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Abstract

Visual Place Recognition (VPR) is a task in computer vision that involves matching

images of an environment to previously visited locations, enabling systems to identify

and recognise places based on visual information. VPR has emerged as a widely studied

topic in computer vision and mobile robotics, driven by its applications in autonomous

navigation, image retrieval, and loop closure detection. Over the past decade, the field

has witnessed significant progress, fuelled by improvements in camera hardware, the

proliferation of mobile devices, and the growing availability of public image datasets.

Researchers have increasingly utilised deep learning techniques to tackle the challenges

of VPR, particularly those related to appearance changes and varying viewpoints that

traditional descriptors struggled to address.

Despite these advancements, several interconnected challenges hinder the deploy-

ment of reliable and scalable VPR systems in automotive applications. Utilising large-

scale sequential datasets poses significant difficulties due to diverse recording conven-

tions, redundant visual content, and limited viewpoint variance, complicating training

processes for deep learning. Additionally, efficiently categorising scenes without ex-

plicit object identification introduces considerable computational and methodological

complexities. Furthermore, VPR systems face challenges related to scalability, pri-

marily due to the computational demands associated with rapid retrieval of images

for localisation along extensive trajectories spanning several kilometres. This thesis

specifically addresses these critical challenges.

First, we introduce OdoViz, a comprehensive and unified framework designed

for efficient dataset exploration, visualisation, analysis, curation, and preparation of

bespoke training data from heterogeneous datasets. OdoViz streamlines the creation of

standardised, tailored datasets essential for robust VPR model training.

Secondly, we elaborate on the development of robust learned image descriptors

utilising large sequential datasets. We introduce a novel discretisation approach that

segments trajectories into visually similar regions, facilitating efficient online sampling

of triplets for contrastive learning. We present a detailed training regime involving

tailored data subsets, a modified architecture, and a custom loss function for stable

contrastive training, optimised to generate robust learned image representations.
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Thirdly, we propose an efficient scene categorisation method leveraging Variational

Autoencoders (VAEs). Our approach encodes images into compact, disentangled

latent spaces without explicit object recognition, enabling rapid categorisation into

urban, rural, and suburban contexts. This method achieves exceptional computational

efficiency, with inference times under 100µs, making it suitable for use as a pretext task

in real-time automotive applications.

Finally, addressing the scalability concerns, we introduce a hierarchical framework

utilising learned global descriptors to facilitate rapid retrieval over extensive distances

while maintaining robust localisation performance. Through extensive experimentation,

we identify continuity and distinctiveness as key properties of effective global descrip-

tors for scalable hierarchical mapping, and propose a systematic method to quantify and

compare these characteristics across various descriptor types. Our VAE-based scene de-

scriptors achieve up to 9.5x speedup on the longest evaluated track, St Lucia (17.6km),

while maintaining the same recall performance over longer trajectories, demonstrating

their effectiveness in hierarchical localisation.

Together, these contributions address the identified VPR challenges, laying the

groundwork for scalable and efficient VPR systems leveraging learned representations,

suited for deployment in diverse real-world automotive environments.
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Chapter 1

Introduction

Visual Place Recognition (VPR) is the task in computer vision and mobile robotics

of matching images of an environment to previously visited locations. At its core,

VPR implicitly leverages visual cues such as distinct keypoints, patterns, objects, and

landmarks within its detection and matching process. Unlike general image retrieval,

VPR requires understanding the spatial and environmental context of images, which is

crucial for applications like autonomous navigation where accurate place recognition is

essential for mapping and localisation.

The complexity of VPR arises from the vast range of variations in the appearance

of real-world places due to changes in lighting, weather, seasons, and viewpoints (see

Figure 1.1 and Figure 1.2). The ability to reliably recognise places despite such

variations makes VPR a particularly demanding problem. The past two decades have

seen significant progress in the development of robust VPR techniques, driven by the

necessity to address these challenges [1, 2]. These resulting techniques are now central

to the development of dependable and resilient autonomous systems in domains ranging

from self-driving vehicles to augmented and virtual reality headsets.

Within the domain of SLAM, VPR plays a particularly important role, providing

global constraints on the robot’s trajectory estimates and enhancing the accuracy and

reliability of the mapping and localisation process. As a robot autonomously traverses

the environment, it continuously captures data about its surroundings through cameras

and other sensors. Fusing data from its sensors, the robot builds a map of its environment

while also estimating its pose. When operating over large scales, the solution tends to
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Images of the same place taken at different seasons highlighting the chal-

lenge of place recognition in the context of extreme changes in visual appearance.

Image Credits: visuallocalization.net

Figure 1.2: Images of the same place taken in all four seasons from the Nordland

dataset [3]

diverge in an unbounded fashion as a result of the accumulation of small errors (a.k.a.,

drift) in the estimates of the robot’s pose; see Figure 1.3.

To address this problem, the VPR module continuously attempts to match its current

sensor data to previously visited locations. The resulting loop closures provide an

important constraint by estimating the globally accumulated error in the robot’s pose.

Correcting for this error helps ensure the new sensor data is aligned accurately with the

pre-existing map and that the resultant solution is globally consistent. Without loop

closures, visual SLAM reduces to odometry, leading to the robot interpreting an infinite

world, exploring new areas indefinitely [4, 5]. Furthermore, false negative matches will

result in delayed correction of accumulated errors, while false positives will result in

incorrectly merging regions, typically resulting in catastrophic failure of the system [6].

Reliable loop closing is hence both essential and hard. SLAM solutions incorporating

VPR have direct applications in building better and more reliable autonomous navigation

for self-driving cars and Unmanned Ground Vehicles (UGVs), autonomous drones or

Unmanned Aerial Vehicles (UAVs), and other mobile robotics applications in both

indoor and outdoor settings; see Figure 1.4.

Maps constructed through the measurement of local pose changes derived from an

Inertial Navigation System (INS) or Visual Odometry (VO) alone exhibit high accuracy

over short distances but experience drift over larger scales, accumulating significant

https://www.visuallocalization.net
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(a) Satellite Imagery (b) GPS (c) VO

Figure 1.3: (a) Trajectory in the Oxford RobotCar dataset [7] overlaid on Satellite

Imagery data (b) Coloured GPS observations showing start (red) and end (yellow) (c)

Map built only using relative pose values derived from Visual Odometry (VO), which

is not globally accurate. Notice the disconnected start and end locations mapped far

away from each other, which are indeed the same. Best viewed zoomed in colour on a

computer screen.

Figure 1.4: Images showing various applications that utilise VPR systems for navigation.

(Top Left) A Honda CR-V fitted with comma.ai openpilot. (Top Right). South Korean

Team KAIST’s robot turning a valve in the DARPA Robotics Challenge. (Bottom Left)

Boston Dynamics Robot Spot climbing the stairs. (Bottom Right) An autonomous

sprayer drone from DJI used in agriculture.

https://comma.ai/
https://archive.darpa.mil/roboticschallenge
https://www.bostondynamics.com/spot
https://www.dji.com
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Figure 1.5: Left: Mapping error (red) caused by poor GPS reception in Oxford, where

raw GPS values are shown in cyan. Right: A loss of reception causing significant

positioning error over a large portion of the route [7]. Best viewed zoomed in colour on

a computer screen.

errors; see Figure 1.3. When the Global Positioning System (GPS) measurements are

combined with INS data, the mapping system benefits from the high-rate, precise INS

measurements for short-term navigation and the global positioning accuracy of GPS for

long-term trajectory and map corrections. Thus, when reliable location estimates are

available as the robot navigates, more accurate maps can be built.

Whilst there have been numerous advancements to increase the precision of GPS

estimates, the Estimated Position Error (EPE) can be significantly elevated — in the

order of hundreds of metres, especially when the GPS receiver has limited visibility

to satellites, for example, when driving a car in a tunnel, heavily forested areas, or in

urban canyons — resulting in a highly inaccurate estimation of location, rendering it

unsuitable for practical use in such situations, as shown in Figure 1.5. Although the

system can be quickly recovered from such situations once better reception is available,

the problem of robot navigation for indoor, marine, underground, and extraterrestrial

applications that cannot leverage GPS positioning remains. Additionally, solving the

place recognition problem using visual cues contributes valuable vision intelligence and

transferable knowledge, which can prove useful for many tasks that rely on vision.

Early VPR approaches to recognising places relied on the detection and description

of corners, or keypoints, in the query image and matching them with a collection of
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reference images to find the closest match. While overall variation in brightness can

be modelled using gradients, further variations in scale and rotation can be accounted

for through a myriad of invariant feature descriptors, such as SIFT [8], SURF [9],

BRIEF [10], ORB [11], and AKAZE [12]. These invariant feature descriptors enable

finding matches between images captured within small time intervals where the images

exhibit slight viewpoint shifts, small illumination changes, etc. As these local feature

descriptors describe only a keypoint or a salient local region in an image, they are

limited to only comparing regions of the image.

Global descriptors, on the other hand, encapsulate the characteristics of an image into

a single, unified vector, providing a representation for the image, describing its overall

structure and content. Local feature descriptors can be aggregated to form a global

feature representation using approaches like Bag of Visual Words (BoVW) [13, 14, 15],

Vector of Locally Aggregated Descriptors (VLAD) [16], and Fisher Vector (FV) [17].

Conversely, global representations that directly describe images holistically, such

as Histogram of Oriented Gradients (HOG) [18] and GIST [19], can also be utilised.

Adopting a holistic approach to building global feature descriptors is more efficient for

many applications. This efficiency is particularly advantageous in tasks such as object

recognition, scene categorisation, and VPR systems, where the ability to match images

quickly and accurately is crucial.

Although image representations based on handcrafted feature descriptors have been

demonstrated under mild perceptual changes, they are not as robust for matching images

with challenging illumination, weather, seasonal, and viewpoint changes [20], such

as those shown in Figure 1.1 and Figure 1.2. For VPR, this necessitates the ability to

match images despite drastic appearance changes caused by seasons, such as snow on

lawns, trees, and roads, and other changes in the environment, including those affecting

buildings and landmarks. Recent advancements in deep learning have revolutionised

this aspect, enabling the creation of learned descriptors that can capture the salient

elements of the images more comprehensively [21].

As such, learned image descriptors represent a paradigm shift in the field of computer

vision by enabling the extraction of a global descriptor directly from the entirety of

an image, eschewing the traditional reliance on predefined interest points. Learned

descriptors seek to capture the global characteristics of the image in a single, holistic
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representation in a manner that is both robust and representative of the overall visual

appearance. The synthesis of detection and description into a singular framework

marks a significant advancement in computational efficiency and effectiveness within

both VPR approaches and the broader field of image analysis. This exemplifies the

overarching trend that scalable, data-driven methods often surpass traditional hand-

crafted solutions [22].

In addition to identifying the fine and distinct features within an image using

the image descriptor, the capability to comprehend the configuration of spaces and

categorise the broader scene also plays a crucial role in navigation and mapping tasks.

Scene categorisation is a core computer vision task that classifies images into predefined

categories (e.g., beach, restaurant, or mall) by analysing their overall content, objects,

and spatial layout. Scene categorisation provides contextual information about the scene,

enabling VPR systems to draw higher-level insights about the surrounding environment.

As such, this reasoning about complex and diverse environments to obtain contextual

cues is essential for intelligent systems to predict and interpret ongoing or future events.

Furthermore, such techniques that integrate scene categorisation contribute to the

development of efficient hierarchical mapping and localisation methodologies. For

instance, in retrieval tasks, extensive areas of scenes that bear no relevance to the anchor

image can be efficiently bypassed. Such an approach not only streamlines the process

of mapping and localisation but also enhances the overall efficiency and effectiveness

of VPR systems in navigating and understanding diverse environments.

1.1 Challenges

In this thesis, we address the following challenges associated with visual place recogni-

tion.

C1: Processing public datasets for curating data subsets for training, validation,
and testing: Data-driven methodologies achieve superior performance to handcrafted

approaches by directly modelling the real-world variation exhibited in the large-scale

image datasets. Consequently, this introduces a significant demand for such datasets to

train, validate, and test the resulting models. Although the availability of several publicly

accessible datasets serves to alleviate this difficulty, successfully utilising these resources
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for VPR tasks requires a detailed understanding of the datasets’ characteristics, such as

the environmental conditions they represent, scene diversity, and temporal variations.

Ensuring the relevance and comprehensiveness of the training data is essential, as

they affect the system’s robustness and generalisability of the learned techniques.

Furthermore, curating and processing datasets involves analysing and interpreting a

complex array of metadata, which is essential for filtering and preparing subsets of data

tailored to the training requirements. These requirements pose a challenge, which is

further exacerbated by the lack of interoperability among the Software Development

Kits (SDKs) provided for interacting with these datasets. This incompatibility stems

from a variety of factors, including, but not limited to, the disparate Application

Programming Interface (API) designs that govern access to the datasets, the use of

different programming languages across SDKs, and differences in the data capture and

recording conventions used.

C2: Developing and refining learned representations for VPR under challeng-
ing conditions: The curated data serves as the foundation for constructing a model

capable of generating robust image representations. Training such models involves

an optimisation challenge with two distinct objectives. First, the model must remain

invariant to variations in illumination (e.g., changes in time of day, seasons, and weather

conditions) and dynamic environmental factors (e.g., vegetation changes and the pres-

ence of non-static objects such as pedestrians, vehicles, and trash bins). Second, it

must retain the capacity to distinctly represent images from physically disparate lo-

cations, ensuring accurate place recognition and localisation. Using existing training

methodologies to train a VPR model on large sequential image datasets from public

sources that exhibit long-term changes presents two key challenges: (1) the sequential

datasets often include redundant visual content, particularly in scenes where the vehicle

is stationary, such as at intersections or roundabouts, leading to repetitive information;

(2) there is limited viewpoint variance, especially on single carriageway roads, despite

multiple traversals of the same route at different times. These two issues pose conflicting

requirements: the need to reduce redundant data while simultaneously increasing data

diversity to capture varying viewpoints. Furthermore, while pre-building unique positive

and negative image pairs or triplets for each epoch in contrastive learning improves

generalisability, this approach becomes impractical with large datasets, necessitating an

alternative method that can generate data batches on the fly during training. Additional

issues include slow loss convergence, unstable training processes, and the risk of em-
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bedding space collapse or explosion. The challenge, therefore, is to develop a model to

produce robust embeddings that abstract away transient and redundant elements of the

scene while preserving stable, unique features essential for accurate place recognition,

all while addressing the complexities of training on large sequential datasets.

C3: The need for efficiently determining scene type to provide context for VPR
tasks: In the domain of autonomous navigation, scene categorisation serves as an impor-

tant building block required to augment capabilities in context-aware object detection,

action recognition, and comprehensive scene understanding. This context provides

a prior for various computer vision tasks, facilitating parametrisation of downstream

processing tasks. In an automotive context, the ability to automatically differentiate

between rural, urban, and suburban settings allows tuning of algorithms to the specifics

of the environment, such as adjusting pedestrian detection thresholds, thereby improving

performance and reliability. However, unlike object recognition, scene categorisation

poses unique challenges, as images from different classes often share objects, tex-

tures, and backgrounds, resulting in visual similarity and ambiguity among categories.

Although an alternative approach is to rely on GPS data for contextual cues such as

determining city limits for heightened pedestrian detection, such approaches suffer

from limitations. In particular, it requires a priori labelling of the environment, thereby

necessitating label management and updating to cater for rapid and dynamic develop-

ment around cities and suburban regions. In contrast, determining the scene type in

real-time using on-board sensor measurements eliminates the need for external data

sources. However, such a system must perform this task very efficiently and be capable

of realtime operation to meet the demands of practical applications.

C4: Scaling VPR systems to long trajectories: As the scale of the operating envi-

ronment of the robot increases, adopting a simple approach of exhaustively searching

the database for potential matches results in a linear increase in complexity. Several

studies [13, 23] have addressed this issue using indexing techniques, enabling modern

approaches to scale. However, indexing requires additional storage space and can

lead to increased maintenance overhead, as the index must be updated with every data

modification. This necessitates a hierarchical approach that overcomes this limitation

by organising images into a structured format, facilitating the rapid narrowing down

of potential matches. The consequent search space complexity reduction through the

use of hierarchy is crucial for enhancing the efficiency of place recognition tasks on

trajectories that span several kilometres, especially in applications requiring real-time
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or near-real-time performance, such as autonomous driving and robotic navigation.

1.2 Contributions

This thesis addresses the challenges discussed in the previous section through the use

of learned representations for visual place recognition, proposing novel solutions and

methodologies to advance the field. Our contributions are delineated as follows:

• In response to Challenge C1, which underscores the difficulties in harnessing

publicly available datasets, we introduce OdoViz [24], a novel unified framework

to facilitate the efficient exploration, visualisation, curation, sampling, and prepa-

ration of datasets and subsets of data from a wide set of public datasets for VPR

research. By enhancing the usability of extensive datasets and facilitating features

to derive standardised data subsets tailored to bespoke requirements, OdoViz

serves as a foundational element for developing robust learned models in VPR.

• Addressing Challenge C2, we detail the development and training of VPR models

that generate robust learned embeddings from images using contrastive losses util-

ising large sequential public datasets. We propose a novel approach of discretising

trajectories into locations (or regions) containing similar images, allowing for

efficiently sampling and obtaining of unique triplets during training. We employ

adaptations to the loss function, architecture, and learning rate amenable to bet-

ter loss convergence and to prevent training failures. We aggregate discretised

locations and additionally utilise data augmentation techniques to add viewpoint

variance. We efficiently construct training data batches in an online fashion,

eliminating the need to pre-select and prepare triplets before each training epoch,

a process that is computationally expensive. We train our model using online

batches with progressively increasing difficulty by dynamically selecting chal-

lenging samples from strategically chosen locations during training. Our model

successfully trains and produces embeddings that demonstrate improved retrieval

performance on data with challenging conditions such as seasonal changes and

day-night variations.

• For Challenge C3, we present a novel, highly compute-efficient, deep learning-

based approach to scene categorisation utilising Variational Autoencoders (VAEs).
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This approach employs a convolutional VAE to encode images into a multi-

dimensional latent space without explicit object recognition. We train the VAE in

an unsupervised manner on the image reconstruction task utilising large sequen-

tial datasets in order to capture high-level scene information. We propose to use

the disentangled latent features from the encoder as compact, interpretable global

features. We map these features to three scene categories: rural, urban, and subur-

ban, using a light supervised classification head requiring fewer than 500 labelled

images. With an inference time of only 60µs on a consumer-grade desktop with

an i9-9900K and NVIDIA 2080 Ti, our method efficiently categorises scenes.

• In tackling Challenge C4, related to the scalability and efficiency of VPR systems,

we propose the use of compact learned global descriptors in hierarchical topo-

logical mapping. This approach aggregates similar images into location nodes

using a learned global descriptor, dramatically enhancing the retrieval process’s

speed and efficiency. Through empirical analysis, we identify and define the

characteristics of an ideal global descriptor supporting hierarchical matching

amenable to scalable and efficient visual localisation and present a methodology

for quantifying and contrasting these characteristics. We conduct a comprehen-

sive evaluation of various global descriptors, identifying those that best support

scalable and efficient hierarchical matching. The image representations we devel-

oped for scene categorisation emerge as particularly effective while maintaining

the same recall performance in longer trajectories, demonstrating their utility in

hierarchical systems.

1.3 Outline

The thesis is organised as follows:

In the Background chapter, we discuss various solutions proposed to visual place

recognition, beginning with traditional approaches that focus on aggregating local

features to recent learned approaches incorporating semantic, geometric, and topological

information from the scene. We further explore scene categorisation techniques and

their application in scalable and efficient hierarchical mapping systems.

In Chapter 3, we provide a comprehensive overview of the foundational elements of
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VPR systems, presenting a thorough examination of the central elements of this research

area. We elaborate on the various datasets that serve as benchmarks for guiding research

and development and providing an objective measure of progress within the domain.

This is followed by an analysis of existing tools developed for the processing, analysis,

and visualisation of these datasets. We further expand on Challenge C1 pertaining

to utilising these tools and datasets to prepare new subsets of data required for VPR

research. We present a new tool, OdoViz, dedicated to odometry visualisation and

processing, involving techniques that aid in curating data for training VPR models. We

then highlight various metrics to measure the effectiveness, reliability, and robustness

of different VPR approaches.

In Chapter 4, utilising datasets created using OdoViz, we explore and evaluate

techniques to generate robust image embeddings addressing objectives mentioned

in C2. We elaborate on building, customising, and tuning data-driven models with

various techniques utilising contrastive learning to output embeddings that implicitly

encode information amenable to place recognition in challenging conditions that involve

moderate to extreme day-night, weather, and seasonal appearance changes. We elaborate

on our novel approach of discretising trajectories into locations containing similar

images to efficiently obtain triplets. We then detail the set of techniques and adaptations

proposed to successfully train a VPR model with triplet loss using weakly supervised

data curated from the Oxford RobotCar dataset [7], a large public dataset with over 100

traversals of the same route over a period of more than one year.

In Chapter 5, tackling problems posed by Challenge C3, we present a new deep

learning based holistic global descriptor approach utilising VAE that encodes high-level

scene information in a multi-dimensional latent space without explicitly recognising

objects, their semantics, or capturing fine details. We discuss training the VAE in

an unsupervised fashion on the image reconstruction task and use disentangled latent

variables as global feature descriptors. This is followed by utilising a lightweight

supervised classification head to map these features to the three scene categories: rural,

urban, and suburban. We then present scene categorisation results and show that our

approach is fast for realtime inference and efficient with a compact embedding size,

suitable for use as a pretext task in autonomous vehicles.

In Chapter 6, we propose to use compact learned global descriptors in hierarchical

topological mapping of environments to aggregate sequences of images with similar
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appearance into location nodes, addressing scalability issues described in Challenge

C4. While many learned descriptors with improved retrieval accuracy have been

incorporated into place recognition methods to enhance overall recall, we instead focus

on addressing the challenges of scalability and efficiency, in particular, when such

methods are used on longer trajectories. We elaborate on identifying and defining the

characteristics of an ideal global descriptor supporting hierarchical matching amenable

to scalable and efficient visual localisation through empirical analysis. As part of this,

we also present a methodology for quantifying and contrasting these characteristics.

We then propose the use of compact learned scene descriptors that excel in continuity

and distinctiveness characteristics as an efficient and scalable means for hierarchical

topological mapping.

Finally, in Chapter 7, we summarise the contributions of the research presented in

the previous chapters and discuss potential future directions.



Chapter 2

Background

Visual Place Recognition (VPR) systems enable a camera-equipped device to recognise

previously visited places by comparing the visual information captured within images.

Cameras, being a dominant sensor for perception, provide a rich source of data to

carry out a variety of navigation-related tasks. The development of effective image

descriptors is thus critical to VPR systems to facilitate fast, robust, and reliable loop

closure detection. The problem of VPR has been a topic of research focus within

robotics for more than two decades, during which time there have been a number of

technical advances [2].

In this chapter, we introduce basic concepts, terminologies, and methodologies

essential for understanding the subsequent discussions in this thesis. We begin by

exploring what are now considered traditional approaches to the problem based around

handcrafted features. We then cover data-driven approaches, where deep learning

techniques leverage geometric, semantic, and temporal information to improve the

robustness and efficiency of VPR systems. We further highlight the works that are

particularly relevant to addressing the challenges of scalably and efficiently recognising

places under varying conditions.

Limitations: We note that the structure of the review is designed to provide a

representative and coherent narrative leading up to the research questions of this thesis,

rather than to offer an exhaustive survey. Consequently, particular emphasis has been

placed on approaches and concepts, including learned descriptors and hierarchical

techniques, most pertinent to the scalability, efficiency, and robustness challenges

13
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addressed in subsequent chapters.

2.1 Bag of Visual Words Descriptors

Early approaches to image retrieval were heavily influenced by the Bag of Words (BoW)

model, originally developed for text-based document retrieval tasks [25]. In what has

become a seminal paper in the field, Sivic and Zisserman adapted the technique to visual

data, leading to the development of the Bag of Visual Words (BoVW) approach [13, 14,

15]. In the BoVW method, local feature descriptors are first extracted from a large set of

training images and subsequently clustered using the k-means algorithm. The resulting

cluster centres, or means, are treated as feature codewords, collectively forming a

codebook of length k. Each image is then encoded as a compact k-dimensional vector,

where the coefficient of the i th dimension represents the number of descriptors that

correspond to the i th cluster. This encoding effectively generates a histogram that

records the distribution of local feature descriptors across the k clusters. The overall

concept is explained visually in Figure 2.1.

In earlier works, local feature descriptors like SIFT [8] and SURF [9] were used to

construct the reference codebook from a training set during an offline phase. In subse-

quent years, the introduction of binary descriptors, such as BRIEF [10], BRISK [26],

ORB [11], FREAK [27], and LDB [28], enabled faster processing and comparison.

Furthermore, [29, 30, 31] bypassed the initial training step and built the codebook

in an incremental manner as the robot explored the environment, allowing for online

applications without the need for pre-built dictionaries.

Image retrieval in this context involves calculating distances between the query

image’s BoVW representation and those of the images in the search space, with a

threshold determining the number of similar images retrieved. This approach was

utilised in early Content-Based Image Retrieval (CBIR) systems, where images were

represented as vectors encapsulating feature statistics [32]. This method was adapted

for SLAM systems by continually adding the BoVW representation of the captured

images to a database and querying for similar representations to identify and integrate

loop closures as the system progresses.
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Figure 2.1: Illustration of the BoVW and VLAD concepts and the key differences be-

tween them. VLAD uses more space, a 128-d vector (representing aggregated residuals)

in place of a single number (frequency) for each centroid. However, incorporating first-

order feature-codeword statistics provides more distinctive information to classifiers,

resulting in improved performance when compared to the BoVW image representa-

tion [16].
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2.1.1 TF-IDF and Inverted Index

In Content-Based Image Retrieval (CBIR) systems, the discriminative power of visual

features (words) varies, much like terms in text retrieval systems. The Term Frequency-

Inverse Document Frequency (TF-IDF) framework, widely used in text retrieval, was

adapted and applied to the image domain in [13]. In this framework, images are

represented using a BoVW vector with TF-IDF weighted feature frequencies, marking

a shift from using raw histogram counts. This weighting scheme promotes features that

occur more frequently within the given image and, at the same time, diminishes features

that occur frequently across the training set. For visual data, TF-IDF score is given by:

TF-IDF( f , I ) =TF( f , I )× IDF( f ) (2.1)

IDF( f ) = log

(
N

n f

)
(2.2)

where,

I = image

f = local feature descriptor (or visual word)

N = total number of images

n f = number of images containing f

TF( f , I ) = term frequency, frequency of f in I

IDF( f ) = inverse document frequency

As such, this approach refines the traditional histogram-based comparison by in-

corporating TF-IDF scores into the retrieval process, allowing for more discriminative

matching of images in large datasets. To enhance retrieval efficiency, inverted indices

were employed, mapping local features (words) to all the images (documents) in which

they appear. As local feature descriptors are computed, the inverted index is updated for

each feature codeword in the codebook. When matching a new image, the system only

compares it to images sharing similar features, significantly speeding up the retrieval

process.

Further to the above, a stop-list, which excludes the top 10% and the bottom 5% of

the descriptors found in the corpus of initial images, was used to reduce the number

of mismatches and the size of the inverted file while maintaining a sufficient visual

vocabulary. This process removes the most frequent visual words that occur ubiquitously
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in most images. These visual words generally lack distinguishing characteristics, such

as a patch of sky and a patch of road, analogous to the common words like is and the

in text-based information retrieval. Similarly, the least frequent visual words, which

can contain particularly unique patterns or objects that occur only once or twice in the

entire set, are also eliminated, as they do not prove to be helpful in retrieving images.

The performance of this technique, however, degrades as the database grows, making it

more time-consuming to update the inverted index.

Building on the work in [13], [23] introduced a hierarchical approach that organises

the visual vocabulary into a vocabulary tree utilising a tree structure. This approach

supports much larger vocabularies, improving retrieval rates by significantly reducing

the number of images considered during each query. Consequently, this method allows

for efficient searches across databases containing millions of images.

2.1.2 VLAD and FV

The BoVW representations often result in sparse encoded vectors, as new images

typically contain descriptors corresponding to only a subset of the k clusters. Selecting

a smaller k can lead to underfitting, limiting the discriminative power of the codebook,

while a larger k may cause overfitting, resulting in very sparse high-dimensional

descriptors. Addressing this issue, advanced encoding methods such as the Vector of

Locally Aggregated Descriptors (VLAD) [16] and the Fisher Vector (FV) [17] store

additional statistics between codewords and local feature descriptors.

VLAD [16] extends the BoVW approach, where for each of the k clusters, the

residuals (vector differences between descriptors and their closest cluster centres) of

image descriptors are accumulated. The 128-D1 sums of residuals for the k clusters are

concatenated into a single k ×128 dimensional descriptor, which is then L2 normalised.

Thus, we store first-order feature-codeword statistics (i.e., the sum of the difference

between the descriptor and the mean of the corresponding word’s cluster) in the VLAD

vector. Figure 2.1 illustrates constructing a VLAD vector for a given query image.

Building on this work, [33, 34] employed soft cluster assignment by assigning

each descriptor multiple centroids weighted by their distance from the descriptor. The

1assuming 128-dimensional feature descriptors are used; e.g., SIFT.
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consequent richer representation of feature statistics and the association with multiple

feature codewords resulted in improved performance in object categorisation and video

retrieval.

The MultiVLAD method proposed in [35], utilises multiple spatial VLAD repre-

sentations to enable the retrieval and localisation of objects that only occupy a small

portion of the image. The image is tiled, and multiple VLAD descriptors are generated

at different scales to overcome the inferior small object retrieval performance of VLAD

compared to BoVW. Furthermore, an L2 intra-normalisation scheme was developed

for VLAD that addresses the problem of burstiness, where a few large components

of the VLAD vector can adversely dominate the similarity computed between VLAD

representations. With this approach, each of the aggregate residual vectors (128-D)

corresponding to one of the k clusters is L2 normalised. This method demonstrated

improved retrieval performance over non-normalised and L2 normalisation applied to

the whole vector.

The Fisher Vector [17, 36], a special and improved case of the general Fisher

kernel [37], represents an image by its deviation from a generative model, typically a

Gaussian Mixture Model (GMM). By encoding the gradients of the log-likelihood with

respect to the GMM parameters, FV captures richer information about the distribution

of local features, including their mean and variance. Thus, FV encodes the first- and

second-order feature-codeword statistics in the image representation. A comparative

study of local feature representations reveals that VLAD and FV were found to perform

almost equally well, with FV performing slightly better for larger codebooks [38].

2.1.3 SLAM Implementations

Building on earlier work applying BoW models to images, particularly within the

context of loop closure in SLAM, FAB-MAP [39] presents a learned generative model

for the BoW data and defines a probabilistic approach over the BoW representation.

FAB-MAP 2.0 [39] extends this framework by incorporating improvements such as

optimised Cholesky decomposition for faster inference, better scalability, and increased

accuracy. DBoW [40] extended this framework for real-time operation by employing

a combination of FAST keypoints, BRIEF descriptors, and a hierarchical tree-based

vocabulary, combined with an inverted file structure for efficient queries. In all these
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methods, a global BoVW-based image descriptor is computed by aggregating local

features.

To address the challenges posed by illumination variations within environments

and the resulting difficulties in matching images using keypoint-based descriptors, [41]

introduced the concept of Illumination Invariant Imaging. The approach proposes a

transformation into a colour space that is invariant to changes in illumination, thereby

yielding feature maps robust to alterations induced by different times of the day, shadows,

and lighting conditions. This method enhances the robustness of image matching

processes by significantly reducing the impact of environmental lighting variations,

facilitating more consistent and reliable recognition of visual features across diverse

lighting scenarios.

[42] explores the use of binary descriptors for sequences of images to form binary

codes combined with illumination-invariant techniques described in [41], using an

efficient Fast Library for Approximate Nearest Neighbours (FLANN)-based matches to

measure similarity between image sequences. The technique, named ABLE-M (Able for

Binary-appearance Loop-closure Evaluation — Monocular), uses a binary description

and matching method to provide a significant reduction in memory and computational

costs, which is necessary for long-term performance. ABLE-M outperformed WI-

SURF [43], BRIEF-Gist [44], FAB-MAP [39] and SeqSLAM [45] evaluated on the

St Lucia dataset (along the day) [46], Alderley dataset (along the day and night) [45],

CMU-CVG Visual Localisation dataset (along the months) [43], Nordland (along the

seasons) [3, 47].

Although the advances provided by the BoVW and its extensions permitted a

reliance on VPR within SLAM systems, the approach lacks the repeatability and

robustness required to deal with the challenging variability that occurs in natural

scenes caused by different times of the day, weather, lighting, and seasons, as shown

in Figure 1.1.

2.2 Handcrafted Holistic Descriptors

Global descriptors characterise an image holistically by processing the entire image to

produce a singular description. Histograms such as colour histograms or histograms
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of oriented gradients (HOG) [48, 49, 18] provide a compact way of representing an

image and are generally fast to compute. The Pyramid Histogram of Oriented Gradients

(PHOG) [50], an enhancement of the original model, computes histograms for oriented

gradients across different sub-regions of each image.

The Gist descriptor was introduced in [19] as one of the earliest holistic represen-

tations designed to capture the dominant spatial structure of a scene. By applying a

series of Gabor filters at multiple scales and orientations across the entire image, the

Gist descriptor extracts information related to the spatial frequency content of the scene

and represents the global arrangement of spatial features rather than focussing on local

details. Although initially developed for scene recognition, it has been foundational in

various image processing applications, and its capacity to efficiently represent scene

configurations led to researchers integrating it with other description techniques.

Building on the efficiency of the BRIEF binary descriptor [10], BRIEF-Gist [44]

was proposed to enable fast holistic image description with reduced computational

overhead. In this method, the image is first downsampled to a suitable small patch size

(e.g., 60 x 60 pixels), and then the BRIEF descriptor is computed around the centre of

the downsampled image. Alternatively, the image can be divided into patches, and the

BRIEF description of each patch can be stacked to obtain the global descriptor. This

description technique, thus, allows for a very simplistic appearance-based represen-

tation for use in a place recognition system. Similarly, WI-SURF [43] extended the

conventional SURF approach, which typically extracts features from key points, to use

the entire image.

SeqSLAM [45] was developed as a sequence-based algorithm that compared bright-

ness patterns, where it searches for optimal matches within local image sequences. As

such, SeqSLAM does not rely on keypoints or feature extraction methods (like SIFT,

SURF, or ORB) that are common in other image matching and computer vision tasks

and relies on finding coherent sequences of downsampled image matches instead.

Later, optical flow-based descriptors such as Optical Flow Moment (OFM) and

Optical Flow Shape Context (OFSC) [51] were introduced to incorporate motion cues.

These descriptors capitalise on the dynamic changes captured by optical flow fields,

incorporating statistical attributes from the flow to uniquely define each location.

Although many of these descriptors have been utilised in various forms of mapping,
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they are less robust to occlusions, strong illumination changes, and variations in view-

point, leading to diminished discriminative capability, especially when compared to the

data-driven approaches introduced over the last decade.

2.3 Learned Descriptors

In the domain of learned image descriptors, two principal backbone architectures have

emerged for feature extraction: Convolutional Neural Networks (CNNs) [52, 53] and

transformers. CNNs extract hierarchical features from images using convolutional

layers, progressively capturing local and global patterns. Transformers, on the other

hand, divide images into patches and utilise self-attention mechanisms to capture both

local features and long-range dependencies across the entire image. In both architectures,

feature extraction is typically followed by pooling or aggregation layers, such as max

pooling and average pooling, or methods like VLAD. These processes condense the

extracted feature maps or patch descriptors into compact global descriptors, which serve

as efficient, robust representations for image recognition and other downstream tasks.

Following the compelling results of CNNs over traditional methods in tasks such

as object classification and recognition [54], semantic segmentation [55] and feature

learning [56], researchers have increasingly incorporated semantics and geometry

in addressing the problem of place recognition in challenging conditions. However,

original CNN architectures, such as AlexNet [54], VGGNet [57], and ResNet [58],

proposed for visual tasks such as object recognition, are not directly suitable for place

recognition tasks. Unlike object recognition, which focuses on identifying individual

objects, place recognition requires encoding the broader spatial layout and complex

relationships between elements such as buildings, roads, and their relative positions

within a scene, often under varying appearance conditions and viewpoints. Moreover,

many off-the-shelf techniques limit building convolutional networks tailored to solving

specific tasks such as object classification and semantic segmentation in an end-to-end

fashion.

Supervised learning requires tens of thousands of labelled training samples. Al-

though it has seen significant success in recent years, the requirement for manual

labelling of such large datasets has served as a significant barrier to progress. For tasks
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like dense semantic segmentation, it is often impractical to account for every object and

to encompass every pixel associated with each object. This task becomes significantly

more time-consuming, as it can take several minutes to label even a single image. To

make the network learn semantics, geometry, illumination, colour, weather, objects,

vegetation, and so on, given the amount of time and tedious manual effort required to

label these features, it is infeasible to label these individually for hundreds of thousands

of images.

2.3.1 Weakly Supervised Techniques

Weakly supervised learning is a machine learning framework where the model is trained

using examples that are only partially annotated or labelled. Unlike supervised training,

for example, in image recognition tasks, where mapping each image to one of the

definitive classes is a necessity, in weakly supervised training, it is sufficient to have

image correspondences to group similar images into pairs, triplets, or quadruplets. This

is well suited for problems like place recognition, where it is not possible to classify

images under a set of predefined locations.

Distance metric learning (DML) is a crucial technique in image representation

learning, aimed at optimising the metric used for assessing similarities between images

to support various image-related tasks, including classification, retrieval, and cluster-

ing [59, 60, 61]. The objective of DML is to learn a metric that reduces the distances

between similar images and increases the distances between dissimilar ones, thereby

aligning the metric more closely with semantic similarities. This objective is often

achieved by transforming the feature space to make distances in the transformed space

reflect the true categories or labels of the images. Deep learning approaches utilise a

range of architectures, including CNNs, fully connected layers, and transformers, to ap-

ply complex, non-linear transformations for feature extraction and metric optimisation.

Such neural networks can be trained using various contrastive losses [62, 63, 64].

FaceNet [63] provided one of the earliest approaches in this area, proposing the

use of a triplet loss to train a CNN on a dataset of human faces, which was then made

to output embeddings for face recognition using image retrieval. Building on top of

this idea, Person ReID [65] proposed a method using batch hard and batch all mining

strategies. Quadruplet Loss [64] further extends this idea to train using quadruplets
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instead of triplets with better retrieval for newly learnt classes (classes that are not

present in the training set), demonstrating an improvement in generalisability.

Adapting such contrastive learning techniques for VPR, [66] introduced a method

to localise a ground vehicle using publicly available satellite imagery as the only prior

knowledge of the environment. This method employs a Siamese CNN to produce

embeddings that are robust to viewpoint and appearance variations and utilises a particle

filter to eliminate false positives. To train the neural network to generate embeddings,

the pairwise contrastive loss (explained later in Section 2.3.1) between the embeddings

of the image captured from the front camera and its corresponding satellite image is

minimised, updating weights of both branches of the Siamese network independently.

The most notable learned image descriptor technique utilising a contrastive approach

is NetVLAD [67], which reformulated VLAD through the use of a deep learning

architecture, resulting in a CNN-based feature extractor that utilises weak supervision to

learn a distance metric based on the triplet loss. In this method, a VGG [57] based CNN

is employed to extract features utilising a generalised differentiable VLAD aggregation

layer with a soft cluster assignment for end-to-end training. Subsequent extensions to

NetVLAD proposed over the last few years, such as [68, 69, 70, 71], produce patch-level

features and/or capture multi-scale features, demonstrating superior image retrieval

performance.

There have also been improvements to the loss function to enhance the perfor-

mance. For example, [72] introduced a new learning strategy to learn a large margin

in a multi-stage manner while making the learned features more discriminative by

exploiting multiple levels of feature maps. [73] developed an end-to-end top-k preci-

sion optimisable deep neural network by sampling misplaced images along the top-k

nearest neighbour boundary for the loss signal. Consequently, several successful visual

geolocalisation approaches [67, 74, 69, 70, 75, 76] have adopted contrastive loss as a

critical technique, often employing a triplet loss that mainly relies on the mining of

negative examples across the training database.

More recently, CosPlace [77] was introduced for visual geo-localisation, dispensing

with the typical contrastive learning approach that relies on mining negative examples.

Inspired by CosFace [78] and its implementation of the Large Margin Cosine Loss

(LMCL), the training phase is reformulated as a classification task to address the
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scalability limitations of previous methods. CosPlace employs a network architecture

consisting of a conventional CNN backbone followed by Generalised Mean (GeM)

pooling [79] and a fully connected layer with an output dimension of 512. CosPlace

streamlines the process of learning from a large dataset without the need for explicit

mining by splitting the database into classes based on GPS coordinates and headings and

then training on groups of non-adjacent classes. Through these techniques, CosPlace

enables more precise city-wide real-world visual geo-localisation by improving image

retrieval using smaller descriptors.

In our work, we build upon a CNN architecture utilising triplet loss, introducing

various adaptations to facilitate training on large sequential datasets that account for

day-night and seasonal variations.

2.3.2 Sequence-based Techniques

Sequence-based VPR techniques exploit temporal and spatial continuity in image

sequences, improving robustness and accuracy in identifying locations under varying

environmental conditions and viewpoints. While descriptors incorporating temporal

cues have been utilised within the broader field of computer vision [80, 81], only a

handful of works have explicitly adopted it for VPR.

[82] proposed a method for robust visual localisation across seasons exploiting net-

work flows to leverage sequential information to improve the localisation performance

and to maintain several possible trajectory hypotheses in parallel. In this method, a

semi-dense image description based on HOG features as well as global descriptors from

deep CNNs pretrained on ImageNet is used for robust localisation.

[83] introduced an effective VPR method based on a multi-sequence map, em-

ploying a graph-based sequence-to-sequence localisation and a multi-trajectory place

recognition. This approach demonstrated VPR against sequences from different sources:

cars, bikes, street-view imagery from Google Street View, and YouTube videos without

any constraints on shape, length, or visual change of the trajectories.



CHAPTER 2. BACKGROUND 25

2.3.3 Semantics-aware Techniques

Semantic-aware VPR techniques enhance the discriminative capability of the models

by incorporating context and object-level understanding, which potentially aids in

achieving more accurate and stable recognition across diverse and dynamically changing

environments.

In SegMatch [84], objects are segmented from LiDAR point cloud data accumulated

for approximately one second as the vehicle traverses its trajectory, with the 3D object’s

description stored along with its semantic label. When a new frame arrives, moving

objects are eliminated using their semantic labels, where the remaining objects are then

compared to those from earlier segments using their 3D descriptors. [20] introduced an

approach to semantics-aware visual localisation under challenging perceptual conditions,

building dense saliency maps describing the scene with regions that are geometrically

stable over large time periods. With this, a heat map was built, associating with each

pixel the probabilities for that region to be geometrically stable.

Local Semantic Tensors (LoST) [85] used output tensors from one of the inter-

mediate convolutional layers, conv5, of a modified version of the dense semantic

segmentation neural network RefineNet [86]. These tensors were used to compute

a deviation from the mean tensor for three semantic labels (i.e., road, building, and

vegetation), which were then flattened to a vector representation. During the traversal,

the images are mapped to embeddings and are compared with existing embeddings for

potential matches. To avoid false matches as a result of a sudden change in a single

frame, the mean embedding within a window of 15 frames centred around the associated

frame is calculated. The images that have an embedding similarity greater than a defined

threshold are further eliminated using keypoint correspondences by matching maxi-

mally activated regions in the feature maps to find the final loop closing candidate. The

overall place recognition pipeline that uses both the LoST descriptor and the keypoint

correspondence is referred to as LoST-X. LoST-X demonstrates double recall at 100%

precision [85] compared to NetVLAD on the Oxford RobotCar dataset [7].

More recently, Semantic Reinforced Attention Learning Network (SRALNet) [76]

introduced feature embeddings enhanced with task-relevant visual cues. This method

utilises semantic priors and data-driven fine-tuning to refine its inferred attention. The

network introduces an interpretable local weighting scheme designed to suppress mis-
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leading features based on a hierarchical feature distribution, followed by a semantically

constrained initialisation to reinforce the local attention with semantic priors.

Learned semantic techniques in VPR have demonstrated potential to enhance the

accuracy of identifying locations by adding contextually rich, descriptive information

to the visual cues extracted from images. However, these techniques often necessitate

pixel-level dense annotations across extensive image datasets, which are both labour-

intensive and expensive. Moreover, the dependency on densely annotated datasets

restricts the training process to the specific images that have been annotated, thereby

limiting both the scalability and generalisability of VPR models trained in such an

environment.

2.3.4 Self Supervised and Unsupervised Techniques

In response to the challenges associated with manual dense data labelling, there has

been a notable shift in recent years towards leveraging less restrictive forms of supervi-

sion. Researchers have increasingly adopted unsupervised and self-supervised learning

paradigms to circumvent the limitations imposed by dense annotation requirements.

Autoencoders [87] laid the groundwork for learning compressed representations of

data without labels by reconstructing the input image. The development of Variational

Autoencoders (VAEs) [88] further advanced the field, particularly in applications like

face generation, by learning to model the distribution of data in a latent space and

generating new data samples from this learned distribution. Generative Adversarial

Networks (GANs) [89] marked a turning point with their ability to generate high-quality

images, outperforming other unsupervised generative techniques in terms of the visual

fidelity of generated images.

At the same time, Self-Supervised Learning (SSL) began to gain traction and had

been proven more effective in generating robust feature representations without the need

for labelled data [90, 91]. SSL models are capable of learning useful representations

from unlabelled data through contrastive learning or other mechanisms, such as using a

student-teacher framework. Specifically, self-supervised learning approaches operate

by creating labels on the fly for a predetermined pretext task, such as predicting parts of

an image that have been intentionally obscured. This method makes efficient use of vast
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amounts of unlabelled visual data to learn rich, generalisable feature representations

applicable to tasks outside of the original pretext task. This approach helps to deepen the

model’s understanding of basic and intrinsic patterns in visual data, which is crucial for

performing required downstream tasks such as object detection, semantic segmentation,

and image classification.

Early SSL models learned rich data representations by engaging in tasks such as

colourising images [92], predicting missing patches [93], estimating rotation angles [94],

or solving jigsaw puzzles [95]. Although these tasks might appear straightforward to

humans, they require a complex modelling of features, structure, and the occurrences of

various visual elements in the real world. As such, the design of an effective pretext task

often requires substantial domain knowledge, as the task must be sufficiently challenging

and relevant to encourage the model to develop useful features. Accordingly, these

pretext tasks are capable of effectively training the model to understand and interpret

various types of data, including images, audio, and video [90]. The knowledge acquired

through these pretext tasks is then applied to downstream tasks, where the previously

learned representations are used to perform specific applications or solve particular

problems. Over time, self-supervised learning techniques have increasingly narrowed

the performance gap with supervised methods, as evidenced by their competitive results

on ImageNet [96] and COCO [97] benchmarks for image recognition tasks. Noteworthy

SSL techniques include Contrastive Predictive Coding (CPC) [98], Simple Framework

for Contrastive Learning of Visual Representations (SimCLR) [99, 100], Momentum

Contrast (MoCo) [101, 102, 103], and Bootstrap Your Own Latent (BYOL) [104].

CPC uses an autoregressive model to predict future representations in a latent space,

capitalising on the inherent structure of data to learn without explicit labels. SimCLR

advances this approach by using contrastive learning to enhance representation quality,

effectively using data augmentation and a non-linear projection head to improve feature

learning through maximising agreement between different augmented views of the

same image. MoCo builds on these concepts by implementing a dynamic dictionary

of samples and utilising a momentum encoder to ensure consistent representation. It

introduces a queuing system to manage sample consistency and employs a momentum

update strategy to stabilise the representations over time. BYOL, diverging from the

reliance on negative pairs typically used in contrastive learning, employs a dual network

architecture where the online network predicts the representation of a target network

that is updated using a slow-moving average of the online parameters.
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The advent of Vision Transformer (ViT)-based architectures like DINO v2 [105]

further exemplifies this trend. These models utilise self-attention blocks within the

transformer backbone to extract relevant features without explicit supervision. Very

recently, AnyLoc[106] demonstrated a versatile VPR technique that works across a

broad range of structured and unstructured environments without any retraining or fine-

tuning. Features are extracted from intermediate layers across a pretrained DINO v2

ViT backbone, aggregated using a GeM or VLAD layer, and the global descriptors are

projected using PCA. As such, this evolution towards scalable and broadly applicable

models marks a significant advancement in the field of computer vision. Although

transformers have proven to be highly effective for various computer vision tasks,

their computational complexity remains a challenge, especially in resource-constrained

environments such as for use in automotive applications.

In our work, we utilise a VAE-based architecture to learn robust scene features in an

unsupervised manner from public datasets for scene categorisation in driving scenarios.

Although VAEs may face challenges in reconstructing detailed features in images and

can produce lower-quality reconstructions, we leverage their robust capability to capture

the essential high-level features that are critical for effective scene categorisation.

2.4 Scalable and Efficient Approaches

Encoding an image as a single feature vector of predetermined dimension via the

aforementioned learned global descriptor techniques necessitates conducting a com-

prehensive search across all encoded images to locate the nearest match for a query

image using a similarity metric. Hence, the search duration increases linearly with the

expansion of the image repository in the map. In the context of lifelong learning and

multi-session SLAM, this linear increase in search time associated with loop closure de-

tection can pose significant challenges. As the robot navigates and accumulates images

over multiple sessions or extended periods, the resultant growth in the image database

leads to progressively longer search times for loop closure detection. This scalability

issue not only impairs the system’s real-time operational capability but also limits the

practicality of such systems in dynamic environments where efficient processing is

paramount.
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2.4.1 Indexing and Hierarchical Techniques

A crucial strategy for mitigating the time complexity associated with this process is the

application of indexing techniques. The seminal work of [13] introduced an approach to

search viewpoint invariant region descriptors using inverted file systems and document

rankings similar to the ones used in text retrieval systems, as we described earlier in

Section 2.1. Extending these foundational insights, [23] further refined the approach by

developing indexing strategies for descriptors derived from local image regions.

The performance of the retrieval process can be markedly improved by employing

selective search strategies based on specific scene categories. For instance, when

presented with a query image featuring multiple high-rise buildings, it is advantageous

to exclude rural regions from the search. This targeted approach prevents unnecessary

examination of irrelevant areas, thereby optimising the search efficiency. A hierarchical

representation of the environment, where images that present a similar appearance

are grouped together in nodes, can significantly reduce the search space when finding

similar places. As such, the hierarchy helps accelerate the retrieval process by skipping

multiple nodes that are not relevant altogether.

2.4.2 Scalable Map Representations

Robot environmental maps captured using cameras are generally modelled using two

representations: metric and topological. Metric representations, which define the

geometry of the environment through quantitative dimensions such as distances and

angles, are commonly employed in many robotic mapping applications. Thus, metric

maps represent the world as accurately as possible, wherein the objects or keypoints

are placed with precise coordinates. Many leading approaches rely on estimating

correspondences between 2D keypoints in the query and 3D points in a sparse model

using local descriptors. In this regime, [107] and [108] are considered state-of-the-art

approaches in terms of accuracy when utilising handcrafted local features. A hierarchical

localisation approach, HFNet [109], employs a monolithic CNN that simultaneously

predicts local features and global descriptors for accurate 6-DoF localisation. By

leveraging learned descriptors, strong localisation robustness across large variations

of appearance was achieved. Metric maps are sensitive to noise, as they retain a
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large amount of information about the environment, such as distances, measures, or

sizes. Furthermore, these metric maps are more difficult to build and maintain and are

computationally demanding. Consequently, localisation approaches that maintain a full

metric map on a mobile device or robot are often restricted to small-scale environments

due to the high memory requirements. As a result, while metric representations are

valuable for their precision, their practical utility is bounded by constraints related to

computational resources and memory capacity, especially in large-scale or long-term

deployment scenarios.

On the other hand, topological maps model the environment using higher-order

objects and their relationships using graphs, in which the nodes represent objects or

places and edges correspond to the paths. These maps are simple and compact, scale

better, and require significantly less storage than metric maps. Furthermore, they

facilitate faster processing and efficient memory utilisation, making them ideal for

extensive or long-term navigation tasks. There have also been a number of works

suitable for very large-scale mapping and localisation without using an explicit met-

ric representation [110, 39, 45]. To this end, [31] demonstrates a real-time, online,

appearance-based topological SLAM algorithm that leverages the BoVW paradigm

to represent the images and a discrete Bayes filter to compute the probability of loop

closure. Several other works have been tailored to represent the environment discretely

using occupancy grids, landmarks, and locations [111, 112, 113]. In a more recent work,

Topomap [114] transforms a sparse feature-based map from a visual SLAM system

into a three-dimensional topological map. [115] introduced a vision-based localisation

approach that learns from the output of LiDAR-based localisation methods. In [116],

the environment is represented with nodes with associated semantic features that are

interconnected using coarse geometric information. We note that some of these methods

are hybrid approaches that incorporate metric information on topological maps or vice

versa to facilitate scalability. Focussed on using topological maps without the use of

metric information, [117] demonstrated localisation using a two-level hierarchy for

faster image retrieval in a topological map. Although such research has shown the po-

tential for hierarchical matching, limited consideration has been given to the suitability

and comparative performance of different feature representations used within these

approaches. In our work, we emphasise utilising topological mapping, incorporating a

hierarchical structure to expedite image retrieval through a selective search strategy.

In summary, in this thesis, we investigate the development of robust learned image
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descriptors to enhance retrieval accuracy and efficiency, detailing the training regime

that includes preparing subsets of data for stable contrastive training with a tailored loss

function designed to yield optimal image representations. Furthermore, this research

explores the novel unsupervised VAE-based compact image representations to facilitate

fast and efficient scene categorisation, which are subsequently utilised for hierarchical

image mapping and retrieval. We specifically target scalability and efficiency, aiming to

effectively map and localise within trajectories spanning several kilometres. We seek

to address the challenges of mapping extensive regions by leveraging a hierarchical

framework incorporating the use of learned descriptors to facilitate rapid retrieval over

large distances while maintaining localisation performance.



Chapter 3

VPR Systems: Datasets, Tools and
Metrics

3.1 Introduction

Despite the significant advance in VPR research over the last two decades, state-of-the-

art systems are still challenged by factors including strong fluctuations in illumination,

changes in viewpoints, scene dynamics, variations due to weather and seasons, and the

presence of occlusions. These factors can significantly alter the appearance of a place,

posing a challenge to the system’s ability to recognise it reliably.

Among the promising approaches to overcome these challenges are the development

of advanced feature extraction algorithms, the integration of deep learning methodolo-

gies, and the curation of bespoke data subsets for neural network training and evaluation.

A persistent obstacle in VPR research is the complexity of exploring, analysing, and

determining the suitability of publicly available datasets, followed by the challenges of

processing and managing them. Researchers often face difficulties due to inconsistent

metadata, incompatible Software Development Kits (SDKs), and varying data formats

and standards.

To address these issues, we introduce the first contribution of this thesis: a unified

framework and software platform for processing and visualising VPR and odometry

benchmark datasets. This framework, named OdoViz, streamlines the exploration,

32
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analysis, and curation of data from a wide range of public datasets, providing tools for

efficient sampling, visualisation, and standardisation. This facilitates the creation of

tailored data subsets for training, validation, and testing, supporting the development of

more robust and generalisable VPR systems. OdoViz has been published as OdoViz:

A 3D Odometry Visualisation and Processing Tool [24] at the 2021 IEEE Intelligent

Transportation Systems Conference (ITSC).

Additionally, we examine the critical aspects of evaluating and benchmarking VPR

systems. We also explore the various datasets that are instrumental in training and

testing these systems, examine the tools that facilitate their development and refinement,

and discuss the metrics that are essential for assessing their performance. Through this

exploration, we aim to provide a comprehensive overview of the current state of VPR

datasets, processing and visualisation tools, and various evaluation methodologies.

3.2 Datasets

Although the research on autonomous vehicles dates back to the early 1980s [118,

119, 120], the past two decades have witnessed dramatic progress in the field. A core

ingredient of this progress has been the use of data-driven and, in particular, deep

learning techniques. In order for these approaches to be possible, multiple research

groups and companies have led significant efforts to collect and release large-scale

annotated datasets. These datasets facilitate the training of new models and approaches

while also providing a means of tracking and benchmarking progress on various research

challenges within the field.

The advent of large, annotated general datasets has been instrumental in driving

advancements in computer vision tasks over the last decade. Datasets such as Middle-

bury [121] for stereo and optical flow evaluation, ImageNet [96] for image classification,

SUN Database [122] for scene recognition, MS COCO [97] for image recognition, de-

tection, and segmentation, PASCAL VOC [123] for object detection and segmentation,

Places [124] for scene and object recognition, and ADE20K [125] for scene parsing and

segmentation have become essential in the development, training, and benchmarking

of various models aimed at solving computer vision tasks. In addition to offering a

diverse array of annotated images for training data-driven models, these datasets also
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serve as benchmarks for gauging progress and comparing methodologies across various

computer vision tasks. These datasets have fundamentally transformed the landscape of

computer vision, enabling significant progress in tasks such as image recognition, object

detection, and face recognition. These datasets, pivotal in training data-driven models,

often present images where a single object is the primary focus against a relatively

uncomplicated background. This simplicity, while beneficial for specific computer

vision tasks, starkly contrasts with the complexity encountered in images captured from

vehicles, which are integral to driving datasets used for VPR.

Images derived from driving contexts are characterised by their dynamic and clut-

tered nature, incorporating multiple objects, vehicles, and pedestrians within complex

scenes. Such images frequently exhibit greater levels of occlusion, where objects of

interest are partially hidden by other elements in the environment, considerably el-

evating the complexity of the scene. This encompasses the differentiation between

dynamic (movable) and static (non-movable) objects, including vehicles, pedestrians,

roads, buildings, and other urban infrastructures. The accurate recognition of previ-

ously visited places, crucial for VPR systems, necessitates the interpretation of intricate

scenes, understanding the underlying semantics, and discerning the spatial relationships

and interactions among diverse elements within a scene.

Furthermore, the varying nature of outdoor environments, characterised by changing

weather conditions, varying lighting, and seasonal transformations, presents unique chal-

lenges that general datasets may not fully encapsulate. Driving datasets, often captured

using mobile robots or vehicles equipped with an array of sensors, are instrumental

in addressing such requirements. In addition to offering video and image sequences,

these datasets often include extensive annotations, including GPS coordinates, vehicle

odometry, and environmental metadata.

Hence, given their importance within VPR research, in the following section we

provide a comprehensive review of several of the more important automotive datasets,

highlighting their distinctive characteristics, evaluating their significance, and discussing

their impact as well as their individual constraints.
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Figure 3.1: New College Dataset [110]

3.2.1 Core Research Datasets

In our research, we leverage these datasets in three primary ways: (1) directly, as

a foundation for training our data-driven models and fine-tuning them to improve

accuracy and reliability; (2) indirectly, by employing off-the-shelf models that have

been pretrained on these datasets to further our objectives; and (3) for visualisation,

comparative analysis, and preliminary validation and assessment.

3.2.1.1 New College

The New College dataset [110], released in 2008, serves as a foundational resource for

research in robotics and autonomous navigation, focussing on the challenges of place

recognition and mapping. Captured in and around the University of Oxford, two distinct

subsets are presented: the New College and City Centre sequences. The New College

sequence includes 2,146 images captured over a 1.9 km trajectory within the New

College area, featuring several instances of loop closures. The images were obtained

using a camera mounted on a pan-tilt mechanism attached to a robot, programmed to

capture images to the left and right based on odometry every 1.5 metres; see Figure 3.1.

Cameras
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Figure 3.2: St Lucia dataset [46]

• Camera Setup: Single camera on pan-tilt

• Image Format: 640 x 480, JPG

The New College environment, characterised by visually repetitive structures such

as a medieval cloister and a uniform garden wall, thereby testing the system’s ability

to handle perceptual aliasing. Conversely, the City Centre subset, encompassing a

2 km loop traversed twice in urban settings with moving elements like vehicles and

pedestrians, calls for the handling of dynamic scenes. These subsets collectively serve as

a testbed for advancing place recognition and mapping techniques in robotics, reflecting

real-world navigation challenges.

3.2.1.2 St Lucia

The St Lucia [46] dataset is among the early public datasets to capture weeklong

variations at multiple times of the day. Introduced in 2010, it encompasses 10 distinct

sets of data collected over a suburb in St Lucia, Brisbane, driven through a network of

streets. The datasets were captured under consistent sunny weather conditions over a

span of two different periods, each spanning a few days; see Figure 3.2.

Cameras

• Monocular RGB Logitech QuickCam Pro 6000.

• Image Format: 640 x 480 pixels @15Hz JPG.

• Mounted on the windscreen facing forward.

• FOV: 62◦ horizontal, 48◦ vertical.
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Sequences

• First 5 sequences captured over 4 days in Aug 2009.

• Remaining 5 sequences captured over 2 days in Sep 2009.

• Duration: 20-25 mins.

• Start times: 8:45am, 10:00am, 12:10pm, 2:10pm, and 3:45pm.

An important aspect of the St Lucia dataset is its focus on a consumer-viable setup

compared to other setups, which might use high-resolution, omni-directional cameras

and custom controls. The dataset emphasises the use of commonly available equipment

to gather data, making it a more accessible and broadly applicable resource for research

and development in VPR and SLAM.

3.2.1.3 KITTI

The KITTI dataset [126] released by the Karlsruhe Institute of Technology (KIT) and

Toyota Technological Institute (TTI) Chicago in 2012 serves as a prominent standard

for evaluating autonomous vehicle systems and robotics. The KITTI Odometry dataset

offers a comprehensive platform for the development and evaluation of algorithms for

tasks such as odometry, localisation, and 3D mapping, which are crucial for autonomous

navigation. The KITTI Odometry dataset is specifically tailored for assessing the perfor-

mance of visual odometry algorithms and VPR systems. This dataset was collected in

and around the city of Karlsruhe, Germany, using a standard station waggon fitted with

a range of sensors; see Figure 3.3. The equipment consisted of high-resolution colour

and greyscale stereo cameras, a Velodyne LiDAR scanner, and a GPS/IMU navigation

system. The data was collected under various weather conditions and at different times

of the day to ensure diversity and representativeness. The KITTI Odometry dataset

comprises a series of sequences, each containing synchronised stereo images, LiDAR

point clouds, and ground truth poses obtained from the GPS/IMU system. These se-

quences are divided into training and testing sets, with ground truth available only for

the training set. Ground truth for the evaluation data is withheld for the purpose of

providing public benchmarks.

Cameras:
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Figure 3.3: KITTI dataset [126]

• Two high-resolution colour and greyscale stereo video cameras.

• Resolution: 1241 x 376 pixels @10Hz.

• Mounted on the car’s roof at approximately 1.5 metres above ground.

Sequences:

• 22 stereo sequences, with a total length of 39.2 km.

• Split into 11 sequences (00-10) with available ground truth for training.

• 11 sequences (11-21) reserved for testing purposes.

The limited representation of varied landscapes could potentially limit the general-

isability of the results obtained from using this dataset. Additionally, the dataset does

not include challenging weather conditions, such as heavy rain or snow, which are

important factors to consider for autonomous navigation systems operating in different

environments.

3.2.1.4 CMU Visual Localisation

The CMU (Carnegie Mellon University) Visual Localisation dataset [43] marks another

advancement in the field of VPR and autonomous navigation, particularly in addressing

the challenges posed by environmental changes across different seasons. Being made

publicly available in 2012, it was developed as part of a broader effort to enhance

real-time topometric localisation capabilities for autonomous vehicles and robotics,
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Figure 3.4: CMU CVG dataset [43]

focussing on the robustness of these systems against the dynamic visual appearance of

environments through the seasons. It includes a comprehensive collection of images

captured across a diverse range of environmental conditions, including various weather

scenarios, times of day, and, most notably, across different seasons. The traversals

were on an 8.5-kilometre circuit, passing through both central and suburban Pittsburgh;

see Figure 3.4. The trip was taken 16 times, with intervals ranging from 2 weeks to 2

months.

Cameras

• Two RGB cameras.

• Image Format: 1024 x 768 pixels, JPG.

• Mounted to the side of an SUV at 45◦.

Data collection involved repeated traversals of the same urban and suburban routes

around the Carnegie Mellon University (CMU) campus and the surrounding Pittsburgh

area. The dataset includes images captured during the day and night in clear, cloudy,

and rainy weather and across the distinct visual transformations presented by the four

seasons: spring, summer, fall, and winter, captured over an extended period of 12

months. Consequently, it has become a pivotal benchmark for evaluating the ability of

VPR and SLAM systems to withstand the visual challenges caused by seasonal changes,

leading to significant advancements in algorithmic robustness and adaptability. The
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Figure 3.5: SURF features do not match reliably due to a substantial visual change in

the Freiburg Across Seasons dataset [128].

dataset is no longer accessible1 on the official site2. However, a curated subset of query

and reference images was made available for benchmarking purposes3 [127].

3.2.1.5 Freiburg Across Seasons

The Freiburg Across Seasons Dataset [128] seeks to address the challenge of visual

localisation under extreme perceptual variations. Visual localisation in environments

that undergo significant perceptual changes due to seasonal variations has been identified

as a critical hurdle in the field of robotics and autonomous systems. The reliance

on image matching through features like SURF [9] and SIFT [8], while effective

under rotation and scale variations, has proven inadequate under conditions of extreme

perceptual change, as shown in Figure 3.5. Recorded over three distinct periods — May

2012, Winter 2012, and May 2015 — the dataset comprises image sequences obtained

from a car equipped with a forward-facing stereo camera; see Figure 3.6. The recordings

span a cumulative distance of 70 km across Freiburg, Germany, capturing seasonal

variations between summer and winter.

Cameras

• Forward-facing Bumblebee Stereo Camera

• Mounted outside in summer and inside in winter
1At least since 2018 and until the submission date of this thesis
2http://3dvis.ri.cmu.edu/data-sets/localization/
3https://www.visuallocalization.net/datasets/

http://3dvis.ri.cmu.edu/data-sets/localization/
https://www.visuallocalization.net/datasets/
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Figure 3.6: Freiburg Across Seasons dataset [128]

• Image Format: 1024 x 768 pixels, JPG

Sequences

• May 2012: 6,915 images @1Hz, 10 km trajectory

• Winter 2012: 30,790 images @4Hz, 50 km trajectory

• May 2015: 5,392 images @4Hz, 10 km trajectory

3.2.1.6 Pittsburgh

The Pittsburgh dataset [129, 130], often called the Pitts250k dataset, sources its images

from Google Street View captures of Pittsburgh, employing a method to crop equirect-

angular panoramas into tiles followed by gnomonic projections to create perspective

images; see Figure 3.7. Subsequently, the dataset compiles 254,064 perspective images

derived from 10,586 Street View panoramas. Each panorama, measuring 6,656 by 3,328

pixels, is processed to generate 24 distinct perspective images. The dataset captures

database and query images with a two-year interval; however, there are no noticeable

weather variations.

Image Specifications

• Image Format: 640 x 480 pixels, JPG

• Field of View: 60◦ HFoV across 2 pitch and 12 yaw directions

The ground truth relies on GPS data of Street View panoramas, which often gener-

alise locations to the street’s median, introducing a positional accuracy ranging between
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Figure 3.7: Pittsburgh Dataset [130]

7 and 15 metres. The test set, containing 24000 perspective images, was generated from

1000 panoramas randomly selected from 8,999 panoramas of the Google Pittsburgh

Research Data Set. Encompassing different sessions, varying viewpoints, and illumina-

tion changes, the dataset set a high benchmark for evaluating place recognition systems.

Pitts30k, a subset of the larger Pitts250k dataset, facilitates the examination of various

VPR algorithms under a more constrained dataset size while maintaining the diversity

and challenge presented by the broader dataset.

3.2.1.7 Tokyo 24/7

The Tokyo 24/7 dataset [131] presents a relatively large database also derived from

Google Street View imagery. Published in 2015, the database of geo-tagged images

includes 75984 views generated from the original 6332 street-view panoramas and

597744 synthesised views generated at 49812 virtual camera positions; see Figure 3.8.

The test set includes 1125 query images captured using Apple iPhone 5s and Sony

Xperia smartphones, captured at 125 distinct locations, each at 3 different viewing

directions and at 3 different times of day.

Image Specifications

• Image Format: 1280 x 960, JPG

• Field of View: 60◦ HFoV



CHAPTER 3. VPR SYSTEMS: DATASETS, TOOLS AND METRICS 43

Figure 3.8: Tokyo 24/7 Dataset [131]

The dataset was created to evaluate the robustness of image retrieval algorithms un-

der challenging conditions, such as extreme changes in illumination and viewpoint. The

Tokyo 24/7 dataset, along with the Pittsburgh dataset, is commonly used in pretraining

of NetVLAD [67], a popular CNN for contrastive learning.

3.2.1.8 Cityscapes

Cityscapes Dataset [132], which was made publicly available in 2015, provides a

comprehensive suite of high-quality annotated images captured in diverse urban settings

across several European cities. Designed to advance the development of pixel-level and

instance-level semantic labelling, the dataset facilitates the training and evaluation of

semantic segmentation models in interpreting complex urban landscapes; see Figure 3.9.

Cityscapes focuses on urban settings, with annotations from 50 different cities and towns

in and around Germany, captured over several months, showcasing the diverse effects

of different seasons, specifically spring, summer, and autumn. It includes over 5,000

finely annotated images and an additional 20,000 images with coarse annotations. The

dataset is structured to support semantic segmentation of 30 different classes related to

urban navigation, such as roads, vehicles, and pedestrians. It was originally recorded as

video; however, the frames were manually selected to have a large number of dynamic

objects, varying scene layouts, and varying backgrounds.

Image Specifications
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Figure 3.9: Cityscapes Dataset [132]

• Image Format: 2048 x 1024 pixels @17Hz, PNG

• 16-bit HDR, debayered and rectified

• 8-bit RGB LDR also provided.

• Sampled individual non-sequential images.

• Fine annotations: 5000 images from 27 cities, manually selected.

• Coarse annotations: 20000 images from 23 cities, every 20 m or 20 s, whichever

is earlier.

• Vehicle odometry, GPS information, and outside temperature are available.

Furthermore, the Cityscapes dataset, while extensive, does not originally encompass

conditions such as fog, rain, or snow, potentially limiting its applicability in adverse

weather scenarios. To address these gaps, subsequent contributions from the research

community have augmented the dataset with additional annotations and modifications.

In 2019, the Cityscapes dataset was enriched with the introduction of panoptic labels,
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a significant advancement designed to unify the tasks of semantic segmentation and

instance segmentation into a cohesive framework. In 2020, Cityscapes 3D [133], was

announced as an extension of the original Cityscapes with 3D bounding box annotations

for all types of vehicles as well as a benchmark for the 3D detection task. At the time

of writing, the Cityscapes dataset provided a comprehensive benchmark suite and an

evaluation server, facilitating the assessment of models across several key tasks:

• Pixel-Level Semantic Labelling: This involves assigning a class label to each

pixel in an image, enabling a detailed understanding of the scene.

• Instance-Level Semantic Labelling: Beyond classifying pixels, this task distin-

guishes between different instances of the same class, such as individual vehicles

or pedestrians.

• Panoptic Semantic Labelling: Panoptic labelling merges the tasks of semantic

and instance-level semantic labelling to provide a unified scene understanding.

Given its scale, diversity, and dense pixel-level annotations, the dataset has emerged

as a seminal resource in autonomous driving and urban scene understanding within

computer vision research. Consequently, the dataset has become a prominent resource

for the pretraining of data-driven models aimed at semantic segmentation and instance

segmentation in automotive settings. This utility underscores its value in the founda-

tional stages of model development, where a broad and generalised understanding of

driving scenes is crucial. Nevertheless, a notable limitation of the dataset is its exclusive

focus on images captured during daylight hours. This absence of low-light conditions,

such as those encountered at dusk, dawn, or night, presents a challenge in training

models to generalise effectively across a wider range of lighting conditions.

3.2.1.9 Oxford RobotCar

The Oxford RobotCar dataset [7] provides an autonomous driving dataset focussed on

long-term autonomy in changing urban environments. Released in 2017, this dataset is

notable for its extensive collection of images and sensor data, recorded over a year in

Oxford, UK, encompassing a wide range of weather conditions, traffic scenarios, and

times of day; see Figure 3.10. It was collected using an autonomous Nissan LEAF car
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Figure 3.10: Oxford RobotCar Dataset [7]

equipped with a suite of sensors, including cameras, LIDARs, GPS, and INS. The data

was recorded over repeated traversals of a consistent urban route in Oxford, covering

approximately 10 km. Over 100 repetitions of this route allowed for the capturing of

the same scenes under different conditions, providing a unique opportunity to study the

effects of long-term environmental changes on autonomous driving systems.

Cameras

• Point Grey Bumblebee XB3 trinocular stereo and 3x Grasshopper2 monocular

• Stereo HFoV 66◦: 1280 x 960 pixels @16Hz, Bayer GBRG PNG

• Monocular HFoV 180◦: 1024 x 1024 pixels @11.1Hz, Bayer RGGB PNG

Sequences

• 2 different routes

• Over 100 sequences

The dataset’s diversity and scale set it apart from other datasets available at the time.

The car traversed approximately twice a week on average over the period of May 2014

to December 2015, collecting almost 20 million images from 6 cameras mounted to
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the vehicle. The dataset covers a wide range of environmental conditions, including

different times of day (from dawn till dusk), varying weather conditions (sunny, rainy,

cloudy, and overcast days), and different seasons, providing a comprehensive view of

how urban landscapes change over time. Consequently, the dataset has significantly im-

pacted various aspects of autonomous vehicle research and robotics. Its comprehensive

coverage under varying conditions has been crucial in developing algorithms that are

robust against environmental changes, an essential attribute for reliable autonomous

navigation. The longitudinal aspect of the dataset offers rare insights into the evolution

of urban landscapes, aiding in the development of adaptive systems that are key for

long-term autonomy. Along with the CMU Seasons [43] dataset, the Oxford Robot-

Car dataset has established itself as a benchmark in the field, enabling researchers to

evaluate and compare the performance of SLAM, VPR, and other autonomous driving

algorithms in a consistent yet challenging environment [127]. Furthermore, the vast

and varied data collection has been instrumental in advancing deep learning models,

especially in object detection, scene segmentation, and environmental understanding.

3.2.1.10 BDD100K

Introduced as part of the Berkeley DeepDrive project, the BDD100K [134] dataset is

one of the largest and most diverse of its kind, featuring a vast collection of video clips

and images that reflect the complexities and variabilities inherent in driving scenarios

across different geographical, environmental, and urban contexts. It comprises 100,000

video clips, each 40 seconds long, collected from over 50,000 rides across the United

States, covering New York, Berkeley, San Francisco, and the other regions in the Bay

Area. These clips are accompanied by frame-level annotations, including labels for

objects, lanes, drivable areas, and full-frame instance segmentation; see Figure 3.11.

The dataset covers various weather conditions, times of day, and urban and rural scenes

in its 120 million images, making it an extensive resource for training and evaluating

computer vision models under realistic driving conditions.

Sequences

• 100,000 sequences, each 40 seconds long

• Image format: 1280 x 720 pixels @30Hz
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Figure 3.11: BDD100K dataset [134]

The diversity offered by the dataset is crucial for developing robust computer vision

algorithms that can adapt to varied real-world conditions, including different geographi-

cal locations, weather, and lighting. Furthermore, the dataset’s extensive and detailed

annotations for a range of objects and scene elements are instrumental in advancing

object detection and scene understanding. These comprehensive annotations enable the

creation of more accurate and reliable models for complex driving environments.

3.2.2 Auxiliary Datasets

Certain datasets were not utilised in our research, either because they did not align

closely with our specific research goals or because they were introduced during or after

the timeframe of our individual studies. Nevertheless, it is important to acknowledge

these recent contributions to the field, as they represent significant advancements and

offer valuable resources for future work in VPR and related areas of study. For the sake

of completeness, we also provide an overview of these datasets, detailing their unique

features and potential applications, to acknowledge their role in advancing the scope of

current and future investigations in the area.

3.2.2.1 San Francisco

The San Francisco dataset [135], released in 2011, provides a large database collected

by a car-mounted camera. The dataset contains approximately 150k panoramic images

captured at 4-metre intervals that are then converted to approximately 1.7 million

perspective images. Aimed at city-scale landmark recognition from mobile devices, the

dataset includes 803 cell phone query images tagged with a mix of real and simulated

GPS coordinates. These query images include environmental and urban clutter, varying
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light conditions, reflections, and significant perspective shifts that introduce photometric

and geometric distortions between the query images and their corresponding entries in

the database.

3.2.2.2 UQ St Lucia

The UQ St Lucia dataset [136] was tailored for stereovision-based SLAM. It was

captured from a car driven along a 9.5-kilometre circuit around the University of

Queensland’s St Lucia campus, capturing a wide array of urban scenarios. Captured in

December 2010, the dataset encapsulates diverse environmental conditions, including

roadworks, speed bumps, varying illumination levels, and complex traffic situations

such as multi-lane roads and roundabouts.

The ground truth GPS data is provided using XSens MTi-g INS/GPS at 120 Hz,

along with a USB NMEA GPS for additional localisation data at 1 Hz. The stereo

camera setup underwent a calibration procedure using over 150 checkerboard image

pairs. This setup renders the dataset suitable for a wide range of computer vision tasks,

including but not limited to stereo depth estimation, 3D reconstruction, and visual

odometry.

3.2.2.3 Mapillary Vistas

The Mapillary Vistas dataset [137], introduced in 2017, is a large-scale street-level image

dataset containing 25,000 high-resolution images annotated into 66 object categories, of

which 37 classes are instance-specific labels. This was later augmented in v2.0 to cover

124 object categories, 70 of which bore instance-level labels. The dataset provides dense

and fine-grained semantic annotations by using polygons for delineating individual

objects.

3.2.2.4 Visual Localisation Benchmark

Visual Localisation benchmarking platform4 [127] introduced a benchmark for esti-

mating the 6 Degrees of Freedom (DoF) camera pose relative to a reference scene,
4available at https://www.visuallocalization.net

https://www.visuallocalization.net
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emphasising the robustness of localisation methods under diverse environmental condi-

tions. While 6-DoF estimation plays a crucial role in enhancing experiences in virtual

reality (VR) and augmented reality (AR), its significance extends to the robotics domain,

particularly as a key technology in autonomous navigation in self-driving vehicles and

mobile robots. Published in 2018, the platform’s significance lies in its development

of the first benchmark datasets specifically designed to evaluate the impact of varying

conditions, such as day-night changes, weather, and seasonal variations, on the accuracy

of 6 DoF camera pose estimations. The benchmark comprises three distinct datasets:

Aachen, RobotCar Seasons, and CMU Seasons, which are derived from the Aachen

Day Night dataset [138], Oxford RobotCar dataset [7], and CMU Visual Localisation

dataset [43], respectively. Each dataset consists of a set of reference images with ground

truth poses and a set of query images. A triangulated 3D model is also provided for each

dataset, which can be used by structure-based localisation approaches. The benchmark

platform adopts a unified evaluation protocol, considering both position and orientation

accuracy, to ensure the comparability of results across different localisation methods

and datasets, allowing for a comprehensive assessment of a method’s robustness to the

challenges posed by environmental changes over time. Datasets based on the SILDa

Weather and Time of Day dataset [139], and the Symphony Seasons dataset [140]

were later added. Furthering the expansion efforts, an extended version of the CMU

Seasons dataset and an updated RobotCar Seasons dataset, with more trajectories and

annotations, were introduced in 2020 [141]. Moreover, the platform extended its utility

to indoor settings by incorporating datasets like InLoc [142], ETH MS [143], and the

Gangnam Station and Hyundai Department Store from Naverlabs [144]. These inclu-

sions have methodically augmented the dataset repository, facilitating comprehensive

evaluations across a spectrum of visual localisation challenges.

3.2.2.5 Cross Seasons

The Cross-Season Correspondence Dataset for Robust Semantic Segmentation [145],

introduced in 2019, aimed at enhancing the robustness of semantic segmentation models

under diverse environmental conditions. By utilising 2D-2D point matches between

images captured across different seasons, weather conditions, and times of day, the

dataset enables the training of convolutional neural networks (CNNs) that maintain

labelling consistency despite the changing environmental conditions. The use of geo-
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metric 3D consistency for establishing point correspondences bypasses the limitations

of photometric information, which can vary significantly with lighting and atmospheric

conditions, thus involving minimal human intervention, relying instead on the geometric

consistency between point clouds. It comprises two distinct subsets, derived from the

Extended CMU-Seasons dataset [127] and the Oxford RobotCar Seasons dataset [127],

respectively. The CMU Seasons Correspondence Dataset contains 28766 image pairs

from different seasonal conditions, while the Oxford RobotCar Correspondence Dataset

contains 6511 image pairs covering different seasonal and illumination conditions.

3.2.2.6 WoodScape

The WoodScape dataset [146], a unique collection tailored for autonomous driving

research published in 2019, particularly emphasises fisheye camera imagery, diverging

from the standard rectilinear perspective datasets commonly found in the field. The

omnidirectional field of view offers a comprehensive perspective on the environment,

benefiting tasks that require broader spatial understanding and contextual awareness.

Fisheye cameras are increasingly used in commercial automotive systems for their

wide-angle field of view to reduce blind spots and enhance overall coverage of the

vehicle’s surroundings, thereby reducing the need for multiple cameras and lowering

overall system costs. The use of fisheye images challenges traditional VPR algorithms

to adapt and extract relevant features from distorted images, pushing the development of

more versatile and robust solutions. WoodScape comprises four surround-view fisheye

cameras with a 190◦ HFoV facing front, rear, left, and right, and nine tasks, including

segmentation, depth estimation, 3D bounding box detection, and soiling detection.

Semantic annotation of 40 classes at the instance level is provided for over 10,000

images. The dataset advocates solutions that can work directly on raw fisheye images,

modelling the underlying distortion. Designed to complement existing automotive

datasets with limited FoV images, the dataset encourages the implementation of multi-

task networks that consume annotations for multiple tasks concurrently. The focus on

fisheye cameras, however, limits the dataset’s applicability for systems designed around

narrow-field camera frameworks that remain prevalent in the automotive industry for

high-speed, front-facing driving scenarios.
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3.2.2.7 nuScenes

The nuScenes dataset [147], introduced by Aptiv in 2020, is a comprehensive data

collection designed for autonomous driving research. Notably, this dataset is among the

first to provide a full autonomous vehicle sensor suite, including 6 cameras, 5 radars,

1 LIDAR, GPS, and IMU, covering a rich variety of urban landscapes, captured in

diverse lighting and weather conditions across Boston and Singapore. The dataset

includes over 1,000 driving scenes, amounting to 1.4 million camera images, along with

corresponding LIDAR and radar data and 3D bounding box annotations for various

object categories. The dataset includes nighttime scenes, adverse weather conditions,

and a multitude of dynamic objects, highlighting its potential in VPR research.

3.2.2.8 Mapillary Street Level Sequences

The Mapillary Street-Level Sequences (MSLS) dataset [148] is a large-scale, diverse

dataset designed for the task of lifelong place recognition. Released in 2020, the dataset

comprises over 1.6 million images curated from the Mapillary collaborative mapping

platform. The dataset is structured into a large number of short sequences of street-level

images, covering urban and suburban settings across 30 cities across six continents.

The dataset includes images tagged with sequence information and geo-located with

GPS and heading angles, captured across various times of the day and year, spanning

all seasons over a nine-year period.

3.2.2.9 San Francisco XL

The San Francisco eXtra Large (SF-XL) dataset [77], released in 2022, was constructed

from Google StreetView imagery. The dataset offers an expansive, densely covered, and

temporally varied compilation of data. SF-XL combines 3.43 million equirectangular

panoramas, subsequently segmented into 12 horizontal crops, yielding a total of 41.2

million images, each annotated with six degrees of freedom (6 DoF) information,

encompassing GPS and heading data. The images in the dataset, taken between 2009

and 2021, encompass a significant temporal variation, thereby incorporating long-term

environmental changes that add value to the dataset.
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3.2.2.10 KITTI 360

The KITTI 360 dataset [149] extends beyond its predecessor, the KITTI dataset [126],

by offering enhanced semantic and instance annotations in both 2D and 3D perspectives,

alongside richer 360-degree sensory data through fisheye images and laser scans. Made

available in 2022, it encompasses over 320,000 images and 100,000 laser scans collected

across a driving distance of 73.7 kilometres in the suburbs of Karlsruhe, Germany. The

dataset includes accurate geo-localisation of all frames, leveraging OpenStreetMap for

precise positioning and the assignment of consistent instance IDs across frames for

robust tracking and analysis. Semantic label definitions align with the Cityscapes dataset,

facilitating cross-dataset comparisons and evaluations with 19 classes designated for

assessment. The sensor setup for data acquisition includes a 180◦ fisheye camera on

the left and right of the vehicle, a 90◦ perspective stereo camera at the front with a 60

cm baseline, and a combination of a Velodyne HDL-64E and a SICK LMS 200 laser

scanning unit mounted on the roof, supplemented by an IMU/GPS localisation system.

Offering a comprehensive 360◦ field of view, the dataset supports a wide range of tasks,

including semantic segmentation, instance segmentation, semantic scene completion,

and urban scene understanding.

3.2.3 Synthetic Datasets

In the development of VPR systems, the generation and application of synthetic datasets

have been identified as a pragmatic approach to circumvent the limitations encountered

in the collection and annotation of real-world data. Many real-world datasets, including

the ones discussed in the previous subsections, face challenges in covering an exhaustive

range of scenarios, objects, and environmental conditions due to the resource-intensive

nature of their collection and the manual labour required for data annotation. Many

of these datasets, while extensive, lack representation of rare or edge cases, which are

critical for robust model training.

Synthetic datasets, generated through simulations, offer a broader array of scenarios

without the need for manual annotation, addressing some of the key challenges in

real-world data collection and preparation. Thus, they play a vital role in the field of

autonomous driving, providing a means to train and evaluate algorithms under controlled
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conditions that might be difficult, expensive, or even impossible to replicate in the real

world.

Nonetheless, the capacity to generate environments that closely mimic real-world

conditions, including the changes that occur across different seasons, is crucial for

VPR datasets. As such, without the ability to accurately replicate these conditions,

the potential for synthetic datasets to contribute meaningful insights or improvements

to VPR systems is severely compromised. Furthermore, the use of synthetic datasets

introduces the challenge of the domain gap, which is the difference in data characteristics

between synthetic and real-world environments. This gap can affect the performance

of models trained on synthetic data when applied to real-world tasks, as the variability

and complexity of natural environments are not fully replicated in synthetic scenarios.

During the period in which this research was conducted, the state of generative imaging

techniques and rendering methods did not reach a level of advancement necessary to

justify the utilisation of synthetic datasets for tasks associated with VPR. Therefore,

our research methodology was tailored to rely on real-world datasets, which, despite

their own set of limitations, offered a more reliable basis for training data-driven VPR

techniques.

In this section, we will discuss a range of synthetic datasets that, while not currently

in use for our specific research, stand out for their significance in the broader context of

computer vision and autonomous driving studies.

3.2.3.1 Synthia

Synthia [150] is a seminal synthetic dataset designed for semantic segmentation and

urban scene understanding. It showcases the early use of synthetic data to supplement

real-world datasets, emphasising the generation of urban landscapes under various

conditions. The dataset has been further enhanced by the introduction of Synthia-

SF [151] and Synthia-AL [152] in 2017 and 2019, respectively, each addressing unique

facets of urban environment simulation. Synthia-SF [151], introduces a novel depth

model based on Slanted Stixels. This model offers an improved representation of

non-flat roads, a common challenge in urban scene analysis, although with a trade-off

in computational efficiency. Synthia-AL [152], focussing on active learning, includes a

comprehensive set of classes such as void, sky, building, and traffic elements. It extends
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its utility by offering detailed ground truth data, encompassing instance segmentation,

2D and 3D bounding boxes, and depth information.

3.2.3.2 Virtual KITTI

Inspired by the real-world KITTI [126] dataset, Virtual KITTI [153], replicates the

original’s driving scenarios in synthetic form. Announced in 2016, it aims to provide

a controlled environment for testing computer vision algorithms, including those for

VPR. By mimicking real-world conditions in a virtual setting, Virtual KITTI allows for

the exploration of various scenarios and conditions, albeit within the constraints of its

synthetic nature. An enhancement of this dataset, Virtual KITTI 2 [154], proposed in

2020, provides a more photo-realistic and feature-rich dataset, exploiting improvements

of the Unity game engine to provide new data such as stereo images and scene flow.

3.2.3.3 CARLA

The CARLA (Car Learning to Act) [155] simulator has been instrumental in generating

synthetic datasets for autonomous driving research, including VPR. However, datasets

produced within CARLA often face criticism for lacking sufficient photorealism, which

can impede their effectiveness in scenarios requiring high fidelity to real-world appear-

ances. This limitation highlights the challenge of using CARLA-generated datasets for

direct application in tasks demanding accurate representation of real-world conditions.

3.2.3.4 Synscapes

Recognised for its advanced approach to synthetic dataset generation, Synscapes [156]

employs procedurally generated scenarios and photorealistic rendering to closely match

the real-world Cityscapes [132] dataset. This methodological sophistication has shown

to enhance transfer learning capabilities significantly, setting a benchmark for photore-

alism and domain specificity in synthetic datasets for driving scenarios.
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3.2.3.5 SynWoodScape

As a synthetic counterpart to the WoodScape dataset [146], SynWoodScape [157],

released in 2022, attempts to replicate the latter’s diverse driving scenarios in a virtual

environment. Despite this ambition, it shares a common limitation with other CARLA-

generated datasets in terms of photorealism. The lack of sufficient realism has been

identified as a barrier to achieving improved model performance in the target domain,

underscoring the necessity of domain adaptation when integrating synthetic and real-

world data.

3.2.3.6 PD-WoodScape

Developed by Parallel Domain in 2023, PD-WoodScape [158] aims to bridge the gap

between synthetic and real datasets by closely matching the WoodScape dataset’s sen-

sors, annotations, and operational domains. Rendered with a high-grade synthetic

data pipeline, it achieves superior photorealism compared to CARLA [155] gener-

ated datasets. Special attention to annotation alignment ensures that training on PD-

WoodScape avoids the pitfalls of false positives that may arise from discrepancies in

dataset labelling, thereby minimising the synthetic-to-real domain gap.

3.3 Tools

The analysis and processing of public datasets for VPR research requires a combination

of specialised tools and methodologies. Processing of autonomous driving datasets

typically involves either directly accessing the data through custom code, utilising

bespoke SDKs designed for individual datasets, using related tools from fields such as

photogrammetry, or employing dedicated autonomous vehicle dataset frameworks.

3.3.1 Visualisation Tools

Visualisation tools are integral to VPR systems as they enable interpretation and analysis

of the complex processes underlying place recognition tasks. These tools facilitate the
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inspection of poses, images, and relevant metadata, matching mechanisms, and the

spatial-temporal dynamics of poses, thereby providing insights into the strengths and

weaknesses of the data required for learned VPR algorithms. By visually inspecting

the correspondences between query and reference images, researchers can identify

patterns and anomalies in the data associations made by the VPR system, leading

to more informed decisions about algorithmic adjustments and enhancements. Thus,

visualisation tools serve as a critical component in the development, evaluation, and

optimisation of VPR systems.

Probably the most notable tool from the field of photogrammetry for visualisation

of driving datasets is Visual SFM [159]. This tool allows loading images, performing

Structure from Motion (SfM), saving and loading .nvm files, and viewing the resultant

point cloud and image associated with each camera pose. Being a full-fledged SfM tool,

its support does not extend beyond .nvm files and therefore does not support many of

the additional file formats included with vehicle datasets.

More recently, a number of automotive companies have released tools designed

specifically to address some of these issues and to better support research in the space.

Webviz [160] is a web-based tool, developed by Cruise, for general robotics data

inspection. The tool provides visual insights on ROS bag files and allows connecting

to a live robot or simulation. Webviz allows custom data visualisation layouts from a

collection of configurable panels for displaying information like text logs, 2D charts, and

3D depictions of the vehicle’s environment. Facilitating playback and visualisation of

ROS bag files, Webviz provides an intuitive platform for developers and researchers to

dissect and understand the behaviour of robotic systems through visual data inspection.

Autonomous Visualisation System (AVS) [161] is an open and modular 3D visuali-

sation toolkit developed by Uber, allowing visualisation of data across the autonomous

vehicle development spectrum, focussing on perception, motion, and planning data.

It uses XVis, which serves as an underlying data protocol, outlining a structured,

stream-oriented approach to scene representation over time. It focuses on rendering per-

formance and composability, utilising a React and WebGL-based visualisation platform

to ensure real-time playback and smooth interaction with complex scenes. Offering a

scalable and flexible solution for the visualisation and analysis of autonomous vehicle

data, the tool allows loading and navigating through individual poses of a trajectory
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while also featuring inspection of GPS/INS, point clouds, and other metadata on a

frame-by-frame basis.

Although both Webviz and AVS provide strong frameworks for processing and

visualisation, both are targeted at real-time visualisation and playback of vehicle sensor

data, i.e., providing a replay functionality at the local level of the vehicle. As such, they

are not directly applicable to the use cases considered here, where we wish to visualise

and process complete trajectories at a global level.

Another visualisation tool of significance is FiftyOne [162], an open-source tool

developed by Voxel51. It is designed to facilitate the analysis, visualisation, and

management of large-scale image and video datasets used in deep learning projects. The

tool facilitates the viewing and editing of annotations (e.g., bounding boxes, semantic

segmentation) that describe the content of images. While Voxel51 excels in video and

image analytics, VPR-specific visualisation requires integration with additional tools or

libraries that are tailored to the spatial and geometric analyses fundamental to VPR.

We also note additions to the popular Open3D library [163], in particular the

Open3D-ML extension, which extends the library to support common deep learning

tasks in autonomous vehicle research. These extensions are targeted at 3D deep learning

tasks such as 3D object detection and semantic segmentation.

3.3.2 Limitations

Despite the presence of the aforementioned tools, the process of managing and utilising

public datasets remains complex and requires careful considerations. This involves

several critical stages, each demanding a unique set of approaches and methodologies.

Typically, the first step in determining a dataset’s applicability for a given project

is to visualise and analyse its included trajectories. For example, assessing a dataset’s

suitability for VPR research requires analysing the geographical extent and degree of

overlap between individual trajectories. Many popular public driving datasets only

provide a single view of the included trajectories overlaid on a static aerial or satellite

image (see Figure 3.12). More recently, datasets such as BDD100K have included

executable scripts to visualise the top view of the individual trajectories. However, such

scripts typically do not include functionality for loading multiple trajectories, analysing
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(a) KITTI (b) New College (c) RobotCar (d) UQ St Lucia

Figure 3.12: Path overlaid on satellite images provided by different popular datasets

Dataset Pose File Format Camera Images

New College [110] TXT JPG

KITTI Odometry [126] TXT PNG

CMU Seasons [43] NVM JPG

UQ St Lucia [136] LOG Bayer PNG

Oxford RobotCar [7] CSV Bayer PNG

BDD100K [134] JSON MOV Video

Table 3.1: Different file formats used by popular driving datasets

the overlaps, and inspecting individual pose data (e.g., GPS, heading, image, and other

sensor data).

Given a suitable dataset, utilising it requires the researcher to become familiar with

its organisation and structure so as to curate suitable data for training and evaluating

new models. Many file formats have been adopted by different datasets (as shown in

Table 3.1), with each dataset having its own sensor types, positioning, and configura-

tion. Ideally, software development kits (SDKs) are released alongside the datasets to

simplify their use (e.g., PyKITTI [164], RobotCar SDK [165], Cityscapes Scripts [166],

BDD100K Toolkit [167], etc.). However, in our experience, there is still a steep learning

curve associated with most driving datasets. In particular, one has to expend consider-

able time and effort to set up and become familiar with the SDK. Furthermore, given

the variations between the APIs, the use of different programming languages, etc., any

code developed to perform additional tasks will have limited portability across datasets.

Supervised learners learn a function using the labelled training data, and hence, the

quality and precision of such data need to be high [168, 169, 170, 171]. Creating training

sets from one or more datasets usually involves (i) sampling or selecting the images
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required, (ii) collecting corresponding information regarding the vehicle’s pose from

the Global Positioning System (GPS) and Inertial Navigation System (INS) data, (iii)

applying positional and rotational offsets, and (iv) finding pose correspondences within

or across the trajectories. For many computer vision challenges, it is often preferable to

select images of importance based on their location on the map, e.g., choosing images

of landmarks, images captured at intersections, or images of the same place captured

from different viewpoints. To train computer vision models to extract features from

images robust to different viewpoints, seasons, and different times of the day, thousands

of image correspondences based on the GPS data are required. The SDKs are often

limited to only parsing the pose files to obtain GPS/INS data for images and converting

the images to standard file formats and do not include an interactive interface to perform

subsampling or finding such correspondences.

3.4 OdoViz

To address the aforementioned problems, we present OdoViz, a novel extensible plat-

form for 3D odometry visualisation and processing, providing a unified software frame-

work for working with a wide array of heterogeneous odometry benchmark datasets.

OdoViz is web-based, flexible, extensible, easy-to-use, and supports common odometry

file formats with customisable scene and offset settings. The system allows the user to

perform operations such as sampling, identifying, and comparing pose correspondences

within and across multiple trajectories. It also allows loading, inspecting, visualis-

ing, and processing GPS/INS poses, point clouds, and camera images. OdoViz has

built-in support for popular driving datasets, including: Oxford RobotCar [7], CMU Sea-

sons [43], BDD100K [134], UQ St Lucia [136], New College [110], and KITTI [126],

and supports user-defined extensions to support custom datasets. The system also in-

cludes plugins for importing and exporting settings, as well as extensions for a range of

tasks, including (i) analysing top-k matches in an image retrieval benchmark of a feature

extractor and (ii) visualising topological nodes along a loaded trajectory. Additional

features can be implemented through custom extensions and plugins.

We explain the design and architecture of OdoViz in Section 3.4.1, discuss each of

the core modules in Section 3.4.2, elaborate on sampling and finding correspondences

functionalities in Section 3.4.3, and discuss the extensions and plugins in Section 3.4.4.
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Existing VPR tools like Webviz and AVS address important needs within the

community by providing rich frameworks for processing and visualisation at the local

level of the vehicle, i.e., targeting egocentric tasks such as real-time visualisation and

playback of vehicle sensor data and 3D object detection. However, they are not directly

applicable in more global-level tasks such as the use cases considered in this section,

e.g., identifying corresponding poses within or across trajectories, or for visualising

loop closures.

To our knowledge, OdoViz is the only tool that supports loading, viewing, and

processing of complete trajectories and performing common odometry tasks such as

sampling and finding pose correspondences. OdoViz was initially created as a small

in-house tool to load and inspect different datasets and to reduce the effort required to

incorporate new datasets within our research. The tool has been in development since

2019, with multiple features added to the software since then to aid our research. It

had grown mature to act as a generic, extensible 3D odometry visualisation and dataset

curation tool, and we have open-sourced5 the work under the MIT licence for the benefit

of the wider research community.

A live instance6 of OdoViz is hosted online for preview purposes. Documentation

and a number of video tutorials7 have been made available to assist in using the system

and completing common tasks. Documentation on extending the system to support a

new dataset is also provided.

3.4.1 Design

The OdoViz architecture consists of (i) a front end providing a rich client built on React,

Redux, and Redux Saga, and (ii) a backend server designed to act as a JSON API-based

thin server primarily for serving files. The reactive front end, equipped with a Three.js

environment, provides a 3D user interface. The complete application is loaded as a

Single Page Application (SPA), ensuring full functionality and minimum processing

latency after the application is loaded into memory. Network connectivity is required

only to load new files from the server.

5Source-code is available at https://github.com/robotvisionmu/odoviz
6Live instance is available at https://odoviz.cs.nuim.ie
7Video tutorials are available at https://www.youtube.com/playlist?list=

PLKIavzsN4tuGi1SKDSPss0M8v4zswVEn9

https://github.com/robotvisionmu/odoviz
https://odoviz.cs.nuim.ie
https://www.youtube.com/playlist?list=PLKIavzsN4tuGi1SKDSPss0M8v4zswVEn9
https://www.youtube.com/playlist?list=PLKIavzsN4tuGi1SKDSPss0M8v4zswVEn9
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The system is designed around the following principles:

• Web-based: The software is web-based and therefore runs without compilation

on all major operating systems directly in the browser. It allows for the easy

addition of new features and debugging of existing ones, with support for hot and

live reloading. Dependency resolution is performed automatically using NPM

(Node Package Manager), where Webpack links the dependencies, minifies, and

bundles the app in a JavaScript file, which can then be served along with a static

HTML file. Web-based tools further allow providing a rich, modern, reactive and

easily modifiable user interface while being highly accessible and portable.

• Extensible: The system is designed with extensibility in mind. This is achieved

by associating a single parser file with each dataset that includes paths to its

various file locations, along with information used for extracting data from the

info file and linking the data with the images. Hence, adding support for a new

dataset requires only adding a new parser file. This facilitates the handling of

multiple datasets and file formats within a single platform. OdoViz can also be

equipped with extensions that allow inspecting and modifying loaded odometry

data, reading external files, comparing images, etc.

• Real-time: Data is processed and visualised in real-time. Powered by JavaScript

and React/Redux, OdoViz has asynchronous execution and immutability at its

core, i.e., it runs tasks asynchronously without blocking the UI, updates the data

in an immutable fashion by updating existing pointers to point to the new data,

and displays the changes reactively. This pipeline allows the changes to variables

to reflect on the visualisation near instantly.

Figure 3.13 shows the architecture of OdoViz with the thin-server and rich-client

design. The front end has a Redux store to manage the app’s state in a nested object

literal, which acts as a single source of truth for all of the app’s data and configuration.

The store is read-only and can only be immutably modified as the user interacts with

the app using reducers. Reducers are pure functions that take in the previous state

and the current action to produce a new state. The reactive UI comprises a collection

of components, each of which subscribes to required store data to populate its view

template. When events occur, the UI dispatches actions that trigger the corresponding

reducer functions. As a result, the store data changes, and all subscribed components
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Figure 3.13: Overall architecture of OdoViz
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re-render to reflect the updates. This unidirectional data flow ensures that the app is

more predictable, traceable, and reproducible.

The OdoViz architecture allows the system to be deployed in a number of different

ways, including:

• a browser-based frontend tool consuming data served on the same computer using

a NodeJS server.

• a standalone single-user installation software packaged up individually for various

operating systems using a packager system such as ElectronJS.

• an in-house app in an organisation or research group with a common server to

serve files stored centrally, which can then be consumed by its members.

• an online interactive visualisation tool for publicly available datasets that will

allow the users to visually explore and inspect the various trajectories before

downloading them. With all the computation taking place in the client, this allows

setting up a server with virtually no compute load, hosted only to serve files.

For servers with limited network bandwidth, a smaller subset of the dataset can

be made available to be interactively viewed. The software can additionally be

customised to have only limited features and can also be set up to allow users to

selectively download desired trajectories.

3.4.2 Core Modules

In this section, details are provided for each of the core modules that make up the overall

system.

3.4.2.1 Data Parser

OdoViz supports loading Oxford RobotCar [7] GPS, INS, and Odometry csv files,

BDD100K [134] json files, CMU Seasons [43] nvm files, KITTI [126] txt files, New

College [110] txt files, and St Lucia [136] log files. OdoViz also supports loading other

generic .nvm bundler files with point-cloud visualisation. Additional parser files can

https://www.electronjs.org/
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be easily added to provide support for custom datasets. Data parsed from any source

is consistently loaded into the browser’s memory in the app’s state, containing the

following keys: index, timestamp, position, orientation, gps, altitude, imageIndex, and

image. Visualisation, sampling, matching, and all other tasks can then use this data

for processing. In cases where it may not be possible to load proprietary file formats,

the files must first be converted to an open format and then parsed accordingly. For

example, .mat files, which are binary MATLAB files that store workspace variables,

should be loaded in MATLAB and then exported as one or more .csv files.

The fused GPS/INS will often have pose data with a frequency over 50 Hz, while

the camera will typically operate at a lower frequency. Furthermore, in general, the

GPS/INS timestamps will not be synchronised with the camera images, as the sen-

sors record the information independently. It is therefore preferable to only compute

information necessary for the poses from which the images are captured. This pose

information is computed by the data parser by interpolating the neighbouring poses

from the GPS/INS data. The included data parsers employ linear interpolation between

the two nearest poses; however, this can be updated as necessary within any given

parser. Poses are coloured using a gradient (red to orange by default), making it easy to

distinguish poses that belong to overlapping traversals (see Figure 3.14).

Performance Optimisations: Routine data manipulation operations, including map,

reduce, and filter, can be efficiently implemented in JavaScript, often without requiring

extensive language-specific knowledge. However, the custom parsing and matching

scripts in OdoViz are executed in a web client, which imposes certain processing limita-

tions. In particular, the JavaScript engine within the web browser cannot fully utilise all

the cores of the CPU for compute-intensive tasks, and support for general-purpose GPU

computation is severely restricted. To mitigate these limitations, asynchronous opera-

tions such as data fetching and parsing are delegated to separate worker threads using

the Web Workers API. Additionally, libraries like GLMatrix [172] can be employed to

accelerate matrix operations by leveraging WebGL, enabling partial use of the client-

side GPU. Alternatively, compute-intensive operations and GPU-based processing can

be delegated to the server. To do this, OdoViz’s NodeJS backend can be extended to

expose API endpoints that invoke native server-side code, enabling seamless integration

with the frontend. It is worth noting that WebAssembly (WASM) can offer higher raw

compute performance in the browser. However, compiling from languages such as

Python to WASM can be non-trivial and may even result in reduced performance in
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practice. This server-based approach instead facilitates the use of established scientific

computing libraries such as NumPy [173], SciPy [174], OpenCV [175], and Eigen [176]

while maintaining native performance and a modular, maintainable codebase.

3.4.2.2 Offset Settings

Many datasets and their associated file formats will have their own conventions for

coordinate frames, e.g., swapped Y and Z axes for positioning and inverted Y rotations.

OdoViz allows adjusting the offsets in each of the 3 dimensions for position Px , Py

and Pz and rotation Rx , Ry and Rz . Functionality is provided to additively invert values

assigned to each of the above six variables, swap any two R axes or P axes, and/or scale

up or down all axes equally. With known translation and rotation of the camera, it is

possible to precisely visualise the vehicle’s pose using these offset settings. Furthermore,

this conveniently allows loading unadjusted data captured from cameras or INS sensors

mounted upside-down, rotated, and/or translated, and thus is also helpful in making new

datasets from captured raw logs. The user interface is carefully designed to allow angle

snapping to multiples of 45◦ and provide controls for fine-tuning to precisely adjust the

scale.

Given the increased error in GPS altitude data [177, 178] when compared to latitudi-

nal and longitudinal data, loading a journey with the same start and end points can result

in a significant error in the z-coordinate (e.g., the Oxford RobotCar 2014-12-10-18-10-

50 trajectory exhibits a significant altitude drift). To address this, OdoViz includes an

option to ignore altitude during visualisation. Additionally, the system repurposes the

unused z-axis to represent time differences. In addition to gradient colouring, the poses

are elevated along the z-coordinate based on their timestamp, allowing a visual represen-

tation of temporal progression. With the rate of elevation being user-configurable, this

feature is particularly useful when visualising multiple and overlapping journeys and in

developing extensions and plugins to visualise loop closures, such as the HTMap [117]

extension (explained later in Section 3.4.4.3).
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(a) (b)

Figure 3.14: Screenshots showing the difference between flattened and time-encoded

z-axis. (a) Flat z-axis, only coloured based on the index of the pose; (b) Time-encoded

z-axis, z-offset added based on the index of the pose. As it is in 3D, the difference is

understood more clearly in the video available at https://youtu.be/KsksVkYRmlg.

3.4.2.3 Scene Settings

By default, the 3D scene is set up with an oblique view, directional light, and an auto-

expanding grid for reference, with each vehicle pose represented as a low-polygon

3D model of a car. Further settings are provided to switch between different preset

viewpoints (e.g., top view), toggle the grid and lights, and adjust the scale of the

elements of the 3D model to cater for different levels of zoom.

Similarly, for data with point clouds, the size of the points can be adjusted for

either the selected pose or the entire dataset. Point-clouds are uniformly coloured with

perceptually uniform8 viridis colourmap [179] based on the depth using a GLSL shader.

User-defined colourmaps can also be added.

Given that the noise associated with point clouds often increases significantly with

depth, these areas consume a disproportionately large region of the colour spectrum,

leaving a smaller bandwidth for the nearby points. To ameliorate this issue, this colour

mapping can be adjusted by excluding farther points above a predefined percentile while

8if the data goes from 0.1 to 0.2, this should create about the same perceptual change in colour as if
the data goes from 0.8 to 0.9

https://youtu.be/KsksVkYRmlg
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colouring. By default, we exclude points above the 90th percentile. OdoViz further

provides a setting to add a camera object to each pose, introducing new possibilities

for extensions and plugins to add new tasks based on these cameras. For example, we

have employed these camera objects to develop a plugin that finds intersecting camera

frustums to filter images from overlapping viewpoints.

Mouse interaction to control the viewfinder defaults to Orbit controls (mouse-drag

controls rotation and Alt + mouse-drag controls translation); however, this can be

changed to Map controls (vice versa). Mouse-hover highlights and selects the pose,

while right mouse-click pins/unpins the currently selected pose. Mouse-hover will

not trigger selection when an object is pinned. This is useful when performing other

operations on the scene while keeping the desired object selected.

Additionally, there is an animate feature that moves the view to the first pose and

propagates to subsequent poses with a user-defined time delay to smoothly visualise a

replay of the entire journey sequentially. As the animation proceeds, poses are selected

one after the other, with the viewfinder’s target set to the selected object and the selection

being pinned to avoid other mouse interactions. This allows rotating and zooming in/out

of the map whilst keeping the currently animated object in the centre of view.

3.4.2.4 Info and Image Viewer

On selection of a pose in the visualisation tool’s main viewport (see Figure 3.15a)

the associated information and the corresponding image can be viewed in the info

panel and the image viewer panel, respectively (i.e., when the panels are activated).

This information includes data such as latitude, longitude, altitude, and heading (see

Figure 3.15b), and the image taken from the selected pose (see Figure 3.15c). We

also developed a plugin to conveniently visualise in real-time the selected pose on

satellite imagery using its GPS data, if available. To do this, we show the selected

pose on a mini-map above the image using LeafletJS [180] and OpenStreetMap [181],

which updates as the selection changes. Additionally, we integrated a feature that

allows viewing the selected pose in a new browser tab on Google Maps and on Google

Street-View. It should be noted that heading information of the current pose is used for

comparison of the image against recent 360 captures from the same pose.
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(a) Selected Pose (b) Info Viewer (c) Image Viewer

Figure 3.15: Screenshots showing (a) the viewport showing the selected pose highlighted

in black, (b) information about the selected pose in the Info Panel, and (c) the image

along with an embedded minimap in the Image Panel. Best viewed in colour on a

computer screen.
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3.4.3 Pose Processing

3.4.3.1 Adaptive Sampling

Many datasets offer dense data with poses sampled at a rate that can be as high as

200 Hz. For example, visualising a 10 km journey through Oxford9 with GPS logged

at 50 Hz yields 118,763 poses, whereas images logged at 16 Hz yield 35,514 poses.

Rendering such a large number of data points would require excessive computational

resources, resulting in very large loading times of up to a few minutes even on a modern

high-end consumer-grade CPU. This data is often uniformly sampled using scripts to

reduce the number of data points rendered in the 3D environment.

This uniform sampling is often also applied when training models that make use of

keypoints in the images. In each of these cases, and particularly in the latter, such an

approach to sampling may not be suitable. This is because many data points will be

decimated around corners, despite exhibiting significant variations in visual content due

to rapid changes in heading.

Usually a sparse set of data points are uniformly sampled from such dense data

based on a fixed distance threshold. For example, one pose every 5 metres would

reduce the total number of poses from 35,514 to less than 1000 in the above RobotCar

trajectory. As such, this distance-based uniform sampling also removes redundant poses

at the same GPS coordinates captured as the vehicle waits at a red traffic light at an

intersection. However, we also lose many visually dissimilar and feature-rich images

around the corners as the vehicle sweeps a larger heading angle in a very short distance.

For example, in a tight turn with 10 or more visually distinct viewpoints, uniform

sampling will reduce the resultant segment to one or two images if sampled only based

on a distance threshold.

In order to overcome this issue, we present an adaptive sequence-based sampling

technique that is dependent on the rate of change of angle with respect to distance. The

algorithm for adaptive sampling is shown in Algorithm 1.

This technique traverses the poses using timestamps and decimates the poses only

along the sequence, preserving the poses on overlapping routes within the journey. In

9Oxford RobotCar [7] trajectory 2014-11-18-13-20-12

https://robotcar-dataset.robots.ox.ac.uk/datasets/2014-11-18-13-20-12/
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(a) (b) (c) (d)

Figure 3.16: Screenshots (a) and (b) show poses present in a portion of the Oxford Robot-

Car trajectory after uniform sampling and adaptive sampling, respectively. Contours

connecting the sampled poses (c) and (d) highlight the difference in results between the

two methods and show how the adaptive sampling preserves the corners of the trajectory.

A screen-cast showing how changing the constraints τdacc and τθacc affects sampling in

real-time is available at https://www.youtube.com/watch?v=9Vf26sgRqSc

https://www.youtube.com/watch?v=9Vf26sgRqSc


CHAPTER 3. VPR SYSTEMS: DATASETS, TOOLS AND METRICS 72

Algorithm 1: Adaptive Sampling

Result: List of sampled_poses

poses = list of poses; // population, input

sampled_poses = []; // result placeholder

dacc = 0; // accumulated distance

θacc = 0; // accumulated angle

τdacc = 12; // static distance threshold (m)

τθacc = 15; // adaptive distance threshold (deg)

foreach pose in poses do
dacc = dacc + ∆d ;

θacc = θacc + ∆θ ;

if θacc > τθacc or θacc > τθacc then
Add pose to sampled_poses; // choose sample

dacc = 0; // reset accumulated distance

θacc = 0; // reset accumulated angle

end

end
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contrast, binning the poses based on the GPS locations using a KD-tree and selecting

one pose per bin would yield fewer samples, as all poses from a certain GPS location

would fall in the same bin regardless of whether it belongs to an overlapping route

or not. Hence, the sequence-based sampling is preferred, as the resultant set of poses

can be used in many place recognition-related tasks, such as computing loop closure

detection on fewer samples from the same trajectory.

A plugin for sampling added to the visualisation tool allows us to perform both

uniform sampling using a static distance threshold τdacc , and adaptive sampling using

an adaptive distance threshold τθacc that is based on the angle accumulated θacc over a

distance dacc . We avoid computing interpolation of data as τdacc or τθacc changes by

precomputing the interpolated data for all images. This makes it possible to interactively

vary both τdacc and τθacc for adjusting sampling with real-time visual feedback.

Figure 3.16a and Figure 3.16b show the different poses sampled based on the

uniform sampling and adaptive sampling, respectively. The plugin also shows total

poses that will be sampled based on the criteria chosen and features a facility to export

sampled poses to a JSON file that can be processed using a dataloader for training deep

learning models.

3.4.3.2 Finding Pose Correspondences

Training computer vision models to extract features from images robust to different

viewpoints, seasons, and different times of the day requires thousands of image pairs

from corresponding locations. This data can be curated based on the GPS data. In

curating such datasets, it is important to compare images and information regarding the

poses of the same or another journey traversed on the same route, either partially or

completely. We compute a matching pose with the least loss for each of the poses in the

journey selected for finding correspondences, where the matching loss between a query

pose px and a match candidate pose py is defined as follows:

Loss=α∆d +β∗ ∆θ

β∗ =


β
θacc

τβθ
, if θacc > τβθ

β, otherwise

(3.1)
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where,

α= distance importance factor

β= angle importance factor

∆d = absolute distance10 between px and py

∆θ = absolute heading difference between px and py

β∗ = adaptive angle importance factor

θacc = angle accumulated up to a distance of τβd from px

τβθ = beta limiter threshold

β∗ increases β by a factor proportional to θacc. As θacc increases when px is closer

to corners, β∗ dynamically raises the weight assigned to the angle loss when computing

for query poses near corners, increasing the importance of angle when finding matches.

In order to speed up the matching process, we discard poses that have a distance loss

greater than 30 m and any loss greater than a defined τloss. To avoid having multiple

poses matching to more than one query pose, an additional step is performed to check if

the match has been paired with any other pose. We update the match only if it has a

lower loss than other matches. All the above operations are fully customisable to suit

individual needs in a separate matcher file.

When a journey is loaded and sampled, OdoViz can load another overlapping journey

and find matching poses for each of the poses in the current journey, as described above.

The matched poses from the new journey are grouped together and added to the same

3D scene with a different colour. Figure 3.17 shows the colour-coded matching results

of loading two traversals against the loaded traversal. As with the pose sampling plugin,

this plugin features an export as JSON option where the resulting file can be used

directly to train deep learning models, e.g., CNN-based metric learners [62, 63, 64].

3.4.4 Extensions and Plugins

Further to the core modules described in the previous sections, OdoViz’s functionality

can be extended through the addition of visualisation and compute extensions and plug-

ins for importing and exporting data. Compute-intensive extensions are recommended
10computed using the Haversine Formula [182], i.e., the great-circle distance between two points on a

sphere given their longitudes and latitudes
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Figure 3.17: Left: the main viewport loaded with three Oxford RobotCar trajectories

obtained by matching Winter Night 2014-12-10-18-10-50 (green) and Summer Day

2015-05-19-14-06-38 (indigo) against an adaptively sampled Winter Day 2014-12-09-

13-21-02 (orange). Right: Images corresponding to the three matched poses marked in

red in the left image: top – Winter Day, middle – Winter Night, and bottom – Summer

Day.
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to use Web Workers for compute operations that asynchronously load the compute data.

Here we highlight three such extensions that are included with the software in order to

provide examples of the versatility of the system.

3.4.4.1 Save and Restore Plugin

The Save plugin is a simple import/export plugin that saves store data to the browser’s

storage. The current view, offset settings, scene settings, sampling settings, and the

loaded file can be saved and restored using this plugin. Additionally, the plugin indicates

if there have been any changes made since the last load, for example, to check if the

sampling was performed using previously saved settings before exporting sampled

poses.

3.4.4.2 Top-k Image Retrieval Analysis Extension

A common approach for VPR using deep neural networks is to compute a compact

embedding that provides a compressed representation of an image’s visual appearance

suitable for matching and retrieval. Often a top-k precision and/or top-k recall metric is

used to evaluate the quality of the embeddings using retrieval performance. The top-k

Image Retrieval Analysis extension accepts one or more (i ) .npz files containing pairwise

distances, labels, and top-k distances output during training for different epochs of a

deep learning algorithm, and (i i ) the corresponding data.json containing the mapping

from label and index (or path) to the original image file location on disc. This data is

then presented in an intuitive tabulated format showing top-k matches k = 5 by default.

The interface allows the user to interactively explore the results, selecting different

query or anchor images, visualising the top-k matches, varying k using a slider, etc. (see

Figure 3.18). In particular, when a row is selected in the table, an image comparison

interface on the right shows images of the ground truth and the top match, one below

the other, while showing smaller thumbnails of the top-5 matches below. Ground Truth

is shown in yellow, while the match is shown in blue — represented as a font colour

in the table and as a border in the image comparison interface. Results for a given

epoch can be compared with other epochs using the slider provided. We extensively use

this extension to compare and qualitatively evaluate top-k retrievals of various image

retrieval models later in Chapter 4, Chapter 5, and Chapter 6.
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Figure 3.18: Screenshot of the Top-k Image Retrieval Analysis extension. On the left,

the interface displays a table corresponding to the 32,949th batch of training data, with

k = 5 selected via the Top-k slider. The highlighted row indicates the selected anchor

image and its top-k matches. On the right, the anchor image is shown at the top, and the

top-k retrieved matches are presented as thumbnails in a horizontally scrollable view

at the bottom. Selecting a match from the thumbnail view or the table displays it in a

larger format below the anchor image for direct visual comparison.
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Figure 3.19: Screenshot of HTMap plugin showing loop closure connections in an

overlapped route within the same trajectory loaded with time in Z-axis

3.4.4.3 HTMap Extension

As a final example, we present a visualisation plugin to render the output of the Hier-

archical Topological Maps (HTMap) technique of Garcia et al. [117]. This approach

divides trajectories by hierarchically grouping images into a set of topologically con-

nected nodes. The HTMap extension allows loading results of HTMap to provide a 3D

view of how the trajectory is divided into multiple parts with a different colour for each

location and where the image loops have been found. Figure 3.19 shows the HTMap

result for one of the Oxford RobotCar trajectories. Notice the different colour for sets

of poses belonging to the same topological node and the loop closure connections in

red that connect the poses of the images matched. We make heavy use of this feature in

visualising and interpreting the results presented in Chapter 6.

3.5 Metrics

In the field of VPR, the effectiveness and reliability of different approaches are mea-

sured using a variety of metrics. To effectively evaluate VPR systems that use feature

representations for image processing and operate on sequential image sets for mapping,



CHAPTER 3. VPR SYSTEMS: DATASETS, TOOLS AND METRICS 79

it is essential to adopt a comprehensive suite of metrics tailored to meet these specific

prerequisites. This section delineates various metrics, encompassing both quantitative

and qualitative aspects, vital for benchmarking VPR systems.

To understand the metrics better, it is essential to consider the elements of a confu-

sion matrix:

• True Positives (TP): Correctly identified matches or loops.

• True Negatives (TN): Correctly identified non-matches.

• False Positives (FP): Non-matches incorrectly identified as matches.

• False Negatives (FN): Actual matches missed by the model.

Additionally, the following terms are crucial for a comprehensive understanding:

• Predicted Positives (PP): Matches predicted as positive, PP=TP+FP.

• Predicted Negatives (PN): Matches predicted as negative, PN=TN+FN.

• Positives (P): Total positive matches, P=TP+FN.

• Negatives (N): Total negative matches, N=TN+FP.

• Total Population: The sum of all positives and negatives = P+N= PP+PN.

3.5.1 Accuracy, Precision, Recall, and F1 Score

The most widely used performance metrics in classification and retrieval tasks —

accuracy, precision, recall, and F1 score — are also directly applicable to evaluating

VPR systems.

Accuracy measures the proportion of correct predictions among all predictions:

Accuracy= Number of Correct Predictions
Total Number of Predictions

= TP+TN
P+N

(3.2)

While intuitive, accuracy alone may not reflect model performance in the presence of

class imbalance, which is common in VPR tasks.
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Precision (Positive Predictive Value) quantifies the proportion of true positive

matches among all predicted positives:

Precision= TP
TP+FP

= TP
PP

(3.3)

Recall (Sensitivity or True Positive Rate) measures the proportion of actual positives

that are correctly identified:

Recall= TP
TP+FN

= TP
P

(3.4)

The F1 score is the harmonic mean of precision and recall, providing a balanced

single metric that considers both:

F1 Score= 2× Precision×Recall
Precision+Recall

(3.5)

These metrics are well established; see [183] for a comprehensive discussion.

3.5.2 Recall at 100% precision

In SLAM systems, VPR modules must achieve extremely high precision, as any in-

correct loop closure (FP) can corrupt the map, causing substantial errors or complete

mapping failure. By contrast, missed loop closures (FN) are less critical, though they

still impact performance.

Therefore, recall at 100% precision, which measures the proportion of true loop

closures detected when no false positives are allowed, is used as a key metric. This

metric directly reflects a VPR system’s suitability for integration into SLAM, where

maintaining map integrity is paramount. High recall at 100% precision indicates that

the system can reliably detect all relevant loop closures without risking erroneous

associations.

3.5.3 ROC Curve, PR Curve, ROC AUC and AP

Precision, recall, and the F1 score all depend on the choice of a decision threshold, which

can significantly affect reported performance. To address this, threshold-independent

metrics are widely used in VPR evaluation.
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The Receiver Operating Characteristic (ROC) curve illustrates the trade-off

between the True Positive Rate (TPR, or Recall) and the False Positive Rate (FPR)

across all possible thresholds, with the area under the ROC curve (ROC AUC) providing

an overall summary of discrimination ability. The FPR quantifies the proportion of

negative cases incorrectly classified as positive.

FPR= FP
FP+TN

= FP
N

(3.6)

Similarly, the Precision-Recall (PR) curve plots precision against recall at different

thresholds, and its summary metric, average precision (AP), is particularly informative

in the presence of class imbalance. Together, these metrics offer a more comprehensive

and robust assessment of VPR systems, independent of any specific threshold setting.

3.5.4 Top-k Metrics

Top-k metrics are designed to evaluate the model’s performance in retrieving the correct

matches within its top-k predictions. In the evaluation of VPR systems, especially those

designed for navigating complex environments or extensive databases, the top-k metrics

play a pivotal role in assessing the system’s ability to accurately identify and rank the

most relevant matches within the top-k results of a query. Given their significance in

applications where immediate and precise location identification is crucial, top-k metrics

provide valuable insights on a VPR system’s practical effectiveness. They specifically

evaluate how well the system prioritises potential matches, which is essential for real-

time navigation and associated image retrieval and matching tasks.

Recall@k, or top-k recall, evaluates the system’s ability to include at least one

match within its top-k predictions. Thus, it reflects the coverage of the system in

ensuring that the correct match is not overlooked in the initial ranked set.

Precision@k, or top-k precision, conversely, measures the proportion of relevant

images among the top-k predictions. It gauges the system’s effectiveness in ranking the

most relevant locations higher.

Formulas for recall@k and precision@k are given by:
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recall@k= 1

N

N∑
i=1

min(
∣∣topk (PPi )∩TPi

∣∣,1) (3.7)

precision@k= 1

N

N∑
i=1

∣∣topk (PPi )∩TPi
∣∣

k
(3.8)

where,

N = number of query images

TPi = set of True Positives for i th query image

PPi = set of Predicted Positives for i th query image

topk (PPi ) = top k matches based on similarity score from PPi

A predicted match for a query image is classified as a True Positive (TP) if it

falls within a predefined distance threshold from the query image’s ground truth GPS

coordinates. In the context of VPR systems, the recall@k metric is often employed,

where a query image is considered correctly localised if at least one of the top k

retrieved database images is within a predefined distance (e.g., 25m) from the ground

truth position of the query. The proportion of correctly recognised queries is then

calculated for various values of k, making recall@1, the most stringent criterion, a

rigorous measure of the model’s performance.

In retrieval systems, these metrics are essential in contexts where the order of

predictions is important. The recall@k metric is particularly useful, as missing relevant

images within the top-k predictions leads to missing potential loop closures. Thus,

recall@k and precision@k metrics provide insights into system efficacy by balancing

between relevance and comprehensiveness within a limited result set.

3.5.5 Cluster-based Metrics

In VPR systems, evaluating the quality of feature embeddings is a critical step for

ensuring the effectiveness of the system. Cluster-based metrics evaluate the quality of

feature embeddings using clustering techniques. Cluster-based metrics allow for an

indirect assessment of the inherent structure of the data captured by the embeddings.

By evaluating how well the embeddings can be clustered, we gain insights into whether

the embeddings have captured meaningful patterns and distinctions present in the
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visual data. Hence, this assessment is crucial even in scenarios where clustering is not

explicitly employed as an objective during training.

Normalised Mutual Information (NMI) is a measure used to assess the quality of

clustering. It quantifies the mutual dependence between the clustering results and the

true labels, normalised to account for the size of the clusters. Each image descriptor is

assigned to one of the K clusters, where K is the number of locations (or regions) from

which the images are sampled. The assigned cluster indices are then compared against

the ground truth location indices to obtain an NMI score. A higher NMI indicates better

clustering quality. NMI is given by the following expression:

NMI= 2× I(Y ; Ŷ )

H(Y )+H(Ŷ )
(3.9)

where,

I(Y ; Ŷ ) =mutual information between assigned cluster labels Y and true labels Ŷ

H(Y ) = entropy of assigned cluster labels Y

H(Ŷ ) = entropy of true labels Ŷ and

I (U ,V ) = ∑
u∈U

∑
v∈V

P (u, v) log

(
P (u, v)

P (u)P (v)

)
(3.10)

H(X ) =− ∑
x∈X

P (x) logP (x) (3.11)

NMI can further provide an indication of how well the system might generalise to

unseen data. Good clustering, reflected in high NMI scores, implies that the model has

learned robust features that can potentially categorise new, unseen locations accurately.

Furthermore, Cluster Cohesion and Cluster Separation provide qualitative mea-

sures of intra-cluster and inter-cluster distances, respectively. Cohesion evaluates how

close the elements of a cluster are to each other, ideally indicating tight, well-defined

clusters. Separation assesses how distinct or separate different clusters are from one

another, which is crucial in ensuring that different locations or images are not erro-

neously grouped together. These metrics are vital where spatial relationships and scene

similarities play a significant role in the recognition process. Hence, these metrics
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are useful in determining how well the feature embeddings can discriminate between

different locations or scenes.

Assessing the embeddings with these metrics can further guide the tuning of the

feature extraction process. A lack of cluster cohesion in the embeddings, for instance,

could suggest that the model’s architecture or training procedure requires adjustment

such that the features of similar images are more closely aligned in the embedding

space.

In a comparable fashion, significant effort ought to be given to analysing the balance

between capturing the general characteristics of a place (for instance, all images of a

park) and recognising specific features (like a particular statue in the park). This balance

is critical for ensuring that the VPR system is versatile enough to identify a location

broadly while also being sensitive to specific elements that differentiate one place from

another. Cluster-based metrics help in understanding this diversity-specificity balance,

ensuring that the embeddings are neither too generic nor overly specific.

3.5.6 Runtime, Compute, Efficiency, and Scalability

While the previously discussed metrics address key aspects of robustness and invariance

in VPR systems, additional considerations such as runtime, computational resources,

search efficiency, and scalability are also critical for a comprehensive evaluation.

Runtime: A crucial factor for VPR systems, particularly in applications requiring

real-time processing, is the total time taken for the entire mapping process. The Bag-

of-Words (BoW) techniques and other approaches that incorporate keypoint-based

localised descriptors often entail longer matching times due to the complexity of

feature matching. In contrast, systems employing holistic representations can compare

images more rapidly using faster distance functions such as Euclidean distance, cosine

similarity, or Chi-squared distance for histogram-based descriptions. This approach

significantly reduces the time required for image comparison, enhancing the system’s

overall runtime.

Efficiency: This metric encompasses various factors such as descriptor length

and storage requirements, descriptor computational complexity, the mean number of

images searched per query, and the system’s ability to parallelise operations. For
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example, a larger descriptor size increases storage demands and slows down comparison

operations, while high computational complexity in descriptor generation and similarity

measurements results in longer processing times. Efficiency can be improved by

implementing more streamlined computational operations during descriptor generation,

designing compact descriptors to minimise storage and processing requirements, and

optimising descriptor compute time through efficient algorithms leveraging hardware

acceleration.

Scalability: The scalability of a VPR system is measured by its ability to maintain

performance with the increasing length of trajectories, diversity of scenes, and a growing

database of previously seen images. A scalable system should perform comparably

on extensive, diverse trajectories without fully expending the time for searching for

matches. Indexing and hierarchical techniques also play a pivotal role in improving

scalability. By structuring the database efficiently, these techniques facilitate quicker

access to relevant data, even as the database expands, ensuring the system’s capability

to handle larger datasets without a proportional increase in computational demand.

The choice of image representation, search algorithms, and database management

strategies plays a critical role in optimising these aspects, ultimately determining the

system’s suitability for real-world deployment.

3.6 Conclusion

In this chapter, we presented various VPR datasets, advanced and bespoke tools to

utilise them, and a comprehensive set of metrics as foundational elements in developing

and assessing VPR systems. We explored various metrics necessary to do an in-depth

analysis of the strengths and weaknesses of a VPR system and for a rigorous evaluation

of the same.

We discussed and reviewed various public VPR-specific datasets, including those

that have trajectories traversed multiple times, wholly or in part, providing multiple

sequences of images traversed at different times of day, weather, and/or seasons. We

revealed various useful visualisation and odometry processing tools to consume and

operate on the datasets discussed. We then walked through the steps and challenges

involved in utilising these public datasets using various tools for VPR research. To
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assist the research community in addressing these challenges and to support the research

carried out within this thesis, we presented the OdoViz odometry processing framework.

OdoViz provides a unified approach to visualise, analyse, interactively inspect, and cu-

rate data necessary for VPR research across a wide variety of heterogeneous benchmark

datasets.

We discussed the popular metrics such as precision and recall while also discussing

the significance of ROC and PR curves in assessing the performance of the VPR

system under different decision threshold settings. We further discussed the threshold-

independent VPR metrics such as ROC-AUC and AP. We then reviewed top-k metrics

and their importance in retrieval tasks. Furthermore, we elaborated on the role of

cluster-based metrics in assessing the quality of feature representations and their uses in

training for better feature extraction. Finally, we highlighted the importance of runtime,

efficiency, and scalability metrics that are useful in determining the system’s suitability

for deployment. The latter point is of added importance in this thesis, where in the

following chapters we investigate a number of approaches to directly optimise for these

metrics.



Chapter 4

Robust Learned Descriptors

4.1 Introduction

Although the traditional approaches [13, 39, 40] using the Bag of Visual Words (BoVW)

approach permitted a reliance on visual place recognition within SLAM systems, they

lacked the repeatability and robustness required to deal with the challenging variability

in appearance that occurs in natural scenes caused by different times of the day, weather,

lighting and seasons; see Figure 4.1.

With the advent of CNNs and their compelling results over traditional methods

in tasks such as semantic segmentation and feature learning, researchers have sought

to improve the robustness of VPR systems by using CNNs to incorporate semantic,

geometric, and topological information from the scene. Within the domain of VPR,

early learned approaches utilised ImageNet [96] pretrained AlexNet [54], VGGNet [57],

and ResNet [58], without the last classificiation layer and obtained image embeddings

by flattening feature maps from the last layer. Researchers also used CNNs pretrained

for dense semantic segmentation for VPR. Segmap [185] uses CNNs to eliminate

moving objects using semantics and to generate compact embeddings for 3D objects.

LoST [85] uses conv5 layer of modified dense semantic segmentation neural network

RefineNet [86] to generate embeddings.

The validity of embeddings generated using pretrained CNNs has a significant de-

pendency on the training data. For example, RefineNet was pretrained on the Cityscapes

87
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Figure 4.1: Images of the same place taken at different times demonstrating the chal-

lenge of place recognition in the context of extreme changes in visual appearance.

Image Credits: [184]



CHAPTER 4. ROBUST LEARNED DESCRIPTORS 89

dataset [132] containing images from different cities; however, it does not contain

sequences that were captured at different times of the day under varying weather condi-

tions or scene types (e.g., rural). Hence, the network exhibits limited performance on

scene conditions it has not previously seen. Retraining these networks with such images

would be challenging, as it is a tedious and expensive task to obtain ground truth dense

semantic segmentation labels.

To overcome such label constraints, researchers have sought to use metric learning

with weak supervision where deep learning models were trained using contrastive

losses1 to implicitly encode semantic, photometric, and visual information from images

without the need for ground truth labels [63, 67, 62, 66, 64]. In these approaches, the

ML model maps input images to an embedding space that is optimised to minimise

the distance between embeddings of the same place whilst maximising the distances

between embeddings of different places. However, these techniques are not directly

applicable to large sequential datasets due to data matching, mining, and pairing lim-

itations. Furthermore, such techniques are prone to failure due to training instability

caused by embedding collapse, embedding explosion, or stalled learning.

In this chapter, we address these issues and propose a set of techniques to train neural

networks on large sequential datasets in a reliable and repeatable manner to output

learned representations for VPR. We employ specific data sampling, data augmentation,

and training techniques along with architectural and loss function adaptations to ensure

stable and efficient training of ML models without compromising retrieval performance.

In particular, we:

• propose a novel approach of discretising trajectories into regions called locations

containing similar images from the same place to efficiently obtain unique triplets

during training,

• employ adaptations to the loss function, architecture, and learning rate to mitigate

training failures,

• propose to aggregate discretised locations combined with data augmentation

techniques to add viewpoint variance without the use of additional images,

• build batches of training data in an online fashion and train the network progres-

1losses computed contrasting two or more data point representations
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sively, by gradually increasing difficulty to avoid network collapse due to being

unable to find correlations between the positive image pairs, and,

• employ computational and memory optimisations in our implementation for faster

and more efficient training.

We present the results of training with weakly supervised data curated from large

sequential public datasets utilising the proposed set of techniques and adaptations. As

part of this, we also present the results of an ablation study to evaluate the impact of

individual contributions on the overall performance.

Elements of this chapter have been published as Place Recognition in Challenging

Conditions [186] at the 2019 Irish Machine Vision and Image Processing (IMVIP)

conference.

4.2 Background

With the rapid development of deep learning, learned feature descriptors outperformed

handcrafted descriptors, overcoming their limitations [188, 189]. Chen et al. [190] pro-

posed a CNN-based place recognition method for the first time in 2014, demonstrating

a significant increase in recall at 100% precision. Many early learned VPR approaches

utilised ImageNet [96] pretrained AlexNet [54], VGGNet [57], and ResNet [58], with-

out the last classification layer, and obtained image embeddings from the feature maps

of the CNN’s last layer [191, 192, 193].

Following this, researchers also employed CNNs pretrained on other tasks such

as dense semantic segmentation and depth prediction that are better suited for VPR.

In SegMatch [84], objects are segmented from LiDAR point cloud data accumulated

for approximately one second, with the 3D object’s description stored along with its

semantic label. When a new frame arrives, moving objects are eliminated using their

semantic labels, where the remaining objects are then compared to those from earlier

segments using their 3D descriptors. In LoST [85], output tensors from one of the

convolutional layers, conv5, of a modified version of the dense semantic segmentation

neural network RefineNet [86], were used to generate a deviation from the mean tensor

for three semantic labels — road, building, and vegetation — which were then flattened
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Figure 4.2: (Top) Input Images. (Bottom) Dense semantic segmentation results from

PSPNet [187] pretrained on Cityscapes [132]. The network does not work as expected

for images taken at different times of the day or during different seasons.
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to an embedding. Embeddings were generated for each image during the traversal.

Each time an embedding was stored, it was compared to existing embeddings, and the

embedding distances were computed. Among the images with embedding distances

below a defined threshold, the authors further refined the selection by matching the

maximally activated regions.

We first tested several images taken at different time periods on state-of-the-art

dense semantic segmentation networks. This was done to determine how reliably we

can use the predicted semantic labels for place recognition. Pyramid Scene Parsing

Network (PSPNet) [187], pretrained on Cityscapes [132], one of the top 5 dense

semantic segmentation networks on the PASCAL VOC 2012 challenge [194], showed

impaired semantic output when applied to challenging images (sunset/winter) compared

to its output on sunny or overcast daytime images; see Figure 4.2. Similarly, RefineNet,

the backbone network used to build embeddings in LoST, which was also pretrained

on Cityscapes, was not able to produce reliable semantic labels for such challenging

images. This can be directly attributed to the network not having seen such images

during the training phase.

Retraining these networks to incorporate these types of images would be both

tedious and expensive given the effort required to obtain ground truth dense semantic

segmentation labels over large-scale datasets. To remove the direct dependency on

manually annotated dense semantic labels, researchers have instead employed weakly

supervised metric learning techniques [63, 67, 62, 66, 64] to train over image pairs (or

triplets) of the same place taken at different times. FaceNet [63] demonstrated face

recognition and verification through clustering employing a triplet loss. NetVLAD [67]

builds upon VLAD, adapting it for deep learning-based VPR using weakly supervised

learning without requiring explicit labels. Kim and Walter [66] used a neural network

that matches ground-level images to satellite imagery trained with a pairwise contrastive

loss using a Siamese network.

Although these approaches mark a significant shift from depending on fully human-

annotated data labels, we find that these techniques are not directly applicable to training

ML models on large sequential datasets. Many large sequential datasets, such as Oxford

RobotCar [7], offer data with a higher sensor capture frequency, resulting in millions of

individual image frames extracted from continuous driving videos. The sheer size of the

dataset makes it impractical to search for and generate pairings (positive and negative)
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for each image present on the fly during training. Furthermore, a significant portion of

these frames contain redundant visual information, particularly in scenarios where the

vehicle is stationary at traffic lights, intersections, or similar contexts. Utilising all of

these frames would considerably extend training times without contributing substantial

new visual information. In our work, we address these problems and propose a novel

approach of discretising the trajectory into locations, from which images can be sampled

during training time.

Datasets such as Freiburg Across Seasons [128] and Oxford RobotCar [7] contain

many traversals of the same trajectory exhibiting long-term seasonal changes. However,

the viewpoint variance exhibited across different traversals within these datasets is

confined due to the limited number of lanes present in the chosen routes. To overcome

this, we propose aggregation of locations to allow for positive samples from nearby

locations and combining it with aspect ratio-preserving data augmentation techniques to

train for greater viewpoint variances. More specifically, we reformulate commonly used

translation, rotation, and crop augmentation techniques as custom image operations that

do not distort, zero out, or pad parts of the training images.

Training deep learning models on large sequential datasets directly using contrastive

losses, such as ranked pairwise loss and triplet loss, often proved intractable. This

was primarily due to stalled learning or training failures, which hindered the model’s

ability to form meaningful representations. To address these challenges, we introduce

adaptations to the loss functions, network architecture, and learning rate schedules,

coupled with a progressive training strategy aimed at faster loss convergence and stable

training. Additionally, compute and memory optimisations are incorporated into our

implementations for greater efficiency. The underlying causes of these issues, along

with a detailed explanation of the proposed solutions, are presented in the next section.

4.3 Methodology

In this section, we first explain the VPR pipeline that describes how a learned VPR

model using existing approaches can be used in an SLAM system. In particular, we

utilise the embedding approach, wherein we infer an embedding vector for each image

using the CNN that implicitly captures shapes, edges, associations, gradients, etc.,
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CNN

Figure 4.3: Place Recognition pipeline

at different layers. The network is trained to optimise the embeddings such that the

embeddings of images of the same locations are similar, i.e., closer in the embedding

space, and the embeddings of images with different labels are well separated in the

embedding space. Typically, a weakly supervised learning paradigm can be used in

such a setup where pairs of positive images and negative images (or triplets containing

an anchor, a positive and a negative) are utilised to train with contrastive losses. After

training, the VPR is deployed within a SLAM system, where we infer an embedding

for each new keyframe and compute the distance to the existing embeddings. If there

are distances less than a predefined threshold, we predict that the robot platform may

have reached a place it has previously seen, adding the corresponding images to the

loop closure candidates list. Figure 4.3 illustrates the pipeline using an embedding-

generating CNN. We now detail in this section various methodologies used, starting

with the dataset used.

In weakly supervised learning, two major loss functions used are pairwise contrastive

loss (also known as pairwise ranking loss or simply contrastive loss) and triplet loss.

Pairwise contrastive loss penalises distant positive pairs and negative pairs closer

than a margin. In the embedding space, this encourages the network to map positive

pairs closer together while pushing negative pairs further apart. It is given by,

J (Ix , Ix∗ , y) = yd 2 + (1− y)max(m −d 2,0) (4.1)
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where,

J = the loss function

Ix = anchor image

Ix∗ = sampled matching image

y = 1 if x and x∗ have same label, 0 otherwise

d = the distance between the embeddings computed for Ix and Ix∗

m =margin

During inference, the prediction ŷ is computed as 1 (indicating a match) when

d ≤ γ, and 0 otherwise, where γ is the matching threshold. The matching threshold

γ is initially set to half the margin during the training phase, and then the Receiver

Operating Characteristic (ROC) curve is used to finetune the threshold γ for inference

by choosing the right trade-off between precision and recall.

In a fully trained pairwise contrastive loss model, all points with the same label

should be coincident with each other in the embedding space in order to make the loss

contributed by d(x, x+) 0. However, in many cases, forcing the embeddings of the same

class to collapse to a point may result in a degenerate behaviour whereby the network

begins mapping negative samples closer to the positives.

Triplet loss [63] ameliorates this issue by being less greedy than the pairwise

contrastive loss. Triplet loss [195, 63] is given by,

J (Ix , Ix+ , Ix−) = [ d(x, x+)+m −d(x, x−) ]+ (4.2)

where,

J = the loss function

Ix = anchor image

Ix+ = image with same label as anchor

Ix− = image with label different from that of the anchor

x = embedding for Ix

d(p, q) = the distance between the embeddings p and q

m =margin

[value]+ =max(value, 0)
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In a fully trained triplet loss model, all points with the same label are allowed to have

a non-zero intra-class separation in the embedding space while still being separated

from the other classes by at least margin m. Triplet loss minimises the difference

between d(x, x+) and d(x, x−), i.e., positive values for d(x, x+) do not count towards

the loss as long as they are greater than d(x, x−), unlike pairwise contrastive loss that

tries to bring the absolute distances d(x, x+) and d(x, x−) separately to zero and greater

than margin, respectively.

Embedding similarity can be measured using various norms. The most commonly

used are (i) the Euclidean distance, or (ii) the cosine similarity. The Euclidean distance

corresponds to the straight-line distance between two points in the embedding space. It is

calculated by
√∑n

1..n(qi −pi )2, where p and q are two embeddings with n dimensions

and pi and qi are their coefficients for i th dimension. The cosine similarity measures

the cosine of the angle between two non-zero vectors, calculated by cosθ = p·q
∥p∥∥q∥ ,

where ∥x∥ is the norm of the vector x.

In our experiments, we use triplet loss with embedding distance calculated using

Euclidean distance. In this section, we detail the methodologies employed to train

robust learned descriptors using triplet loss, beginning with the process of data curation

from large sequential datasets.

4.3.1 Curating training data

We use the Oxford RobotCar dataset [7], a large public sequential dataset exhibiting

extensive seasonal and time-of-day variances for our experiments. We derive training

data from it to train the VPR model to operate under challenging conditions. In the

dataset, data from the GPS, the INS, and the camera are not synchronised with image

data, as they operate at different frequencies: 5Hz, 50Hz and 16Hz respectively. We

obtain the pose for each image with the closest fused GPS+INS reading (continuous

corrected GPS data with integrated inertial measurements). We note that interpolation

of the INS was not required given the much higher sampling rate of the INS (50Hz)

when compared to the camera (16Hz).

We note that we also make use of another dataset, Freiburg Across Seasons [128],

for a small subset of experiments to make certain key decisions, such as choosing the
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(a) Perspective View (b) Top View

Figure 4.4: Images showing the inaccuracies in the altitude recorded by GPS. Poses

with different timestamps are differentiated using a colour transition from red to yellow

from start to end. Perspective view shows the difference in altitude between the same

start and end location. In contrast, Top View shows that the latitudes and longitudes

remain closely overlapped for these poses.

backbone and ensuring training feasibility, prior to conducting the main experiments.

GPS data recorded also contains altitude2 measurements. However, altitude mea-

sured by GPS is not reliable enough to supersede the barometric altimeter readings [177].

The general rule of thumb is that vertical error in GPS readings is up to three times the

horizontal error, and it is not uncommon for satellite-derived heights to differ from map

elevations by ±120m [178]. We observed an altitude mismatch in the logs of a randomly

taken traversal of the Oxford RobotCar main trajectory was about 10m between the start

and endpoint; see Figure 4.4. Therefore, we exclude altitude measurements when calcu-

lating distances during the matching process, as previously described in Section 3.4.2.1.

As such, caution was exercised when using data from regions that included roads at

different altitudes. We also carried out a visual check using OdoViz [24] to ensure that

there were no incorrect matches due to the collapse of altitudes. We calculate GPS

distances using the Haversine Formula3, as it works reliably for finding small geodesic

distances [182]. We obtain dense correspondences for each frame in the main trajectory

using weighted distance and heading difference, maximising the visual content overlap.

2GPS receivers can also determine altitude by trilateration with four or more satellites
3The Haversine Formula determines the great-circle distance between two points on a sphere given

their longitudes and latitudes
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Figure 4.5: Illustration showing top view of poses from three traversals of the same

trajectory. Left: Adaptive sampling is applied independently to each of the three

traversals, resulting in distinct sampled poses for each trajectory, which can lead to

challenges in establishing correspondences across the traversals. Right: Adaptive

sampling is applied only to a single reference traversal (shown in green), and the

corresponding poses in the other traversals are matched to the sampled poses of the

reference traversal.

Situations where the car stops or waits at a traffic signal can result in hundreds of

images with nearly identical latitude and longitude but with negligible or no visual

content differences. For example, if the car waits for 20seconds and the camera captures

at 30fps, this results in 600 images with negligible changes in GPS values, bearing

minimal viewpoint variation. Using all images from a chosen trajectory as anchors will

thus cause a data bias in the neural network, which will impede the learning process.

For a single traversal, this can be effectively resolved by using adaptive sampling from

OdoViz [24], as we previously explained in Section 3.4. However, repeating the same

process on the poses from each traversal of the same trajectory will result in decimating

poses closer to anchor images in other traversals; see Figure 4.5. We address this issue

by applying adaptive sampling exclusively to a reference traversal and subsequently

finding correspondences for each of the filtered poses within this traversal.

4.3.2 Discretising trajectories into locations

Weakly supervised training data for the VPR model requires sampling several thousand

data records, each containing an anchor image, a matching positive image, and a non-
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matching negative image. It is important that the triplets (or pairs) in the training data

are not pre-computed prior to training, as training on the same fixed pairings for multiple

epochs would hinder learning. As such, dynamic pairing of positives and negatives is

essential for more generalised learning.

One common method employed in existing research works is to set a static GPS

distance threshold to obtain ground truth positives for each anchor image [66, 67].

Among these positives, the image closest to the anchor image is chosen as the positive

image. Alternatively, the positive match can be sampled from images in the same region

that lie within a specified static GPS distance threshold [66, 63]. The negative image is

then sampled from a list of negatives whose descriptors are closer to the anchor than

the selected positive [67]. However, such methods using a static GPS distance threshold

result in (i) false positives: large static thresholds over 25m produce false matches that

do not share any features, particularly when significant changes in heading are involved;

(ii) false negatives: a small threshold, less than 10m will result in images with common

features along long straight roads being marked as negatives. Furthermore, sampling

positive poses within the distance threshold but facing opposite directions (i.e., with

180° a difference in heading) can result in images that do not share any common visual

features.

To this end, we propose discretising trajectories into locations or regions that contain

similar images with consistent visual appearance. This discretisation enables the positive

images to be sampled from within the same location as that of the anchor image and the

negative images to be sampled from any of the other locations. We consider one epoch

to be complete after one anchor image is drawn from all such locations. This setting

allows the triplet combinations to be unique each time for each anchor image sampled

from discrete locations, while also avoiding training images excessively from a single

confined region (due to image capture rate and stationary vehicle).

Subsequent to dense correspondence matching, we use both an accumulated dis-

tance threshold dacc and an accumulated heading difference threshold θacc to discretise

trajectories into locations. This approach is thus well-suited to the problem at hand,

mitigating the previously mentioned issues (i) and (ii), including the challenge of select-

ing positive samples from a wider region around corners where minimal visual content

overlap occurs due to the larger angular variation. From the top view of the trajectory,

the locations can be visualised as circles with a maximum radius of dacc each composed
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Figure 4.6: Illustration showing the top view of trajectory poses in 2D with locations

as circles with a maximum radius determined by the accumulated distance dacc. The

poses within each location can be seen concentrated mostly within a sector (shaded

pale yellow) constrained by an accumulated angle cut-off threshold θacc. Note that

when θacc = 45◦ (left) results in dacc takes precedence, resulting in uniformly distributed

and equally sized locations. Conversely, a smaller value θacc = 15◦ (right) leads to the

creation of more locations, with smaller-sized locations appearing in corners and larger-

sized locations forming along straight roads. Tilted dashed lines along the diameter of

the circle are included to aid in perceiving the circle’s centre and radius more clearly.

Best viewed in colour, zoomed on a computer screen.
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of multiple poses. However, the poses are concentrated predominantly within a sector

of the circle, constrained by an angle θacc; see Figure 4.6. Specifically, when poses

can no longer be contained within this sector with the angle constraint, a new location

is generated to accommodate the subsequent poses. We highlight the importance of

employing accumulated distances and heading differences rather than relying solely

on instantaneous distances and heading differences. This approach is crucial because

multiple small heading differences between consecutive poses can collectively exceed

the angular bounds of a fixed sector, even if each individual difference remains below

a predefined threshold. Similarly, the accumulated distance threshold ensures that

discretisation occurs with bounded intervals (i.e., the diameter of the location has an

upper bound dacc), regardless of variations in vehicle speed. In contrast, solely measur-

ing individual distances could lead to unbounded discretisation, particularly when the

vehicle’s speed fluctuates, thus affecting the precision of location tracking.

In our experiments, we set θacc = 15° and dacc = 1m. We note that this discretisation

also allows retrieving positive matches on the fly (detailed later in Section 4.3.4)

eschewing the need to randomise, match, and pre-build for several tens of thousands of

anchor images obtained directly from the public dataset.

4.3.3 Location Aggregation and Image Augmentation

Although such a discretised setting is amenable to learning invariant representations

of the same scene across different times of the day and different seasons, sampling

positive images only within the corresponding location is often insufficient to produce

necessary viewpoint variance in the training data. To facilitate this, we group g+
consecutive locations, allowing for positives to be sampled from a wider region, while

limiting negative matches to be outside g− nearby aggregated locations to prevent false

negatives. Figure 4.7 explains using illustrations the effect of discretisation and using

the aforementioned constraints.

We use g+ = 10 and g− = 5 in our experiments. With an accumulated distance

dacc = 1m (and assuming no angular constraint), this enables positives to be sampled

within up to 10m for viewpoint variance, and negatives from at least 50m away to avoid

any overlap. Optimal settings may vary depending on dacc, θacc, and dataset attributes

like vehicle speed, camera capture frequency, and road geometry.
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Figure 4.7: Illustration showing aggregation of nearby locations and 3 instances of

sampling in the last row where positives are sampled with g+ = 3 and negatives with

g− = 2. Big grey boxes indicate aggregated locations for sampling positives, and grey

restriction lines on either side of grey boxes indicate locations from which negatives

should not be sampled.

Figure 4.8: Illustration showing reformulated aspect-ratio preserving image augmenta-

tion operations, with rotations shown in the top row and translations in the bottom row.

For rotation, the angle rcurrent is randomly sampled from a uniform distribution within

the range [-r, r]. For translation, the offsets xoffset and yoffset are randomly selected,

constrained by the maximum allowable values determined by the dimensions of the crop

window ws ×hs . The image used is sourced from the 2014-12-09-13-21-02 trajectory

of the Oxford RobotCar dataset [7].
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To further promote viewpoint variance, we augmented our data with a series of

bounded randomised (randomised for each image, every epoch) aspect-ratio preserving

affine transformations where the images were rotated, translated, zoomed, and cropped.

It should be noted that when performing these transformations, we do not fill the

resultant excess pixels using constant, same, reflect, or wrap modes [196]. Such

transformations result in synthesising image regions that do not imitate what we would

encounter in the real world, diverging from VPR objectives. To this end, we uniformly

sample from [−r,r ] to apply rotations about the centre, r being the maximum rotation

angle. Then we clip the image to the largest axis-aligned rectangle (i.e., rectangle with

maximal area) within the rotated image. Furthermore, we formulate the translation

operation as an aspect-preserving crop operation to prevent translation from cropping

out of the image. In more detail, we first choose a crop sub-window of size [ws ,hs] ,

and then we individually uniformly sample the translation offsets for the crop window.

Figure 4.8 illustrates the steps for reformulated rotation and translation augmentation

operations.

Additionally, we introduce an intermediate resize step where the images from the

dataset are initially reshaped to a larger resolution (e.g., 960×540) than what is originally

required before image augmentation operations. This is to avoid blurred images as

a result of performing reformulated image operations on the otherwise fully cropped

smaller resolution (e.g., 240×135) images. It should be noted that we use a wider

16 : 9 aspect ratio instead of a standard 1 : 1 adopted in many popular works [57, 58]

for other image tasks, as the visual content on either side of the road present in the left

and right sides of the images often contains important visual cues necessary for place

recognition. We publish our implementation of the aforementioned reformulated image

augmentation operations as a public PyPI package4 facilitating both reproducibility and

reuse by the research community.

4.3.4 Building Batches Online and Batch Loss Strategy

Triplet loss requires processing three images at once, which in turn requires a network

with three branches with shared weights, one for inferring each image in a triplet.

Figure 4.9 shows the standard triplet network architecture. Training data for such a

4Code open-sourced as a Python pip package at PyPI https://pypi.org/project/imaugtools/
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Figure 4.9: Triplet Network Architecture showing a triplet (i.e., one record of data

comprising an anchor image and its positive and negative images) being processed by

three branches with shared weights. The distance of the anchor to its positive embedding

d(x, x+) and that of its negative embedding d(x, x−) along with margin m is then used

to obtain the triplet loss, which is then used to adjust the weights of the shared ResNet

backbone.

network requires building batches of triplets curated and resampled before every epoch

so that the network is trained with different combinations of positives and negatives for

each anchor image for better generalisability of the network.

Although the discretisation alleviates the process of finding matching positive

samples at random, the time-consuming task of pre-generating combinations prior to

each training epoch remains an issue. To deal with this issue, we build triplets in an

online fashion by carefully selecting aggregated locations from which images will be

sampled. More specifically, the triplets are constructed after the images are mapped to

embeddings and before calculating the loss, rather than building all triplets needed for

an entire epoch, as described earlier.

First, we assign indices for aggregated locations and treat them as classes (which we

refer to as location classes), akin to classes in face recognition datasets. For each batch,

we randomly choose L location classes that are at least g− apart from one another and

sample ns(L) images from each class. Next, during training, for each batch, inference is

carried out up-front on the GPU for all images in the batch, following which a pairwise

distance matrix is computed, i.e., distances from and to all embeddings. We then make

triplets utilising the prior knowledge that ns(L) similar images have been sampled from
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Figure 4.10: Modified architecture to process the batches built online by sampling

ns(L) images from L location classes. All the input images {Ix} are mapped to their

embeddings {x} using the backbone, followed by building a pairwise distance matrix.

Then, the triplets are curated online based on the location class labels. The distances

required are instantly fetched by looking up the pairwise distances matrix to compute the

triplet loss efficiently, which is then backpropagated to update the backbone’s weights.

This setup eschews the complex process of creating triplets beforehand at the start of

each epoch, saving a significant amount of compute and time.

L distinct locations. Thus, each image should have ns(L)−1 positives and (L−1)(ns(L))

negatives, resulting in a balanced batch where the number of valid triplets available for

each anchor is the same as that of the other anchors. We refer the reader to Equation 4.3

and Equation 4.4 for an explanation with an example.

Distances required for the loss function, i.e., the distance between embeddings

of each anchor to its assigned positive and negative samples, can then be obtained

efficiently from the pre-computed pairwise distance matrix. Figure 4.10 shows the

network architecture using online triplet loss, where the triplet pairings are computed

from within the batch, followed by computing the loss utilising the pre-computed

distance values for backpropagation.

Thus, when building batches online, triplets are constructed efficiently with less

compute, distributed amongst the batches. In contrast, with offline batch building,

triplets are computed for all anchors in the epoch, where computing possible triplets for

each anchor would require substantial memory, making it impractical for large-scale

datasets.



CHAPTER 4. ROBUST LEARNED DESCRIPTORS 106

We provide an example for a better understanding of this concept and to further

explain the loss strategies. Assume we have a dataset consisting of 5 traversals of

a trajectory discretised into 1000 locations, aggregated with nagg = 100 to form 100

location classes. Note that each location class contains 5 images ideally, but if a match

is not found, i.e., when no candidate pose is within the dynamic distance threshold for

matching, we will have fewer than 5 images. Thus, we would sample less than 5 from

each location to avoid imbalance in the batch. If we randomly sample 10 locations (L)

with a constraint of g− = 5, each with ns(L) = 3 randomly sampled images, then,

batch size, b = L×ns(L)

b = 10×3 = 30
(4.3)

where, ns(L) denotes the number of images sampled from L.

We have 30 images in total, and each image acts as an anchor. For each anchor Ixi ,

we have 2 positive images Ix+
i

that belong to the same location, with the remaining 27

consisting of negative images Ix−
i

that belong to different locations. These numbers are

calculated as follows:

n(Ix+
i

) = ns(L)−1

= 3−1 = 2
(4.4)

n(Ix−
i

) = (L−1)×ns(L)

= (10−1)×3 = 27
(4.5)

Hence, for each anchor Ixi , we can have 54 valid triplets of the form (Ixi , Ix+
i
, Ix−

i
),

given by,

n(Ixi ) = n(Ix+
i

)×n(Ix−
i

)

= 2×27 = 54
(4.6)

where, n(Ixi ) is the number of valid triplets for Ixi .

Batch All: In Batch All strategy [63, 65], we backpropagate the loss signal of all

valid triplets for each anchor within the batch. If we have b anchors in a batch, we

construct a total of b ×nt (Ixi ) triplets, picking all possible triplets for each anchor.
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Batch All loss is given by,

J (batch) =
b∑

i=1

 ∑
∀

(
Ixi , Ix+

i
, Ix−

i

)
∈B

J (Ixi , Ix+
i

, Ix−
i

)

 (4.7)

where,

J (batch)=Total loss for the batch B

B =Batch of b images: Ix0 , Ix1 , Ix2 , ..., Ixb

J =Triplet loss as explained in Section 4.3

Ix+
i
= image whose x+

i is the valid positive for anchor Ixi within the batch

Ix+
i
= image whose x−

i is the valid negative for anchor Ixi within the batch

Batch Hard: In Batch Hard strategy [63, 65], we backpropagate the loss signal of

only the hardest triplets for each anchor within the batch. If we have b anchors in a

batch, we construct a total of b triplets, selecting the hardest triplet for each anchor. The

hardest triplet is composed of the positive image with the largest embedding distance

and the negative image with the smallest embedding distance.

Batch Hard Loss is given by,

J (batch) =
b∑

i=1
J (Ixi , Ix#+

i
, Ix#−

i
) (4.8)

where,

J (batch)=Total Loss for the batch of b images: Ix0 , Ix1 , Ix2 , ..., Ixb

J =Triplet loss as explained in Section 4.3

Ix#+
i

= image whose x#+
i is the hardest positive for anchor Ixi within the batch

Ix#+
i

= image whose x#−
i is the hardest negative for anchor Ixi within the batch

In theory, Batch All strategy should be more suited for networks that require training

from scratch since it backpropagates the error signal for all triplets. A significant

limitation of this strategy is that the number of possible triplets grows cubically with

the size of the dataset, making training increasingly impractical for large datasets.

Compounding this issue, the model quickly learns to map most trivial triplets correctly,

leaving a substantial portion of the triplets uninformative. Thus, mining hard triplets

becomes crucial for learning [65].
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Notably, unlike selecting the hardest samples from the entire dataset — which can

lead to stalled learning or training failure due to overly difficult examples — Batch Hard

strategy utilises the hardest positives and negatives within each mini-batch. This ensures

that challenging examples are used to drive learning while avoiding the risk of only

selecting excessively difficult cases or outliers that could hinder convergence.

While Batch Hard strategy might still work for training from scratch, we found

that in our experiments, it often resulted in training failures, as explained in detail in

Section 4.3.5. It necessitated careful hyperparameter tuning, requiring more manual

effort, compute, and time. Moreover, the results may not be transferable to another

dataset or a modified configuration. To avoid these issues, we chose to build a custom

loss function instead that does not require such careful tuning.

4.3.5 Custom Loss and Embedding Normalisation

During training, we found that the training phase can stall in one of the following ways:

1. Embedding Collapse: Embedding norm approaches 0.

2. Embedding Explosion: Embedding norm approaches infinity.

3. Hyper-dense Embedding Space: All the images get mapped to a very small

region in the embedding space, and this region slowly collapses to a point, while

the embedding norm itself is non-zero.

4. Hyper-sparse Embedding Space: All the images get mapped far apart in the

embedding space, and the distance between embeddings approaches infinity.

We conducted an experiment on a small subset of the training data, focussing on

variations in embedding space sparsity. To this end, we visually inspect and analyse

changes in the distance gap between positive and negative pairs using histograms.

Figure 4.11 illustrates the evolution of this distance gap as training progresses. It can

be observed that, in the absence of normalisation, the distance gap between positive

and negative pairs gradually diminishes over time. This behaviour is caused by the

backbone mapping images to a small, constrained region in the embedding space as

an adjustment to minimise the high loss associated with the distance between positive
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Figure 4.11: Histogram of batch pairwise distances matrix (distance to all embeddings,

for each embedding in a batch) for different training batches stacked in the z-axis (most

recent training batch to the front) shows the change in the distance values during training

without L2 Norm (left) and with L2 Norm (right). During training, the separation of

positive from negative samples is slower with L2 Norm (right), while without L2 Norm

(left), the separation is quicker, but eventually the gap shrinks, leading to embedding

space collapse and ultimately leading to training failure.

pairs. Such an overly compact embedding space significantly reduces the discriminative

power, severely limiting the model’s ability to separate positive and negative images

effectively. We hypothesise that continued training in such cases leads to a Hyper-dense

Embedding Space, where all images are indistinguishably mapped to a single point in

the embedding space, effectively collapsing the representation.

When the embeddings are L2 normalised, the embedding space is restricted to

an n-dimensional hollow hypersphere where the embeddings are present only on the

surface of the sphere, maintaining a constant vector norm. Thus, the introduction of L2

norm addresses Embedding Collapse and Embedding Explosion issues. We also note

that in such a setting, the Euclidean distance, cosine distance, and geodesic distance

are all positively correlated and monotonically increasing. Therefore, it will not be

particularly advantageous to use one distance metric over the other, as the effect would

be equivalent to scaling the loss.

However, even with embedding normalisation enforced, the embedding space can

still become overly compact, leading to a Hyper-dense Embedding Space, mapping all

images to a single point in the embedding space. Conversely, consistent larger losses on

the distance between negative pairs and/or a large margin value force the mappings to
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be distant from one another, eventually leading to a Hyper-sparse Embedding Space.

To this end, we created a custom loss function modifying batch hard triplet loss that

not only remains stable but also results in faster learning. In more detail, we introduce

two more terms, J+(Ix) and 1
J−(Ix ) , weighted with α and β respectively, to the underlying

triplet loss. These terms control the distribution of positive and negative matches in the

embedding space, respectively. This customisation takes advantage of the batch hard

strategy while also preserving the embedding stability during training.

The new loss function is given by,

J∗(batch) =
b∑

i=0

(
J (Ixi , Ix#+

i
, Ix#−

i
)+α J+(Ixi )+β 1

J−(Ixi )

)
J+(Ix) = ∑

∀I+x ∈B

d(x, x+)

J−(Ix) = ∑
∀I−x ∈B

d(x, x−)

(4.9)

where,

J∗(batch)=Total Loss for the batch B

J =Batch Hard Triplet loss as explained in Section 4.3

B =Batch of b images: Ix0 , Ix1 , Ix2 , ..., Ixb

Ix#+
i

= image whose x#+
i is the hardest positive for anchor Ixi within the batch

Ix#+
i

= image whose x#−
i is the hardest negative for anchor Ixi within the batch

4.3.6 Architectural, Learning Rate and Other Adaptations

4.3.6.1 Convolutional Blocks

We add additional convolutional blocks at the end of the pretrained ResNetV2-50

architecture to allow learning further features specific to VPR. Each convolutional

block consists of a ReLU-activated convolution layer with 3×3 filters, followed by a

max-pooling block to downsize the feature maps by a factor of 2, following the standard

convolutional block design used in [57].
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(a) Softplus function shown in Bold Green,

against Exp function (Red), and Identity Func-

tion (Blue)

(b) Graph showing exponentially decaying

learning rate (y-axis) as number of training

steps (x-axis, in thousands) increases

Figure 4.12: Graphs showing softplus function and exponential learning rate decay

d(x, x+)−d(x, x−) 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

Soft Margin 0.69 0.31 0.12 0.04 0.01 0.00 0.00 0.00

Total 0.69 1.31 2.12 3.04 4.01 5.00 6.00 7.00

Table 4.1: Table showing how using softplus function changes the margin and total for

different values of d(x, x+)−d(x, x−), the difference between positive pair and negative

pair distances

4.3.6.2 Soft Margin

Using a larger margin will stagger the training process and will lead to Hyper-sparse

Embedding Space (explained in Section 4.3.5). This can also lead to instability even

when using normalisation.

Using a softplus function, we can assign a variable margin based on the difference

in positive pair and negative pair distances d(x, x+)−d(x, x−), i.e., if the difference

in distances is close to 0, the margin is set to 0.69 (total 0.69); for 1, it is set to 0.31

(total 1.31); and for 2, it is set to 0.12 (total 2.12). As the distance increases, the margin

becomes equal to the actual difference and approaches zero. Figure 4.12a shows the

graph of the softplus function and Table 4.1 the exponential decrease of the soft margin

added as the d(x, x+)−d(x, x−) difference increases.
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(a) Summer, May 2012 (b) Winter, Dec 2012

Figure 4.13: Matching image pair from the same location in the Freiburg dataset [128]

4.3.6.3 Exponentially Decaying Learning Rate

When trained for a very large number of epochs, the network starts to overtrain, which

in turn leads to overfitting. In our setup, the learning rate is decayed exponentially,

which results in greater stability during the later stages of training whilst at the same

time does not affect the existing training pipeline [65]; see Figure 4.12b.

4.4 Experiments

4.4.1 Backbone

Initially, we conduct exploratory experiments employing contrastive loss (pairwise

ranking loss) within a Siamese architecture with shared weights to train on a smaller

sequence-aligned Freiburg Across Seasons dataset [128]. Figure 4.13 shows an example

from the dataset where the corresponding images exhibit large appearance changes.

We use a Siamese configuration shown in Figure 4.14 with three different backbones:

VGG-16 [96], ResNetV2 [58], and InceptionV3 [197], all pretrained on ImageNet [96],

sharing weights between the two branches of the network. To get embeddings of the

same size, we include the final dense layers for VGG-16 and use global average pooled

outputs from headless5 models for ResNetV2 and InceptionV3.

5without the final fully connected and classification layer
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Figure 4.14: Siamese Network Architecture

From the dataset, we obtain 674 positive pairs from matching image correspondences

across the two traversals (traversed in summer and winter). For each matching pair of

images in the dataset, we generated a non-matching pair, picking a reference image at

random, resulting in a total of 1348 image pairs. To further encourage added robustness

to variations in viewpoint, we introduce constraints similar to g+ and g− used in

Section 4.3.3. To cover a range of 10–15m around the anchor pose, we randomly select

positive matches from the 10 poses immediately preceding or succeeding it, in addition

to using the matching image provided in the dataset. This introduces viewpoint variance

among positive samples, based on a 1Hz capture rate and typical vehicle speeds in the

dataset. Similarly, to avoid sampled negatives being potential positives, we impose an

additional constraint, where the non-matching image can be chosen at random but shall

not be within the preceding or succeeding 10 frames of the actual reference image, as

shown in Figure 4.15a. All images were then processed using the data augmentation

pipeline we explained in Section 4.3.2.

We then train the network with an equal number of positive and negative pairs with

weak supervision, i.e., metric learning. These experiments are intended to assist in

selecting a suitable backbone for the subsequent sections of this chapter.

We reserve the last one-third of the trajectory for testing while using the rest for

training. To gain a more comprehensive understanding of the results, we sliced the data

twice with different regions as test data for a better understanding of the results:

• Split 1: The first one-third (450 image pairs) is used as test data for evaluation,

and the remaining two-thirds of the data (898 image pairs) is used for training.
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Figure 4.15: (a) Illustration showing restriction bars (covering two preceding/succeeding

frames) for query poses (blue bars) randomly sampled from sequentially arranged poses

(grey bars) to show that positive matches (green bars) shall be chosen from poses

covered by the restriction bar, while negative matches (red bars) are chosen outside it.

(b) Illustration showing how data is split into training, validation, and testing batches.

The split corresponds to Split 2 explained in Section 4.4.1

Backbone Split 1 Split 2

AUC AP AUC AP

VGG-16 0.9533 0.9534 0.6533 0.5768

ResNetV2 0.9681 0.9607 0.9668 0.9743

InceptionV3 0.9198 0.9354 0.5281 0.5814

Table 4.2: Experiment results showing Area Under the Curve (AUC) in the ROC graph

and Average Precision (AP) for each model in a Siamese setting.

• Split 2: The last one-third is used as test data, and the first two-thirds is used as

training data.

In both cases, the last 33% of the training data (300 of 898 image pairs) was used as

validation data to monitor and improve the performance of the network. Figure 4.15b

shows how data is split for training, validation, and evaluation phases.

Inference was performed on the test set using all three backbones of the network,

and the Area Under the Curve (AUC) in the Receiver Operating Characteristic (RoC)

curve and the Average Precision (AP) in the Precision-Recall (PR) curve were measured

to evaluate their performance. Experimental results presented in Table 4.2 show the

retrieval performance of the networks, VGG-16, ResNetV2, and InceptionV3. In Split
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1, all the models can be seen to perform well with high AUCs of 0.95, 0.97 and 0.92 for

VGG-16, ResNetV2 and InceptionV3 models, respectively, exhibiting their ability to

learn the embedding space. However, in Split 2, VGG-16 and InceptionV3 models do

not perform well, scoring AUCs of 0.65 and 0.53.

From this, we infer that ResNetV2 demonstrates greater robustness and generalisa-

tion capability across different data splits. In more detail, in Split 2, where the other

models showed a significant drop in performance, ResNetV2 maintained its AUC and

AP performance. Residual connections in ResNet architectures address the vanishing

gradient problem commonly encountered in deeper neural networks. This capability

enables more effective training and better feature extraction, allowing ResNetV2 to out-

perform VGG16 in computer vision tasks [58], which explains its superior performance.

In the case of InceptionV3, we explored a range of hyperparameters and architectural

configurations, including the inclusion of additional convolutional blocks after the base

model, different pooling strategies, the use and rate of dropout, as well as training

with and without pretrained weights. Despite this comprehensive tuning, InceptionV3

remained highly sensitive to these choices and did not consistently achieve AUC scores

comparable to those of ResNetV2.

Given this, we pursue further experiments with a ResNetV2-50 backbone. It should

be noted that in each of the experiments above, the dataset is limited in scale, and so

the results only provide an indicative measure of each model’s potential performance.

As such, in order to comprehensively evaluate the proposed approach, a considerably

larger dataset is required. In the next subsection, we utilise the Oxford RobotCar

dataset [7], matching images across traversals to build a significantly larger training

dataset exhibiting significant variability while avoiding repeated frames. We utilise

the methodologies described in Section 4.3, and train the network on a ResNetV2-50

backbone using triplet loss.

4.4.2 Triplet Network

In this section, we further develop the idea of learning an embedding space using

a ResNet-50 [58] backbone pretrained on ImageNet [96] with the Oxford RobotCar

dataset [7], which provides a larger dataset containing over 100 traversals of a consis-

tent route through Oxford exhibiting a wider variety of appearance changes: seasonal,
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(a) 2014-12-09-13-21-02 (b) 2014-12-10-18-10-50 (c) 2015-05-19-14-06-38

Figure 4.16: Multiple views of the same location captured under different conditions:

(a) Winter 2014 Day, (b) Winter 2014 Night, and (c) Summer 2015 Day

weather, and day-night illumination changes. For our experiments, we use 3 traver-

sals from the Oxford RobotCar Dataset [7] main trajectory: 2014-12-09-13-21-02

(Daytime, Overcast, Winter), 2014-12-10-18-10-50 (Night, Winter), and 2015-05-19-

14-06-38 (Daytime, Overcast, Summer), which demonstrate wide visual variability; see

Figure 4.16 for samples.

Using the methodologies described earlier, we curate the necessary training data

from the dataset by finding image correspondences, discretising trajectories into lo-

cations, and applying preprocessing steps. Next, we train the network equipped with

architectural, loss function, normalisation, and learning rate adaptations, building

batches online, as previously detailed in Section 4.3.1 to Section 4.3.6.

We use an augmentation probability paug of 0.5, wherein the images have a 50%

probability of being augmented, thereby allowing an equal amount of original and

augmented images to be present in the training data. The input to the network is set

to a final resolution 240×135 after preprocessing. Similar to the train, validation, and

test split used in Section 4.4.1, we allot one-third of the data for testing, and from the

remaining two-thirds, we use 67% for training and the rest for validation. Additionally,

we create an auxiliary validation set, using one-third of images sampled within each

aggregated location. This secondary validation set aids in measuring the network’s

performance on new images from locations it has been trained on. Figure 4.17 illustrates

how the data is split into training, validation, auxiliary validation, and test sets.

When integrated into a complete autonomous system, the model’s predictions

become helpful when the top matches are eliminated using additional information

available. An example of such an approach is demonstrated in the work by Kim and
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Locations

Training + 
Validation

Training

Validation

Test

Validation
Auxiliary

Figure 4.17: Illustration showing how data is split into training, validation, and testing

batches. The auxiliary validation set is made by setting aside a small portion of images

in each location reserved for training.

Walter [66], where they perform a Bayesian filtering of the output of their network

through the use of a particle filter. Therefore, the presence of true matches in the

top-k embeddings matches6 is often more important in image retrieval than the actual

separation of embeddings based on the threshold, and consequently, top-k retrieval

metrics prove to be a useful performance indicator. Hence, in addition to deriving

AUC (Area Under the Curve) in the ROC (Receiver Operating Characteristic) curve

and AP (Average Precision) in the PR (Precision-Recall) curve, we also monitor preci-

sion@k and recall@k metrics to evaluate the model’s performance. By noticing both

precision@k and recall@k, appropriate decisions can be made, such as (i) introduc-

ing elimination mechanisms when recall@k is high and precision@k is low, and (ii)

relaxing the thresholds when precision@k1 is high and precision@k2 is low, where

k1 < k2. In addition to the metrics mentioned above, we additionally calculate the

Normalised Mutual Information score (NMI Score, as explained in Section 3.5.5) for

the embeddings inferred in a training batch to monitor the quality of clustering in the

embedding space.

We present results on the performance of the trained network over the baseline on

the full test set in Table 4.3, demonstrating the effectiveness of the proposed set of

techniques.

6top-k results from batch images ordered by embedding similarity
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Model AUC NMI R@1 R@3 P@3

Baseline 0.7542 0.5165 0.3233 0.4767 0.2430

Improved (Ours) 0.8818 0.6166 0.5582 0.7518 0.4329

Table 4.3: Evaluation results demonstrate the overall improvement achieved over the

baseline with various metrics. Both models utilise a ResNetV2-50 [58] backbone, with

the improved model incorporating architectural modifications, a custom loss function,

and other adaptations described in Section 4.3.4 - Section 4.3.6. Note that since

precision@1 (P@1) and recall@1 (R@1) are equivalent (see Section 3.5.4), we present

only a single column in the results table to avoid redundancy.

Model Backbone AUC

Random Initialised ResNetV2-50 0.6058

ImageNet Pretrained ResNetV2-50 0.6996

Table 4.4: AUC scores averaged over 3 training runs on validation data for randomly

initialised and ImageNet [96] pretrained weights on the ResNetV2-50 backbone.

4.4.2.1 Ablation Studies

We conducted an ablation study on ResNetV2-50 to assess the impact of individual

techniques on model performance. First, we initialised the weights of the headless

ResNetV2-50 [58] backbone using two approaches: (i) random initialisation for training

from scratch, and (ii) weights pretrained on ImageNet [96], originally optimised for

classification tasks. The results of this comparison are presented in Table 4.4.

Additional experiments were conducted to assess whether appending a convolutional

block to the pretrained backbone enhances performance. The appended block consisted

of a 3x3 convolution layer with same padding, followed by ReLU activation, batch

normalisation, max pooling, and a dropout layer with a rate of 0.25. The analysis

included assessing the effect of adding this block to both a fully trainable pretrained

network and a frozen pretrained network. Additionally, the influence of introducing an

L2-Normalisation layer to the architecture was examined. We present the results of this

study in Table 4.5.

We observed that we get better performance with added convolutional blocks at

the end at the expense of adding more (trainable) parameters to the neural network.
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Model Configuration AP AUC R@1 R@3 P@3

Without Normalisation

frozen pretrained, cb 0.96 0.55 0.32 0.45 0.16

pretrained, cb 0.97 0.58 0.30 0.47 0.22

pretrained 0.96 0.58 0.35 0.40 0.19

With Normalisation

frozen pretrained, cb 0.97 0.63 0.35 0.42 0.21

pretrained, cb 0.97 0.63 0.34 0.45 0.22

pretrained 0.97 0.56 0.19 0.26 0.09

Table 4.5: Table shows results on validation data after training 9000 batches, comparing

with and without L2 normalisation explained in Section 4.3.5. Three networks are used;

all use ResNetV2-50 pretrained on ImageNet [96] denoted as pretrained; the ones that

have the pretrained network with frozen weights are marked as frozen; the networks

with additional convolutional blocks added at the end are denoted by cb.

Custom Loss (α, β) AUC

(0.25, 0.25) 0.64461

(0.50, 0.50) 0.62294

(0.75, 0.75) 0.70584

Table 4.6: Table shows results on validation data for models with the custom loss

function: 3 different values of alpha beta are used, and the AUC scores are tabulated.

For (α, β) in the custom loss function, values (0.1, 0.1) and (1,1) were used and were

found to overfit; the results of these are not included in the table.
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We note that without L2 normalisation, the model initially trained faster than its L2

normalised counterpart (see Figure 4.11), however, it often resulted in training failure

due to training instabilities, as previously explained in Section 4.3.5, requiring multiple

training restarts.

Additionally, we have also carried out experiments using the custom loss function

with values [0.1, 0.25, 0.5, 0.75, 1] for both α and β where the results are tabulated in

Table 4.6.

Based on the experimental results, we selected the optimal configuration to train

the final model that includes a pretrained ResNetV2-50 backbone augmented with

additional convolutional blocks, the inclusion of an L2-Normalisation layer, and a

custom loss function with α= 0.75 and β= 0.75.

Additionally, we manually inspected the matches in the auxiliary validation set to

understand if the network is able to match new images within previously seen locations

correctly (see Figure 4.18) in addition to keeping track of metrics mentioned in the

previous section. It can be seen from the figure that the retrieved images include

day-night and cross-season image matches, supporting the validity of the embeddings.

Manual inspection helped find biases, such as all top-k results being images from the

same time of the day or season, etc. This was also very helpful in times when the

network overfit training data, where it showed poor performance on the validation set

but good performance on the training set.

4.5 Conclusion

In this chapter, we addressed the challenge of successfully training robust learned

representations for VPR utilising data curated from a large sequential public dataset

with weakly supervised learning. To do this, we employed our novel approach of dis-

cretising trajectories with sequential images into locations from which positive images

can be sampled. We aggregated discretised locations and utilised data augmentation

techniques tailored to obtain and use in training positive images with added viewpoint

variance. We built training batches online during training, employing computational

and memory optimisations by strategically building triplets from selective location

classes after mapping images to embeddings, significantly saving compute time. We
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(a) Correct Match (b) Correct Match (c) Incorrect Match

Figure 4.18: Retrieval results on the auxiliary validation set. (a) Anchor 802; Top-4

Retrievals: 805, 14116, 14120, 1832 (b) Anchor: 14113; Top-4 Retrievals: 14116, 1110,

7010, 1410, (c) Anchor 704; Top-4 Retrievals: 9925, 7010, 14111, 11623. In each image,

Anchor (purple text) is on the top, Highlighted Retrieval (brown text) is in the middle,

and the rest of the top 4 images are at the bottom. Notation Li represents the i th image

in the location label L; any retrieval with L, same as that of the anchor is a correct match.

We heavily rely on Top-k Image Retrieval Analysis Extension of OdoViz [24] for the

interactive visualisation interface that allowed us to individually compare and analyse

top-k retrieved images against the anchor.
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utilised a custom loss function, adapting the architecture to successfully train on a

large sequential dataset without incurring training failures. The proposed custom loss

function and stabilisation techniques further enhanced the performance and reliability

of our learned representations, addressing the challenges of visual place recognition in

dynamic environments and challenging conditions.



Chapter 5

Scene Categorisation

5.1 Introduction

Figure 5.1: Images from the Scene Cate-

gorisation Dataset. Top Left: Rural (Utah),

Top Right: Urban (Toronto), Bottom Left:

Rural (Stockport to Buxton), Bottom Right:

Suburban (Melbourne)

.

Scene categorisation is a fundamental

challenge in computer vision that involves

classifying an image into predefined cate-

gories, such as beach, restaurant, mall,

and indoor areas, by understanding its

overall content, objects, and their spatial

layout. It requires reasoning about com-

plex and diverse environments, aiming to

provide contextual information about the

scene, which is essential for intelligent

systems to predict and interpret ongoing

or future events. Unlike object recogni-

tion, scene categorisation faces challenges

due to images from different classes often sharing similar objects, textures, and back-

grounds, resulting in visual similarity and ambiguity among categories.

In the domain of autonomous navigation, scene categorisation offers a high-level

description of the overall content of an image by classifying it into predefined categories,

such as urban, suburban, or rural, without listing, identifying, or recognising individual

objects in the scene. This approach is intended to assist mobile robots in gaining a more

123
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holistic understanding of the surrounding environment. As such, scene categorisation is

a precursor task with a broad range of applications in content-based image indexing

and retrieval systems.

The retrieval accuracy of Content-Based Image Retrieval (CBIR) systems depends

on both the feature representation and the similarity metric used. The retrieval process

can be accelerated by selectively searching based on certain scene categories. For

example, given a query image with multiple high-rise buildings, searching images from

rural regions would not be beneficial and can be skipped. This knowledge about the

scene can further assist in improving other computer vision tasks such as context-aware

object detection, action recognition, and scene understanding [198, 122].

In autonomous driving scenarios, location context provides an important prior for

parametrising autonomous behaviour. Generally, GPS data is used to determine if the

vehicle has entered the city limits, where additional caution is required. This information

is then used to appropriately adjust crucial thresholds for various tasks, e.g., to set the

pedestrian detection thresholds and other perception hyperparameters. However, such

an approach requires a priori labelling of the environment. Furthermore, due to the rapid

development of regions around the cities and suburbs, it has become increasingly hard

to distinguish such regions of interest based solely on GPS coordinates. A more scalable

and lower-cost approach would be to automatically determine the scene type — urban,

suburban, or rural — at the edge using locally sensed data.

Early deep learning classification approaches, such as those developed for image

classification tasks on datasets like ImageNet [96] and PASCAL VOC [123], face

limitations when directly applied to scene categorisation. In object-focussed tasks, these

methods are designed to classify images where the view typically covers a range of 1 to

2 meters around the observer, concentrating on individual objects. However, in scene

categorisation for autonomous driving scenarios, the scene encompasses a much larger

area comprising several objects, typically extending beyond 5 meters from the observer.

This broader spatial context is essential for understanding complex environments,

making traditional object-focussed classifiers inadequate for such tasks [19].

Moreover, many learned image classification techniques often rely on end-to-end

training that directly maps images to object classes without incorporating explicit inter-

mediate representations in their architecture. Although techniques such as visualising
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intermediate feature maps [199] and using Grad-CAM [200] or its variants can pro-

vide some insights into model behaviour, they do not offer structured intermediate

representations that allow for a more detailed inspection of errors or failure cases. In

contrast, models equipped with intermediate representations are known to train more

efficiently, achieve higher task performance, and generalise better to previously unseen

environments, providing greater transparency and robustness in their decision-making

process [201].

Obtaining dense semantic segmentation labels, for example, using DeepLab [202]

or RefineNet [86], provides more useful insights about the scene. However, obtaining

the right scene category after obtaining semantic or geometric information is too com-

putationally expensive for a precursor task. Also, as we discussed earlier in Chapter 4,

the embeddings generated by such pretrained neural networks are heavily influenced

by the training data. Retraining these networks with new data can be challenging, as

acquiring human-annotated labels such as dense semantic segmentation labels is both

labour-intensive and costly. To address this issue, in the previous chapter, we presented

various techniques for training CNNs using weak supervision, avoiding training failures,

and reducing the reliance on fully annotated datasets. In this chapter, to capture high-

level scene features, we focus on unsupervised approaches that allow for scalability far

beyond what weak supervision can achieve.

Human recognition of real-world scenes typically begins with the encoding of the

overall scene configuration, with limited attention to finer details or individual object

information. More specifically, human perception is generally not based on the initial

identification of the objects within the scene [203]. Building on this insight, we utilise

unsupervised learning approaches to be trained on vast amounts of data, such as hours

of driving videos, without requiring manual or automated labelling of individual objects.

Additionally, it mirrors the type of broad, adaptive learning humans engage in [204],

offering greater flexibility and scalability in model development.

Within the domain of unsupervised learning of images, Variational Autoencoders

(VAEs) [88] and Generative Adversarial Networks (GANs) [89] are two prominent

approaches for learning data representations. VAEs have notable limitations, such as

generating blurry images due to their reliance on Gaussian priors and their tendency to

produce overly smooth outputs, making them unsuitable for producing high-resolution

images.
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Overcoming these issues, Generative Adversarial Networks (GANs) [89], quickly

gained prominence by leveraging an adversarial training process between a generator

and a discriminator. Subsequent works such as DCGAN [205], WGAN [206], and

Progressive GANs [207] demonstrated significant advancements in generating realistic,

high-resolution images, outperforming earlier generative models like VAEs in tasks such

as image synthesis, super-resolution, and style transfer. However, the use of GANs for

tasks beyond image generation remains limited, as their adversarial training process is

primarily optimised for producing visually realistic outputs rather than learning robust,

transferable feature representations suitable for tasks like classification, segmentation,

or scene understanding.

More recent unsupervised-learnt image generation approaches, such as Vision Trans-

formers (ViTs) [208] and Diffusion Models [209], demand significant computational

resources, making them impractical for use as precursor tasks, especially in real-time

applications where efficiency and speed are critical. We revisit the VAE architecture

for use in scene categorisation and propose training it for the reconstruction task to

capture scene features, utilising only the encoder to extract embeddings that are used as

effective global feature descriptors.

Thus, the challenge lies in developing a model that is fast, efficient, and robust

for scene categorisation in autonomous driving scenarios. The model must be capable

of real-time performance, efficient enough to function as a precursor task without

excessive computational overhead, and robust enough to handle diverse and changing

landscapes. In this chapter, incorporating both unsupervised learning and intermediate

representations, we:

• present a novel approach utilising a convolutional VAE to encode high-level scene

information in a multi-dimensional latent space,

• train the VAE in an unsupervised fashion with image reconstruction as a proxy

task for capturing high-level scene information without explicitly recognising

objects, their semantics, or capturing finer details,

• propose to use disentangled latent variables as global feature descriptors and to

serve as intermediate representations, allowing them to be used as more abstract

and transferable feature representations,
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• map these features to three scene categories: Rural, Urban and Suburban, using a

light supervised classification head requiring less than 500 labelled images, and

finally,

• present scene categorisation results where we demonstrate our technique to be

fast and efficient with a compact embedding size of 128 and a compute time of

60µs1.

To summarise, this chapter presents a novel, efficient, and robust approach for

unsupervised scene representation learning using convolutional VAEs. We detail the

proposed methodology, describe the experimental setup, and evaluate our approach

against established benchmarks. Furthermore, we provide a comprehensive comparison

against benchmark learned and handcrafted holistic image descriptors. We demonstrate

the suitability of our method for real-time scene categorisation in autonomous driving.

The work described in this chapter was published as Fast and Efficient Scene

Categorisation for Autonomous Driving using VAEs [210] at the 2022 Irish Machine

Vision and Image Processing (IMVIP) conference.

5.2 Related Work

The success of deep learning in the field of computer vision over the past decade has

resulted in dramatic improvements in performance in areas such as object recognition,

detection, and semantic segmentation. However, the performance of scene recognition

is still not sufficient to some extent because of complex configurations [211].

Early work on scene categorisation includes [19] where the authors proposed a com-

putational model for the recognition of real-world scenes that bypasses the segmentation

and the processing of individual objects or regions. They use a set of perceptual dimen-

sions — namely, naturalness, openness, roughness, expansion, and ruggedness — that

represent the dominant spatial structure of a scene, estimated using spectral and coarsely

localised information. However, such methods were soon dominated by the introduction

of global descriptor based methods due to their lack of sufficient discriminability when

distinguishing between complex scenes.

1on consumer-grade desktop with Intel i9-9900K and Nvidia RTX 2080Ti
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Histogram of Oriented Gradients (HOG) [18] descriptor, originally devised for

object detection, captures edge and gradient structures within an image to distinguish

the shape and appearance of objects in various contexts. More recently, researchers have

used Histogram of Oriented Gradients (HOG) [18] and its extensions, such as Pyramid

HOG (PHOG) [50] for mapping and localisation [117]. Although these approaches

have shown strong performance in constrained settings, they lack the repeatability and

robustness required to deal with the challenging variability that occurs in natural scenes

caused by different times of the day, weather, lighting, and seasons [186].

To overcome these issues, recent research has focussed on the use of learned global

descriptors. Probably the most notable here is NetVLAD, which reformulated VLAD

through the use of a deep learning architecture [67], resulting in a CNN-based feature

extractor using weak supervision to learn a distance metric based on the triplet loss.

Variational Autoencoders (VAE), introduced by [88], were originally designed as

generative models capable of learning latent representations and producing novel data

samples, such as human face images, by approximating complex data distributions.

Since the introduction of the CelebA dataset [212], multiple implementations of VAEs

have shown success in generating human faces [213, 214, 215]. However, VAEs became

less popular for reconstructions, as they often produce blurry, less saturated images and

have been shown to lack the ability to generate high-resolution images for domains that

exhibit multiple complex variations, e.g., realistic natural landscape images.

Besides their use as generative models, VAEs have also been used to derive scalar

variables from images in the context of autonomous driving, such as for vehicle con-

trol [215]. More recently, [216] used a VAE to generate a soiling mask region prior,

which was then utilised by a GAN to simulate camera soiling in driving images. In this

work, we re-examine the prospect of utilising VAEs, not for generating images but to

train and capture high-level features of the scene. By focussing solely on the encoder,

we extract global feature descriptors from the latent space, leveraging the VAE’s abil-

ity to learn bounded, compact, and informative representations that are beneficial for

precursor tasks, particularly scene categorisation.

To accelerate progress in general scene recognition, a number of researchers have de-

veloped datasets for training and/or evaluation. Examples include MIT Indoor67 [217],

SUN [122], and Places 365 [124]. While these datasets capture a wide variety of
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scenes, they are not well-suited for developing scene categorisation techniques specific

to autonomous driving. Even when relevant categories are present, the images often

do not reflect scenes typically encountered in driving scenarios. For instance, the

Places365 dataset lacks a dedicated city category, and while the SUN dataset includes

a city category, the images within it do not represent realistic driving environments,

limiting their applicability to autonomous driving tasks. Given this, in our research we

choose to utilise images from large public sequential driving datasets such as Oxford

RobotCar [7] in an unsupervised manner and curate our own evaluation datasets targeted

at our domain of interest.

In this chapter, we propose training a VAE with a reconstruction task, utilising its

encoder to map images to a multi-dimensional latent space and using the latent vectors

as compact embeddings that serve directly as global descriptors for images. To the best

of our knowledge, this is the first time VAE latent vectors are used as global image

descriptors. In detail, we train a convolutional VAE in an unsupervised manner with

images from the Oxford RobotCar dataset [7] that exhibit strong visual changes caused

by seasons, weather, time of the day, etc., and use the latent vectors inferred using

the encoder as global descriptors. We show using experiments that the VAE encoder

captures high-level features of the image, producing a mapping in a multi-dimensional

standard normal latent space. We then use a simple linear classification head trained

with a small manually labelled dataset with fewer than 500 images to map the global

descriptors to the required scene categories: rural, urban, and suburban.

5.3 Methodology

We begin by presenting an overview of the proposed architecture in Figure 5.2, followed

by a detailed explanation of the individual methodologies employed in our approach.

5.3.1 Why VAE?

To capture high-level scene features, we propose using a reconstruction task as the

primary loss signal, coupled with a bottleneck architecture to produce compact interme-

diate representations. To meet these requirements, we employ a Variational Autoencoder
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Scene Embedding Generator

(Trained VAE Encoder)


Input: RBG Image (128, 128, 3)

Output: Embedding (128, 1)

Scene Classifier

Input: Embedding (128, 1)


Output: Score for each class (3, 1)

RGB

Image

Output Class

max(scores for

each class)

Class 0

Rural

128 x 128 x 3 128 x 1

3 x 1

Scene

Embedding

Classifier
Output

RGB

Image

Figure 5.2: Overall system architecture for scene categorisation. Input and output for

each module are shown in the bottom row, including an example.

(VAE), which provides the desired functionality while maintaining efficiency during

inference. The rationale behind these design choices is explained in detail below.

Reconstruction task: We hypothesise that the reconstruction task can be efficiently

used to capture high-level information in images. In order to support this hypothesis, we

employ the deep image prior [218] approach, where an untrained CNN is tasked with

reconstructing an image. To this end, we utilise a CNN architecture consisting of three

convolutional blocks, followed by a projection layer that reduces the dimensionality

to a 128-dimensional embedding. This is followed by three upsampling convolutional

blocks. Each convolutional block contains two stacked ReLU-activated convolutional

layers. The network undergoes multiple iterations of backpropagating the reconstruction

loss as it is trained on the same image until a desired level of reconstruction is achieved.

Notably, when noisy input images (e.g., with uniform or salt-and-pepper noise)

are used, the network does not prioritise modelling the noise, effectively allowing it

to function as an image denoiser. Additionally, finer details in the image, such as

pedestrians or cars, are given less importance during reconstruction, as reproducing

these elements results in only a marginal reduction in the overall loss. The reconstruction

loss is significantly reduced when the network captures and reproduces the high-level

visual elements of the image, such as the overall scene layout and prominent regions

including the sky, road, buildings, and large objects. Consequently, the network’s

emphasis on high-level features leads to a more efficient and accurate reconstruction

of the broader structure of the scene while disregarding finer, less critical details. This

is further evidenced by its use in image inpainting, as the network naturally fills in

small missing patches, even without being explicitly tasked to do so, in its effort to

reconstruct the image as a whole. This behaviour is evidenced by the reconstructed

images presented in Figure 5.3, highlighting the network’s ability to prioritise and
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retain high-level scene information while disregarding less relevant details using the

reconstruction task.

However, this method cannot be directly employed for scene categorisation due

to the requirement of training a new network from scratch for each image. Although

it does not require pretraining, the need for multiple iterations of backpropagation

for each image introduces significant computational overhead during its use, making

it impractical for realtime applications. While it is possible to adopt a pretrained

CNN architecture involving a bottleneck similar to the one used above, tasked with

reconstruction, we specifically opt to use a VAE for the reasons outlined below.

Interpretable Intermediate Representations: VAEs encode data as multivariate

distributions rather than as a single point in the latent space, facilitating sampling and

interpolation. The randomness introduced in the encoding process makes the latent space

continuous, enabling the extraction of interpretable intermediate representations of the

data. This allows the inferred latent variables to be used as global descriptors, capturing

the high-level visual information necessary for scene categorisation. Moreover, these

global descriptors can be utilised in VPR systems beyond scene categorisation, serving

as valuable inputs for other precursor tasks. Specifically, we employ them for visual

localisation, a topic that will be explored in detail in the next chapter.

Constrained Latent Space: Mathematically, in VAEs, the objective is to approx-

imate the true posterior distribution of the latent variables z, given the input data x,

through the learned encoder distribution qφ(z|x), where φ represents the parameters

of the encoder. Since estimating the true posterior pθ(z|x) (θ being parameters of the

decoder) is intractable due to the complexity of integrating over all possible latent

variables, variational inference is employed to approximate it. To achieve this, the VAE

employs a loss function that consists of two key components, the reconstruction loss

and the regularisation term associated with Kullback-Leibler (KL) divergence, given by

the following equation:

L(x;φ,θ) =−Ez∼qφ(z|x)[log pθ(x|z)]+DKL(qφ(z|x)||pθ(z)) (5.1)

where, E is the expectation operator to calculate the expected log likelihood of

the data x given latent variables z, where z is sampled from the distribution qφ(z|x),

and DKL quantifies the difference between the variational distribution (or the encoder
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(a) Reconstructions of denoised images at different iterations.

(b) Inpainting of masked patches

Figure 5.3: Example driving images reconstructed using the deep image prior ap-

proach [218] from an untrained CNN architecture with a bottleneck, demonstrating

high-level features such as sky, buildings, roads, and vegetation being retained, while

finer details of smaller objects such as pedestrians and cars are less apparent. Original

images are from the Scene Categorisation dataset, explained later in Section 5.3.4.
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distribution) qφ(z|x) and the prior distribution pθ(z).

Thus, the reconstruction loss (first term) measures how well the decoder can recreate

the input data x from the latent representation z, while the KL divergence (second term)

constrains the learned latent distribution qφ(z|x) to be similar to the assumed standard

normal Gaussian prior distribution p(z). Thus, VAE learns latent representations that

are not only informative for reconstructing the input data but also conform to the desired

prior distribution, ensuring that each latent variable lies within a predictable range. In

contrast, features extracted from common image feature extractors, such as CNNs and

transformers, lack such inherent constraints on their values, making the latent space

of the VAE more structured and interpretable for downstream tasks. As such, systems

that generate such intermediate representations, rather than directly mapping pixels to

outputs, tend to demonstrate superior task performance and improved generalisation to

previously unseen environments [201].

5.3.2 VAE Design

To develop a scene categorisation pipeline utilising a VAE model capable of real-time

performance, we adopt the use of LeakyReLU [219] activated strided convolutional

layers and transposed convolutional layers coupled with Batch Normalisation [220]

in the encoder and decoder VAE convolutional blocks, respectively. The convolution

block, comprising strided convolution, BatchNorm, and LeakyReLU, is fused into a

single computational unit during deployment by combining their mathematical opera-

tions and parameters. This fusion reduces memory usage by eliminating intermediate

tensors between operations, lowers computational overhead, minimises memory access

operations, and improves inference speed by reducing layer transitions. Moreover, this

design eliminates the need for max pooling and other computationally expensive aggre-

gation layers, enabling deployment advantages on convolutional accelerators, ASICs

(Application Specific Integrated Circuits), and automotive-grade SoCs (System on Chip)

widely used in production vehicles that support ADAS (Advanced Driver Assistance

Systems) features. Specifically, it allows for accelerated inference with reduced latency,

allowing for efficient real-time operation.

We utilise an encoder consisting of six convolutional layers with output channels

of 32, 64, 128, 256, 512, and 1024, followed by a projection layer, which reduces the
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representation to a 128-dimensional latent vector. We employ a symmetric decoder,

where the Conv2D operations are replaced with ConvTranspose2D operations to up-

sample the feature maps and reconstruct the input image. We then train this VAE [88]

model on the reconstruction task using three traversals of the main route in the Ox-

ford RobotCar dataset, which exhibit variations due to changes in season and time of

day: 2014-12-09-13-21-02 (Winter Day), 2014-12-10-18-10-50 (Winter Night), and

2015-05-19-14-06-38 (Summer Day). Given that there are approximately 30000 images

in each traversal, we subsample each traversal using the sequential adaptive sampling

strategy (see Section 3.4.3.1) with parameters τdacc = 5m and τθacc = 15◦ to obtain 1787,

1879 and 1825 visually dissimilar images, respectively.

We train the VAE from scratch, opting not to use pretrained weights from Ima-

geNet [96] on widely used architectures such as ResNet [58]. This decision is based on

the fact that ImageNet is primarily designed to learn features specific to object-centred

images. In contrast, our goal is to capture high-level visual scene information rather than

fine-grained details of individual objects. To this end, we resize the images to 64×64,

deliberately avoiding the learning of fine features related to discrete objects such as cars

or pedestrians. This reduced resolution also enables faster training due to the smaller

image size. We use a constant learning rate of 0.005 and do not apply weight decay

during training. The model is trained for up to 500 epochs, with early stopping triggered

if validation loss does not improve for 100 consecutive epochs. This configuration

allows sufficient training time for convergence while avoiding unnecessary computation

once improvements plateau.

After training is complete, we conduct a qualitative evaluation by manually in-

specting the reconstructed images. In more detail, we focus on assessing whether

the reconstructions effectively capture high-level scene details, ensuring that primary

elements such as roads, buildings, sky, and vegetation are well-represented, while finer

details of individual objects are intentionally minimised. While we anticipate some

level of blur due to the inherent limitations of VAEs, the reconstructions should remain

sufficiently clear to distinguish key elements of the scene, like roads, buildings, and

the sky. The evaluation also includes examining reconstructions across different times

of day and seasons. Additionally, we examine and manipulate the latent variables to

interpret and evaluate the intermediate representations. This process helps us assess the

model’s ability to capture meaningful variations in the scenes, allowing for a deeper

understanding of how different aspects of the scene are encoded and reconstructed.
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5.3.3 Scene Embedding

The original VAE [88], i.e., the Vanilla VAE, has since seen numerous improvements and

the development of various extensions. Each variant introduces different modifications,

often by adding terms to the loss function to enhance specific aspects of the model’s

performance. For our experiments, we select several of the most widely recognised

VAE variants,

• BetaVAE [221]

• CategoricalVAE [222]

• DFCVAE [223]

• DIPVAE [214]

• InfoVAE [213]

• LogCoshVAE [224]

• MIWAE [225]

and train them under identical conditions, using the same dataset, training procedures,

and evaluation metrics as previously described.

Among these variants, DIPVAE (Disentangled Inferred Prior VAE) [214] stands out,

producing less blurry reconstructions with higher visual fidelity and greater diversity

across different input-output pairs; see Figure 5.4. DIPVAE achieves this by introducing

a disentanglement regulariser over the inferred prior, promoting better separation of

latent variables without compromising the overall quality of the reconstructions. While

β-VAE [221] also focuses on disentangling latent representations, in DIPVAE there is

no extra conflict introduced between disentanglement of the latents and the observed

data likelihood, resulting in better generalisation. As such, the disentangling of features

in the latent space minimises overlap across dimensions, resulting in more interpretable

and meaningful intermediate representations.

We also trained the DIPVAE model on 128×128 images from the same dataset, with

the embedding dimension kept fixed at 128. This increase in resolution led to slightly

more detailed reconstructions without altering the fundamental structure of the latent

representation, and this 128×128 variant is used throughout this chapter.

We utilise the trained DIPVAE encoder to infer disentangled latent variables from

input images, which serve as compact global descriptor embeddings. While the VAE

decoder contributes to the loss function during training, it is discarded during inference,
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(a) Input Images [7] (b) VAE [88] (c) BetaVAE [221]

(d) CVAE [222] (e) DFCVAE [223] (f) DIPVAE [214]

(g) InfoVAE [213] (h) LogCoshVAE [224] (i) MIWAEVAE [225]

Figure 5.4: Reconstructions of different variants of VAE trained on images from Oxford

RobotCar [7]
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Rural Suburban Urban

Jarrahdale Perth 33 Hawaii 8 Indianapolis 30

Missouri Ozarks 22 Howth 17 Nashville 21

Southern Illinois 43 Melbourne 33 Paris 24

Stockport Buxton 25 Stockport Buxton 17 St Louis 52

Utah 75 Wimbledon 21 Toronto 33

Rural 198 Suburban 96 Urban 160

Total 454

Table 5.1: Information about our Scene Categorisation dataset

as it is not required for obtaining these global descriptors. Given the focus on capturing

high-level scene information and the evaluation strategy employed, we employ these

global descriptors as scene embeddings.

We further note that we extensively use these global descriptors in Chapter 6,

where they play a key role in establishing the hierarchical representation used in visual

localisation and mapping.

5.3.4 Scene Classifier

Although trained to capture high-level scene features through an unsupervised recon-

struction task, the scene embeddings lack a direct correspondence to specific semantic

categories: urban, rural, or suburban. To bridge this gap, we introduce a lightweight

supervised classification head, implemented as a simple linear dense layer without an

activation function, to map these embeddings to the desired scene categories.

The training of this classification head requires a small, purpose-built dataset tailored

to driving scenarios. To this end, we curate a custom Scene Categorisation Image

Dataset2 (SCID), for training and testing the classifier by manually selecting screenshots

from driving videos available on YouTube, taken at various timestamps. The screenshots

are selected to be well-spaced in time within the videos, ensuring to avoid choosing

images from the same region. Each image is assigned to one of three scene categories:

2Dataset available to download from https://gist.github.com/saravanabalagi/

1cda6ae06c4cf722fd2227e83eadc792

https://gist.github.com/saravanabalagi/1cda6ae06c4cf722fd2227e83eadc792
https://gist.github.com/saravanabalagi/1cda6ae06c4cf722fd2227e83eadc792
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Figure 5.5: Random samples from the SCID dataset. Top Row: Rural, Middle Row:

Suburban, Bottom Row: Urban. Best viewed zoomed on a computer screen.

rural, urban, or suburban. Images labelled as rural contain no buildings and represent

open, unambiguous countryside settings. Urban scenes are characterised by densely

packed buildings, including multistorey structures and skyscrapers, while suburban

scenes depict housing estates near cities with more sparsely distributed houses. Only

images that clearly and definitively fit one of these categories are selected; ambiguous

cases such as rural areas with a few houses that resemble suburban environments are

excluded. Each category includes images captured from various cities and regions to

ensure diversity in the dataset; see Table 5.1. Some examples are shown in Figure 5.5,

and as can be seen, the dataset covers a variety of landscapes, including desert and

mountainous landscapes, and exhibits mild to moderate illumination and seasonal

changes such as fallen leaves and different times of the day.

The SCID training split comprises two-thirds of the images randomly selected from

each route, yielding a total of 314 images. Given that the images are non-sequential and

visually dissimilar, representing distinct locations, this random sampling does not result

in an information leak between the train and test sets. A linear classifier is then trained

on this set. Training is done until there is no further decrease in loss for 10 consecutive

epochs, indicating convergence.

5.4 Experiments and Evaluation

To verify the suitability of the embeddings for scene categorisation, we use the widely

used evaluation procedure employed to test embeddings for classification tasks [96, 101].
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Since our proposed architecture employs compact intermediate representations as input

to the linear classifier for scene categorisation, we evaluate the scene embeddings

directly. No additional pooling or aggregation layers are introduced, allowing us to

assess the performance of the features as generated by the encoder without further

modifications.

The output of the linear classifier is tested on the SCID test split containing the

remaining 140 images, and the test accuracy is used as a proxy for the representation

quality of the embeddings used. Evaluation was done on an Intel i9-9900K (8 cores

@3.60GHz) and Nvidia RTX 2080 Ti, and all images were resized to 128×128. We

compare the results with the following benchmark learned and handcrafted holistic

image descriptors: (1) NetVLAD3 [67], a weakly supervised CNN with generalised

VLAD (Vector of Locally Aggregated Descriptors) layer. (2) PHOG4 [50], Pyramid

Histogram of Gradients. For the evaluation, we consider the following candidates:

• NetVLAD 4096 dimensions: Supervised, pretrained on Pittsburgh dataset5

• NetVLAD 128 dimensions: Supervised, pretrained, same as above, PCA +

cropped to 128 dimensions + L2-normalised, derived from NetVLAD 4096 em-

bedding

• PHOG 1260 dimensions: Handcrafted, 60 bins and 3 levels [117]

• DIPVAE6 128 dimensions: Unsupervised, pretrained on 128×128 Oxford Robot-

Car dataset images

The experimental results are shown in Table 5.2. As expected, the supervised

techniques score higher than the unsupervised and handcrafted techniques. NetVLAD

4096 shows the best performance in the evaluation with 99.29% accuracy, followed by

NetVLAD 128 with 94.29% accuracy. The high accuracy is the result of (1) the tech-

nique’s use of supervised learning, (2) the embedding length of 4096 allows capturing

more information about the scene, and (3) NetVLAD Cropped (128 dimensions) is

derived from NetVLAD 4096 through PCA, cropping and L2 normalising. DIPVAE

(128 dimensions) achieves 82% accuracy with an embedding size that is only 10%

3MATLAB implementation provided by authors at https://github.com/Relja/netvlad is used
4Code extracted from C++ implementation provided by authors at https://github.com/emiliofidalgo/

htmap is used
5Off-the-shelf VGG16+NetVLAD+whitening model provided at https://www.di.ens.fr/willow/

research/netvlad/
6Our own implementation in Python 3.8 and PyTorch 1.11 (CUDA 11.3) is used

https://github.com/Relja/netvlad
https://github.com/emiliofidalgo/htmap
https://github.com/emiliofidalgo/htmap
https://www.di.ens.fr/willow/research/netvlad/
https://www.di.ens.fr/willow/research/netvlad/
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Descriptor Type Dimensions ↓ Accuracy (%) ↑ Compute Time (µs) ↓
Random Trivial 4096 34.29 71.3 ± 0.0

Random Trivial 128 28.57 2.7 ± 0.0

NetVLAD Supervised 4096 99.29 27560.0 ± 230.2

NetVLAD Cropped Supervised 128 94.29 27563.9 ± 230.4

PHOG Hand-crafted 1260 84.29 123.6 ± 3.9

DIPVAE (Ours) Unsupervised 128 82.86 60.4 ± 3.0

Table 5.2: Classification accuracy on the test split of the SCID dataset for different

descriptors mentioned in Section 5.3.4. A random descriptor, constructed trivially by

sampling numbers from a normal distribution, is shown at the top to provide a baseline

for trivial descriptors that do not capture any relevant information from the images.

Compute time is the time taken to obtain the descriptor from a decoded image loaded in

memory.

Route Dublin Vancouver Wicklow Redwood
Scene Type Urban Rural

Total Images 14677 64672 60509 45253

Test Images 11022 51018 47688 35483

NetVLAD 4096 93.37 96.99 99.99 99.86

NetVLAD 128 78.47 98.84 99.98 99.87

PHOG 1260 91.25 98.50 88.46 86.60

DIPVAE 128 95.70 83.72 99.44 95.60

Table 5.3: Classification accuracy (%) on the larger SCVD dataset using various

descriptors. Total and test image counts are provided in the top two rows.
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the size of PHOG (1260 dimensions) and 3.1% the size of the NetVLAD 4096. We

note that both NetVLAD and DIPVAE use GPU acceleration, while PHOG uses CPU

optimisations and multi-threading. Notably, DIPVAE is computed more than twice

as fast as PHOG and several orders of magnitude faster than NetVLAD. Performance

variance is less significant given the relatively small size of the dataset; however, the

substantial reduction in runtime for models achieving comparable accuracy represents a

considerable practical advantage.

We further evaluate the linear classifiers on a second video-based Scene Categori-

sation Video Dataset2 (SCVD). Here, we utilised frames from a variety of extended

driving videos collected from YouTube, as shown in Table 5.3. Each video was labelled

as a single scene category, where collectively this resulted in a total of over 185k

images. On each route, we first remove the first 900 frames (30seconds at 30fps) to

avoid encountering intro text, crossfades, and other effects. Then, we use the first 20%

of the frames (∼40k) for training and the rest 80% (∼145k) for evaluation.

Due to the nature of the source, some portions of these sequences may not align

strictly with the intended scene categories, potentially introducing noise into the results.

For instance, certain frames from videos labelled as urban may visually resemble

suburban and, in some cases, even rural environments. However, based on the length of

each sequence and manual inspection, we estimate that more than three-quarters of the

images in the Rural (Wicklow and Redwood) and City (Dublin and Vancouver) videos

are unambiguously classified as Rural and Urban, respectively. Despite this, a robust

descriptor is still required to predict several thousand frames correctly and consistently,

as the visual content in these videos changes dynamically. We note that the results may

exhibit high variance due to the variability in scene types within the video.

Table 5.3 presents the classification accuracy of the descriptor candidates discussed

earlier, evaluated on the SCVD dataset. Table 5.4 illustrates qualitative results on

randomly selected images from the SCVD dataset, displaying both the ground truth

(GT) labels and the predictions of the models being evaluated. We further perform

a qualitative analysis of the results to validate the categorisation accuracy. A video

showing the results of categorisation outcomes is made available online7. As such,

DIPVAE performs consistently well and shows similar performance to that of NetVLAD

and PHOG while having a much smaller embedding dimensionality and a significantly

7available at https://youtu.be/6a71B7yUhe8

https://youtu.be/6a71B7yUhe8
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Urban Suburb Urban Urban Urban

Urban Suburb Urban Urban Urban

Urban Urban Urban Urban Urban

Urban Suburb Urban Urban Urban

Rural Suburb Urban Suburb Rural

Rural Rural Suburb Rural Rural

Rural Suburb Urban Urban Suburb

Table 5.4: Samples from the SCVD dataset along with predictions from different models

used in evaluation.
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faster compute time.

5.5 Conclusion

Our proposed solution to scene categorisation uses a novel architecture made up of an

unsupervised convolutional VAE encoder and a simple supervised linear classifier head

trained with fewer than 500 images. We demonstrate and report results for our approach

in which we use DIPVAE disentangled latent vectors directly as global descriptors

coupled with a linear classifier for scene categorisation. Unlike end-to-end pixel-to-

class models, our approach generates meaningful and intermediate representations

interpretable through decoder visualisation of latent vectors, coefficients of which are

confined to standard normal distribution during training. The experimental results

demonstrate that the DIPVAE latent vectors capture high-level scene information from

the image, supporting their usage as global descriptors. These global descriptors exist

in a constrained continuous multi-dimensional standard normal manifold, allowing

easier comparison and interpretation compared to unbounded embedding hyperspaces.

The proposed global descriptor is very efficient, featuring a compact embedding length

of 128, and is significantly faster to compute. It remains robust across diverse real-

world conditions, capturing sufficient scene information for reliable scene categorisation,

despite variations in weather (sunny, cloudy, and rainy), geographic diversity (mountains,

deserts, and forested landscapes), and different times of day (daylight hours, sunrise,

and sunset). Furthermore, the VAE architecture made up of standard convolutional

blocks without the use of pooling and aggregation layers allows more efficient, fast,

low-latency, and near real-time inference using hardware convolutional accelerators,

substantiating their use in autonomous vehicles to quickly determine location context

as a precursor task.

Further available information, such as GPS, together with recent predictions, could

also be used to make more temporally consistent decisions about the scene category (e.g.,

avoiding categorising the environment as rural when driving along a tree-lined route in

a city). Finally, we indicate that the proposed global descriptors, being intermediate

representations, are useful for other tasks and actions that only require high-level

features, including scene information present in the image. We note that there is a

potential to further improve this performance using supervised and weakly supervised
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techniques. If and when labels are available, the VAE backbone can be set to learn with

a small learning rate (e.g., one-tenth relative to that of the head) in an end-to-end manner.

In our future work, we intend to explore the potential of adding further categories, such

as motorways, tunnels, and car parks, that are useful and provide more context for

various autonomous driving tasks. Given the successful results, we further intend to

integrate this approach in a hierarchical place recognition pipeline, where these compact

global representations are used to aggregate images to facilitate faster image retrieval.



Chapter 6

Scalable and Efficient Hierarchical
Mapping and Localisation

6.1 Introduction

Robot environmental maps captured using cameras are generally modelled using two

representations: metric and topological. Metric maps are sensitive to noise, as they

retain a large amount of information about the environment, such as distances, measures,

or sizes. Metric maps are more difficult to build and maintain and are computationally

demanding. Consequently, localisation approaches that maintain a full metric map on a

mobile device or robot are often restricted to small-scale environments due to the high

memory requirements. On the other hand, topological maps model the environment

using higher-order objects and their relationships using graphs, in which the nodes

represent objects or places and edges correspond to the paths. These maps are simple

and compact, scale better, and require much less space to be stored than metric maps.

Visual loop closure detection is a core component of many vision-based mapping

approaches, where the previously visited places are recognised using Visual Place

Recognition (VPR) techniques. Typically, the image is encoded as a vector of specified

length by means of a global descriptor, where a similarity metric appropriate to that type

of descriptor is utilised for image comparison. Finding the closest match for a query

image involves an exhaustive search through all encoded images using this metric, and

consequently, the time taken to search increases linearly as the total number of images

145
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Figure 6.1: An illustration of hierarchical mapping and localisation in the global

descriptor embedding space represented in 2D for clarity. Locations are represented as

green bubbles, each encompassing a cluster of visually similar images, shown in orange

bubbles and connected to their respective locations. As I25 gets processed, the hatched

green circle around L5 shows the reduced search space containing the 3 locations, only

within which the loop closing image candidate is searched.

in the map increases.

An important approach to reducing this time complexity is to use indexing tech-

niques. In the seminal work of [13], the authors proposed an approach to search

viewpoint invariant region descriptors using inverted file systems and document rank-

ings similar to the ones used in text retrieval systems. Following this work, [23] built

upon popular techniques of indexing descriptors extracted from local regions and used

a vocabulary tree trained in an unsupervised fashion that hierarchically quantized de-

scriptors from image keypoints. Although such techniques offer significant advantages

over exhaustive searching, they can be infeasible for mapping very large environments

due to the high memory requirements and computational overhead needed to maintain

and search within large vocabulary trees.

A hierarchical representation of the environment [226, 117], where images that

present a similar appearance are grouped together in nodes, can significantly reduce the
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search space when finding similar places. As such, the hierarchy helps accelerate the

retrieval process by skipping multiple nodes that are not relevant altogether. Although

such research has shown the potential benefits of hierarchical matching, limited con-

sideration has been given to the suitability and comparative performance of different

feature representations used within these approaches.

We propose to use compact learned global descriptors in hierarchical topological

mapping of environments to aggregate sequences of images with similar appearance into

location nodes, based on the approach first proposed by [117]. Many learned descriptors

with improved retrieval accuracy have been incorporated into place recognition methods

to enhance overall recall. In this chapter, we focus on addressing the challenges

of scalability and efficiency, in particular, when such methods are used on longer

trajectories. We show through our evaluation that the use of learned global descriptors

is deemed necessary even when handcrafted global descriptors perform similarly to

learned descriptors in terms of recall at 100% precision on benchmark datasets. This

is due to learned descriptors’ ability to improve efficiency, reduce total runtime, and

minimise the total number of relevant locations searched, among other factors.

Our contributions can be summarised as follows:

• We extend the Hierarchical Topological Mapping system from [117], perform

an in-depth analysis of its components, make a number of improvements to the

underlying implementation, and most significantly, incorporate learned global

descriptors,

• We compare hierarchical topological mapping technique with state-of-the-art

hand-crafted and learned global descriptors and present results of a comprehensive

evaluation of the impact of the global descriptor used,

• Through empirical analysis, we identify and define the characteristics of an

ideal global descriptor supporting hierarchical matching amenable to scalable

and efficient visual localisation and present a methodology for quantifying and

contrasting these characteristics, and,

• We propose the use of compact learned global descriptors that excel in conti-

nuity and distinctiveness characteristics as an efficient and scalable means for

hierarchical topological mapping.
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This chapter has been published as Scalable and Efficient Hierarchical Visual

Topological Mapping [227] at the 2023 IEEE International Conference on Advanced

Robotics (ICAR).

6.2 Background

Hierarchical representations can significantly reduce search times within mapping

and localisation. Consequently, there have been a number of recent advancements in

hierarchical mapping and localisation techniques [228, 229, 230]. A notable state-of-

the-art approach is HFNet [109], which follows a hierarchical approach based on a

monolithic CNN that simultaneously predicts local features and global descriptors for

accurate 6-DoF localisation. Although these techniques use hierarchical approaches for

more efficient processing, their use of a metric representation makes them intractable to

run on longer sequences that are several kilometres long.

There have also been a number of works suitable for very large-scale mapping and

localisation [110, 39, 45] without using an explicit metric representation. More recently,

Garcia-Fidalgo et al. [117] proposed an appearance-based approach for topological

mapping based on a hierarchical decomposition of the environment where the map

aggregates images with similar visual properties together into location nodes, which

are represented by means of an average global descriptor and an index of local binary

features.

A central decision in the development of each of the above systems is the choice

of feature descriptor, given its impact on the system’s performance. The traditional

and handcrafted global descriptor approaches, such as [13, 39, 40] using Bag of Visual

Words (BoVW), were commonly used in early visual SLAM systems. More recently,

the research community has focussed on the use of learned global descriptors given

their compelling performance in the field of computer vision in areas such as object

recognition, detection, segmentation, and image representation [58, 231, 202, 186, 232,

233, 158].

In [67] the authors introduced NetVLAD, a generalised differentiable VLAD layer

in a CNN trained end-to-end using weak supervision to learn a distance metric based

on the triplet loss. Various extensions to NetVLAD have also been proposed, such
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as [68, 69, 70, 71], to produce patch-level features and/or capture multi-scale features.

There have also been many attempts to improve the performance of image retrieval

systems using semantic information. [234] presents a method for scoring the individual

correspondences by exploiting semantic information about the query image and the

scene to perform a semantic consistency check useful for outlier rejection. [85] proposed

the Local Semantic Tensor (LoST) descriptor derived from the convolutional feature

maps of a pretrained dense semantic segmentation network.

More recently, [210] use a generalised global descriptor that captures high-level

scene information from the image using an unsupervised convolutional Disentangled

Inferred Prior Variational Autoencoder (DIPVAE) [214], to map images to a multi-

dimensional latent space.

As such, several learned image descriptors have emerged in the research field, with

a primary focus on capturing finer image features and enhancing retrieval accuracy.

However, their ability to scale to visual place recognition over longer trajectories and, in

particular, their efficiency in a hierarchical setup has not been adequately evaluated. In

this chapter we address this issue, proposing the adoption of a global image descriptor

that enables image aggregation into locations and minimises the number of searches of

prior locations for achieving scalable and efficient place recognition. Our approach is to

extend the hierarchical topological mapping algorithm proposed by [117] incorporating

the use of learned global descriptors for representing locations. We perform extensive

analysis on the impact of the global descriptor on the formation of locations, their

discriminability, and the coherence of images within locations, which in turn affects the

overall recall and runtime of the algorithm. Through our analysis, we identify a set of

required characteristics for feature representation to support scalability and efficiency

in hierarchical mapping.

6.3 Methodology

We extend the Hierarchical Topological Mapping (HTMap) algorithm proposed by [117]

to allow us to evaluate the performance of a variety of learned feature representations.

For completeness, we first provide a summary of the relevant elements of the HTMap

algorithm here.
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Figure 6.2: Plots showing beliefs after repeated posterior calculation (involving energy

diffusion and normalisation) initialised on a set of beliefs for 100 images. Left: Original

HTMap [117]: beliefs are not diffused even after 200 iterations; Right: Ours: beliefs

are diffused significantly at 20 iterations and completely at 200 iterations.

The HTMap algorithm creates a topological map of locations, where each location

L is an aggregation of similar images. Formally, L = {I | ∀J ∈ L, d(Igd, Jgd) < tnn}, where

the global image descriptor Igd encodes a holistic representation of the image, I and

J are images, d is the distance function, and tnn is the aggregation threshold. Each

location also maintains its own location descriptor Lgd defined as a function of its

associated images. This aggregation into a single location descriptor Lgd creates a

two-level hierarchy, as shown in Figure 6.1, allowing newly processed images to be

compared directly with the higher-level locations. Loop closing image candidates are

then searched only within the set {L | 1−dn(Igd,Lgd) > tllc}, where tllc is the location

loop closure threshold, and dn being distance min-max normalised across all locations.

In [117], Pyramid Histogram of Oriented Gradients (PHOG) [50] is used as the global

descriptor to compute Igd with Chi-square distance as the distance function d . For

a comprehensive explanation of the HTMap algorithm, the reader is advised to refer

to [117].

We fork the original HTMap implementation1 and add a number of alterations,

enhancements, and optimisations to the pipeline for more accurate and efficient local-

isation. We fix a number of implementation errors with preloading descriptors from

disc, NaN values when calculating distances and normalised similarities, and memory

optimisation, amongst others. Then, we conduct an in-depth analysis of the performance

of individual components constituting the system.

HTMap adopts a discrete Bayes filter utilising an evolution transition model to

1available at https://github.com/emiliofidalgo/htmap

https://github.com/emiliofidalgo/htmap
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Figure 6.3: Fixes to discrete Bayes filter ablated: The plot shows the beliefs after

processing 30 poses in a trial started with an initial belief of 1 for the first image and

where subsequent poses do not update priors. See Section 6.3 for explanations for fixes

(i) to (iii).

compute a belief distribution over the set of previously processed images. In the original

implementation of HTMap, we identified problems in how the energy is accumulated

and dissipated over time by the evolution model, as shown in Figure 6.2. In particular,

in the absence of measurement updates (i.e., input images), the posterior distribution

should eventually distribute its belief uniformly across all poses. Instead, as shown in

the figure, a peak is maintained around the early poses of the sequence. We attribute

these problems to three main issues: (i) The probability mass adversely accumulates

energy around the initial few poses, in addition to gradually shifting away from the first

pose. (ii) While calculating the posterior, after dissipating 90% of the energy to the

8 neighbours, the remaining 10% of the energy is distributed to all but 8 neighbours,

resulting in irregular energy distribution. (iii) As new poses are introduced, they are

initialised to have zero prior belief, leading to the persistence of accumulated energy

around the initial set of poses.

To address these issues, we propose to apply 90% diffusion using a discrete Gaussian

kernel summing to 0.9 with reflect padding to fix (i). To rectify (ii), we distribute the

remainder 10% of the energy to all poses. Finally, to fix (iii), we initialise new poses

with a value of 1/n, where n is the number of poses already processed. Figure 6.3

ablates the fixes made, showing how our model correctly produces a final uniform belief

in the absence of measurement updates.

Although the above changes resulted in an improvement in the recall of loop closures

in the early stages of the mapping session, the overall recall of loop closures exhibited

only a marginal increase. On further inspection, we discovered that the problems
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caused by the issues were masked by the robustness of the local descriptor-based image

matching module, which returns a significantly higher matching score for true image

matches. However, this resilience comes at the expense of a considerable increase in

runtime, as the module had to process additional locations erroneously updated to have

higher beliefs.

More importantly, we adapt the framework to utilise learned global descriptors. For

the histogram-based global descriptor PHOG, as a new image I is added to the active

location, the location descriptor is updated as the mean of the active location descriptor

Lgd and the global descriptor of the new image Igd. For learned descriptors, we follow

the same approach, replacing the Chi-square distance with the Euclidean distance.

For computing the global descriptor Igd within HTMap, we utilise NetVLAD [67],

LoST [85], and DIPVAE [210], representing state-of-the-art approaches in supervised

learning, supervised semantic segmentation, and unsupervised variational autoencoded

latent paradigms, respectively, for driving scene image analysis and feature extrac-

tion. Several recent variations of NetVLAD, such as Patch-NetVLAD [69] and Patch-

NetVLAD+ [70], have been proposed to improve recall performance by providing patch

descriptors in addition to the global descriptor. However, our approach only utilises

the global descriptor for image aggregation, and therefore, we do not employ these

variants. Additionally, while it could be argued that other NetVLAD variants, such as

SPE-NetVLAD [68] and MultiRes-NetVLAD [71], could also be used, our primary

objective is not to improve recall performance. Instead, our main focus is on assessing

the efficacy of a global descriptor in facilitating image aggregation and minimising

location searches for place recognition. As a result, in our work, we aim to utilise global

descriptors that capture features using different learning approaches.

The integration of such neural networks into the framework presents a set of chal-

lenges stemming from variations in programming languages, GPU library constraints,

and the potential for increased codebase complexity and tight coupling. ONNX [235]

offers a standardised approach to integrating deep learning models. However, it can be

limiting in cases where the neural networks utilise functions and custom operations not

supported by the ONNX library. Hence, we implement a mechanism to obtain global

descriptors through two approaches: (i) calling an external function for real-time online

purposes, and (ii) loading pre-computed descriptors from disc for offline scenarios when

available. This ensures that the framework can effectively accommodate diverse models
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Dataset # Imgs Resolution Rate Dist
(px) (Hz) (km)

City Centre 1237 1280 × 480 0.5 2.0

KITTI 00 4541 1241 × 376 10 3.7

KITTI 05 2761 1226 × 370 10 2.2

KITTI 06 1101 1226 × 370 10 1.2

St Lucia 21815 640 × 480 15 17.6

Table 6.1: Datasets used for evaluation

GDescriptor Len ↓ Type Device BSize ↑ Compute Time (s) ↓
PHOG 1260 Handcrafted CPU 16 0.005455 | 0.007601

LoST 6144 Supervised GPU 22 0.181668 | 0.231041

NetVLAD 4096 Supervised GPU 22 0.027397 | 0.048229

NetVLAD Cropped 128 Supervised GPU 22 0.027907 | 0.049699

DIPVAE R128 128 Unsupervised GPU 1500 0.000008 | 0.000179

DIPVAE R64 128 Unsupervised GPU 6000 0.000002 | 0.000040

Table 6.2: Global Descriptors considered for evaluation. Compute times (per image) are

reported for the specified max batch size BSize and also for a batch size of 1 separated

by a vertical bar.

without being tightly bound to any specific implementation.

6.4 Experiments

In our experimental evaluation we employed the following benchmark datasets, similar

to those used in [117]: City Centre [110], KITTI [126] (Sequences 00, 05 and 06)

and St Lucia [46] (Sequence 19-08-09 08:45). For City Centre, images from left and

right cameras are horizontally concatenated. For KITTI, RGB images from the middle

camera (Cam 2) are used. More information about the datasets is given in Table 6.1.

As part of the in-depth analysis, we extensively utilise OdoViz [24] to visualise

the image-image ground truth loop closures, superimposed on the trajectory pose

information for each dataset. Through this process, we have identified and corrected
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several erroneous entries in the ground truth loop closure (GTLC) matrices as provided

by [236] and [117]. Corrected ground truth loops are made publicly available2.

Furthermore, we analysed the margin criterion m = 10 frames used to determine a

predicted loop closure image as a true positive (TP) in the original HTMap algorithm.

In particular, we use OdoViz to perform a manual visual analysis of the datasets and

identify that m = 10 is overly conservative for the St Lucia [46] dataset given its higher

frame rate and the relatively higher speed of the ego-vehicle. To ensure 100% precision,

m = 50 for St Lucia and m = 10 for all other datasets is used.

Table 6.2 provides information regarding the global descriptors used. For PHOG,

we use the code extracted from the C++ implementation provided by authors of [117].

For NetVLAD, the MATLAB implementation of the off-the-shelf VGG16 + NetVLAD

+ whitening model pretrained on the Pitts30k [129] dataset provided by the authors

of [67] is used. While a NetVLAD model pretrained on the Tokyo 24/7 dataset [131]

was also available, we opted for the Pitts30k-pretrained NetVLAD for its superior

matching accuracy. We additionally use a NetVLAD 128 variant where we crop and L2

normalise the NetVLAD 4096-dimensional descriptor to 128 dimensions. For LoST,

we use the MATLAB implementation of RefineNet [86] pretrained on CityScapes [132]

and the Python implementation of the LoST descriptor from RefineNet embeddings

provided by the authors of [85]. For DIPVAE, the PyTorch implementation with the

architecture pretrained on the Oxford RobotCar dataset described in Section 5.3.4 is

used. In addition to the DIPVAE variant pretrained on 128×128 images, we also include

the 64×64 variant introduced in Section 5.3.3, to analyse the impact of reduced input

resolution on recall performance. These variants will henceforth be referred to as R128

and R64, respectively.

Experiments were carried out on a PC equipped with an Intel i9-9900K (8 cores

@3.60GHz) with 32GiB DDR4 RAM and a single Nvidia GeForce RTX 2080 Ti with

11GiB DDR6 VRAM. The HTMap algorithm is run with a 32 byte LDB local descriptor

and tinliers set to 75, 80, 80, 125, and 75 inliers for City Centre, KITTI 00, 05, 06, and

St Lucia, respectively, to obtain 100% precision, i.e., zero false loop closures. Other

default settings, as suggested in [117], are used, and HTMap is run multiple times by

varying the tnn parameter to obtain a different number of locations on each dataset.

2available at https://github.com/saravanabalagi/htmap_gt_loops

https://github.com/saravanabalagi/htmap_gt_loops
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The min and max tnn are chosen such that they yield an upper bound of 250 locations

(700 for St Lucia) and a lower bound of 10 locations (100 for St Lucia), respectively.

The bounds and the scale of tnn varies significantly for different global descriptors.

Hence, for each global descriptor, we plot recall at 100% precision and the total time

taken against the number of locations obtained in the map; see Figure 6.4. Each curve in

the graph corresponds to a global descriptor, and each data point corresponds to a single

execution of the algorithm with a specific tnn. We also plot the number of False Positive

Location Candidates (FPLC) proposed, which is an inverse measure of the number of

relevant locations searched. As such, more FPLC proposals require searching within

indices of multiple locations and would significantly contribute to increased runtimes.

Additionally, to measure the loss of recall due to the use of the hierarchical repre-

sentation, we run the same set of experiments with ground truth loop closure location

proposals. This results in zero FPLC and hence runs with the least total runtime. Usu-

ally, a drop in recall is expected as a result of not proposing correct loop-closing ground

truth locations. However, in some cases, we also noticed a slight increase in recall. We

find that certain loop closure misses cause the formation of new locations amenable to

further loop closures (similar to fragmentation shown in Figure 6.5), resulting in a small

increase in recall. Hence, we do not use the loss in recall using ground truth location

proposals as a metric to measure performance.

Furthermore, the descriptor compute time for each global descriptor is recorded

and compared. To ensure fair comparison, Python implementations3 of the descriptor

models were used. Table 6.2 shows batch and individual compute times measured for

each global descriptor along with the inference device used. Batch compute times are

measured with the maximum batch size BSize possible (limited by memory capacity

and/or CPU cores), and the mean compute time per image is reported. We also report

compute times for the single image inference (i.e., batch size of 1). The first image

from the City Centre evaluation dataset was used for inference to measure the compute

times of all models.
3Implementations available at:

PHOG: https://github.com/saravanabalagi/phog,
NetVLAD: https://github.com/Nanne/pytorch-NetVlad,
LoST: https://github.com/DrSleep/refinenet-pytorch

https://github.com/saravanabalagi/phog
https://github.com/Nanne/pytorch-NetVlad
https://github.com/DrSleep/refinenet-pytorch
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Figure 6.4: Results of evaluation of 6 global descriptors across 5 benchmark datasets.

Each dot represents a single run, with the line showing a series of runs of the corre-

sponding global descriptor on the respective dataset (shown on the left margin). A

legend is given only in the first graph to avoid clutter. Column 1 highlights that DIPVAE

(both R64 and R128) variants maintain the same performance, achieving recall values

similar to those of other descriptors whilst being significantly more compact and faster

to compute. Vector plots presented here are best viewed zoomed on a high-resolution

screen.
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tnn Recall Locations Image Loops

1.35 0.7772 24 436

1.40 0.7790 21 437

1.43 0.7843 14 440
1.50 0.7790 16 437
1.60 0.7451 12 418

Table 6.3: Table showing an example where a higher value of tnn 1.50 yields more

locations than that of tnn 1.43, in rows 3 and 4 (highlighted in bold) respectively for

LoST global descriptor on City Centre dataset

6.5 Discussion and Inference

The recall at 100% precision only changes negligibly among the evaluated candidates,

as we can observe from Column 1 of Figure 6.4, showing that all global descriptors

propose sufficient loop-closing location candidates without suffering any considerable

drop in recall. However, the total time taken varies substantially and can be seen to be

correlated in most of the cases with that of the total number of FPLC proposed. From

the experimental results produced on different datasets, as the number of locations

increases, the runtime and the number of FPLC proposed thereof increase linearly for

PHOG, almost linearly for LoST (although less than that of PHOG), while NetVLAD

and DIPVAE descriptors consistently show near-constant runtime with only a very

small or negligible proportional increase in FPLC. Also, in both batch and single

image descriptor compute times, DIPVAE gives the least compute time amongst all,

followed by PHOG. On the other hand, NetVLAD and LoST require comparatively

longer compute times, making them less suitable for realtime inference on autonomous

vehicles.

Upon closer examination, we observed a significantly imbalanced distribution of

images across locations in runs with longer runtimes. Maps with fewer locations

comprising a very large number of images within locations diminish the advantage of

the hierarchical approach and impair search efficiency, whereas an increased number

of locations, each comprising only a very few images, leads to more location searches.

Therefore, achieving optimal performance requires avoiding both overpopulated and

underpopulated locations. The max intra-cluster distance tnn affects the location cluster
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Figure 6.5: Screenshots of a section of the City Centre trajectory visualised in

OdoViz [24] showing more fragmentation (different colours along the trajectory) for a

higher value of tnn 1.50 (top) compared to tnn 1.43 (bottom). The car moves from left

to right; time is represented in the z-axis with newer traversals presented higher up;

poses that belong to the same location are in the same colour; and image loop closure

proposals are shown in red. The missed loop closure proposal due to the creation of a

new location (orange) in the bottom image is circled.

cohesion and separation, i.e., determines how many locations are formed and how

populated the locations are. A small value for tnn usually results in a map with a large

number of total locations, and a larger tnn value yields fewer locations.

However, this balance is also influenced by other factors. The location-image

aggregation affects the loop closure proposals, and the loop closures affect the image

aggregation dynamics for subsequent images, which in turn affect further loop closures.

Consequently, it is possible that a slightly higher value of tnn yields significantly more

locations due to loop closures, as shown in Table 6.3. Furthermore, paradoxically, the

generation of certain novel locations and subsequent loop closure misses can lead to an

increase in overall recall in certain instances, which can be attributed to the dynamic

hierarchical structure as shown in Figure 6.5.

Furthermore, our analysis reveals that the characteristics of the global descriptor

has a very significant influence on the association of images with the locations. The

generation of highly distinct descriptors for consecutive frames and images of physically

proximal regions by a global descriptor results in a large number of locations, each

containing only a few images. Although this may only lead to a negligible or slight
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increase in FPLC, it still results in a significantly longer runtime (NetVLAD 4096 in

Row 5, Column 2 and 3, in Figure 6.4) due to the sheer number of location searches

triggered. We refer to this characteristic as continuity and posit that it is one of the

significant factors in determining runtime. We determine continuity by computing the

ratio of the number of locations containing fewer than tci images to the total number of

locations, where tci is directly proportional to the frame rate of the camera and inversely

proportional to the average speed of the car. Figure 6.6 presents a histogram depicting

the number of images in all locations in St Lucia. As shown, for NetVLAD, due to

its low continuity, the majority of locations are sparsely populated with fewer than

5 images, resulting in excessive fragmentation. Conversely, a global descriptor that

produces similar global descriptors for images that are not physically nearby can lead to

the unnecessary search of numerous known locations for place recognition, resulting in

a large number of FPLC proposals and consequently increasing the runtime. We refer

to this characteristic as distinctiveness, which is also crucial in determining runtime.

We quantify distinctiveness by computing the inverse of the number of FPLC proposed

by the global descriptor. The FPLC proposals for PHOG, as shown in Column 3 of

Figure 6.4, increase significantly as the total number of locations increases, indicating

its low distinctiveness.

Based on our empirical analysis, we hypothesise that an ideal global descriptor

should possess the following characteristics:

• Continuity: Descriptor distance should gradually decrease as frames change

continuously, resulting in smooth changes in similarity across space

• Distinctiveness: The descriptor distance between images from different regions

should be significantly larger than the distance to its consecutive frames and

images from similar regions.

To further substantiate this hypothesis, we conduct additional analysis utilising

distance matrices (inverse similarity matrices) and t-SNE (t-distributed Stochastic

Neighbour Embedding), which are presented in Figure 6.7. An example of a very

smoothly changing but less distinctive nature exhibited by PHOG and an example of a

less continuous but overly distinctive nature exhibited by NetVLAD are presented for

the City Centre dataset. The distance matrices of the St Lucia dataset (21815×21815)

are too large to interpret any meaningful information from and hence are not presented.
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Figure 6.6: Cumulative histogram of image counts for the St Lucia dataset (21,815

images in total) for DIPVAE (left) and NetVLAD (right), illustrating the number of

locations that possess an image count less than or equal to the given value of image

count. Despite having a fewer total number of locations, NetVLAD has 65 out of 101

locations with 5 or fewer images, compared to 11 out of 135 for DIPVAE.

GDescriptor n(Loc) Runtime (s) ↓
PHOG 721 27939.47

LoST 654 12041.02

NetVLAD 624 6753.36

NetVLAD Cropped 698 8878.51

DIPVAE R128 665 2967.95
DIPVAE R64 609 3070.28

Table 6.4: Runtime on the St Lucia [46] dataset (17.6 km) for various descriptors, with

the number of locations produced corresponding to that run.

PHOG exhibits an overabundance of similar descriptors and hence lacks distinctiveness,

whereas NetVLAD has a scarcity of similar descriptors and hence lacks continuity. As

such, the former leads to many false positive location matches, while the latter leads

to poorly balanced locations (i.e., few locations having too many images and/or many

locations having very few images), both resulting in decreased search efficiency and

thus diminishing scalability. We also present the distance matrices of DIPVAE R64 and

DIPVAE R128 for better comparison.

Columns 2 (total runtime) and 3 (total false positive locations) in Figure 6.4, particu-

larly the last row corresponding to the longer St Lucia route, demonstrate the superiority

of learned descriptors over handcrafted descriptors, which we argue is due to their

inherent continuity and distinctiveness. Overall, both NetVLAD and DIPVAE show flat
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Figure 6.7: Distance matrices (top row) and t-SNE plots (bottom row) of different

global descriptors for the City Centre dataset with 20-25 locations. To conserve space,

we present the combined distance matrices (lower and upper triangular matrices) along

with corresponding distance scales on the sides. In t-SNE plots, locations are shown in

squares, with their size linked to the number of images they have, and their images are

shown as dots of the same colour. Best viewed zoomed on a high-resolution screen.
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runtimes and FPLC curves, supporting their usage as global descriptors and demon-

strating their scalability in systems that deal with longer trajectories. However, we note

that in the longest track evaluated, St Lucia (17.6km, 21.8k images), DIPVAE (both

R128 and R64 variants) shows significantly lower runtimes, as shown in Table 6.4,

while being very efficient with a compact embedding length of 128 and a substantially

faster compute time, as noted in Table 6.2. We note that the LoST descriptor that

encodes semantic information resulted in a longer runtime with more FPLC compared

to its learned descriptor counterparts. We hypothesise that this is a result of the weaker

discriminability arising due to ambiguous semantic information present across multiple

regions.

6.6 Conclusion

We have extended HTMap [117], making improvements and incorporating learned

global descriptors into the framework. We perform a comprehensive evaluation of vari-

ous global descriptors on hierarchical topological mapping and present results of recall

at 100% precision, total runtimes, and false positive loop closure location candidates

(FPLC). All of the global descriptors we compared yield similar overall recall; however,

they show crucial differences in runtimes. Based on our empirical analysis of multiple

runs, we have identified that continuity and distinctiveness are crucial characteristics

for an optimal global descriptor that enable efficient and scalable hierarchical map-

ping. Additionally, we have presented a methodology for quantifying and contrasting

these characteristics. Our study demonstrates that the global descriptor based on an

unsupervised learned Variational Autoencoder (VAE) excels in these characteristics

and achieves significantly lower runtime. Consequently, on the longest track, St Lucia

(17.6km), we observed that DIPVAE outperforms other global descriptors significantly,

running up to 2.3x faster than the next best global descriptor, NetVLAD, and up to 9.5x

faster than PHOG, while also being compact with an embedding length of 128. In the

future, we intend to extend our analysis to more challenging datasets, including more

extreme variation in weather, seasons, daylight, etc. We expect the performance of the

learned descriptors to be more pronounced in these settings.



Chapter 7

Conclusion

7.1 Thesis Contributions

This thesis has explored the potential for learned image descriptors for Visual Place

Recognition (VPR) systems, focussing on the development of approaches that enable

scalable and efficient robotic perception pipelines. The thesis made a number of

contributions in areas including robust learned image descriptors, scene categorisation,

and hierarchical topological mapping and localisation. A principal motivation was

addressing the challenges posed in VPR systems by variation in visual appearance as a

result of changes in weather, seasons, and time of day, where the underlying approach

was to leverage data-driven and deep learning techniques.

Our work began with a comprehensive exploration of VPR datasets, tools, and

metrics, providing a solid foundation for the development and evaluation of VPR

systems. We highlighted the importance of using diverse datasets that capture various

environmental conditions for training robust VPR systems. Interpreting metadata,

understanding dataset characteristics, and ensuring the relevance and comprehensiveness

of training data, along with filtering and preparing subsets tailored to specific training

requirements, arguably pose significant challenges for training learned descriptors. To

address this, we presented OdoViz, a specialised research tool providing a unified

framework for data visualisation, analysis, and processing. OdoViz facilitates working

with large homogeneous datasets by offering a standardised framework, streamlining

research workflows, and enabling efficient data handling. We emphasised the necessity
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of curating tailored and standardised data subsets from public datasets for deep learning

and further presented methods to generate them using OdoViz. With the discussion

on metrics, we highlighted the importance of a comprehensive evaluation approach,

emphasising the need to assess not only accuracy but also efficiency and scalability to

ensure the system’s practicality and robustness.

In the area of learned descriptors, training a VPR model on large sequential image

datasets from public sources, which often exhibit long-term changes, presents signif-

icant challenges. These include redundant visual content in stationary scenes, such

as intersections or roundabouts, and limited viewpoint variance on single carriageway

roads, even with multiple traversals at different times. This hinders the training of

robust learned descriptors using weakly supervised learning techniques such as con-

trastive loss and triplet loss, necessitating tailored data filtering and curation techniques,

training regimes, and specialised loss functions. We addressed the challenge of training

deep learning models with large sequential data to produce image representations that

remain invariant to substantial environmental variations while retaining the ability to

distinctly represent images from different locations. Central to achieving this was the

novel approach of discretising trajectories into locations containing similar images

from the same place to efficiently obtain unique triplets during training. We aggregated

discretised locations combined with data augmentation techniques to add viewpoint

variance. By discretising trajectories into locations and employing online triplet building

strategies during training, we achieved significant time and computation savings. We

modified the loss function and proposed architectural adaptations, which were key to

enhanced training stability and retrieval performance of our learned representations in

challenging conditions involving extreme day-night, weather, and seasonal changes.

Another significant challenge lies in understanding spatial configurations and object

relationships to categorise the broader scene without explicitly identifying individual ob-

jects, focussed on deriving higher-level insights about the environment. In autonomous

driving, scene categorisation into urban, rural, or suburban contexts provides crucial

information for parametrising downstream tasks, such as pedestrian detection. One

of the key challenges was designing a scene categorisation approach using a learned

descriptor technique that is fast and efficient to compute, enabling it to be executed as

a pretext task alongside computationally intensive tasks in the driving pipeline. Ad-

dressing this, we introduced a scalable and efficient novel unsupervised VAE-based

approach for generating compact image representations. In particular, we designed
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standard convolutional blocks with strided convolutions without the use of pooling and

aggregation layers to allow more efficient, fast, low latency, and realtime inference using

hardware convolutional accelerators. Unlike end-to-end models, our method leverages

intermediate representations confined to a standard normal manifold, allowing easier

comparison and interpretation. As such, the interpretability of these global descriptors,

coupled with their compact nature (128-dimensional embeddings), presents significant

advantages for real-time applications in autonomous vehicles. These descriptors, while

central to scene categorisation, also hold potential for other tasks requiring high-level

spatial reasoning.

As the operating environment of a robot scales, the computational complexity of

exhaustively searching the database for potential matches increases linearly. Although

faster retrieval methods and indexing techniques help mitigate this issue, the challenge

becomes particularly pronounced when applied to mapping long trajectories spanning

several kilometres. To address this, the reduction of search space complexity through

hierarchical structures can be exploited to enhance the efficiency of VPR techniques on

long trajectories. We built on top of the HTMap [117] algorithm and compared hierarchi-

cal topological mapping techniques with state-of-the-art handcrafted and learned global

descriptors, presenting a comprehensive evaluation of their impact on performance. This

aspect of the thesis proved particularly challenging, as it required decoupling individual

components whose errors counteracted each other, ultimately resulting in similar overall

recall performance. Our analysis revealed that, while various learned global descriptors

achieved comparable overall recall, they exhibited significant differences in runtime

and efficiency. Through this evaluation, we established that continuity and distinctive-

ness are critical characteristics of ideal global descriptors for hierarchical matching,

supporting scalable and efficient visual localisation. To quantify and contrast these

characteristics, we proposed a methodology to evaluate their effectiveness. Leveraging

VAE-based learned global descriptors that capture high-level scene information, we

demonstrated efficient and scalable hierarchical topological mapping, achieving supe-

rior runtime performance, particularly on long trajectories. This, in turn, contributes

to the overarching aim of this thesis: to leverage learned descriptors to enable their

efficient and scalable deployment in real-world navigation applications over large-scale

environments.

Prior to this work, limitations in utilising large sequential datasets, achieving efficient

scene categorisation, and enabling scalable hierarchical mapping posed significant
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obstacles to adopting learned descriptors for robust, efficient, and fast operations. Taken

as a whole, the contributions of this thesis provide a strong foundation for future research

and development of learned VPR techniques, bringing VPR research one step closer

towards realising highly efficient and scalable systems capable of operating in diverse

and challenging real-world environments.

7.2 Opportunities for Future Work

Building upon the foundations laid in this thesis, several avenues for future research

emerge:

Multi-modal backbones: Transformer models have demonstrated significant suc-

cess in various domains due to their ability to handle sequential data and capture

long-range dependencies, as seen in vision-language tasks such as CLIP [237] and

Blip [238, 239]. Such an architecture would potentially allow the integration of textual

information extracted from visual data alongside global image descriptors, potentially

enhancing the system’s understanding of the context of the image presented. By lever-

aging the attention mechanisms inherent in transformers and sharing the knowledge

learned from textual descriptions of images, the system could learn to focus on the

most relevant features. Recent advancements in self-supervised learning, such as

MoCo [101, 102, 103], SimCLR [99, 100], DINO [105] and MAE [240], have shown

the potential of transformer-based architectures in generating high-quality representa-

tions without relying on large labelled datasets. These methods, primarily applied to

object-focussed images, utilise contrastive learning or masked prediction tasks to learn

robust visual features. Extending these techniques to more complex scenes, encompass-

ing a large field of view with multiple objects, could provide significant benefits for

scene understanding tasks. Although transformers are highly effective for multi-modal

learning, their computational complexity remains a challenge, especially in resource-

constrained environments such as embedded systems. Investigating compute-efficient

approaches [241, 242, 243, 244] could allow for the deployment of systems employing

transformer backbones.

Extended Scene Categorisation: Exploring the addition of categories such as

motorways, tunnels, and car parks — alongside the existing categories, rural, urban,
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and suburban — would provide richer context for autonomous driving tasks, enabling

more precise and context-aware decision-making. These new categories could be

useful for applications like route planning, where understanding the specific driving

environment is essential for adjusting driving behaviour and improving safety [245, 246].

For instance, recognising a motorway would allow the system to adapt speed, lane

positioning, and traffic monitoring accordingly. Similarly, recognising tunnels and

car parks could trigger specific navigation strategies, such as initiating low-speed

manoeuvres in confined spaces and enabling GPS-independent actions like mapping

and localisation. Moreover, incorporating temporal consistency into the categorisation

process, while broadening the range of scene categories, could potentially improve

categorisation accuracy, ensuring smoother and more accurate transitions between

scene categories [247, 248]. Autonomous driving tasks often require continuous real-

time scene analysis, where successive frames of video data contain highly correlated

information [249]. For example, the system could avoid misclassifying short-term

visual ambiguities, such as shadows or reflections, by considering the consistency of the

scene over a period of time. Integrating auxiliary data sources like image quality metrics

(brightness, contrast, and sharpness values used by the sensor), vehicle speed, GPS, and

heading could further improve its accuracy, allowing the model to account for additional

contextual clues, which is essential for accurate scene categorisation. Additionally,

other vision tasks requiring analysis of individual objects — for example, performing

semantic segmentation to extract vegetation or detecting specific objects and landmarks

for the purpose of localisation — can feed back into the broader scene categorisation

task. This integration of diverse scene categories, temporal consistency, and additional

context would ultimately contribute to a more comprehensive understanding of the

driving environment, supporting safer and more efficient autonomous navigation.

Photorealistic Synthetic Training Data: The use of synthetic data for training deep

learning models for VPR tasks has been limited largely due to a significant gap between

real and synthetic datasets. Models trained on synthetic data often fail to generalise well

when directly applied to real-world scenarios without the use of domain adaptation and

fine-tuning techniques, as synthetic data struggles to replicate the nuances and variability

of real-world images [158, 250, 251, 252]. However, recent advancements in rendering

capabilities and generative techniques, particularly using diffusion models and GANs,

have allowed for the creation of photorealistic synthetic images that closely mimic

real objects, narrowing this gap significantly [209, 158]. Despite these advancements,
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challenges remain for generating photorealistic synthetic data for complex scenes with

multiple objects in a large field of view and varied environmental factors. Unlike object-

focussed images, which are relatively straightforward for current generative models,

full scenes require the network to handle diverse object interactions, depth variations,

and context continuity across large spaces. By synthesising varied scenarios, including

rare or hazardous situations, synthetic data can expand the range of training samples

far beyond what is feasible with real-world data alone. Further research into scene-

focussed synthetic data, particularly with advanced generative models fine-tuned for

scene realism, could enable models to perform well in complex environments without

extensive real-world training datasets [253, 158].

Fully Learned Descriptors for Hierarchical Mapping and Localisation: The

use of learned image descriptors for both global and local representations, moving

beyond traditional point-based features for more efficient mapping, could allow for a

more efficient image matching process. While the current pipeline requires the use of

keypoint-based descriptors for geometric verification using epipolar checks to avoid

false positives, this reliance on traditional feature descriptors presents a bottleneck. In a

learned descriptor framework, detection and description are integrated within a single

model, capitalising on GPU parallelism. However, shifting directly to learned descrip-

tors without the geometric verification step could increase the risk of false positives,

which can lead to catastrophic failures in mapping and localisation applications. Recent

works in learning-based localisation, such as SuperGlue [254], DELG [255], DFM [256],

D2-Net [16], and LF-Net [257], have introduced learned matching techniques that par-

tially integrate geometric reasoning through deep neural networks. However, achieving

absolute reliability remains a critical challenge, especially in mapping applications

requiring 100% precision. Future work could focus on enhancing these learning-based

methods by more deeply embedding geometric reasoning into the learning process and

directly incorporating geometric constraints into the loss function. Another promising

direction is the development of hierarchical descriptors that integrate both global and

local context within a single representation, enabling coarse-to-fine matching without

requiring separate descriptors at each hierarchical level. This approach streamlines

computation by avoiding multiple descriptor feature extraction processes, enhancing

efficiency in mapping and localisation tasks.

Model Compression and Optimisation for Edge Deployment: For deploying the

approaches described in the thesis in real-time autonomous systems, it is crucial to opti-
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mise performance on edge hardware, such as hardware convolutional accelerators and

automotive-grade chips. These devices are often constrained by limited computational

resources and power efficiency requirements, making neural network optimisation

essential for maintaining system performance [258]. One of the key strategies for

achieving this is neural network pruning, where unimportant or redundant connections

within the neural network model are identified and removed, leading to a significant

reduction in model complexity. Structured pruning techniques not only decrease the

model size but also accelerate inference times, which is critical for realtime tasks in

edge devices [259, 260]. Quantization is another key technique to explore for optimising

neural networks for edge deployment. By reducing the precision of the weights and

activations, typically from 32-bit floating point to lower-precision 8-bit floats or integers,

quantization can greatly reduce the memory footprint and computational requirements

of the model [261, 262, 263]. Furthermore, Quantization-Aware Training (QAT) could

be employed during the training phase to mitigate any performance degradation that oc-

curs from lower precision representation, allowing for more robust model performance

on resource-constrained hardware [264, 265]. Exploring hardware-specific optimisa-

tions through frameworks such as TensorRT and Apache TVM can further improve

performance, enabling low-latency and energy-efficient deployment.

Adaptive inference strategies allow the VPR system to dynamically adjust its com-

putational load and accuracy based on realtime conditions such as vehicle speed, scene

complexity, and hardware limitations [266, 267]. For example, the system could shift be-

tween lightweight, faster models during simpler scenarios such as highway driving and

more complex, accurate models in dense environments, like urban areas. One prospec-

tive approach within adaptive inference is the use of early-exit architectures, where

intermediate outputs are assessed at multiple points within the network [268, 269, 270].

These architectures allow the model to terminate inference earlier when sufficient

confidence in the output is achieved, reducing computation time significantly. Early-

exit networks have shown efficacy in achieving low-latency, high-accuracy results

in real-time applications by leveraging the early layers for less complex inputs and

fully utilising the network only when necessary. Dynamic pruning is another key

technique for adaptive inference. In this approach, certain network layers or neurons

are selectively activated or deactivated based on the specific input, thereby optimising

computational efficiency without degrading accuracy [271, 272, 273]. Dynamic pruning

is thus potentially useful in tasks where input complexity varies significantly, as it
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enables temporary resource allocation adjustments based on current processing needs.

By incorporating such adaptive inference methods, a VPR system could intelligently

balance computational demands with accuracy, tailoring inference to both environmen-

tal and hardware constraints, ultimately improving performance, power efficiency, and

reliability in real-world driving conditions.
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