix so that Σθ = LLT . Together these terms
are vectorised and written as: λ = {vec(µθ), vec(L)}. The goal of the algorithm is
to provide a set of optimal values for λ which captures this posterior distribution.
The MVN distributions allows us to capture correlations between parameters. The
main steps of the algorithm are as follows:

• Get starting values and use these to get an estimate of the difference between
the posterior and variational posterior.

• Calculate the gradient of this difference and use this to update λ. The
gradient of the posterior is calculated using automatic differentation and the
gradient of the variational posterior is calculated manually.

• Use new values of λ in place of starting values and repeat until stopping
condition is met.

The algorithm requires several user-set hyper-parameters for fitting the model.
The main hyper-parameters are: the patience P , which determines when the al-
gorithm stops; and S which provides the number of parameter samples used at
each stage of the algorithm. For other algorithm parameters, we have used the de-
fault values from Tran et al. (2021). These parameters include: the fixed (beta_1
and beta_2) and adaptive (eps_0) learning rates; the size of the window to use
when calculating stopping conditions (t_W); and the threshold for exploring the
learning space before a the learning rate is decreased (tau). The stopping con-
ditions work by calculating a moving average of the lower bound (the difference
between the log of the posterior and the log of the variational posterior). When
the moving average does not improve after P iterations then the algorithm stops.
All hyper-parameters can be changed by the user if they wish when running the
FFVB algorithm through cosimmr, though we have provided reasonable defaults
which should work in most circumstances.

The use of FFVB in covariate-dependent SIMMs is novel, and confers an advantage
over MCMC due to the increase in speed. This method is flexible and can be
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extended in the future, to include hierarchical source fitting, raw data, as well as
random effects, features which are currently available in other SIMM software. We
see up to an order of magnitude speed increase when comparing FFVB to MCMC,
with comparable results produced.

4.4 Running the cosimmr package
The cosimmr package is available via CRAN. The first step to use it is to install
and load the package:

R> install.packages("cosimmr")
R> library(cosimmr)

The user must provide mixture data (y), source means (µs,kj), and source standard
deviations (σs,kj) to run cosimmr. TDFs, Concentration Dependence, and any
covariates are not necessary to run the model but they may need to be included in
order for the model to be ecologically valid. The cosimmr_load function can be
used to read the data into R. This ensures the data is loaded in the correct format.
For illustration purposes we will use an artificially generated dataset, though see
later sections for real case studies:

R> y = matrix(c(5, 5.1, 4.7, 3.6, 3.2, 0, -1, -2, -3, -7,
+ 3.1, 5.6, 3.6, 4.7, 1.3, 1, -4, -3, -7, -9),
+ ncol = 2)
R> colnames(y) = c("iso1", "iso2")
R> mu_s = matrix(c(-10, 0, 10, -10, 10, 0), ncol = 2, nrow = 3)
R> sigma_s = matrix(c(1, 1, 1, 1, 1, 1), ncol = 2, nrow = 3)
R> s_names = c("A", "B", "C")
R> x = c(1.6, 1.7, 2.1, 2.5, 1.1, 3.7, 4.5, 6.8, 7.1, 7.7)

This dataset contains measurements of two isotopic ratios, ‘iso1’ and ‘iso2’, as well
as three food sources named ‘A’, ‘B’, and ‘C’. There is one continuous covariate,
named ‘x’. These data can then be loaded into cosimmr using cosimmr_load to
create an object of class cosimmr_in:
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R> cosimmr_in_1 = cosimmr_load(
+ formula = y ~ x,
+ source_names = s_names,
+ source_means = mu_s,
+ source_sds = sigma_s
)

As discussed in the introduction, it is recommended that these data are plotted on
an ‘iso-space’ plot before modelling. The iso-space plot shows tracer values of the
mixtures as well as sources, with each axis representing a tracer. These tracers are
often isotope ratios. It is important that the mixture data lies within the polygon
formed when the sources are joined with straight lines (this polygon is referred to
as the mixing polygon). If the mixtures do not lie within this polygon it indicates
that there is an issue - potential reasons are that TDFs are inappropriate or a
food source has been omitted. The polygon vertices are subject to sampling error
and this could be another potential source of error. The iso-space plot can be
generated by cosimmr by running the following code:

R> plot(cosimmr_in_1, col_by_cov = TRUE, cov_name = "x")

The resulting plot can be seen in Figure 4.4.1. It shows the mixtures lie within the
mixing polygon. These data can then be run through the cosimmr_ffvb function
to produce an output of class cosimmr_out:

R> cosimmr_out_1 = cosimmr_ffvb(cosimmr_in_1)

cosimmr has built-in functions to produce summaries of the model run. Both
graphical and textual summaries can be produced, as shown below.

R> summary(cosimmr_out_1, type = "statistics")

Summary for Observation 1
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Figure 4.4.1: An iso-space plot generated for artificial dataset showing iso1 on the
x-axis and iso2 on the y-axis. The food sources A, B, and C are shown. Individuals
are shown by circles coloured by covariate x.

mean sd
P(A) 0.093 0.026
P(B) 0.424 0.052
P(C) 0.482 0.045
sd_iso1 1.449 1.133
sd_iso2 1.790 1.437

In this example, we have specified that we wish to produce ‘statistics’. As we have
not specified an observation then the function defaults to returning statistics for
observation 1. Any/multiple individuals can be selected and ‘statistics’, ‘quantiles’
or ‘correlations’ can be produced for each individual. The ‘statistics’ summary
produces a table of the means and standard deviations for the estimates of the
proportion of each food eaten by the individual. An estimate of the marginal
residual error of the isotope ratios is produced. In this summary we can see that
individual 1’s diet is mostly composed of foods B and C, with A contributing very
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little to their diet. This matches the observations we can make from the iso-space
plot, where individual 1 lies at (5, 3.1), equidistant from food sources B and C
and quite far away from food source A. The ‘quantiles’ summary produces the
2.5%, 25%, 50%, 75% and 97.5% quantiles for the same values as provided by
the ‘statistics’ summary. The ‘correlations’ option produces the correlation values
between each source and the residual error of the isotope ratios.

Graphical plots can be produced in cosimmr. For example, below we create a
proportion plot for observation 1. We can see the plot in Figure 4.4.2. This shows
the range of the proportion estimates for each food source for individual 1. We
also create a ‘covariates plot’ which shows the change in the proportion of foods
consumed as the covariate changes. This plot can be seen in Figure 4.4.3.

R> plot(cosimmr_out_1, type = c("prop_histogram", "covariates_plot"),
+ obs = 1, cov_name = "x")
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Figure 4.4.2: cosimmr proportion plot showing consumption of different food
sources for observation 1 for the simple example

Another important function within cosimmr is the ability to predict values based
on covariate values, using the predict function, as illustrated below:
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Figure 4.4.3: Covariates plot showing the change in the consumption of three food
sources A, B, and C, as the covariate ‘x’ increases for the simple example. Shaded
interval shows mean ± 2 standard deviations.

R> x_pred = data.frame(x = c(3, 5))
R> pred_out = predict(cosimmr_out_1, x_pred)
R> summary(pred_out, type = "statistics", obs = c(1,2))

Summary for Observation 1

mean sd
P(A) 0.181 0.033
P(B) 0.345 0.041
P(C) 0.474 0.039

Summary for Observation 2

mean sd
P(A) 0.393 0.043
P(B) 0.221 0.054
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P(C) 0.386 0.054

The predict function allows us to provide a vector of covariate values, and returns
a cosimmr_out object, which can be used as normal in the summary and plot
functions to return graphs and textual summaries. This allows users to return
predictions for covariate values not observed in the sample population, which can
enrich understanding of the system. It is also important, however, for users to
note that caution is advised for predictions of values which lie outside of the data.

We can use the prior_viz function to visualise how the posterior has changed from
the prior. This plot overlays the posterior distribution and the prior distribution
to see how it has changed or if the posterior has not changed much from the prior.
This plot can be seen in Figure 4.4.4. We can see that our posterior estimates have
changed from the prior estimate. One figure is shown here but it is recommended
that users create plots for multiple individuals when running a model.
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Figure 4.4.4: Three density plots showing the prior and posterior for each of the
3 food sources A, B, and C, in the simple example. Posterior estimates are shown
for individual 1.
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For convenience a summary of the main cosimmr functions is presented in Table
4.4.1.

cosimmr_load Load in data in correct order/format
cosimmr_ffvb Run SIMM using Fixed Form Variational Bayes algorithm
summary Produce summary of proportion values. Options include

statistics, quantiles, and correlations
plot Create plots, options include histogram or boxplot of beta

values, iso-space plot, histogram or density plot of estimated
proportions, plot of covariates vs proportions

predict Predict proportion values for covariates not present in
original dataset

posterior_predictive Create posterior predictive distribution of observations
and plots for each observation

prior_viz Create plots showing prior values set vs posterior obtained

Table 4.4.1: Main functions available in cosimmr

4.5 Simulation Checks
In this section we use simulated data to verify that cosimmr returns valid estimates
when a run is performed. We simulate data from the model using a variety of
different data set sizes, varying N , J , K and L, and changing the main parameters
in the model. We evaluate the performance of the model by looking at how often
the posterior distribution obtained by cosimmr matches the true values. The code
for performing the runs in this section can be found at https://github.com/emm
agovan/cosimmr_paper/.

The values selected for several different simulations are presented in Table 4.5.1.
We run low (N = 50, J = 2, K = 3, L = 2), medium (N = 200, J = 3, K = 4,
L = 5) and high (N = 500, J = 4, K = 5, L = 10) versions to capture a range
of scenarios, where N = no. of individuals, J = no. of tracers, K = no. of food
sources, and L = no. of covariates. For each of these we simulate data using
the default prior distribution of βkl ∼ N(0, 1) and with σ ∼ Ga(1, 1). We set
µs ∼ U(−10, 10), and σs ∼ U(0, 2). TDFs and Concentration dependence are
ignored for this example.
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Low Medium High
N 50 200 500
J 2 3 4
K 3 4 5
L 2 5 10

Table 4.5.1: Values of parameters for different runs of our simulation checks

After running each model, we produce posterior uncertainty intervals at the 50%
level and calculate the proportion of posterior samples inside these values. As an
example, the posterior predictive plot for tracer 1 in the Medium run is shown in
Figure 4.5.1. Posterior predictive plots for other simulations and tracers are found
in the Appendix 4.B (Figures 4.B.1, 4.B.2 and 4.B.3).
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Figure 4.5.1: Plot showing posterior uncertainty intervals at the 50% level for the
‘Medium’ simulated model run for tracer 1. The proportion of posterior values
inside these values was 51%.

The results show that cosimmr produces accurate estimates for the posterior val-
ues, even with more complex data and increased numbers of tracers and covariates.

We show an example posterior distribution of β in Figure 4.5.2 for the ‘Low’ run.
From Figure 4.5.2 we can see that cosimmr is performing well and producing β
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values similar to the original values used to generate data for this example, as
illustrated by the red lines visible on the plots. This holds true for the Medium
and High examples. Plots are omitted to avoid repetition.
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Figure 4.5.2: Histograms showing posterior samples for beta values generated via
cosimmr for the ‘Low’ example, and red line showing ‘true’ value of β used to
generate the mixture data.

4.6 Case Studies
We now perform a direct comparison of cosimmr and MixSIAR to evaluate both
the accuracy of the FFVB posterior and check the computational gains. MixSIAR
is very popular and widely cited, with nearly 70,000 downloads, as of August 11th
2025 (Csárdi, 2019). We provide three case studies: the first using the Geese data
of Inger et al. (2006), for which we include a single categorical covariate (Group
number). The second uses the Isopod data of Galloway et al. (2014) which contains
8 tracers and a single covariate (Site). The third uses the Alligator data of Nifong
et al. (2015), for which we provide a detailed model comparison across 8 different
potential covariate panels. In each case we compare the posterior distributions
of the parameters, the posterior predictive performance, and the computational
speed differences. All of the data for our model fits is available in the cosimmr
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package, available at https://github.com/emmagovan/cosimmr and on CRAN,
and the code for running the models is available at https://github.com/emmag
ovan/cosimmr_paper.

4.6.1 Geese data (Inger et al., 2006)
Our first example looks at the Brent Geese (Branta bernicla hrota) dataset orig-
inally from Inger et al. (2006). The covariate in this example is ‘Group’ which
is discrete. There are eight different groups which represent different time points
at which individuals were sampled. δ13C and δ15N are the two isotopes used in
this study. The iso-space plot for this data is seen in Figure 4.6.1. TDFs and
concentration dependence are accounted for in this model.
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Figure 4.6.1: Iso-space plot for geese dataset, coloured by covariate to highlight
the differences between groups.

By looking at the Group covariate and how the proportion of each food in the diet
of the geese differs between groups, we can see how their diet changes over time.
This example highlights the usefulness and importance of covariates in SIMMs.
The time of year influences the diet of these geese. They are known to consume
Zostera spp. between October and December at Strangford Lough (where these
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data were collected), and as time passes the geese remaining on the lough consume
more Enteromorpha spp. and Ulva lactuca (Mathers and Montgomery, 1997). To
exclude time as a covariate in this example would violate the assumption that the
data are IID, as their diets are influenced by the time of year, and consequently,
by what food is easily available to the geese.

For this example, the Geese data was run through both cosimmr and MixSIAR.
For MixSIAR a ‘long’ run was needed for convergence. The first thing to note
from these model runs is that cosimmr produces these results in a much quicker
timeframe than MixSIAR, as we can see in Table 4.6.1. cosimmr is over three
times faster than MixSIAR for this example. The ‘Group’ covariate is discrete and
therefore in cosimmr it is treated as eight covariates when transformed into numeric
covariates. Therefore this example is slower in cosimmr than other examples with
only one numeric covariate. The code for using a categorical covariate in cosimmr
is demonstrated below:

R> data(geese_data)
R> cosimmr_geese_in = cosimmr_load(

formula = geese_data$mixtures ~ as.factor(geese_data$groups),
source_names = geese_data$source_names,
source_means = geese_data$source_means,
source_sds = geese_data$source_sds,
correction_means = geese_data$correction_means,
correction_sds = geese_data$correction_sds,
concentration_means = geese_data$concentration_means)

min lower quartile mean median upper quartile max neval
cosimmr 29.5 30.4 38.0 33.7 45.0 61.2 10
MixSIAR 113.6 121.5 130.1 124.5 139.3 155.3 10

Table 4.6.1: Table showing computation time (minutes) of cosimmr and MixSIAR
(‘long’ run needed for convergence) for Geese example, showing the minimum
(min), lower quartile, mean, median, upper quartile, maximum (max) time, and
number of evaluations (neval).
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As well as comparing computational time, it is important that cosimmr produces
results that are comparable to other SIMM software. From looking at Figure 4.6.2
we can see that cosimmr and MixSIAR produce comparable results in terms of
proportional estimates. These figures show the estimated dietary proportions for
group 1. We can see that both cosimmr and MixSIAR produce similar estimates
for the percentage that each food makes up in the diet of the first group. This result
holds for the other seven groups in this dataset. Differences in results may be due
to a slight difference in error structure between cosimmr and MixSIAR. For this
example, MixSIAR recommends only accounting for residual error. In cosimmr we
instead recommend process and residual error, to account for errors in sampling
as well as specialisation by individuals. We chose to compare the recommended
models from each package for this comparison as well as comparisons in the next
two sections.
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Figure 4.6.2: Proportion plot showing consumption of different food sources for
observation 1 for Geese example for cosimmr and MixSIAR

We can generate more complex plots using the plot function in cosimmr, to
see how the consumption of a specific food changes between groups. In Fig-
ure 4.6.3 we see the difference in consumption of Zostera spp. across different
groups. This highlights the usefulness of including covariates, as this detail would
otherwise be lost. A convergence check can be performed using the function
convergence_check. This function returns the mean lower bound values pro-
duced and shows that this value converges. The result of this can be seen in
Figure 4.6.4.
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Figure 4.6.3: Boxplots showing change in consumption of Zostera for Geese in
different periods of the year.
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Figure 4.6.4: Lineplot showing convergence of mean lower bound values for geese
example, produced using convergence_check function in cosimmr.
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The posterior_predictive function can be used to produce a plot showing the
posterior uncertainty intervals for this dataset. The produced plot is seen in Figure
4.6.5. We can see that 77% of the data lies within the 50% uncertainty intervals,
showing that cosimmr is fitting the data adequately, although this value is above
what we would expect. The posterior predictive values are a useful check of model
fit and these are not available in other packages, so easy comparison is not avail-
able, but can be accessed using the posterior_predictive function in cosimmr.
Groups 7 and 8 contain the outliers seen in Figure 4.6.5 and this may be a poten-
tial reason for these results. For 75% uncertainty intervals 87% of observations are
inside these intervals and 93% are inside for 95% confidence intervals. From this
example we can see the importance and usefulness of including covariates, as it
allows for us to look at the diet of the geese over time to see how the proportions
of different foods in their diets change as the season progresses. It also highlights
observations that may require further scrutiny.
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Figure 4.6.5: Plot showing posterior uncertainty intervals at the 50% level for
the Geese data. The first plot shows values for tracer 1 and the second shows
values for tracer 2, with plots showing the observations (points) and the posterior
uncertainty intervals in green. The proportion of posterior values inside these
values was 77%. Groups 7 and 8 in this example contain outliers which may be a
reason for the proportion being higher than we would expect.

4.6.2 Isopod data (Galloway et al., 2014)
The second case study is the isopod dataset (Pentidotea wosnesenskii) from Gal-
loway et al. (2014). Six sites were used, which varied in algal cover, and this is
included as the sole covariate. Three food sources are included in this example:
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Green (phylum Chlorophyta), Brown (phylum Ochrophyta), and Red (phylum
Rhodophyta) algae. There are eight tracers - fatty acids instead of stable isotopes,
as fatty acid signatures are shown to differ significantly between algal phyla (Gal-
loway et al., 2012). An iso-space plot for these data is seen in Figure 4.6.6, which
is 2-dimensional and can therefore only show two of the eight tracers. cosimmr
allows for users to specify which tracers they would like to plot in the iso-space
plot. More than two tracers can make it difficult to check visually that all in-
dividuals lie within the multidimensional mixing polytope so caution is needed
to ensure accurate TDFs are included and all relevant food sources are included.
The posterior predictive plots can be particularly helpful when using >2 tracers to
discover problem observations (or tracers themselves) because these are available
per tracer as opposed to per pair of tracers in the iso-plot.
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Figure 4.6.6: Iso-space plot for isopod dataset showing 6 different Sites across 2
of 8 possible tracers

As in the previous example, comparing the proportion estimates for cosimmr and
MixSIAR (Figure 4.6.7) across different covariates levels, we can see that both
are returning similar estimates, with cosimmr returning those estimates in a much
shorter time (Table 4.6.3). A ‘normal’ run in MixSIAR (100,000 chain length,
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50,000 burn-in) was enough to ensure convergence with this model. Numerical
results are presented for both cosimmr and MixSIAR in Table 4.6.2. Slight differ-
ences in results may be due to the fact MixSIAR treats Site as a random effect vs
cosimmr treating it as a fixed effect.

Programme Source 25% 50% 75%
cosimmr Green 0.322 0.345 0.370
MixSIAR Green 0.362 0.401 0.437
cosimmr Brown 0.214 0.248 0.287
MixSIAR Brown 0.095 0.144 0.196
cosimmr Red 0.372 0.401 0.431
MixSIAR Red 0.411 0.454 0.495

Table 4.6.2: Table showing estimates of food consumed for Observation 1 for both
cosimmr and MixSIAR for Isopod example.

min lower quartile mean median upper quartile max neval
cosimmr 418 455 587 582 748 791 10
MixSIAR 1182 1246 1268 1283 1292 1298 10

Table 4.6.3: Table showing computation time (seconds) of cosimmr and MixSIAR
for Isopod example.

The importance of the covariate in this example is seen in Figure 4.6.8. This plot
shows the difference in average consumption of Green algae across different sites.
This allows us to see the importance of the included covariate and how it affects
the dietary proportions of individuals at that site.

The posterior predictive plot can be produced using the posterior_predictive
function. The resulting plot for tracer 1 can be seen in Figure 4.6.9. 59% of values
are inside the 50% interval for this overall run. The posterior predictive for the
other tracers can be viewed in the Appendix (Figure 4.B.5).
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Figure 4.6.7: Proportion plot showing consumption of different food sources for
observation 1 for Isopod example for cosimmr and MixSIAR
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Figure 4.6.8: Boxplots showing change in Algae consumption across sites for Green
Algae for Isopod example

This example highlights the computational efficiency of cosimmr over MixSIAR
and other SIMM software. cosimmr is producing similar results to other SIMMs
for this example, but is much quicker thanks to the use of FFVB.
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Figure 4.6.9: Plot showing posterior uncertainty intervals at the 50% level for the
Isopod data for tracer 1. The proportion of posterior values inside these values
was 59%.

4.6.3 Alligator data (Nifong et al., 2015)
The final example utilises alligator (Alligator mississippiensis) data from Nifong
et al. (2015). In this example we run 8 alternative models with both cosimmr and
MixSIAR, where each model utilises a different combination of covariates, and
determine the best model fit, with the aim being that both algorithms present the
same model as the best fit. The eight models are described in Table 4.6.4.

The iso-space data for this example can be seen in Figure 4.1.1. There are only two
food sources in this set, Marine and Terrestrial. All food sources in this example
were grouped into one of these two categories. The iso-space plot is coloured by
covariate ‘Length’ (this covariate is used in Model 5 and Model 7).

All eight models were fitted in both cosimmr and MixSIAR. MixSIAR uses ‘LOO’
(leave-one-out cross validation) for choosing the best fitting model (Vehtari et al.,
2024). We used the same package and method on results from cosimmr to choose
the best fitting model. For both, model 5 (Length) is selected as the best model.
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Model Covariate(s)
1 NULL
2 Habitat (Fresh, Intermediate, Marine)
3 Sex (Male, Female)
4 Sclass (Small Juvenile, Large Juvenile, Sub-Adult, Adult)
5 Length (continuous effect)
6 Sex + Sclass
7 Sex + Length
8 Sex * Sclass
Table 4.6.4: Table showing different model options for Alligator example

The output of this model comparison can be seen in Table 4.6.5. The error struc-
ture of cosimmr and MixSIAR is slightly different. MixSIAR also utilises hierar-
chical source fitting which is not implemented in cosimmr. This may explain the
slight differences in results obtained.

cosimmr MixSIAR
Model looic SE looic SE

Model 1 1990.9 31.2 1834.6 16.7
Model 2 1943.1 61.0 1747.9 28.8
Model 3 2072.8 45.6 1831.3 17.6
Model 4 1833.3 60.0 1687.5 31.8

Model 5 1754.1 41.8 1678.3 31.3
Model 6 1844.7 57.5 1689.2 31.5
Model 7 1822.5 54.6 1681.2 31.4
Model 8 1770.8 37.8 1690.4 29.8

Table 4.6.5: Table showing LOO output for cosimmr and MixSIAR alligator mod-
els, where looic is the LOO information criterion (−2 × elpd_loo) and SE is the
standard error of looic

We can compare the output of both cosimmr and MixSIAR and see that they are
returning comparable results. In Figure 4.6.10 we plot the estimates for Model 5
for observation 1, an individual alligator of length 186 cm. Comparing the time
for both runs shows that cosimmr is approximately 10 times faster (See Table
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4.6.6). The ‘short’ version of MixSIAR is a long enough run for convergence for
this example.
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Figure 4.6.10: Proportion plot showing consumption of different food sources for
observation 1 for Alligator example for cosimmr and MixSIAR

min lower quartile mean median upper quartile max neval
cosimmr 111 121 126 127 132 140 10
MixSIAR 1330 1349 1383 1379 1410 1449 10

Table 4.6.6: Table showing computation time (seconds) of cosimmr and MixSIAR
for Alligator example for Model 5 run.

Figure 4.6.11 shows the predicted consumption of each food source varying with
Length. The variable Length was provided to the predict function as a regular
grid. This figure highlights why covariates can be a useful tool in SIMMs, as
without covariates we get an average diet across all individuals. By including
Length as a covariate, we get a much deeper insight into the animals diet. We
can see that as an individual increases in length, it increases its consumption
of Marine sources and consequently its consumption of Freshwater sources drops.
Marine consumption increases from below 10% to above 90%. These findings agree
with stomach content analysis performed by Nifong et al. (2015).

For this example we generate a posterior predictive plot, seen in Figure 4.6.12.
Here for a 50% interval 42% of individuals lie inside. For a 75% interval 87% of
individuals lie inside and this climbs to 93% for the 95% interval. This indicates
a good level of fit for this model. Like previous examples, the posterior predictive
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Figure 4.6.11: Plot showing the change in Freshwater and Marine consumption
vs change in Length for Alligator example, where proportion is plus or minus two
standard deviations.

plot highlights outliers and points that lie far outside the 50% interval. This is an
indicator that these observations may require further scrutiny.
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Figure 4.6.12: Plot showing posterior uncertainty intervals at the 50% level for
the Alligator example for tracer 1 and 2. The proportion of posterior values inside
these values was 42%.

This example highlights the computational efficiency of cosimmr. The ten-fold
increase in performance speed of cosimmr over MixSIAR highlights the high value
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of this package for those fitting multiple models. We see that the package produces
comparable results to MixSIAR, both in terms of proportional output as well
as when multiple models are compared against each other. The addition of the
posterior_predictive function provides strong guidance (not available in other
packages) as to how well the model is fitting, as well as highlighting observations
for further inspection.

4.7 Conclusions
Fixed Form Variational Bayes is a novel technique within the field of Stable Isotope
Mixing Models. It is an optimization-based algorithm which contrasts with the
sampling-based approaches traditionally used in SIMMs, such as MCMC. FFVB
works by estimating a variational posterior which approximates the true poste-
rior. Through the examples presented in this paper we have demonstrated that
it performs as well as MCMC in terms of results produced, while also offering a
significant speed improvement of up to one order of magnitude.

The use of FFVB over MCMC allows users to run more complex models in a shorter
time. Alternatively it may allow users to compare more models across differing
covariates with a view to finding one that matches the data best. We believe that
this speed advantage (without loss of accuracy) is an important development for
SIMMs. It is important to remember that the FFVB method only ever produces an
approximation of the posterior so model checking through, e.g. posterior predictive
distributions, is especially important.

We have introduced the package cosimmr to implement these new methods. The
inclusion of covariates allows users to avoid violating the assumption of IID data.
The package contains functions that allow users to make predictions for combi-
nations of covariates not found or recorded during data collection, allowing for a
deeper understanding of the system being studied. We have shown that cosimmr is
demonstrably faster than previous packages (due to FFVB), while returning com-
parable results. We have designed it to be user-friendly for non-expert users, with
built-in summary, plotting and predict functions. It is important that users are
aware plots are generally created for an individual observation, with the option to
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specify the individual(s) for which to create plots built into the package functions.
Other functions help users to see which of their covariates are having an impact
on the diet of the animal being studied, and how well the model fits the data.

Future work on cosimmr could include allowing for random effects, hierarchical
modelling, or source fitting - these are all options that are currently available in
MixSIAR but could also be implemented using FFVB in order to speed up model
fitting. Currently we don’t account for uncertainty with our source samples. If
the number of samples is very large then this is not an issue, but if using smaller
sample sizes then it is important to account for this potential source of error. The
challenge here is ensuring the optimization still converges satisfactorily despite the
additional parameters. We plan to implement these options in a future evolution
of the package.
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Appendix

4.A Gaussian Variational Bayes with Cholesky
Decomposed Covariance

We use the Gaussian Variational Bayes with Cholesky decomposed covariance
algorithm of Tran et al. (2021). If we define the joint set of parameters as θ =
(β, log(σ2)) then we write our factorised variational posterior as:

qλ(θ) = q(β, log(σ)))

where λ = (µβ, µσ, vech(L))T is the set of hyper-parameters associated with the
variational posteriors:

q(θ) ≡ MV N(µ, Σ)

µ ≡ (µβ, µσ)

Σ ≡ (Σβ, Σσ)

To avoid the positive semi-definite constraints on Σθ we model the Cholesky de-
composition of this matrix so that Σθ = LLT .

To start the algorithm, initial values are required for λ(0) (we use parenthetical
super-scripts to denote iterations), the sample size S, the adaptive learning weights
(β1, β2), the fixed learning rate ϵ0, the threshold α, the rolling window size tW , the
maximum patience P .
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Define h to be the log of the joint distribution up to the constant of proportionality:

h(θ) = log (p(y|θ)p(θ))

and hλ to be the log of the ratio between the joint and the VB posterior:

hλ(θ) = log
(

p(y|θ)p(θ)
qλ(θ)

)
= h(θ) − log qλ(θ)

The initialisation stage proceeds with:

1. Generate samples from κs ∼ Nd(0, I) for s = 1, ...S

2. Compute the unbiased estimate of the lower bound gradient:

∇̂λLB(λ(0)) =
(
∇̂µLB(λ(0))T , ̂∇vech(L)LB(λ(0))T

)T

∇̂µLB(λ(0)) = 1
S

S∑
s=1

∇θhλ(θs)

∇̂vech(L)LB(λ(0)) = 1
S

S∑
s=1

vech
(
∇θhλ(θs)κT

s

)

Create estimates of θs

θs = µ(0) + L(0)κs

3. Set

ḡ0 := ∇λLB(λ(0))

ν̄0 := ḡ2
0

ḡ = g0

ν̄ = ν0
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4. Set t = 1, patience = 0, and ‘stop = FALSE’.

Now the algorithm runs with:

1. Generate κs ∼ qλ(t)(θ) for s = 1, ...S. Recalculate µ(t) and L(t) from λ(t)

2. Compute the unbiased estimate of the lower bound gradient:

gt := ∇̂λLB(λ(t)) =
(
∇̂µLB(λ(t))T , ∇̂vech(L)LB(λ(t))T

)T

where

∇̂µLB(λ(t)) = 1
S

S∑
s=1

∇θhλ(θs)

∇̂vech(L)LB(λ(t)) = 1
S

S∑
s=1

vech
(
∇θhλ(θs)κT

s

)

with θs = µ(t) + L(t)κs

3. Compute:

vt = g2
t

ḡ = β1ḡ + (1 − β1)gt

v̄ = β2v̄ + (1 − β2)vt

4. Update the learning rate:

lt = min(ϵ0, ϵ0
α

t
)

and the variational hyper-parameters:

λ(t+1) = λ(t) + lt
ḡ√
v̄
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5. Compute the lower bound estimate:

L̂B(λ(t)) := 1
S

S∑
s=1

hλ(t)(θs)

6. If t ≥ tW compute the moving average LB

LBt−tW +1 := 1
tW

tW∑
k=1

L̂B(λ(t−k+1))

If LBt−tW +1 ≥ max(LB) patience = 0, else patience = patience +1

7. If patience ≥ P, ‘stop = TRUE‘

8. Set t := t + 1

4.B Further plots
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Figure 4.B.1: Plot showing posterior uncertainty intervals at the 50% level for the
‘Low’ simulated model run for tracer 1 and tracer 2. The proportion of posterior
values inside these values was 93%.
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Figure 4.B.2: Plot showing posterior uncertainty intervals at the 50% level for the
‘Medium’ simulated model run for tracers 2 and 3. The proportion of posterior
values inside these values was 51%.
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(c) Tracer 3
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(d) Tracer 4

Figure 4.B.3: Plot showing posterior uncertainty intervals at the 50% level for
the ‘High’ simulated model run for tracers 1-4. The proportion of posterior values
inside these values was 60%.
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4.B. Further plots
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Figure 4.B.4: Histograms showing posterior samples for beta values generated via
cosimmr for the ‘Medium’ example, and red line showing ‘true’ value of β used to
generate the mixture data.
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Figure 4.B.5: Plot showing posterior uncertainty intervals at the 50% level for the
Isopod data for tracers 2-8. The proportion of posterior values inside these values
was 59%.
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CHAPTER 5
cosimmrSTAN: an R package for

fitting Stable Isotope Mixing
Models using STAN

In this chapter, we discuss cosimmrSTAN, an R package for fitting Stable Isotope Mixing
Models using Hamiltonian Monte Carlo via the external software package STAN. The
package has been designed to allow inclusion of richer covariate structures including
random effects and related hierarchical modelling techniques.

5.1 Introduction
Stable Isotope Mixing Models (SIMMs) are a very common tool which allow users
to study the proportional contribution that each food makes to an animal’s diet.
SIMMs are widely used in ecology; recent examples include an examination of the
diet (and seasonal shift in the diet) of White sharks (Carcharodon carcharias Lip-
scombe et al., 2024), identifying the location Camelids originated from in the Late
Pleistocene/Early Holocene Atacama desert (Ugalde et al., 2024), and arsenic de-
tection in fish (Lescord et al., 2022). These models are also popular in geology and
pollution studies, where they may be referred to as ‘end-member analysis’ (Hooper
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et al., 1990), ‘mass balance analysis’ (Miller et al., 1972), or ‘source apportionment
models’ (Hopke, 1991) depending on the field in question.

The simplest mathematical equation for a SIMM is as follows:

y =
K∑

k=1
pksk + ϵ

where y refers to the mixture value (for example, the δ13C value for the consumer
we wish to study), pk are the proportions contributed by each food source k (of K

total sources), sk is the source tracer value for each source k, and ϵ is a residual
term. pk is the parameter we are most interested in, and it is pk that we wish
to estimate. The equation is made more complex when including multiple obser-
vations and isotopes, Trophic Discrimination Factors (TDFs; Inger and Bearhop,
2008) and concentration dependence (Phillips and Koch, 2002) in order to make
it more biologically accurate. The full equation of the model with these terms
included is presented in Section 5.2.1.

TDFs account for the fact that consumers may selectively assimilate lighter or
heavier isotopes into their tissues. This is important to account for in a biological
system; they may have less relevance in other applications. TDFs can be calculated
in the lab, however this can be difficult depending on the species being studied.
Values from the literature for related species are often used, and SIDER (Healy
et al., 2018) is an R package developed to allow for the estimate of TDFs based
on species’ relatedness. TDFs are usually added on to the source values sk to shift
them in iso-space.

Concentration dependence accounts for the fact that sources are composed of dif-
ferent proportional amounts of each isotope (Phillips and Koch, 2002). If this is
not considered then, for example in a two-isotope model, the assumption is that
every source contributes the same amount for each element. However, often a food
can be rich in one isotope and poor in another, and so instead concentration de-
pendence is calculated by accounting for the elemental concentration within that
food source. Concentration dependence is included as a multiplicative term on p.

The addition of covariates in SIMMs can help users to understand the relationships
between individual organisms when they vary by one or more measured factors.
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5.2. Statistical Approaches to fitting Stable Isotope Mixing Models

However, adding covariates can result in the model taking a long time to run.
Markov chain Monte Carlo (MCMC) has traditionally been used in software that
has been developed for the running of SIMMs, such as MixSIAR (Stock et al.,
2018) and SIAR (Parnell et al., 2010). While MixSIAR allows for the running of
complex models, containing both fixed and random effects, as well as hierarchically
fitted sources, it can be quite slow, with MCMC sometimes requiring millions of
samples in order to reach convergence. We have instead implemented these models
in STAN (Carpenter et al., 2017) in order to take advantage of STANs VB function,
which allows for models to run much more quickly than they would using MCMC.
Specifically these algorithms have been implemented in an R (R Core Team, 2021)
package, which can be found at https://www.github.com/emmagovan/cosimmr
STAN, utilising the rstan (Stan Development Team, 2024) functionality. The use
of STAN allows allows for more complex models to be run using VB. We have
been able to build on the cosimmr package to include random effects, as well as
hierarchical source fitting, using STANs VB functionality. STAN simplifies the
process of incorporating these complex terms into the model, as we only specify
the model structure without managing the underlying algorithm, which would have
been challenging to encode directly.

5.2 Statistical Approaches to fitting Stable
Isotope Mixing Models

5.2.1 Statistical Model behind SIMMs
The more complex model for SIMMs, with TDFs and concentration dependence
accounted for, is as follows:

yij =
K∑

k=1
pk(xi)qjk(sijk + cijk) + ϵij

Where:

• yij are the mixture/consumer tracer values of individual i for tracer (com-
monly isotope) j,
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5.2. Statistical Approaches to fitting Stable Isotope Mixing Models

• pk(xi) are the proportions of each source k contributing to the mixture value
at each covariate value xi where xi is an L-vector of covariate values for
individual i. We commonly shorten these to pik.

• qjk represents the concentration dependence for tracer j on source k,

• sijk is the consumed source value by individual i of the food source k on
tracer j,

• cijk is the trophic discrimination factor of individual i for source k on tracer
j

• ϵij is the residual error for individual i on tracer j

We index individuals as i = 1, . . . , N , tracers as j = 1, . . . , J , and sources as k =
1, . . . , K. We assume there are l = 1, . . . , L covariates so that xi = {xi1, . . . , xiL}.
We use the term ‘Mixture‘ to refers to an individual’s set of tracer/isotope values
for which we wish to know the proportional compositions. The examples we de-
scribe in Section 5.4 all use stable isotopes as tracers, but fatty acids can be used
instead depending on the system being studied. We assume that ϵij ∼ N(0, σ2

j ),
sijk ∼ N(µs,jk, σ2

s,jk), and cijk ∼ N(µc,jk, σ2
c,jk). µs,jk, σs,jk are assumed fixed, but

we provide an option whereby they can be learnt via the cosimmrSTAN_load func-
tion. µc,jk, σc,jk are assumed to be fixed. σj is given a weakly informative gamma
prior.

We marginalise across the source parameters, as proposed in Moore and Semmens
(2008) to produce a likelihood that is more complex but less computationally
intensive:

yij ∼ N

(∑K
k=1 pikqkjµsc,kj∑K

k=1 pikqkj

,

∑K
k=1 p2

ikq2
kjσ

2
sc,kj∑K

k=1 p2
ikq2

kj

+ σ2
j

)

where µsc,kj = µs,kj + µc,kj and σ2
sc,kj = σ2

s,kj + σ2
c,kj. Occasionally an additional

multiplicative term can be included on the first variance term above, as proposed
by Stock et al. (2018), to account for a consumer’s dietary specialisation. We
restrict this term to lie between 0 and 1. The term is useful, or even necessary,
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when σ2
s,jk and σ2

c,jk are too large compared to the variability of the mixtures, and
often improves the quality of the fit. The ecological motivation for such a term is
clear: the individuals are sub-sampling or averaging over the sources to assimilate
their food. However the mathematics of this extra term are harder to justify, since
its inclusion no longer corresponds to the unmarginalised model presented at the
start of this section. We model this parameter on the logit scale to enforce the
range constraint. We call the parameter ξ and apply a N(0, 2.52) prior when it is
required that centers the value around 0.5 with a standard deviation that covers
the majority of the (0,1) range. The new equation when including ξ is:

yij ∼ N

(∑K
k=1 pikqkjµsc,kj∑K

k=1 pikqkj

,

∑K
k=1 p2

ikq2
kjσ

2
sc,kj∑K

k=1 p2
ikq2

kj

1
1 + exp(−ξj)

+ σ2
j

)
.

As stated above the dietary proportions pik terms are of key interest. They must
be constrained so that ∑k pik = 1. Thus we use a Centralised Log-Ratio (CLR;
Aitchison, 1986) link function so that:

[pi1, ...piK ] =
[

exp(fi1)∑
S exp(fis)

, . . . ,
exp(fiK)∑
S exp(fis)

]

We can then place a prior distribution or other structure through the fik terms.
We cover some of the structures we implement below.

5.2.2 Fitting Random or Fixed Covariates
Covariates can be set as fixed or random in cosimmrSTAN. The way this is modelled
is as follows:

fik = Xiβ0,l1k + Ziβ1,l2k

where X is a matrix of l1 fixed effects and Z is a matrix of l2 random effects,
for a total of l1 + l2 = L covariates. The priors on β are: β0,r,k ∼ N(0, 1), for
r = 1, . . . , l1 fixed effects (we use this prior based on Stock et al. (2018), where the
same prior on fixed effects is used) and β1,t,k ∼ N(0, ω2

k), for t = 1, . . . , l2 random
effects, and ωk ∼ t+

1 (0, 1).
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The full Bayesian model that we fit is therefore:

π(pik, σ2
j , ξj, β0, β1, ωk | yij, µsc,kj, σ2

sc,kj, qkj, Xi, Zi) ∝
N∏

i=1

J∏
j=1

K∏
k=1

π(yij | pik, µsc,kj, σ2
sc,kj, qkj, ξj, σ2

j )

×
J∏

j=1
π(σ2

j )

×
J∏

j=1
π(ξj)

×
l1∏

s=1

K∏
k=1

π(β0sk)

×
l2∏

t=1

K∏
k=1

π(β1sk | ωk)

×
K∏

k=1
π(ωk)

where all notation is defined as above.

When fitting SIMMs, a distinction is often made between looking at the data in
‘iso-space’ vs ‘p-space’. Iso-space is the plot of the raw data showing the tracer
values on their original scale, as well as the sources and the mixtures. Once the
model is fitted, users can plot and look at the posterior dietary proportions (i.e.
pi,k) and this is known as p-space. In Figure 5.1 we show examples of the wolves
data (discussed in Section 5.4.2) in both iso-space (left plot) and p-space (right
plot).

Adding in covariates allows the user a much more detailed look at the way these
proportions change alongside the covariate values. In cosimmrSTAN users can plot
the posterior β values obtained by the model using the plot function. Non-zero
values indicate that the covariate related to the β value in question significantly
impacts the consumption level of the food source being looked at. Positive values
for β indicate increased consumption of the food source with that covariate, but
the size of the effect is not directly interpretable due to the CLR transform. To
ameliorate the problem the predict function can used to create predictions in
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Figure 5.1: Plot showing wolves data plotted in iso-space and average results from
cosimmrSTAN for each pack in p-space

‘p-space’ which are easier to interpret. However we do caution users with these
plots since there is an implicit assumption that other covariates are fixed which
may given a non-biologically accurate interpretation. summary can also be used
to provide outputs in ‘p-space’ for individual observations. Providing simple in-
terpretations of the effect of covariates from complex SIMMs remains an ongoing
research challenge.

Whether to use fixed or random effects in a model can be a difficult choice. Gelman
(2007) notes that there are several different definitions on what is a fixed or random
effect. Solving the problem of choosing fixed versus random effects is outside
the scope of this paper, but there are several useful considerations which can
help to indicate the choice for a specific model. Harrison et al. (2018) suggests
that if we assume that the groups we have sampled are a subset of all possible
groups, then we should use a random effect. This gives us the power to predict
outside the groups we have sampled. If instead, we are comparing two possible
treatments, for example the growth of plants at 10◦C versus 20◦C, then we are
only considering these two temperatures, we have sampled all possible groups, and
so we should use fixed effects. However, Gelman (2007) finds this unhelpful, and
instead recommends to always use random effects, in order to borrow strength
between groups.

In the field of social sciences, Clark and Linzer (2015) proposes the general guide-
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line that if variation is primarily within groups i.e. the groups are similar to one
another, then choosing either fixed or random effects will not greatly impact re-
sults - unless there is high correlation between the independent variable and the
group effects. However if there is less variation within groups, then random effects
are recommended if there are few groups, or few observations within groups, and
when correlation is low. Otherwise fixed effects are preferred.

Much of the discussion in the literature has focused on the frequentist treatment
of fixed and random effects. From a Bayesian viewpoint, the only difference in our
model between fixed and random effects is whether the parameter ω is given as
data or estimated with a prior distribution as part of the model fit. Fixing the ω

parameter represents a very strong prior belief in the variability of the regression
coefficients, which may over-ride the information in the data. Clearly this may
be preferable in situations when such information exists. However more generally
it seems sensible to estimate this parameter with a prior distribution that places
probability mass on areas which are reasonable given our knowledge about the
data. This is why we tend to prefer the random effects structure and would advise
users to default to this case when including covariates. The situation is made more
complicated in our model as the parameter space on f will mostly be contained
in the range (-3, 3) due to the CLR transformation, and so β is likely to lie in a
smaller range. Thus our default prior of N(0, 1) is likely to be sensible for many
situations and the distinction between fixed and random effects less important as
in standard modelling situations. In any case, we follow the advice in Gelman
(2006) and use the half-Cauchy distribution for the prior on ω.

In summary, much depends on the goals of the user and the differences between
them are unlikely to make a strong difference to the resulting posterior estimates
of p. In cosimmrSTAN a user can have both fixed and random effects in the same
model if they wish, or choose one or the other as the goals of their research requires.
Furthermore, thanks to the speed improvements offered by cosimmrSTAN, it is
possible to run covariates as both fixed and as random in separate models, and to
then compare results to see if it has an impact on a particular system. The choice
often remains, however, one of personal modelling preference.
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5.2.3 Fitting Sources
There are three options for users when supplying source data in cosimmrSTAN.
The first option is to supply a mean and standard deviation for each food source,
and these are used as µs and σs as in the equation in Section 5.2.1. This treats
the estimates as fixed and is the method used in simmr (Govan et al., 2023) and
cosimmr (Govan et al., 2024). This assumes that users know the true mean and
standard deviation. Alternatively, users can supply a sample mean and sample
standard deviation, and number of samples for each food source, and the source
data can be fitted as follows (Ward et al., 2010):

µs
k,j ∼ N

(
ms

k,j,
ss

k,j√
nk

)

σs
k,j = 1√

Tk,j

s2sk,j(nk−1)

Tk,j ∼ χ2(nk)

Where ms
k,j is the sample mean for food source k and tracer j, ss

k,j is the sample
standard deviation for food source k and tracer j, and nk is the number of samples
of food source k taken. Note that if nk is large enough (> 10000) then this method
is equivalent to fixing µs and σs at the sample values provided by the user and is
essentially the same as the first option (Stock et al., 2018).

Users can alternatively supply raw source data which is fitted as follows (Ward
et al., 2010):

ys
k,j ∼ N(µs

k,j, Σs
k)

µs
k,j ∼ N(0, 1000)

Σk = diag(τ) · Ω · diag(τ)

Ω ∼ LKJCorr(η)

τ ∼ t+
1 (0, 2.5)

Where ys
k,j is the food source measurement for food source k on tracer j. The

prior on µk,j is set to match MixSIAR. An LKJ prior (Lewandowski et al., 2009)
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is used for the correlation matrix Ω. With η = 1 set as the default prior, this is
an uninformative prior that makes only weak assumptions about the correlation
between tracers in a source. Users can change the prior value on η if they wish.
The LKJ prior is often used for correlation matrices and is available as a function
in STAN. It is important to note that it is not recommended to fit raw source
data when using compositional tracer data such as fatty acids, as the assumption
of normality does not hold (Stock et al., 2018).

However the source data are provided, the sources are estimated as part of the
cosimmrSTAN_load function, following Ward et al. (2010) and thus similar to how
they are fitted in MixSIAR. Fitting sources (either as raw source data or by sup-
plying a sample mean and standard deviation) removes the assumption that we
know the true value of the source values, and allows us to account for uncertainty
in measurement (Ward et al., 2010). However one disadvantage of this method is
that it does result in an increased computational load as it means there are more
parameters to be estimated.

5.3 STAN Algorithms
STAN allows for the fitting of statistics models via Hamiltonian Monte Carlo
(HMC) or Variational Bayes. Hamiltonian Monte Carlo (Betancourt and Giro-
lami, 2015), like more standard Markov chain Monte Carlo (MCMC), is a sam-
pling algorithm which aims to sample from the joint posterior distribution of the
parameters given the data. HMC differs from MCMC in that it introduces auxil-
iary ‘momentum’ variables, which direct the exploration of the state space. This
means that instead of randomly exploring the space like in standard MCMC, these
‘momentum’ variables ensure that a certain section of the state space is explored,
which means there is a higher probability of accepting the new state, and slow
random explorations are avoided (Brooks et al., 2011).

In the package cosimmrSTAN there are several parameters in the cosimmr_stan
function that users can use to change their HMC run. These are referred to
as mcmc_control and the options within are iterations, chains, and cores.
iterations refers to the number of iterations in each chain, set at a default value
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of 10000, chains refers to the number of Markov chains, set at a default value of 4,
and cores refers to the number of cores used to run MCMC in parallel. This is set
as a default of 1 but if multiple cores are available it will result in the model running
more quickly. Users may wish to increase the number of iterations if a model is not
converging. Convergence can be checked using the convergence_check function.
For MCMC this returns a table with a count of the number of r-hat (Gelman
and Rubin, 1992) values between 1.0 and 1.1 and the number greater than 1.1. If
there are many values are far away from 1 then it indicates that the model is not
converging. It may be helpful to increase the number of iterations if this is the
case.

Variational Bayes (VB) is another option in STAN, and the one we have set as
our default in the package cosimmrSTAN. STAN uses automatic differentiation
variational inference (ADVI; Kucukelbir et al., 2015). VB generally works by ap-
proximating the true posterior with a variational posterior. For ADVI a Gaussian
variational posterior is used. The aim in VB to minimise the Kullback-Leibler
(KL) divergence between the true posterior and the variational posterior. This
is done by maximising the evidence lower bound (ELBO). VB can offer a signifi-
cant speed advantage over MCMC due to the fact it is optimisation-based versus
MCMC’s sampling-based techniques. We have previously found that VB offers
up to a one order of magnitude increase in speed (Govan et al., 2024). This was
specifically for Variational Bayes with Cholesky Decomposed Variance (Titsias and
Lázaro-Gredilla, 2014; Tan and Nott, 2018) and was implemented in R via Rcpp
(Eddelbuettel and François, 2011). In cosimmrSTAN we have instead implemented
VB via STAN and by default the package uses the ‘fullrank’ algorithm in STAN.
This uses a full-rank covariance matrix. Both Variational Bayes with Cholesky
Decomposed Variance and ‘fullrank’ VB in STAN allow for correlations between
parameters due to the covariance matrix used. While VB is not guaranteed to
converge (Yao et al., 2018), we have found no issues with convergence for the
examples we have looked at.

Users can adjust different VB parameters when using the cosimmr_stan function,
by altering the options within vb_control. These include: the threshold that the
algorithm uses to determine convergence (tot_rel_obj), the number of iterations
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(iter), the number of samples (n_samples), the maximum number of iterations
to use in the warm-up adaptation period (adapt_iter), and the specific type of
VB algorithm used (‘meanfield’ or ‘fullrank’). ‘fullrank’ is set as the default, as it
allows for correlation between variables due to the covariance matrix used.

The Pareto k diagnostic (Vehtari et al., 2015) is produced by STAN when running
VB algorithms. If it is high then the model may not be converging. A table of the
mean, minimum, maximum, and counts of the number of Pareto k values below
0.5, between 0.5 and 0.7, between 0.7 and 1.0, and above 1.0 can be produced
using the convergence_check function in cosimmrSTAN. A value of between 0.7
and 1.0 may indicate problems with the model convergence (Vehtari et al., 2017)
and values above 1.0 indicate that caution is needed with the model. If there are
a lot of values produced over 1.0 then we recommend decreasing tot_rel_obj or
increasing n_samples or adapt_iter, or using MCMC. However it is important to
note that the Pareto-k-diagnostic is based around leave-one-out cross-validation,
and so values above 1.0 may not mean the model is wrong, it may be due to the
fact there are low numbers of data points relative to the number of parameters
being estimated. In the examples we run later in this paper we find that we obtain
Pareto-k-values of between 0.7 and 1.2 but these models are still returning results
that are comparable with the results obtained by MixSIAR which uses MCMC.

The Variational Bayes algorithm has a built-in stopping function which occurs
when the change in the ELBO falls below a certain threshold (which users can
alter by changing tot_rel_obj). This stopping rule ensures that the algorithm
has reached a result, but it is important for the user to be mindful that it does not
guarantee correct results. However, we have found no problems for the examples
we have tested.

5.4 Working Examples
In this section we will present three examples of models run using the cosimmrSTAN
package, with fixed and random effects. The data used in these examples are
available in the cosimmrSTAN package and all code for running examples is available
at github.com/emmagovan/cosimmrSTAN_paper.
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5.4.1 Fixed Effects model
The first example will be a fixed effects model using geese data from Inger et al.
(2006). The fixed covariate in this example is named ‘Time’. This refers to 8
different distinct periods over 2 winters in which the geese data were collected.
Therefore this covariate is treated as a factor. To begin we load in the cosimmrSTAN
package and read in the data.

> geese_data = cosimmrSTAN::geese_data
> Time = as.factor(geese_data$groups)
> formula = geese_data$mixtures ~ Time

> in_geese = with(
geese_data,
cosimmrSTAN_load(
formula,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means,
scale_x = FALSE))

The cosimmrSTAN_load function has multiple options for users - they can supply
source means and standard deviations, or they can supply raw source data and
have it fitted. If they supply source means and standard deviations they can
use these directly or treat them as sample means and standard deviations and fit
them by setting hierarchical_fitting = TRUE. scale_x allows users to choose
whether or not to scale their x values. scale_x is set to TRUE as default but it is
set to FALSE here as our covariate is a factor.

The next step is to create an iso-space plot. It is recommended that users create
this plot and check it before proceeding to run a SIMM. It is important to check
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that all mixtures lie within the mixing polygon created by the outermost error
bars on each food source, otherwise this indicates that perhaps TDFs are not
being accounted for, or that a source is missing. Mixtures lying within the mixing
polygon does not guarantee that all sources are accounted for or that the TDFs are
correct, but if this assumption is violated then there is an issue that needs to be
corrected. Phillips et al. (2014) discusses in more detail best practices for running
SIMMs and guidance for interpreting iso-space plots. Users have the option to
colour mixtures by a covariate. The code for generating the iso-space plot (with
mixtures coloured by the covariate Time) is shown below. If users wish to colour
by a specific covariate then the name of the covariate is specified by cov_name.

> plot(in_geese, cov_name = "Time")

The iso-space plot for this example is shown in Figure 5.1. We can see that all
the mixtures lie within the mixing polygon and can see the dietary shift across the
different time periods.
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Figure 5.1: Iso-space plot for Geese example showing food sources and mixtures,
coloured by Time.

We can then run the model using the code below:
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> out_geese = cosimmr_stan(in_geese)

The cosimmr_stan function defaults to using the VB algorithm but users can
instead choose type = “STAN_MCMC" if they wish to use the MCMC algorithm
instead. The algorithm also defaults to not including ξ but this can be in-
cluded by setting error_type = “processxresidual". Other options within the
cosimmrSTAN function include mcmc_control and vb_control which are both dis-
cussed in greater detail in Section 5.3.

Once the output object is created, users can create multiple different plots. A
histogram or density plot of the proportions of each food source being consumed
can be created (prop_histogram, prop_density), density plots or boxplots of
β values for fixed or random covariates can be created (beta_fixed_boxplot,
beta_fixed_density, beta_random_boxplot, beta_random_density), a lineplot
or boxplot showing the source consumption over different values of a covariate
can be created (covariates_plot), or a density plot showing ω values for each of
the K food sources can be created (omega_density). The code below is used to
create a proportion plot for observation 1, seen in Figure 5.2a, a proportion plot
for observation 250 is shown in Figure 5.3 and a plot of β values associated with
the Time covariate. This creates a plot for all eight periods but we just show the
plot for period 8 in Figure 5.4 and omit the others for brevity.

> plot(out_geese,
type = c("prop_histogram",

"beta_fixed_histogram),
obs = c(1,250)

We can see in Figure 5.2 that MixSIAR produces similar results to cosimmrSTAN
in terms of proportion estimates, but if we look at Table 5.1 we see that the
Variational Bayes algorithm in cosimmrSTAN returns results over 110 times faster
than MixSIAR.

Figure 5.3 shows the proportion of each source consumed by observation 250, a
goose in period 8. We can see that these individuals are consuming a lot of grass,
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Figure 5.2: Density plot showing proportion of different food sources for observa-
tion 1 for geese example for cosimmrSTAN and MixSIAR

Model Lower quartile Mean Median Upper quartile
cosimmrSTAN VB 66.7 67.4 67.3 68.1
cosimmrSTAN MCMC 1480.3 1504.7 1488.9 1497.9
MixSIAR 7289.3 7804.3 7471.9 8360.4

Table 5.1: Table showing computation time (seconds) of cosimmrSTAN and
MixSIAR (‘long’ run needed for convergence) for the geese example, showing the
lower quartile, mean, median, and upper quartile. There were 10 evaluations of
each function.

and if we look at the β plot in Figure 5.4 we can see that the β value for grass
for period 8 is positive, which indicates that this period is consuming more grass
than other periods.

We can also see summary statistics for observation 1, produced using the ‘sum-
mary’ function. ‘statistics’ are produced below but users can also choose to produce
‘quantiles’ or ‘correlations’.

>summary(out_geese, type = "statistics")
Summary for Observation 1

mean sd
P(Zostera) 0.461 0.075
P(Grass) 0.123 0.019
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Figure 5.3: Proportion plot for Geese observation 250 showing proportions of each
source consumed.
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Figure 5.4: Density plot for Geese example showing beta values for each food
source for Period 8. The value for Grass is positive, indicating that there is more
consumption of Grass in Period 8.

107



5.4. Working Examples

P(U.lactuca) 0.234 0.064
P(Enteromorpha) 0.182 0.066
sd_d13C_Pl 1.443 0.096
sd_d15N_Pl 0.081 0.094

We can create a boxplot showing the difference in source consumption across dif-
ferent levels of the covariate. The code for this is shown below:

> plot(out_geese,
type = "covariates_plot",
one_plot = FALSE,
cov_name = "Time)

The resulting boxplot is seen in Figure 5.5. This plot shows the change in con-
sumption of the Grass food source. Plots for all food sources are generated but are
omitted here for brevity. In this plot we can see that grass consumption is highest
in periods 7 and 8, and how it varies across the different time periods, going from
a less significant part of the diet at certain time periods to becoming the majority
of the diet at others.

In this example we see that cosimmrSTAN produces comparable results to MixSIAR,
but is much faster. We can see the impact of the Time covariate on the diet of the
geese through β plots as well as by looking at boxplots comparing consumption of
different sources over all 8 periods. This is important as it allows us to see what
sources are important for the geese at different times over winter.

5.4.2 Random Effects model
In this example we will run a random effects model with the wolves data adapted
from Semmens et al. (2009). This data set looks at wolf consumption of three food
sources: deer, marine mammals, and salmon. The data are from 8 gray wolf (Canis
lupus) packs in British Columbia, Canada. We will treat ‘Pack’ as a random effect
for this example. Like in the previous example, we treat Pack as a factor. To
begin we load in the cosimmrSTAN package and read in the data.

108



5.4. Working Examples

0.00

0.25

0.50

0.75

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8
Time

P
ro

po
rt

io
n

Group

Period 1

Period 2

Period 3

Period 4

Period 5

Period 6

Period 7

Period 8

Grass consumption over Time covariate

Figure 5.5: Boxplot for geese example showing change in Grass consumption over
each time period. Consumption of grass is highest in Periods 7 and 8.

> library(cosimmrSTAN)
> wolves_data = cosimmrSTAN::wolves_data
> Pack = as.factor(wolves_data$pack)
> formula = wolves_data$y ~ (1|Pack)
> in_wolves = with(wolves_data, cosimmrSTAN_load(formula,

source_names = source_names,
source_means = s_mean,
source_sds = s_sd,
correction_means = c_mean,
correction_sds = c_sd))

It is recommended that users produce an iso-space plot and examine it before
running a SIMM. The iso-space plot for this example is produced by running the
code below. The plot is seen in Figure 5.6. It is important that all mixtures lie
within the mixing polygon.

> plot(in_wolves, cov_name = "Pack")
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Figure 5.6: Iso-space plot for Wolves example showing Deer, Marine Mammal,
and Salmon food sources. Mixtures are coloured by Pack.

Users can then run the model using the cosimmr_stan function as shown below.

> out_wolves = cosimmr_stan(in_wolves)

The output object can then be used to generate summaries and plots. We first
create a summary showing ‘statistics’ for Observation 1. Users can specify multiple
observations if they wish, otherwise the function defaults to observation 1.

> summary(out_wolves, type = "statistics")

Summary for Observation 1

mean sd
P(Deer) 0.869 0.037
P(Salmon) 0.040 0.038
P(Marine Mammals) 0.091 0.031
sd_wolves_data$y.d13C 1.143 0.170
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sd_wolves_data$y.d15N 0.955 0.189

From the ‘statistics’ produced we can see that for Observation 1 (an individual in
Pack 1) the majority of their diet is comprised of deer, with salmon and marine
mammals making up a smaller proportion of their diet.

Users can create different plots using the plot function. We can see the proportions
plot for both cosimmrSTAN as well as MixSIAR in Figure 5.7. These show the
proportions of deer, salmon, and marine mammal consumed by individual 1. From
examining these plots we can see that cosimmrSTAN returns comparable estimates
to MixSIAR in terms of the proportion of each food source consumed, but if we
look at Table 5.2 we can see that cosimmrSTAN returns those proportions over
100 times faster when using the Variational Bayes algorithm. Slight differences in
results may come from the slightly different error structures used by cosimmrSTAN
and MixSIAR. As a default cosimmrSTAN does not include the multiplicative ξ

term discussed in Section 5.2.1 but for this model MixSIAR does include it.

> plot(out_wolves,
type = c("prop_histogram",

"beta_random_histogram",
"covariates_plot"),

one_plot = FALSE,
cov_name = "Pack")

Model Lower quartile Mean Median Upper quartile
cosimmrSTAN VB 17.0 21.3 21.1 24.8
cosimmrSTAN MCMC 408.4 446.2 475.4 482.2
MixSIAR 2141.7 2377.8 2167.2 2643.8

Table 5.2: Table showing computation time (seconds) of cosimmrSTAN and
MixSIAR (‘normal’ run (100,000 chains and 50,000 burn-in) needed for conver-
gence) for the wolves example, showing the lower quartile, mean, median, and
upper quartile. There were 10 evaluations of each function.
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(b) MixSIAR

Figure 5.7: Density plot showing proportion of different food sources for observa-
tion 1 for wolves example for cosimmrSTAN and MixSIAR

Figure 5.8 shows the β values corresponding to Pack 1. We can see that the deer
values are especially removed from zero, which indicates that deer consumption in
Pack 1 is impacted by the fact that the individual is in Pack 1.
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Figure 5.8: Density plot for wolves example showing β values corresponding to
Pack 1. The deer value is especially removed from 1, indicating more deer is
consumed by individuals in Pack 1.

Figure 5.9 shows the change in deer consumption over the Pack covariate. We can

112



5.4. Working Examples

see how consumption changes across the packs and that individuals in packs 1, 2,
3 and 6 appear to be consuming the most deer. Similar plots can be produced for
all of the food sources, but these are omitted for brevity.
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Figure 5.9: Covariates plot for wolves example showing change in Deer consump-
tion over Pack covariate.

Users can also plot the ωk values for each of their k = 1, . . . , K food sources. The
code for this is as follows:

> plot(out_wolves, type = "omega_density")

The resulting plot in shown in Figure 5.10. We can see the ω values for each of the
three foods sources. A higher value here indicates more variability in consumption
of the source between packs, i.e. different packs consume this source differently. A
lower value indicates less variability, so packs are more similar in their consumption
of this source. In this example all food sources seem to be similarly variable across
packs.

In this example we can again see that cosimmrSTAN is capable of obtaining results
similar to MixSIAR, in a much shorter time frame. The inclusion of pack as a
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Figure 5.10: Density plot for wolves example showing ω value for each of Deer,
Salmon, and Marine Mammals food sources. ω describes the overall variability of
source consumption between groups.

covariate allows us to see the difference in diet across different wolf packs, and to
see what food sources may be important to different wolf populations. Looking at
ω values allows us to note which food sources vary the most between packs.

5.4.3 Mixed Effects Model
We will finally run a mixed effects model using the alligator data from (Nifong
et al., 2015). This dataset contains data collected on Alligator mississippiensis in
Georgia, USA. As well as isotope data, stomach content analysis was also carried
out on these animals. The data set includes Length as a fixed covariate and ‘Sclass’
(size class) as a random covariate. There are just two food sources, ‘Marine’ and
‘Terrestrial’, and all of the food that the alligators were observed eating is grouped
into one of these two sources.

To begin we load in the cosimmrSTAN package and read in the data. This model is
not the best fitting model for the Alligator data. As shown in Govan et al. (2024),
the model which only includes Length as a fixed covariate is selected as the best
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model when using either MixSIAR or cosimmr. However, for illustrative purposes,
to show the capability of the cosimmrSTAN package to handle multiple covariates
of both fixed and random type this model has been chosen.

> library(cosimmrSTAN)
> alligator_data = cosimmrSTAN::alligator_data
> Length = alligator_data$length
> Sclass = as.factor(alligator_data$sclass)
> formula = alligator_data$mixtures ~ Length + (1|Sclass)
> in_alli<-with(alligator_data,

cosimmrSTAN_load(formula,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = TEF_means,
correction_sds = TEF_sds))

The iso-space plot can be generated using the plot function. The code for gen-
erating an iso-space plot in cosimmrSTAN is shown below and the iso-space plot
generated is shown in Figure 5.11. This plot is coloured by the covariate Length.
It is important that all of the mixtures lie within the mixing polygon created by
the food sources and so it is highly recommended that users create and check this
plot before running their model.

plot(in_alli, cov_name = "Length")

The data can then be run through the cosimmr_stan function. This function
defaults to using the Variational Bayes algorithm. The code to run the model is
as follows:

out_alli = cosimmr_stan(in_alli)

115



5.4. Working Examples

5.0

7.5

10.0

12.5

−30 −25 −20 −15
alligator_data$mixtures.d13C

al
lig

at
or

_d
at

a$
m

ix
tu

re
s.

d1
5N

Length

100

200

300

Freshwater

Marine

Mixtures

Tracers plot

Figure 5.11: Iso-space plot showing alligator example. There are two food sources,
Marine and Freshwater. Consumers are coloured by Length.

Once the model is run users can create different plots, such as the plot of propor-
tions, or the density plot of the β values, both fixed and random. The code for
this is shown:

> plot(out_alli,
type = c("prop_histogram",

"beta_fixed_density",
"beta_random_density"))

The proportion plot can be seen in Figure 5.12. This shows the estimate of each
food source consumed by observation 1, which is an alligator of length 186cm, and
size class ‘Adult’. This plot shows estimates produced by both cosimmrSTAN and
MixSIAR. We can see that they are giving similar results in terms of the estimated
proportions. The time taken for each model run can be seen in Table 5.3, and here
we can see that cosimmrSTAN is producing similar estimates to MixSIAR, but is
producing them over 70 times faster when using the Variational Bayes algorithm.
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Figure 5.12: Density plot showing proportion of marine and freshwater con-
sumption estimates for observation 1 for alligator example for cosimmrSTAN and
MixSIAR

Model Lower quartile Mean Median Upper quartile
cosimmrSTAN VB 35.6 36.4 36.1 37.1
cosimmrSTAN MCMC 417.2 439.5 419.6 467.7
MixSIAR 2562.0 2582.5 2590.6 2619.2

Table 5.3: Table showing computation time (seconds) of cosimmrSTAN and
MixSIAR (‘short’ run needed for convergence) for alligator example, showing the
lower quartile, mean, median, and upper quartile. There were 10 evaluations of
each function.

A histogram showing estimates of β values for the ‘Length’ covariate can be seen
in Figure 5.13 and for the ‘Sclass’ covariate in Figure 5.14 for the ‘Small Juvenile’
category. We can see that the values for Length are not centred around zero
for either food source, indicating that ‘Length’ impacts the amount of Marine or
Freshwater sources being consumed.

We can see a plot of the ω values in Figure 5.15. This shows the variation in food
consumption between size classes. We can see that the variation is the same in
both food sources as there are only two food sources. If consumption of one source
increases then the other has to decrease.

A lineplot showing the change in consumption of both freshwater and marine
sources as the Length of an alligator increases is shown in Figure 5.16. This plot
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Figure 5.13: Density plot showing estimated β values for Length covariate for
both marine and freshwater food sources.
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Figure 5.14: Density plot showing estimated β values for Sclass covariate for Small
Juveniles for both marine and freshwater food sources.
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Figure 5.15: Density plot showing ω values for each food source for Alligator
example.

is generated by using the plot function. Within this function, a data frame is
generated which has length varying regularly from the minimum to maximum
values. All other covariates are assumed to be fixed at their median value (if
numeric) or in the first level of factors. This plot highlights what we could see in
the plot of β values, that ‘Length’ influences the consumption of freshwater and
marine sources. This aligns with the findings from the original Nifong et al. (2015)
paper, which had the same conclusion via stomach content analysis. We see, for
example, that marine consumption changes from less than 20% to over 80% as the
length of an alligator increases. In Figure 5.17 we can see the change in freshwater
consumption over the different Size classes. The code for generating these plots is
shown below:

> plot(out_alli, type = "covariates_plot", cov_name = "Length")
> plot(out_alli, type = "covariates_plot", one_plot = FALSE, cov_name = "Sclass")

Users can use the predict function to predict for values of the covariate not present
in the original data set. For example, code is shown below to predict proportion
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Figure 5.16: Lineplot showing change in consumption of freshwater and marine
sources as Length increases.
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Figure 5.17: Boxplot showing difference in consumption of freshwater sources over
different Size classes.
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values of alligators of length 50cm and 200cm, in size classes ‘Adult’ and ‘Small
juvenile’ respectively.

> x_df_alli = data.frame(Length = c(50, 200),
Sclass = as.factor(c("Adult", "Small juvenile")))

> pred_alli_out = predict(out_alli, x_pred = x_df_alli)

The ‘summary’ and ‘plot’ functions can then be used to analyse the object created
by the ‘predict’ function:

> summary(pred_alli_out, type = "statistics", obs = c(1,2))

Summary for Observation 1

mean sd
P(Marine) 0.142 0.107
P(Freshwater) 0.858 0.107

Summary for Observation 2

mean sd
P(Marine) 0.311 0.178
P(Freshwater) 0.689 0.178

This example highlights cosimmrSTANs ability to handle multiple covariates in a
much shorter timeframe than MixSIAR. It highlights the usefulness of the other
functions in cosimmrSTAN, for example the predict function which allows us to
examine combinations of covariates which aren’t present in the original data set.

5.5 Conclusion
cosimmrSTAN is a useful package for fast running of SIMMs. It allows for users to
include both fixed and random covariates, as well as the inclusion of raw source
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data or fitted source data. It is designed for ease-of-use and has built in plot and
summary functions to allow for easy visualisation of results. The built-in predict
function allows for users to examine combinations of covariates not present in the
original data set. The ability to plot ω values allows us to look at variability of
source consumption between different groups.

Variational Bayes offers a speed advantage over previous algorithms popularly used
in SIMMs, such as MCMC. In this paper we have illustrated a speed improvement
of between 70 and 110 times faster than MixSIAR. This means that users will
be able to run more complex models in a shorter time frame, as well as running
potential different combinations of covariates and choosing the correct combination
for their question.

Potential extensions for this package include allowing effects to be nested. This
is available in MixSIAR and we plan to include this in future iterations of this
package. Non-linear effects could also be a fruitful avenue of exploration. The
allowance of different sources to be associated with different covariates, for example
if we are looking at different regions, could be useful and is something we can add
in future versions of cosimmrSTAN.

122



CHAPTER 6
Final Remarks

In this chapter, we review and summarise the work presented in this manuscript, reflect
on obstacles or difficulties encountered, and provide proposals for future research and
additions to the work described.

In this final chapter, we present an overview of each of the previous chapters,
emphasising the novel techniques used in each, the limitations within each chapter
and potential extensions that could be carried out at a later date.

Stable Isotope Mixing Models (SIMMs) are widely cited and used in ecology. They
are important in the examination and study of an animal’s diet. SIMMs allow
for less invasive studying of an animal’s diet, and allow for ecologists to have
a measurable way to compare niches between species. They can also be used in
other fields such as geology and pollution, and are important in seeing how different
pollutants contribute to an overall polluted area.

However, the use of Markov chain Monte Carlo (MCMC) in SIMMs means that
models can become prohibitively slow, sometimes taking millions of iterations in
order to converge, depending on the complexity of the model. This formed the
motivation for this thesis: using Variational Bayes in order to accelerate model
fitting. The use of Variational Bayes allows for models to converge much more
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quickly. While VB is not guaranteed to converge, we have found throughout this
thesis that VB converged to give consistent results with MCMC, while offering
a significant (2-100 times) speed improvement over MCMC, depending on the
complexity of the model.

Chapter 3 introduced the package simmr, which allows users to run a SIMM via
MCMC or FFVB. simmr is designed for ease-of-use. It has built-in plot and sum-
mary functions, as well as posterior predictive and prior visualisation functions
which allow for users to examine how well their data is fitting the model as well as
looking at how their posterior changes from the prior. Users can choose between
MCMC or FFVB when they are running a SIMM. simmr is an accessible package
designed with ecologists in mind. The main limitation of simmr is the lack of
ability to include covariates, and this is what we focused on in Chapter 4. The in-
ability to include covariates means that users can only run simpler models through
simmr, and they should be sure that covariates are not important in their system
before running the model through simmr, as otherwise they violate assumptions
about their data being independent.

Chapter 4 introduced the package cosimmr, which allows users to run SIMMs
with fixed covariates included. cosimmr offered a speed improvement of up to
one order of magnitude over MixSIAR, another package designed for running of
SIMMs which uses MCMC. This speed advantage means that users can run more
complex models in a shorter time frame, as well as allowing users to run multiple
models and use model selection to pick the most accurate model for their data.
cosimmr also allowed for users to include more complex error terms, to account
for dietary specialisation. One of the main limitations of cosimmr is the fact that
the package cannot handle random covariates, and it also does not allow for raw
source data, or have any capability to fit source data. This means that unless the
user is fitting their source data themselves before including it in cosimmr, they are
making the assumption that their measured mean and standard deviation are the
true mean and standard deviation, and not a sample mean and standard deviation.

Chapter 5 focuses on the package cosimmrSTAN. This package is designed for ease-
of-use and it is modelled around the pre-existing simmr and cosimmr framework,
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however cosimmrSTAN utilises STAN’s VB function and allows for users to fit fixed
and random covariates, as well as allowing for raw source data or fitted source data,
depending on the users wishes. This package offers between 70 and 100 times speed
improvement on MixSIAR, depending on the complexity of the model. The use of
Variational Bayes offers a speed improvement over other packages, and the use of
STAN to implement this package allows for more complex models to be specified.
The package is also designed to be accessible for non-expert users, and does not
require a detailed knowledge of statistics in order to run complex models. It also
has built-in plotting, summary, and predict functions which allow users to gain
further insights. The main limitation of the cosimmrSTAN package is the fact that
users cannot implement nested effects. This could be a useful feature in the future
as it would allow for users to run more complex models.

These new packages will allow for users to perform more complex analyses of
animal diets, as well as being useful in other fields, such as in the study of pollution.
Recent studies utilising simmr include Capece et al. (2025), which investigates
carbon storage in a salt marsh. While these packages were initially designed with
animal diets in mind, they have the potential to be widely used outside of this
field.

There are several avenues that could provide future expansions to this work, and
these avenues can be broadly categorised into: software improvements, and ecolog-
ical improvements. For software, developments could include interactive iso-space
plots, which allow for users to click on any individual on the plot and get a sum-
mary of their source consumption. Development of a shiny app (Chang et al.,
2024) could allow for interactive plots for users.

Richer covariate models are also a fruitful avenue for expansion. While we are able
to run many of the examples that are available in MixSIAR (Stock et al., 2018), we
are unable to run models with nested effects. Future development could include
developing a package that allows for the inclusion of nested effects. These models
could be created by utilising machine learning models such as Bayesian Additive
Regression Trees (Chipman et al., 2010), or through the use of splines. Another
possibility for future work is the development of one ‘master’ package in R that
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allows for users to run any of the models outlined in this thesis through one R
package.

There are also several improvements we could make in order for our models to
become more ecologically accurate. Firstly, a better understanding of isotopic
routing, how isotopes transfer into tissues and isotope formation would be a useful
avenue for future research. Having more biological knowledge about the system
we are working in leads to more accurate statistical models. There is also the
possibility of developing software to deal with these issues. Collaboration with
ecologists to discover the main issues they are facing and how we can best help
with that could be a fruitful avenue for research.

There is also the issue of combining sources. While we generally default to rec-
ommending sources be combined a posteriori unless there is a sound biological
basis for combining a priori, combining a posteriori does mean that we are using a
slightly different prior distribution. An important development might be changing
the definition of the prior distribution if users might be combining sources after
(Stock et al., 2018).

Finally, allowing for users to incorporate data from different tissues into the same
model might prove useful. Different tissues have different turnover rates (Tieszen
et al., 1983a) and therefore can tell you about different time spans of the animals
diet. Future models could allow for users to include data from several different
tissue types simultaneously, giving users a view of the animal’s diet in both the
shorter and longer term.

The field of Stable Isotope Mixing Models is an exciting one, with many possible
future developments which will allow for users to gain a deeper understanding into
the diets of animals, as well as their subsequent trophic interactions and their
place in the ecosystem. The use of simmr, cosimmr, and cosimmrSTAN will allow
for ecologists to run more complex models more quickly, leading to greater insight
and understanding of our environment and the interactions between animals.

All methodology in this thesis is freely reproducible from code available at https:
//github.com/emmagovan in the repositories simmr_paper_SIMM_package_scripts,
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cosimmr_paper and cosimmrSTAN_paper, for chapters 3, 4 and 5.
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