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Abstract

We investigate the high-redshift (z ≥ 10) Universe i.e. when it was < 1 Gyr
old. We focus our investigation in two main areas: the distribution of dark
matter (DM) halos and the formation of intermediate-mass (M ∼ 103 − 105 M⊙)
black holes (IMBHs). We examine the abundance of DM halos as a function of
redshift and mass using N-body simulations. We also analyse the influence of
both Lyman-Werner (LW) radiation and metal enrichment on the number density
of IMBHs using analytic models and by post-processing simulation data.

We first review the state of the field today by discussing the fundamentals
of Λ-Cold Dark Matter (ΛCDM), DM clustering on both small and large scales,
quasars and the supermassive black holes (SMBHs) that power them. We also
detail how data from the James Webb Space Telescope (JWST) have prompted
us to question the origins of SMBHs and have shown us how different the high-z
Universe is from the local one (z ∼ 0). Finally, we describe the computational
tools employed in our investigations.

Next we use the adaptive mesh-refinement code Enzo and the N-body smoothed
particle hydrodynamics code SWIFT to compare (semi-)analytic DM halo mass
functions against the results of direct N-body models at high redshift. Our goal is
to investigate if these fitting functions could be a source of error when comparing
JWST data to cosmological models.

Next we compare the number density of IMBHs informed by an analytic model
accounting for LW radiation and metal pollution with one informed by simulation
results from Renaissance. This is a high-resolution simulation suite with the
purpose of probing the high-z Universe. Our goal is to determine if recent JWST
observations could be accounted for by this heavy seed formation pathway alone.
We also compare this channel against other recent models in the literature.

Finally, we summarise our aims, methodology, conclusions and we briefly
discuss how this work could be expanded upon in future. In §2, we find that
the difference between direct N-body calculations and (semi-)analytic halo mass
function fits is generally < a factor of 2 (at z ∼ 10) within the mass range of
galaxies currently being observed by JWST, and is therefore not a dominant
source of error when comparing theory and observation at high redshift. In §3,
we find the highest number densities (nheavy seed host ∼ 10−4 comoving Mpc−3 at

vi



z ∼ 10) are still too low for this channel to be the dominant formation pathway for
heavy seeds when compared to JWST observations, especially when considering
the growth requirements and duty cycle of active galactic nuclei (AGNs) necessary.
This channel can at best be responsible for only a small subset of high-z AGNs
while other models from the literature (e.g. rapid assembly) are more promising
to explain JWST observations at high redshift.
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Chapter 1

Introduction

1.1 Cosmology

Cosmology is the study of the Universe and the Universe is simply all that was, is
and will ever be. Easy-peasy. Cosmologists concern themselves with the birth,
evolution, structure and death of the Universe. The current consensus tells us
that the Universe as we know it began ∼ 13.8 billion years ago with a Big Bang.
The first physical evidence for this was found in 1929 when Edwin Hubble found
that the galaxies furthest from Earth also had the greatest velocities i.e. space
is expanding away from us (Hubble, 1929). Due to the finite speed of light,
we observe the most distant galaxies as they appeared billions of years ago i.e.
observations of distant space are synonymous with observations of the distant
past.

The Big Bang was followed by a short period (∼ 10−32 s) of rapid expansion
called inflation, subsequently causing quantum fluctuations in the infant Universe
(Starobinskǐi, 1979; Guth, 1981). At this time, there were no atoms or even
protons yet but a quark-gluon soup. By the time the Universe was ∼ 3 minutes
old, quarks combined to form protons and neutrons. These early baryons went on
to form hydrogen and helium nuclei in a process known as nucleosynthesis.

At this stage, we have nuclei, electrons and photons in a hot, high-density
plasma with participants frequently scattering off one another. The collisions are
so frequent that the mean free path of photons is incredibly short, such that it
is near-impossible for a photon to travel through the ionised gas without being
scattered i.e. photons at this stage in the evolution of the Universe will never reach
us. Then, about 380,000 years after the Big Bang, we have recombination (nuclei
combining with electrons forming neutral hydrogen) and decoupling (photons
have a large enough mean free path to separate from the gas). At this time
of last scattering, the photons escape and may be seen today as the Cosmic
Microwave Background (CMB). The existence of the CMB was first predicted by
George Gamow, Ralph Alpher and Robert Herman in 1948 (Alpher & Herman,
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1948) and later detected by Arno Penzias and Robert Wilson in 1964 (Penzias &
Wilson, 1965). The CMB is largely uniform in temperature and density aside from
some inhomogeneities (1 in 105) that were seeded by the post-inflation quantum
fluctuations.

What follows for about 100 Myr is known as the Cosmic Dark Ages: the
Universe consists largely of neutral hydrogen and no stars have formed yet. The
CMB inhomogeneities result in regions of overdensity, which later evolve to form
the first stars and proto-galaxies. The photons emitted by the first stars gradually
reionize the neutral hydrogen for approximately 600 Myr from redshift z = 15

to z = 6 (Robertson et al., 2015; De Barros et al., 2017; Wise, 2019; Witten
et al., 2024). Redshift is a means of describing a point in the Universe’s history
where low-redshift refers to the recent past (with z = 0 being present-day), while
high-redshift refers to points early in the Universe’s evolution (with z → ∞
referring to the Big Bang).

Following reionization and the formation of the first galaxies, the Universe
continues to expand and reaches Cosmic Noon at z ∼ 2 when it was approximately
2 Gyr old. During this time, the global star formation rate density peaks at
approximately 10−1 M⊙ yr−1 Mpc−3, compared to ∼ 10−2 M⊙ yr−1 Mpc−3 in the
present day (Madau & Dickinson, 2014). About half of the stellar mass observed
today was formed between z ∼ 3 and z ∼ 1 while Universe doubled in size due to
expansion (Förster Schreiber & Wuyts, 2020).

Today our Universe is highly ionised and made up of billions of galaxies that
continue to expand away from one another. We can trace this expansion using
the scale factor a(t) as a function of time, where t = 0 refers to the Big Bang and
t = t0 refers to the present day. The scale factor is a fraction of the Universe’s
present-day size i.e. a = 1/2 refers to when the Universe was half its current
size and a(t = t0) = 1 in the present day. As t → 0, a(t) → 0 i.e. the Big Bang
singularity. We describe the relationship between the scale factor and time in
greater detail in §1.2.

As the distance between present-day Earth and some distant galaxy expands,
the wavelength of photons emitted by stars within that galaxy increases i.e. the
wavelength is redshifted by the time we measure it.

z =
λobs − λemit

λemit
=

λobs

λemit
− 1,

1 + z =
λobs

λemit
.

(1.1)

We set the scale factor a = 1/(1 + z) i.e. low-redshift refers to the local Universe
and recent past where a ∼ 1, high-redshift refers to points very distant from
Earth and early in the Universe’s history where a → 0. Figure 1.1 summarises
the evolution of the Universe as a function of its age and redshift.
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Figure 1.1: Timeline of the Universe, taken from Figure 1 of Wise (2019). Note
that time as a variable here refers to time since the Big Bang.

We can relate this scale factor a which describes the expansion of the Universe
to a so-called co-moving distance. Consider a photon that is emitted at some time
t′ = t and some distance from present-day Earth r′ = r. The photon arrives at
r′ = 0 and t′ = t0 where t0 > t. We can express the co-moving distance travelled
r in terms of a as: ∫ r

0

dr′ = −
∫ t

t0

cdt′

a(t′)
,

r =

∫ t0

t

cdt′

a(t′)
,

(1.2)

i.e. as t → 0, a(t) → 0 in an expanding Universe and the co-moving distance
travelled r increases. This depends on how the scale factor a(t) evolves with time
t which is dependent on the matter-energy content of the Universe (see §1.2).
Comoving distances are measured in comoving units e.g. cMpc refers to units
of comoving Mpc. We can relate the physical distance between two points to
comoving distance as:

rphys = a(t)rco,

rphys =
1

1 + z
rco.

(1.3)

Our primary concern in this work is with the high-redshift (z ≥ 10) Universe
i.e. when the Universe was less than 1 Gyr old and when the supermassive black
holes (SMBHs) that power galactic centres today were first seeded. In §1.2, we
detail the standard model of cosmology that we utilise, Λ−Cold Dark Matter, and

3



its main parameters. In §1.3, we describe the structure of cold dark matter on
small scales i.e. halos (§1.3.1) and on larger scales i.e. the Cosmic Web (§1.3.2).
These halos are the hosts of galaxies and some host SMBHs. These SMBHs
accrete matter, producing the incredible luminosities of quasars. In §1.4, we
discuss the properties of these quasars and their discovery history. Since the
launch of the James Webb Space Telescope (JWST) in 2021, we have entered a
new era of high-redshift observational astrophysics. In §1.5, we illustrate some
of the recent discoveries of JWST and what they tell us about SMBHs and their
seeding mechanisms in the early Universe. Finally for this Chapter, in §1.6 we
describe the computational tools employed in §2 and §3.

1.2 ΛCDM Paradigm

In this section, we define the parameters in use in §2 and §3 of the current standard
model of cosmology Λ−Cold Dark Matter (ΛCDM).
In 1915, Albert Einstein published his general theory of relativity, describing how
matter and energy curve spacetime (Einstein, 1915). This can be summarised in
the Einstein field equations in tensor form:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (1.4)

where gµν is the spacetime metric and the unknown of this equation. The indices µ,
ν refer to spacetime coordinates t, r, θ or ϕ (time and spherical space coordinates).
Rµν and R are the Ricci tensor and Ricci scalar respectively - they are functions
of gµν and its derivatives with respect to the spacetime coordinates. Tµν is the
stress-energy tensor and is a function of density ρ, pressure p and gµν . Finally,
Λ is the cosmological constant. The left-hand side of this equation describes
the curvature of spacetime and the right-hand side of the equation describes the
matter and energy curving spacetime.

A solution to Eq. 1.4 is the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric (Friedmann, 1922; Lemaître, 1931; Robertson, 1935, 1936a,b; Walker, 1937),
which describes a universe that is isotropic and homogeneous. This is, of course,
a simplification as the presence of planets, stars and galaxies tells us that the
Universe is not truly homogeneous in density. However this metric remains a
very useful approximation to describe the Universe on cosmic scales. Due to this
isotropy and homogeneity, we can assume spherical symmetry as follows:

(ds)2 = c2(dt)2 − a(t)2
(

(dr)2

1− kr2
+ r2(dΩ)2

)
, (1.5)

where t is our coordinate indicating time since the Big Bang, a(t) is the dimen-
sionless scale factor described in §1.1, r is our radial coordinate, k describes the
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curvature of the Universe and dΩ = sin θ dθ dϕ is the solid angle measure. We
need the scale factor a(t) in order to account for the expansion of the Universe
while we measure the distance between two points. The r coordinate does not
vary with time or redshift and is a comoving distance. The index k describes the
curvature of the Universe as:

k =


−1 cMpc−2 hyperbolic (open),

0 Euclidean (flat),

1 cMpc−2 elliptical (closed),

(1.6)

where r is in units of cMpc. By substituting this metric into the Einstein field
equations, we are left with the first Friedmann equation:(

ȧ(t)

a(t)

)2

= H(t)2 =
8πG

3
ρ(t)− kc2

a(t)2
+

Λc2

3
. (1.7)

This illustrates how the scale factor a(t) i.e. the size of the Universe evolves with
time. Note that while a(t) is dimensionless, both k and Λ have dimensions of
length−2. The Hubble parameter H(t) describes the rate of expansion normalised
by the scale factor at a given time. At t = t0 and a = 1, H(t = t0) = H0 i.e. the
Hubble constant. It is given in units of km s−1 Mpc−1. If we set H0 = 70 km s−1

Mpc−1, then two points separated by 1 Mpc would recede from one another at 70
km/s.

The expansion of the Universe is driven by the density of matter and radiation
ρ(t) and the cosmological constant Λ in a flat universe (k = 0). Matter refers
to both baryonic matter which can be detected electromagnetically and dark
matter which cannot. Dark matter only interacts with the gravitational force
and its exact nature has yet to be determined at time of writing. In 1933, its
presence was inferred by Fritz Zwicky through measurements of galaxy velocities
within a galaxy cluster (Zwicky, 1933, 1937). He determined that the galaxies
were moving too quickly given their (baryonic) mass and that some invisible mass
ought to be present too. Later in the 1970s, Vera Rubin and W. Kent Ford, Jr.
found a similar result when examining galaxy rotation curves (Rubin & Ford,
1970): the rotational velocity of a galaxy was too high given the baryonic mass
known, implying that another type of matter must also contribute to the total
galaxy mass. The existence of dark matter can also be inferred by examining the
baryon acoustic oscillations, driving some CMB temperature anisotropies (Planck
Collaboration et al., 2014). The model we use for dark matter is currently the
more favoured in modern cosmology: cold dark matter, whose particles move
at non-relativistic velocities. We can rescale ρ(t) by a constant to include the
contribution from Λ like so:
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H(t)2 =
8πG

3

(
ρ(t) +

Λc2

8πG

)
− kc2

a(t)2
,

→ H(t)2 =
8πG

3
ρ(t)− kc2

a(t)2
,

ρ(t) = ρm(t) + ρr(t) + ρΛ,

ρ(t) = ρm,0a(t)
−3 + ρr,0a(t)

−4 + ρΛ,

(1.8)

where ρm is the density of matter, ρr is the density of radiation and now ρΛ is
known as the density of dark energy. Due to the a(t)−4 dependence, the total
density was dominated by radiation (ρr(t)) for the lowest values of a(t) i.e. early in
the evolution of the Universe, until approximately 30,000 years after the Big Bang.
This was followed then by a matter-dominated era due to the a(t)−3 dependence
of ρm(t), until approximately 9 billion years after the Big Bang. Finally, about 4
billion years ago, the Universe entered the dark energy-dominated era. Dark energy
has yet to be detected but has been driving the acceleration of the expansion of
the Universe. Note that ρΛ is constant in t in this model but there exist others
where the dark energy density evolves with time (Copeland et al., 2006; Carloni
et al., 2025).

From here, we can solve for the critical density i.e. the density of matter,
radiation and dark energy required for the Universe to be flat in curvature (k = 0):

H(t)2 =
8πG

3
ρc(t),

ρc(t) =
3H(t)2

8πG
.

(1.9)

We can rewrite Eq. 1.8 by normalising ρ(t) by the present-day critical density
ρc,0 = ρc(t = t0):

H(t)2 =
8πG

3
(ρm,0a(t)

−3 + ρr,0a(t)
−4 + ρΛ)− kc2a(t)−2,

H(t)2 =
8πG

3H2
0

H2
0 (ρm,0a(t)

−3 + ρr,0a(t)
−4 + ρΛ)− kc2a(t)−2,

H(t)2 =
1

ρc,0
H2

0 (ρm,0a(t)
−3 + ρr,0a(t)

−4 + ρΛ)− kc2a(t)−2,

H(t)2 = H2
0

(ρm,0

ρc,0
a(t)−3 +

ρr,0

ρc,0
a(t)−4 +

ρΛ
ρc,0

)
− kc2a(t)−2,

H(t)2 = H2
0

(
Ωm,0a(t)

−3 + Ωr,0a(t)
−4 + ΩΛ,0 + Ωk,0a(t)

−2
)
,

(1.10)

where Ωm,0, Ωr,0, ΩΛ,0 and Ωk,0 are the present-day matter, radiation, dark energy
and curvature density parameters respectively. The current consensus is that the
Universe is largely flat i.e. k ≈ 0, Ωk,0 ≈ 0 and Ωm,0 +Ωr,0 +ΩΛ,0 ≈ 1. Thus we
can consider these density parameters as present-day fractions of the total density
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of the Universe. We can also introduce ΩDM,0 and Ωb,0 which are the dark matter
and baryonic density parameters respectively (where Ωm,0 = ΩDM,0 + Ωb,0).

The final two parameters to introduce are the scalar power-law index ns and the
amplitude of the linear power spectrum σ8. As previously mentioned in §1.1, the
CMB is largely homogeneous in temperature aside from some minute anisotropies.
These anisotropies are the framework by which stars and galaxies would eventually
form. The primordial power spectrum describing these anisotropies is described
by perturbations in density due to curvature (R) (Peiris et al., 2003; Clesse,
2015). Inflation models (see Martin et al. (2014) for a review) predict that the
dimensionless primordial power spectrum ∆2

R(k) can be described as a function
of wavenumber k approximately by a power law (Peiris et al., 2003):

∆2
R(k) =

k3

2π2
⟨|Rk|2⟩ ∝ kns−1,

ns(k0)− 1 =
d ln∆2

R(k)

d ln k

∣∣∣∣
k=k0

,
(1.11)

where ns is the scalar power-law index and k0 is a specific wavenumber scale. Eq.
1.11 is from §3.2.1 of Peiris et al. (2003) where k0 = 0.002 cMpc−1. The current
consensus is that ns < 1 and thus the primordial power spectrum deviates from
scale invariance.

The amplitude of the linear power spectrum σ8 dictates the distribution of
matter at a particular scale (R = 8 cMpc/h)1 and linearly extrapolated to z = 0

(van den Bosch et al., 2013). More generally, the variance of a matter density field
at some redshift z and smoothed on some scale R (i.e. we are only interested in
fluctuations below this scale) is given as:

σ2(z,R) =
1

2π2

∫ ∞

0

k2 P (z, k) W̃ 2(kR) dk,

W̃ (kR) =
3

(kR)3
[sin(kR)− (kR) cos(kR)] ,

(1.12)

where P (z, k) is the matter power spectrum (dimensions of length3) and W̃ (kR)

is the Top Hat filter. This value of R was chosen such that σ8 ≈ 1.
Many experiments have been completed for over 20 years to determine the val-

ues of these parameters by analysing the CMB (Spergel et al., 2003; Hinshaw et al.,
2013; Planck Collaboration et al., 2014, 2020) and galaxy clustering (Perlmutter
et al., 1999; Riess et al., 2004, 2011, 2016). There is still tension between these
methods in determining the Hubble constant H0 and Ωm,0 in particular (Efstathiou,
2025). We summarise the parameter values deduced by Planck13 in Table 1.1 (see
leftmost column of Table 2 in Planck Collaboration et al. (2014)). Note that the
parameter values used in §2 and §3 deviate slightly from the Planck13 cosmology.
We exclude baryons and radiation in §2 for our dark-matter-only simulations; we

1h is the dimensionless Hubble constant defined as h = H0/(100 km s−1 Mpc).
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mimic the cosmology from Dijkstra et al. (2014) in §3.

Parameter Value

h 0.6711

ΩDM,0 0.2671

Ωb,0 0.0490

ΩΛ,0 0.6825

ns 0.9624

σ8 0.8344

Table 1.1: Parameter values from Planck13

1.3 Hierarchical Structure Formation

1.3.1 Dark Matter Halo Formation

Here we briefly describe how baryons and dark matter contribute to galaxy
formation. We consider a galaxy of baryons (made up of stars, gas and dust) to
be contained within a spherical dark matter halo. The CDM model implies that
structure forms in a bottom-up hierarchical fashion: low-mass dark matter halos
form at high redshift, they merge together to form more massive halos and the
most massive halos only exist at low redshift (Binney & Tremaine, 2008). Early
in the evolution of the Universe and prior to the formation of atoms (decoupling
and recombination), free charged particles are scattered by photons i.e. Thomson
scattering. Photons scatter both electrons and protons but due to their much
lower mass, electrons experience a greater change in their momentum. Protons
are then dragged by these electrons due to Coulombic attraction. While this
occurs for baryons, dark matter is unaffected by electromagnetic radiation. This
leaves dark matter free to collapse under gravity, producing gravitational potential
wells. Both baryons and photons then fall into these potential wells (i.e. dark
matter halos), the baryons collapse and later form galaxies (White & Rees, 1978;
Weinberg et al., 2008).

According to the spherical collapse model (Binney & Tremaine, 2008), the
halo initially expands due to being coupled to the Hubble flow until it reaches
a maximum radius (called the turn-around radius) and subsequently begins to
collapse until it reaches a physical radius rvir(z) i.e. until virialisation is achieved.
The virial mass Mvir(z) of such a halo is given as:

Mvir =
4π

3
r3vir∆c(z)ρc(z), (1.13)

where ∆c(z)ρc(z) is the average density contained within a sphere of mass Mvir
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and radius rvir (Bryan & Norman, 1998). At high z (i.e. the matter-dominated
era of the Universe), ρc(z) ≈ ρm(z). By applying the virial theorem and assuming
a flat universe, we can express ∆c(z) as:

∆c(x) = 18π2 + 82x− 39x2,

x(z) =
Ωm,0(1 + z)3

Ωm,0(1 + z)3 + ΩΛ,0

− 1.
(1.14)

For high z, x → 0 and ∆c → 18π2 ≈ 200. This overdensity is key when identifying
halos in dark matter-only simulations, later seen in §2. Also in the high-z limit,
the Hubble parameter can be approximated as H(z) ≈ H0Ω

1/2
m,0(1 + z)3/2. Using

these approximations, we can express the physical virial radius as:

rvir(z,M) = (7.84× 10−4)
( M

108 h−1M⊙

)1/3

Ω
−1/3
m,0

×
(1 + z

10

)−1

Mpc/h.
(1.15)

Additionally, we can derive a relationship between the virial mass Mvir and
the virial temperature Tvir of the gas within the halo. By assuming an isothermal
distribution, the density ρ at a given physical radius r from the halo centre is:

ρ(r) =
σ2

2πGr2
, (1.16)

where σ is the velocity dispersion of the particles within the halo. By integrating
Eq. 1.16 over a sphere of radius rvir, we can find rvir = rvir(σ). By substituting
this into Eq. 1.13, we find:

σ = M
1/3
vir

H(z)1/3∆
1/6
c (z)G1/3

161/6
. (1.17)

Again by assuming an isothermal distribution, we can relate this to the temperature
T of the gas as:

T =
µmpσ

2

kB
, (1.18)

where µ is the mean molecular weight, mp is the proton mass and kB is the
Boltzmann constant. Finally we can substitute σ from Eq. 1.17 into Eq. 1.18 to
find an expression between Mvir and Tvir:

Tvir =
GM

2/3
vir µmp

2kB

H(z)2/3∆
1/3
c (z)

(2G)1/3
. (1.19)

Later, in §3, we consider supermassive stars (SMSs) as a formation pathway for
intermediate-mass black holes (IMBHs), which act as heavy seeds for supermassive
black holes (SMBHs). In order to form a SMS within a halo, the gas must cool
via atomic hydrogen only where Tvir ≈ 104 K. If we set Tvir ≈ 104 K and take the
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high-z approximation (H(z) ≈ H0Ω
1/2
m,0(1 + z)3/2), we find:

Mvir ≈ (4× 107 M⊙)

(
1 + z

11

)−3/2

. (1.20)

This is the minimum halo mass required for cooling via atomic hydrogen i.e. the
atomic-cooling limit (Regan & Haehnelt, 2009; Fernandez et al., 2014). In §3, we
use both Eq. 1.15 and 1.20 to compute the IMBH number density.

1.3.2 Large-Scale Structure

Later in §2, we investigate how the number density of dark matter halos varies
with mass M and redshift z by comparing simulation results with both analytic
and semi-analytic models. In this subsection, we describe the large-scale structure
of the Universe due to the clustering of dark matter and galaxies as observed in
both galaxy surveys and large-scale simulations, illustrating the power of these
simulations to study the high-z Universe.

As stated in §1.2, the isotropy of the Universe is best realised on very large
scales i.e. hundreds of Mpc. Due to the influence of gravity, dark matter clumps
together in knots, filaments and sheets while leaving extremely under-dense regions
in between called voids. Baryons are gravitationally bound to this framework and
later form galaxies within dark matter halos. This entire structure is known as
the Cosmic Web. However since we are in the dark energy-dominated era of the
Universe’s evolution, the accelerated expansion of the Universe will continue to
work against this clustering by pushing distant galaxies further apart.

The first galaxy redshift survey of the local Universe was completed by the
Centre for Astrophysics | Harvard & Smithsonian in Massachusetts, USA from 1977
to 1982 (Huchra et al., 1983), later referred to as CfA. Here, the radial velocities
of 2401 galaxies were measured. This was followed up by another redshift survey
later known as CfA2 (Geller & Huchra, 1989) which ran from 1984 to 1995 and
measured the redshifts of 18,000 galaxies. This survey included the discovery of a
filament of galaxies known as the CfA2 Great Wall, measuring ∼ 600 light-years
in length (see central sector of Figure 1.6).

From 1997 to 2002, the Australian Astronomical Observatory conducted the
Two-Degree Field Galaxy Redshift Survey (2dF-GRS) using the Anglo-Australian
Telescope (Colless et al., 2001), covering 1500 deg2 of the sky. The spectra
and redshifts of over 200,000 galaxies were measured with the most distant at
z < 0.3 and ∼ 600 Mpc away (Colless et al., 2003). Figure 1.2 shows the galaxy
distribution of the completed survey with present-day Earth at the centre of the
figure.

The more ambitious Sloan Digital Sky Survey (SDSS) began operations in
2000 (Gunn et al., 2006) from the Apache Point Observatory in New Mexico,
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Figure 1.2: The galaxy distribution from the completed 2dF-GRS. Taken from
Figure 2 of Colless et al. (2003).

USA and is still releasing data today with the most recent data release in 2023
(Almeida et al., 2023). Initially (SDSS-I and SDSS-II phases) 8000 deg2 were
mapped and the spectra of over 800,000 galaxies and 100,000 quasars (see §1.4)
were determined. This includes a filament called the Sloan Great Wall which
measures 1.37 billion light-years in length (see topmost sector of Figure 1.6).
Figure 1.3 shows the galaxy distribution up to z < 0.16 with present-day Earth
at the centre. Dust from the Milky Way hinders our ability to survey some of the
sky so these blank regions were not surveyed. This was expanded in the SDSS-III
phase of the operation with the survey covering 14,555 deg2 of the sky (Aihara
et al., 2011). The spectra of many z ∼ 6 quasars were determined using this
survey (Jiang et al., 2016). Both Figures 1.2 and 1.3 clearly show the shape of
the Cosmic Web, with galaxies clustering in knots and filaments.

To understand the evolution of the Cosmic Web, several powerful cosmological
simulations have been completed with the output still being analysed today. In
2005, the Virgo Consortium completed the Millennium Run simulations (Springel
et al., 2005), a suite of dark matter-only cosmological simulations (run using the
cosmological code GADGET2 (Springel et al., 2001; Springel, 2005)) which tracked
the formation of dark matter halos. They began at z = 127, finished at z = 0

and had a volume of V = (500 cMpc/h)3 with N = 21603 particles. Croton et al.
(2006) applied a semi-analytic model of galaxy evolution and formation to the dark
matter halo merger tree structure while post-processing the initial Millennium
Run output. Figure 1.4 shows the distribution of galaxies from a slice of this
simulation volume.

Following the Millennium Run, many more simulation projects have been
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Figure 1.3: Taken from the press release SDSS Collaboration (2008), following the
completion of SDSS-II. Each dot represents a galaxy, with redder galaxies being
made up of older stars.

completed. These include but are not limited to EAGLE (Schaye et al., 2015),
HorizonAGN (Dubois et al., 2014), MassiveBlack-II (Khandai et al., 2015) and
Romulus25 (Tremmel et al., 2017). We discuss in detail below two well-regarded
simulation projects: Illustris and IllustrisTNG. The first simulations of the Illustris
project were completed in 2013 (Vogelsberger et al., 2014) using the hydrodynamic
AREPO code (Springel, 2010). These simulations all had a volume of V = (75
cMpc/h)3, began at z = 127, ended at z = 0 and varied in mass resolution, with
the highest resolution consisting of 18203 dark matter particles and the same
number of hydrodynamic cells and Monte Carlo tracers. These simulations tracked
the evolution of both dark matter and baryonic structures, accounting for gas
cooling, photo-ionisation, star formation and both stellar and black hole feedback.

These initial simulations were succeeded by a follow-up project called Illus-
trisTNG which consists of three different simulation volumes of V = (302.6 cMpc)3

(TNG300), (110.7 cMpc)3 (TNG100) (Springel et al., 2017; Nelson et al., 2018;
Marinacci et al., 2018; Naiman et al., 2018; Pillepich et al., 2018) and (51.7
cMpc)3 (TNG50) (Pillepich et al., 2019; Nelson et al., 2019a). The highest reso-
lution of TNG300 consists of 25003 dark matter particles and the same number
of gas and tracer particles. Like their predecessors, these simulations began at
z = 127 and ended at z = 0. They improve on the original Illustris simulations
by updating their active galactic nuclei (AGN) feedback model, including a new
parameterisation of galactic winds and including magnetic fields based on ideal
magneto-hydrodynamics. The TNG300 simulation in particular has been used to
demonstrate the large-scale structure of the Universe, seen in Figure 1.5.
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Figure 1.4: The distribution of light from galaxies in a 330 cMpc/h × 280 cMpc/h
slice from the Millennium Run, integrated over 15 cMpc/h, the intensity indicating
surface brightness. Taken from Figure 1 (bottom panel) of Croton et al. (2006).

Figure 1.5: A comparison of the dark matter large-scale structure shown in the
three IllustrisTNG boxes, taken from Figure 1 of Nelson et al. (2019b).

These cosmological simulations compare well with observations of the large-
scale structure in the local Universe as shown in Figure 1.6 which compares
sections of data from CfA2, 2dF-GRS and SDSS as well as mock data from the
Millennium simulation. Since the Cosmic Web is constructed by gravity acting on
very large scales, dark matter-only simulations such as Millennium are incredibly
valuable for probing this large-scale structure of the high-redshift Universe. While
the inclusion of baryonic processes would be more physical, this would result in
effects acting on smaller scales, so dark matter-only simulations still remain a
useful approximation when testing theories of large-scale structure.
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Figure 1.6: A comparison of large-scale structure demonstrated by data from
CfA2, 2dF-GRS and SDSS and mock data from Millennium. Taken from Figure 1
of Springel et al. (2006).

1.4 Quasars

Objects in the high-z Universe generally have very low fluxes due to their great
distances from us and this is the main challenge with observing such objects.
Quasi-stellar objects (or quasars) act as our guiding light to the high-z Universe
due to their incredible luminosities as some of the brightest objects in the Universe.
As described in the previous section, hundreds of quasars at z ≳ 6 have been
discovered in the last 20 years (Fan et al., 2006, 2023), many found as part of
the SDSS. In this section, we describe their properties and what questions their
presence raises about the early Universe.

A quasar is the most luminous type of active galactic nucleus (AGN) and
among the most luminous objects in the Universe (Wolf et al., 2024). An AGN
resides at the centre of a galaxy with a luminosity so great it cannot be accounted
for by only the stellar luminosity of the galaxy. The current consensus is that a
supermassive black hole (SMBH) would be accreting matter at the centre of this
galaxy (see Figure 1.7). As matter is accreted, it heats up and emits radiation
across the electromagnetic spectrum (Shields, 1999). Quasars were first discovered
in the late 1950s and early 1960s with one of the first identified being 3C 273 with
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z = 0.158 and an estimated bolometric luminosity2 of Lbol ∼ 1047 erg/s (Schmidt,
1963; Greenstein & Schmidt, 1964; Landt et al., 2011; Thorne et al., 2025).

SMBH

Particle jets
producing radio

waves

Accretion
disk

Dust

Figure 1.7: A quasar consisting of a supermassive black hole (SMBH) accreting
matter and producing jets of relativistic particles which emit radio waves.

At time of writing, the quasar SMSS J215728.21-260215.1 is one of the most
luminous quasars known with a bolometric luminosity of Lbol = 2.66× 1048 erg/s,
z = 4.75 and was discovered by Wolf et al. (2018) at the Australian National
University’s Siding Spring Observatory.

Quasars act as an incredibly useful probe into the first Gyr of the Universe,
particularly the epoch of reionization. The most distant quasar currently known is
UHZ-1 at z ∼ 10.3 and Lbol ∼ 5× 1045 erg/s by the Chandra X-ray Observatory
(Bogdán et al., 2024; Natarajan et al., 2024). Quasars were more common in the
past (z ∼ 1− 2) (Richards et al., 2006) than in the local Universe (z ∼ 0). Once
a quasar has accreted much of the surrounding matter, it no longer produces this
high level of radiation and its luminosity is more comparable to galaxies in the
local Universe.

One observational feature of quasars is broadening of emission and absorption
lines. The atoms constituting the gas of the accretion disk absorb and emit
photons of distinct wavelengths, leading to these absorption and emission lines
being a feature of the quasar spectrum. The atoms also move with large velocities,
causing the photon wavelengths to be Doppler-shifted (Carroll & Ostlie, 2017).
As a result, the lines at these wavelengths have a broader peak (see Figure 1.8).

In order to estimate the mass of the SMBH powering a quasar, we can use
the full-width half maximum (FWHM) and luminosity associated with a specific
emission line (Kaspi et al., 2000; Greene & Ho, 2004). There exist many fits using
different spectral lines e.g.

2Bolometric luminosity refers to total luminosity from all electromagnetic wavelengths.
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Figure 1.8: The spectrum of the quasar CEERS 2782, taken from Figure 2 (top
panel) of Kocevski et al. (2023).

log10

(MBH

M⊙

)
= log10 ϵ+ 6.57 + 0.47 log10

( LHα

1042 erg/s

)
+ 2.06 log10

(FWHMHα

103 km/s

)
,

(1.21)

where the scale factor is set to ϵ = 1.075, LHα is the luminosity associated with the
Hα line and FWHMHα is the velocity associated with this peak broadening (Reines
& Volonteri, 2015). This illustrates that broader peaks and higher luminosities
indicate greater SMBH masses.

Using fits like Eq. 1.21 for known quasars, we can estimate that the SMBHs
powering quasars can have masses MBH ≳ 108 M⊙. This holds even for quasars
detected at z ≳ 6 when the Universe was less than 1 Gyr old. This raises two
important questions about the high-redshift Universe: how were these SMBHs
seeded and how do they grow to this mass in a relatively short amount of time? In
the next section, we detail how the new era of observational astrophysics launched
by the James Webb Space Telescope (JWST) hopes to answer these questions.

1.5 JWST

In this section, we briefly describe the James Webb Space Telescope (JWST),
what it has already taught us about the high-redshift Universe and what questions
the data raise. JWST is a space-based infrared telescope and to date it is the
largest telescope placed in space (Gardner et al., 2006). JWST acts as a successor
to the Hubble Space Telescope (HST) and such a telescope had been planned
since the 1990s (Brown, 1996). The project is a collaboration between NASA,
ESA and the Canadian Space Agency with a mission span of 5-10 years but with
the potential to run for 20 years or longer (Gardner et al., 2023). The telescope
was launched into space from French Guiana on Christmas Day 2021 and the first
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Figure 1.9: Recent high-redshift galaxy detections by JWST compared to older
telescopes, taken from Figure 1 of Stark et al. (2025).

images were released in July 2022.
Some of its goals include observing the first galaxies and determining how

these galaxies form and evolve. Due to the expansion of the Universe, the UV
light emitted by these early galaxies has been redshifted to infrared wavelengths
by the time it reaches present-day Earth. JWST has a wavelength coverage of
600 to 28,500 nm (orange visible light to mid-infrared) for this purpose, whereas
HST covers 900 to 2,500 nm (near-infrared). Additionally, it boasts incredible
sensitivity by detecting objects 10-100 times fainter than HST and with six times
the light-gathering power (NASA, 2025). Another goal of JWST is to observe
the first episodes of star formation, thought to occur at z = 15 to 30. At time of
writing, the most distant galaxy observed by JWST is JADES-GS-z14-0 with a
spectroscopically-confirmed redshift of z = 14.32 (Carniani et al., 2024). Figure
1.9 shows how the high-redshift detection threshold has continued to be raised,
largely thanks to JWST.

In the rest of this section, we describe some of the findings of JWST and how
they relate to the growth of SMBHs in the early Universe.

1.5.1 Low-Luminosity Active Galactic Nuclei (AGNs)

Prior to the launch of JWST, our observational knowledge of AGNs was limited
by what older telescopes could see i.e. the brightest AGNs unobscured along our
line of sight (Stark et al., 2025). With JWST being capable of detecting objects
up to 100 times fainter than what HST could detect, we have seen a widening of
the luminosity range of high-redshift AGNs detected since 2022. On the lower
end of this, we have faint AGN, so-called for both their low fluxes due to their
great distances from us and their low intrinsic luminosities. As mentioned in §1.4,
the origin of SMBHs remains an open question. The recent observations of such
low-luminosity AGN (with lower central black hole masses) may help shed light
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on their seeding and evolution.
In 2023, 10 faint AGNs with broad Hα emission lines were found using JWST

data at z = 4.016 to 6.936 and with estimated central black hole masses MBH ∼
106 M⊙ to 108 M⊙ and bolometric luminosities Lbol ∼ 1044 to 1046 erg/s (Harikane
et al., 2023). These particular AGNs have lower values of MBH and Lbol than
quasars found previously at similar redshifts by ground-based telescopes. Two
of these AGNs show red spectral energy distributions (SEDs) and large dust
attenuation, indicating that they are dusty red AGNs. More local AGNs (z ∼ 0)
with similar mass ranges tend to have lower bolometric luminosities than those
found in this sample - this may be due to selection bias by Harikane et al. (2023).

1.5.2 Little Red Dots (LRDs)

Another recent discovery by JWST are Little Red Dots (LRDs) (Matthee et al.,
2024). These are high-redshift (z ∼ 4− 8) galaxies that are very compact (with a
supposed AGN region < 100 pc (Lambrides et al., 2024)) with broad Hα emission
lines and predominantly red spectra. Matthee et al. (2024) identified an initial
sample of 20 such objects with LHα,broad > 2 × 1042 erg/s and FWHMHα,broad >

1000 km/s.
The broad Hα emission lines suggest that LRDs are a population of high-

redshift AGNs powered by an accreting SMBH. Given this assumption, we can
estimate the black hole mass using Eq. 1.21. The bolometric luminosity can be
estimated as:

Lbol

1044 erg/s
= 10.33

(
LHα,broad

5.25× 1042 erg/s

) 1
1.157

, (1.22)

following the approximation used by Harikane et al. (2023). For the sample found
by Matthee et al. (2024), the estimated black hole masses are MBH = 106.9 −
108.6 M⊙ and the estimated bolometric luminosities are Lbol = 1044.7 − 1045.8 erg/s.

Bizarrely, these LRDs generally are not detected in X-ray observations, leading
some to believe that they are not AGNs at all. The Hα emission lines may instead
be due to galactic outflows from supernovae and/or star formation (Ananna et al.,
2024). Kocevski et al. (2025) found a sample of 341 LRDs with z ∼ 2− 11 and
only two were detected in X-ray observations. In the initial sample by Matthee
et al. (2024), the X-ray non-detections may be due to X-ray limits with the surveys
chosen to create the sample. It has also been suggested that the X-ray radiation
has been absorbed by clouds with large column density (Maiolino et al., 2025).
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1.5.3 Overmassive Black Holes

There have been many empirical relationships established between a black hole
mass MBH and its host galaxy properties e.g. galaxy bulge luminosity, velocity
dispersion of stars nearest to the black hole and galaxy stellar mass. Locally
(z ∼ 0) these relationships can be expressed as power laws. Kormendy & Ho
(2013) describe the relationships between MBH and near-infrared bulge luminosity
LK, bulge and between MBH and velocity dispersion σe (inside the effective radius
that encompasses half the light of the bulge) as:

MBH

109 M⊙
= (0.542+0.069

−0.061)

(
LK, bulge

1011 LK,⊙

)1.21±0.09

,

MBH

109 M⊙
= (0.309+0.037

−0.033)

(
σe

200 km/s

)4.38±0.29

.

(1.23)

Figure 1.10 shows how MBH positively correlates with K-band bulge luminosity
LK, bulge (left panel) and velocity dispersion σe (right panel) with red dots referring
to classical bulges and the black dots referring to elliptical galaxies. The empirical
fits described in Eq. 1.23 are based on a symmetric, least-squares fit by Tremaine
et al. (2002).

Figure 1.10: Black hole mass vs. K-band bulge luminosity (left panel) and velocity
dispersion (right panel) with 1σ range of the fits (grey shading), taken from Figure
17 of Kormendy & Ho (2013).

Reines & Volonteri (2015) provide an empirical fit for MBH and Mstellar in
Figure 1.11. The colour of a marker indicates its galaxy morphology: E referring
to ellipticals (brown), S0 referring to lenticulars (yellow) and Sab and Scd referring
to types of spiral galaxies (dark green and light green respectively) (Carroll &
Ostlie, 2017). The red line indicates the fit using AGNs and the blue line indicates
the fit using classical bulges and elliptical galaxies that host dynamically-detected
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Figure 12. from RELATIONS BETWEEN CENTRAL BLACK HOLE MASS AND TOTAL GALAXY STELLAR MASS IN THE LOCAL UNIVERSE
null 2015 APJ 813 82 doi:10.1088/0004-637X/813/2/82
https://dx.doi.org/10.1088/0004-637X/813/2/82
© 2015. The American Astronomical Society. All rights reserved.

Figure 1.11: Black hole mass vs. stellar mass, taken from Figure 12 of Reines &
Volonteri (2015). The markers describe E (ellipticals) (brown), S0 (lenticulars)
(yellow), and spiral galaxies Sab (dark green) and Scd (light green). The stars
refer to AGN while the dots refer to dynamically-detected black holes. The
red line indicates the fit using AGNs and the blue line indicates the fit using
dynamically-detected black holes.

black holes. Both lines describe power laws of the form:

log10(MBH/M⊙) = α + β log10(Mstellar/10
11 M⊙), (1.24)

where α = 7.45±0.08, β = 1.05±0.11 (red line) and α = 8.95±0.09, β = 1.40±0.21

(blue line).
These correlations suggest that black holes and their host galaxies co-evolve

and regulate the growth of one another. This co-evolution is thought to be
influenced by (1) the black hole feeding from the host galaxy, (2) galaxy (and
black hole) mergers growing both the black hole and its host galaxy and (3) black
hole feedback inhibiting star formation by preventing gas fragmentation.

However, recently it has been shown using JWST galaxies that this relatively
simple empirical relationship does not hold at higher redshifts. Pacucci et al.
(2023) showed that JWST black holes at z = 4 − 7 can be 10-100 times larger
than their local counterparts for a given host galaxy mass. Figure 1.12 illustrates
how these JWST galaxies deviate from the local relationship derived by Reines
& Volonteri (2015). The blue markers refer to the sample of 8 galaxies found
by Harikane et al. (2023); the green markers refer to the 12 galaxies found by
Maiolino et al. (2024); the purple marker refers to the single galaxy found by
Übler et al. (2023). The error bars refer to 1σ uncertainty in mass measurement.
The blue line refers to the local relationship from Reines & Volonteri (2015) using
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Figure 1.12: Black hole mass vs. host galaxy stellar mass, taken from Figure 2
(left) of Pacucci et al. (2023). The blue line refers to the local relationship from
Reines & Volonteri (2015) using a sample of AGNs. The red line refers to the
high-z fit from Pacucci et al. (2023). The dark and light shading refers to 1σ
uncertainty and a root-mean-square deviation respectively. The green horizontal
dashed line refers to the minimum black hole mass that could be detected by
JWST at z ∼ 5.5 (the median redshift of the sample).

a sample of AGNs (see red line from Figure 1.11). The red line refers to a high-z
fit described as:

log10(MBH/M⊙) = α + β log10(Mstellar/M⊙), (1.25)

where α = −2.43± 0.83, β = 1.06± 0.09.
This suggests that at high-z, the black hole grows faster than the host galaxy. It

is important to note that these relationships are empirical and need not necessarily
hold at high redshift. The complex physical processes that dictate both black hole
and galaxy growth are less well understood at high redshift. Nonetheless, if these
black hole mass measurements are accurate, we must ask once again: how did
the black holes grow to this magnitude in less than 1 Gyr? This high-z relation
suggests that this growth is not strongly dependent on the growth of the host
galaxy.

1.5.4 Black Hole Seeding

Here we describe some potential seeding mechanisms for these SMBHs. First, we
define the black hole mass spectrum as understood at time of writing. A star at
the end of its life may become a white dwarf, neutron star or a stellar black hole
(MBH ∼ 101 − 102 M⊙). The final state depends on the final mass of the star. The
progenitor stellar mass range required to form a neutron star is approximately
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M∗ = 10− 25M⊙. The exact mass cut-off separating the most massive neutron
stars from the least massive stellar black holes is still to be determined but is
thought to be ∼ 2M⊙ (Rezzolla et al., 2018). Stellar black holes have been
detected by LIGO, Virgo and KAGRA when two such black holes merge and send
out a gravitational wave (Abbott et al., 2023). At the upper end of the mass
spectrum, SMBH masses are typically defined as MBH ≳ 106 M⊙ and these black
holes, as previously described, are found at the centres of galaxies. As stated in
§1.4, these black holes power quasars and many at z ≳ 6 have been discovered
using both ground-based and space-based telescopes. Finally in the middle of
the mass spectrum, intermediate-mass black holes (IMBHs) are theorised to have
MBH ∼ 103 − 105 M⊙. They are a population that still remains elusive but several
candidates have been proposed from SDSS Data Release 7 (Chilingarian et al.,
2018).

Stellar black holes in the early Universe act as a potential seed for SMBHs,
known as light seeds (MBH ∼ 101 − 103 M⊙). Since SMBHs have been found
when the Universe was less than 1 Gyr old, these light seeds must be even older.
They would originate from the first generation of stars (z ∼ 20 − 30), known
as Population III (Pop III) stars. Pop III stars are theorised to be completely
metal-free. When these first generations of stars end their lives as supernovae
and create metals through nuclear fusion, the next generations of stars become
metal-poor (Pop II) and even later metal-rich (Pop I) (Klessen & Glover, 2023).

One of the main issues with considering light seeds is that given their low
initial mass, they would need to grow to ∼ 104 times their mass in just a few
hundred Myr. This intense growth would require very high rates of accretion,
known as super-Eddington accretion. The Eddington luminosity refers to the
maximum luminosity a spherically symmetric body of mass M can have while
remaining in hydrostatic equilibrium i.e. the forces due to radiation pressure and
gravity are equal and opposite:

LEd =
4πGmpc

σT
M, (1.26)

where σT is the Thomson cross section and we assume that the accreted matter
largely consists of ionised hydrogen (Carroll & Ostlie, 2017; Fan et al., 2023). We
can use Eq. 1.26 to derive an Eddington accretion rate as:

LEd = ϵradṀEdc
2,

ṀEd =
LEd

ϵradc2
,

ṀEd =
4πGmp

ϵradσTc
M,

ṀEd ≈ (2.218× 10−8 yr−1)M,

(1.27)
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where ϵrad is the radiative efficiency and is typically set ϵrad = 0.1. Thus a light
seed with an initial mass of M = 102 M⊙ would only initially accrete mass at
an Eddington-limited rate of 2.218× 10−6 M⊙ yr−1 which is insufficient given the
time scale and final mass required. Super-Eddington accretion may be achieved
in gas-rich environments and is unlikely to be sustained for several hundred Myr
but rather in episodic bursts (Mehta et al., 2024; Trinca et al., 2024; Hu et al.,
2025). An increase to super-Eddington luminosity could also lead to mass loss,
driven by radiation feedback.

IMBHs can act as heavy seeds and are an appealing alternative origin for
SMBHs as they do not require super-Eddington accretion to reach 106 M⊙ in the
required time (Li et al., 2021). These black holes may form as the end state of
a supermassive star (SMS). Such a star could form in particular circumstances
where the temperature of the gas is kept high (T ∼ 104 K) to reduce fragmentation
and minimise typical star formation. This may be achieved by minimising cooling
of the gas by (1) Lyman-Werner radiation dissociating H2 that acts as a coolant
(Dijkstra et al., 2014), (2) relative streaming velocities between baryons and dark
matter particles which require deeper potential wells (i.e. larger halo masses)
before baryonic collapse (thus delaying star formation) (Tseliakhovich & Hirata,
2010; Hirano et al., 2017) and (3) rapid assembly through major and minor halo
mergers which heats the gas within the halos (Yoshida et al., 2003). While IMBHs
have a head start in their initial mass, their drawback as a SMBH seed is in their
potential rarity (Regan & Volonteri, 2024). In order to form these heavy seeds,
extreme conditions as described above must be met to minimise gas cooling within
a halo. The main questions with heavy seeds thus are (1) what is their number
density and (2) is this number density sufficient to explain the number density of
SMBHs currently known? Our attempts to answer these questions are detailed in
§3.

1.6 Computational Cosmology

In the final section of this Chapter, we describe some of the numerical tools that
we use to investigate the high-redshift Universe: Press-Schechter formalism, its
semi-analytic generalisations, the cosmological simulation codes Enzo and SWIFT,
and the Python packages hmf, halomod and yt. We use Enzo and SWIFT to run
dark matter-only simulations and analyse the output using yt in §2, we use
halomod to create halo-halo correlation functions in §3 and we use all other tools
listed above in both §2 and §3. These tools are invaluable for testing physical
theories against recent observations by JWST.
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1.6.1 Press-Schechter Theory

Press-Schechter formalism (PS) is an analytic model that describes how the
comoving number density of dark matter halos varies with redshift z and halo
mass M (Press & Schechter, 1974). As described in §1.3.1, we consider a virialised
halo to be spherically symmetric with a mass M contained within a sphere of
average density ∆c(z)ρc(z) (see Eq. 1.13). A halo centred at comoving coordinate
x⃗ and redshift z can be associated with some peak in the matter density field
ρm(x⃗, z) (Bardeen et al., 1986). This can be expressed as an overdensity compared
to the mean matter density ρ̄m(z) = Ωm(z)ρc(z):

δ(x⃗, z) =
ρm(x⃗, z)

ρ̄m(z)
− 1. (1.28)

The space and time dependence of this overdensity field can be separated as:

δ(x⃗, z) = D(a(z))δ(x⃗),

δ(x⃗) =
δ(x⃗, z)

D(a(z))
,

(1.29)

where δ(x⃗) is the space-dependent overdensity field and D(a) is the linear growth
factor given as:

D(a) =
5Ωm,0

2

H(a)

H0

∫ a

0

da′

[a′H(a′)/H0]
3 ,

a =
1

1 + z
.

(1.30)

The linear growth factor can be normalised to some reference z = z0 such that
D(a(z0)) = 1. A region centred at x⃗ will collapse to produce a dark matter
halo by redshift z if δ(x⃗) > δc/D(a(z)) where δc ≈ 1.686 is known as the critical
overdensity (Binney & Tremaine, 2008).

The variance of this overdensity field can be computed as:

σ2 = ⟨δ2⟩ = 1

V

∫
δ(x⃗)2d3x⃗ =

1

(2π)3

∫
P (k⃗)d3k⃗ =

1

2π2

∫ ∞

0

k2 P (k) dk, (1.31)

where V is the volume of the Universe and P (k) is the spherically symmetric
power spectrum. We define a smoothed overdensity field δR = δ(x⃗;R) that is
associated with a region of size R using a filter function W (x⃗;R) (with dimensions
of volume−1):

δ(x⃗;R) =

∫
δ(x⃗′)W (x⃗− x⃗′;R) d3x⃗′,∫

W (x⃗− x⃗′;R) d3x⃗′ = 1.

(1.32)
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We use the Top Hat filter given in coordinate space as:

W (r;R) =


3

4πR3 if r ≤ R,

0 if r > R,

(1.33)

and in k-space as:

W̃ (kR) =
3

(kR)3
[sin(kR)− (kR) cos(kR)] . (1.34)

We can define a new variance σR associated with this region as:

σ2(R) =
1

2π2

∫ ∞

0

k2 P (k) W̃ 2(kR) dk, (1.35)

as seen previously in §1.2 in Eq. 1.12. The corresponding mass M associated
with this overdensity is M = 4πρ̄m,0R

3/3 (van den Bosch et al., 2013). We can
describe this filter using its radius R or mass M . Thus we can set the smoothed
overdensity and variance as δM = δR and σM = σR respectively. We can show
that σM is the mass variance by considering a region of mass M(x⃗;R) centred at
x⃗ and contained within a volume VR associated with a filter of size R:

M(x⃗;R) = VR

∫
ρm(x⃗

′)W (x⃗− x⃗′;R) d3x⃗′. (1.36)

The density ρm(x⃗
′) can be related to the overdensity field δ(x⃗′) as:

δ(x⃗′) =
ρm(x⃗

′)

ρ̄m,0
− 1,

ρm(x⃗
′) = ρ̄m,0(1 + δ(x⃗′)).

(1.37)

By substituting Eq. 1.37 into Eq. 1.36 and noting that M̄ = VRρ̄m,0, we find:

δ(x⃗;R) =
M(x⃗;R)− M̄

M̄
. (1.38)

Finally we can compute the smoothed variance associated with this filter and see
that it is equal to the mass variance:

σ2(R) = ⟨δ2(x⃗;R)⟩,

σ2(R) =

〈(
M(x⃗;R)− M̄

M̄

)2
〉
,

σ2(R) = σ2
M .

(1.39)

In Press-Schechter formalism, the overdensity δM is a Gaussian random field
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such that the probability that the overdensity exceeds the critical overdensity δc

is:
P(δM > δc) =

1√
2πσM

∫ ∞

δc

exp
[
− δ2M

2σ2
M

]
dδM . (1.40)

An issue with associating a given halo with a unique overdensity peak is the
cloud-in-cloud problem: the ambiguity of whether a mass element belongs to a
halo of mass M1 or M2 if it is associated with both peaks δM1 and δM2 . So rather
than associate a halo with a unique density peak, this probability is equal to the
fraction of the total mass of the Universe at a given redshift z that is contained
within halos of mass greater than M . So what is the fraction of the total mass of
the Universe at any redshift contained within halos of mass greater than M = 0

i.e. halos of any mass? Using Eq. 1.40 and setting M → 0 and σM → ∞, we find
that P → 1/2 i.e. seemingly only half of the mass in the Universe is contained
within halos. This was somewhat controversially resolved by Press & Schechter
with the introduction of a so-called "fudge factor" of 2.

This reasoning is what allows us to compute the halo mass function i.e. the
number of halos per comoving volume at redshift z with masses in the range
[M,M + dM ]:

dnPS(z,M)

dM
dM =

√
2

π

ρ̄m,0

M2

δc

σM

exp
[
− δ2c

2σ2
M

] ∣∣∣∣∣dlnσM

dlnM

∣∣∣∣∣ dM, (1.41)

where we include the z-dependence in σM through the power spectrum P (z, k).
The Press-Schechter halo mass function has been used to estimate the number
density of dark matter halos, galaxies and SMBHs as a function of redshift z

and halo mass M . A drawback is its tendency to overpredict the number density
of halos at the low-mass end and underpredict the number density of halos at
the high-mass end when compared to simulations of the local Universe (Springel
et al., 2005). This discrepancy worsens at higher redshift. Another issue is the
spherical collapse of halos being too simplistic. It has nonetheless been incredibly
influential and its formalism has been the basis for many other descriptions of
halo abundancy.

1.6.2 Generalisations of the Halo Mass Function

Since its original publication in 1974, there have been many generalisations of
Press-Schechter formalism that aim to bridge the gap between theory, simulation
results and observations. Eq. 1.41 can be generalised as:

dn(z,M)

dM
dM =

ρ̄m,0

M2
f(σM)

∣∣∣∣∣dlnσM

dlnM

∣∣∣∣∣ dM, (1.42)
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where f(σM) is some function of the mass variance and

fPS(σM) =

√
2

π

δc

σM

exp

(
− δ2c
2σ2

M

)
. (1.43)

By considering the Zel’dovich approximation (Zel’dovich, 1970) (the velocity of a
particle is the same direction as its initial displacement) in the linear regime, we
find that prospective halos would collapse in an ellipsoidal manner rather than
spherical. Sheth et al. (2001) (SMT) assume that the critical overdensity for
ellipsoidal collapse δec depends on the mass variance σM and halo mass M , in
contrast to spherical collapse in Press-Schechter formalism where δsc = δc is a
constant:

δec

δsc
≈ 1 + β

[
5(e2 ± p2)

δ2ec
δ2sc

]γ

, (1.44)

where β = 0.47, γ = 0.615, and the initial displacement field is described by the
ellipicity e and the prolateness p. SMT found that when considering Gaussian
fluctuations, e = (σM/δec)/

√
5 and p = 0 were the most probable values which

leads to:
δec

δsc
≈ 1 + β

[
σ2
M

δ2sc

]γ

. (1.45)

The SMT halo mass function fSMT(σM) cannot be determined analytically due
to this varying critical overdensity. It has been determined using Monte Carlo
simulations as:

fSMT(σM) = A

√
2a

π

[
1 +

(
σ2
M

aδ2c

)p]
δc

σM

exp

(
− aδ2c
2σ2

M

)
,

fSMT(σM) = A

[
1 +

(
σ2
M

aδ2c

)p]
fPS

(
σM√
a

)
,

(1.46)

where A = 0.3222, a = 0.707 and p = 0.3. The SMT halo mass function is a
better match than PS against N-body simulations especially in the local Universe
(Springel et al., 2005) but overpredicts the number of halos by a factor of 10
compared to simulation results at z > 10 (Klypin et al., 2011). Many other
generalisations exist that are derived from simulation results such as Reed07
(Reed et al., 2007), WatsonS0 and WatsonFoF (Watson et al., 2013) (see Table 1
of Murray et al. (2013) to see a summary of fitting functions f(σM ).) We compare
each of these against simulation results in §2.

1.6.3 Enzo

The Enzo simulation code is an N-body cosmological hydrodynamics code capable
of probing physics of the high-redshift Universe. It was first developed in the
1990s and 2000s (Bryan & Norman, 1997b,a; Norman & Bryan, 1999; O’Shea
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et al., 2004; Norman et al., 2007), its 2.3 version was released in 2014 with its
method paper (Bryan et al., 2014) and we use its 2.6 version released in 2019
(Brummel-Smith et al., 2019). Enzo has been used to investigate galaxy formation
(Kim et al., 2014), the circumgalactic medium (Peeples et al., 2019) and Pop III
star formation (Kulkarni et al., 2021).

Enzo is an adaptive mesh refinement (AMR) code which allows certain regions
of the simulation volume (e.g. dark matter halos) to be highly resolved in a
computationally effective way. The structure is a hierarchy of parent and child
grids and the workload at a given level is distributed evenly across all processors.
The child grids are better resolved than their parent grid by a factor of 2. A grid
is a real grid on a given processor if its data is allocated to that processor. If the
data is allocated on a different processor, then this grid is known as a ghost grid.
Within a real grid, real zones store data field values (e.g. particle positions and
velocities) and ghost zones temporarily store values from neighbouring and parent
grids in order to update the real grids (see Figure 1.13).

Figure 1.13: Sample 2D hierarchy of parent and child grids, taken from Figure 1
of Bryan et al. (2014). A given grid is real on only one processor and is a ghost
grid on all others. A child grid must have only one parent grid but parent grids
can have multiple child grids. Refinement increases as the level increases, top to
bottom in the left panel.

We use Enzo for dark matter-only simulation runs in §2 such that the particles
are only influenced by gravity. At each time step at the root grid, the Poisson
equation is finite-differenced and solved using Fast Fourier Transforms:

∇2Φ⃗(x⃗) = 4πGρ(x⃗), (1.47)

where Φ⃗ is the gravitational potential. The boundary conditions on the child grids
are interpolated from the parent grid and the Poisson equation is then solved one
child grid at a time. The particle positions and velocities are then updated at
each time step, see Figure 1.14 to see the order of operations in a sample grid
structure.
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Figure 1.14: Order of operations in a sample grid structure, taken from Figure 2
of Bryan et al. (2014).

1.6.4 SWIFT

The SPH With Inter-dependent Fine-grained Tasking (SWIFT) simulation code
is another cosmological hydrodynamics code suited for probing the high-redshift
Universe and differs from Enzo in both its structure and its gravity solver (Schaller
et al., 2018, 2024). It has been used to simulate star formation in disk galaxies
(Nobels et al., 2024), jets from AGNs (Huško & Lacey, 2023) and high-redshift
galaxy clustering (Pizzati et al., 2024).

SWIFT is a tree-based particle-mesh code with a smoothed particle hydrody-
namics (SPH) solver. SPH is a computational method for solving the equations
of hydrodynamics within a simulation volume by computing the density at a
point using a weighted sum of nearest neighbouring particles, naturally forming
neighbourhoods of varying volumes (Price, 2012). This neighbourhood structure
leads to the formation of a Cartesian cell grid where the cell width is comparable
to the particle-neighbour search radius. While hydrodynamics are not relevant for
our simulations since they are dark matter-only, SWIFT uses this created structure
to solve Poisson’s equation. These cells can be viewed as a set of tree nodes
and leaves and we consider interactions between particles within the same cell,
particles of neighbouring cells and particles of distant cells (see Figure 1.15).

Figure 1.15: The Fast Multipole Method tree-walk for a sample cell (red) shown in
2D, taken from Figure 13 of Schaller et al. (2024). Within the red cell, we consider
interactions between pairs of particles. The gravity kernels (P2M, M2L, L2P) are
computed for each of the green-red cell pairs. The M2L kernel is computed for
the total contribution of blue cells interacting with the red cell.
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The gravitational potential ϕ experienced by particle a at point x⃗a due to
every other particle in the simulation volume is given as:

ϕ(x⃗a) =
∑
b ̸=a

Gmbφ(x⃗a − x⃗b), (1.48)

where φ refers to a potential corresponding to the density distribution. The Fast
Multipole Method (FMM) is an approximation for computing this gravitational
potential (Cheng et al., 1999). Computationally, this involves evaluating three
different summations (or kernels): particle-to-multipole (P2M), multipole-to-local-
expansion (M2L) and local-expansion-to-particle (L2P). This results in groups of
particles with a sufficiently large separation (distant cells) being treated as point
masses rather than as individual particles.

1.6.5 Python Packages

We use many specialised Python packages in our analysis pipelines. hmf and
halomod allow one to make use of built-in analytic and semi-analytic halo mass
functions, correlation functions and more while varying cosmological and numerical
parameters (Murray et al., 2013; Murray et al., 2021). Many of the cosmological
functions are derived using built-in astropy functions (Astropy Collaboration
et al., 2013, 2018, 2022).

We use yt and yt-astro-analysis (Turk et al., 2011; Smith et al., 2022) to
process output from our Enzo and SWIFT simulations and build halo catalogues.
For SWIFT, we use the specialised version yt-swift that can read this output
format (Rennehan, 2022).

We also filter out the noise of our data using a Savitzky-Golay filter (Savitzky
& Golay, 1964) in Python. The degree of filtering is determined by two parameters:
the window length w and the polynomial order p. The window length w refers
to the number of consecutive points from a dataset which are selected at a time.
These points are fitted to a polynomial of order p. We use this filter to create fits
illustrating what trends the raw data clearly describe without distorting them.
We can achieve this by maximimising the number of non-zero data points. We do
this by optimising the number of histogram bins used when binning data by halo
mass M (see §2.3) or redshift z (see §3.3).
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Chapter 2

Halo Mass Functions at High
Redshift

2.1 Introduction

Since its launch in December 2021 and its subsequent data releases in the months
since, JWST has both reshaped and challenged our understanding of galaxy
formation in the very early Universe (z ≳ 10). In particular, JWST has discovered
a number of very massive and very luminous galaxies at redshifts in excess of
z = 10 which, after initial photometric detection, have now been spectroscopically
confirmed (Harikane et al., 2024; Arrabal Haro et al., 2023; Castellano et al.,
2024; Hainline et al., 2024; Gentile et al., 2024). These galaxies, both in terms of
their intrinsic luminosity and their potential host halo masses, provide a signifi-
cant challenge to our understanding of structure formation in the early Universe.
Boylan-Kolchin (2023), using an analytic model applied to the inferred JWST
stellar masses of a number of high-redshift sources from Labbé et al. (2023), found
that the stellar masses implied by the sources required star formation efficiencies,
ϵ∗, significantly in excess of those from the present-day Universe and perhaps
as implausibly high as ϵ∗ = 1. The model employed by Boylan-Kolchin (2023)
hinges on a number of simple yet strong assumptions. These assumptions use the
inferred stellar host mass to derive a host halo mass based on the ratios between
the cosmic baryon density and the cosmic matter density and the star formation
efficiency. These simple arguments culminate in a calculation of the probability of
finding such (luminous) galaxies at early times in a ΛCDM universe.

Boylan-Kolchin (2023) conclude that the most massive JWST galaxies de-
tected are both at the very limit of galaxy formation theory and that their number
densities are difficult to equate with the JWST field of view. They conclude
that these issues indicate that there are several unresolved issues in our theories.
However, underneath the model employed by Boylan-Kolchin (2023) are a number
of astrophysical assumptions which are used when converting the broadband
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spectral energy distribution to a host stellar mass. This conversion is open to large
uncertainties - particularly since our knowledge of how to do this conversion comes
from the local Universe. There is no guarantee that these conversion relations
can be directly mapped to the high-z Universe and in fact most analysis shows
that it is almost certainly not the case (e.g. Kannan et al., 2023; Lu et al., 2025).
For example, recent analysis by Steinhardt et al. (2023) show that modifying
the host population IMF of the inferred stellar population results in a decrease
in the stellar mass by factors of between 10 and 50. Such decreases in the host
stellar mass have a direct knock-on effect to the inferred host halo mass and can
significantly decrease the tension with ΛCDM models.

Adding to this important point is that Boylan-Kolchin (2023) (as well as many
other studies) utilise the well-tested and parameterised halo mass function (HMF)
derived by Sheth & Tormen (1999) in order to compute their galaxy number
densities and cumulative comoving number density of galaxies. An important
consideration therefore is to test, using explicit N-body calculations, how accurate
the underlying HMF is at high-z (i.e. at z ≳ 10), compared to direct N-body
calculations, and what error may be associated with this model. This is the goal
of this study.

While preparing this Chapter, a study by Yung et al. (2024b) performed a
similar investigation. Using a high-fidelity suite of N-body simulations across a
broad range of box sizes and redshifts, Yung et al. (2024b) were able to show
that HMFs derived from fitting functions and analytical approximations match
extremely well to their N-body simulations. Yung et al. (2024b) found that even
up to z = 15 the match between their N-body simulations and the fitting functions
is no more than approximately a factor of two across a range of fitting functions.
As discussed above, providing robust quantification of the match between fitting
functions and direct N-body calculations at high-z is extremely timely given the
recent JWST results.

This is particularly relevant when trying to understand the probability of
finding such luminous and massive galaxies within a JWST field of view. Thus
far several studies have tested the first results from JWST against state-of-the-art
hydrodynamical simulations and the results agree within a factor of a few (e.g.
Keller et al., 2023; McCaffrey et al., 2023; Sun et al., 2023; Rennehan, 2024). It is
therefore timely to quantify potential sources of systematic error when comparing
observations and models.

Here we perform a similar analysis to Yung et al. (2024b), with the difference
being that we compare (semi-)analytical halo mass functions against two funda-
mentally different numerical codes - Enzo (Bryan et al., 2014; Brummel-Smith
et al., 2019) and SWIFT (Schaller et al., 2018, 2024). While Yung et al. (2024b)
used the publicly available GADGET2 code (Springel (2005)), which is a TreePM

32



code with a similar gravitational solver to SWIFT, we also use the Particle-Mesh
based Enzo code which gives an additional layer of comparison. Our analysis
confirms the results of Yung et al. (2024b) and we generally observe a factor of
approximately two difference between the HMFs generated by the N-body codes
and the SMT and WatsonFoF fitting functions.

The structure of the Chapter is as follows: In §2.2 we outline the methodology
including the simulations and fitting functions employed. In §2.3 we deliver the
results of our analysis and in §2.4 we summarize and discuss our results in light
of recent JWST observations.

2.2 Methodology

2.2.1 Numerical Simulations

We run a series of dark matter-only simulations using Enzo and SWIFT of varying
resolutions, achieved by varying both the box size and particle number. The box
size varies from L = 0.5 cMpc/h to 100.0 cMpc/h and the particle number varies
from NDM = 5123 to 10243. Details of the simulation boxes are summarised in
Tables 2.1 and 2.2.

L [cMpc/h] N
1/3
DM MDM [M⊙/h]

0.5 512 6.69 × 101

1.5 512 1.81 × 103

2.5 512 8.37 × 103

7.5 1024 2.83 × 104

7.5 512 2.26 × 105

12.5 1024 1.31 × 105

12.5 512 1.05 × 106

25.0 1024 1.05 × 106

25.0 512 8.37 × 106

50.0 1024 8.37 × 106

50.0 512 6.70 × 107

100.0 1024 6.70 × 107

100.0 512 5.36 × 108

Table 2.1: Mass resolutions of each simulation box. All simulations but the
L = 7.5 cMpc/h, N1/3

DM = 1024 box are run using both Enzo and SWIFT; this box
is run using SWIFT only.

Our simulations begin at z = 127.0 with initial conditions set using MUSIC (Hahn
& Abel (2011)) and end at z = 10.0. We use a ΛCDM cosmology with h = 0.6774,
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L [cMpc/h] N
1/3
DM ∆xEnzo [cpc/h] ∆xSWIFT [cpc/h]

0.5 512 7.63 × 100 3.91 × 101

1.5 512 2.29 × 101 1.17 × 102

2.5 512 3.82 × 101 1.95 × 102

7.5 1024 - 2.93 × 102

7.5 512 1.14 × 102 5.86 × 102

12.5 1024 9.54 × 101 4.88 × 102

12.5 512 1.91 × 102 9.77 × 102

25.0 1024 1.91 × 102 9.77 × 102

25.0 512 3.82 × 102 1.95 × 103

50.0 1024 3.82 × 102 1.95 × 103

50.0 512 7.63 × 102 3.91 × 103

100.0 1024 7.63 × 102 3.91 × 103

100.0 512 1.53 × 103 7.81 × 103

Table 2.2: Highest space resolutions of each simulation box. All simulations but
the L = 7.5 cMpc/h, N1/3

DM = 1024 box are run using both Enzo and SWIFT; this
box is run using SWIFT only.

Ωm,0 = 0.2592, ΩΛ,0 = 0.7408, σ8 = 0.8159, ns = 0.9667 and the Eisenstein & Hu
(1998) transfer function for no baryon acoustic oscillations. The two codes we use,
Enzo and SWIFT, are both well-tested and have been used extensively within the
community. Additionally, both codes use somewhat different strategies for solving
the Poisson equation which allows for additional comparison between the various
semi-analytic fits against numerical solutions. We now describe our application of
both codes but refer the interested reader to the code method papers for more
details.

Enzo is a grid-based N-body code with the capability for adaptive mesh
refinement (AMR), widely used in cosmological hydrodynamics simulations. The
AMR allows for improved resolution in areas of interest (e.g. collapsing structures)
without greatly increasing computational cost and without needing prior knowledge
of the volume to pre-select areas for increased refinement. The gravity solver works
by implementing a Fast Fourier Transform (FFT) technique to solve Poisson’s
equation at the root grid of each timestep of the simulation. The boundary
conditions on the subgrids are then interpolated from the parent grid and the
Poisson equation is solved at each time step, one subgrid at a time. For a Unigrid
Enzo simulation (i.e. no refinement), the minimum inter-particle separation in
which gravity acts is twice the length of a cell, given as:

∆xUnigrid = 2
L

N
1/3
DM

. (2.1)
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When running Enzo simulations, we used a maximum refinement level of 8, meaning
that the resolution was increased by a factor 28 in regions of high particle density.
This means the highest resolution is given as:

∆xEnzo =
1

28
∆xUnigrid =

1

27
L

N
1/3
DM

. (2.2)

For the dark matter-only simulations carried out here, refinement is triggered
once the particle over-density reaches a factor of 4 greater than the mean density
(i.e. MinimumOverDensityForRefinement = 4). In addition to this we set the
MinimumMassForRefinementLevelExponent = -0.1 which makes the refinement
scheme super-Lagrangian and allows for the higher levels of refinement to be more
easily triggered (see e.g. O’Shea et al., 2005).

SPH With Inter-dependent Fine-grained Tasking - SWIFT - combines a tree-
based N-body solver with a smoothed particle hydrodynamics (SPH) solver. In
this study, we use the adaptive mode of the Fast Multipole Method (FMM)
(Cheng et al. (1999)). This implements a Taylor expansion twice to resolve the
gravitational potential (and later the forces) between particles in different cells. We
set the accuracy criterion ϵFMM = 0.001. SWIFT takes advantage of the hierarchical
tree structure to efficiently solve for the gravitational forces between particles.
Particles from nearest neighbour cells are treated as individuals. A group of
particles from distant cells are approximated as one particle with the total mass
of the group located at the centre of mass. Long-range forces are resolved using a
Fast Fourier Transform algorithm (Frigo & Johnson (2005)).

It is a non-trivial matter comparing Enzo and SWIFT due to the difference in
the gravity solvers. Also the highest spatial resolution for an Enzo simulation,
∆xEnzo, applies only to regions of high particle density while the softening length
for a SWIFT simulation, ∆xSWIFT, applies to the entire simulation volume. We
compromise by setting the softening length to an intermediate value, between
∆xUnigrid and ∆xEnzo:

∆xSWIFT =
1

52
L

N
1/3
DM

. (2.3)

This softening length provides an upper bound when computing the gravitational
forces between two nearby particles. Since the force Fg is an inverse square law,
as the separation between two particles r → 0, the force Fg → ∞:

Fg =
Gm1m2

r2
. (2.4)

This force is modified with the softening length as such:

F ′
g =

Gm1m2

(r +∆xSWIFT)2
. (2.5)
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Finally, the initial conditions files for both simulation codes must be in .hdf5
format. The SWIFT initial conditions files are in binary format and can be converted
to .hdf5 format using a Python script written by Bakels (2018).

2.2.2 Numerical Halo Finders

As discussed in §2.1, the goal of this study is to determine the differences between
(semi-)analytic HMFs and those derived from direct N-body simulations. In order
to determine the HMF from the cosmological simulations we must employ a halo
finder and decide on the redshifts at which to evaluate the HMFs.

We analyse the simulation snapshots from our full suite of outputs at z = 20.0,
z = 15.0 and z = 10.0 using both a friends-of-friends (FOF) (Efstathiou et al.
(1985)) and HOP (Eisenstein & Hut (1998)) halo finder (results from the HOP
finder can be found in §2.5 as the results are very similar between FOF and HOP
and the goal of this study is not to compare halo finders). The FOF halo finder
accounts for the distances between dark matter particles within a single snapshot.
We use a linking length ∆x(b) = b × L/N

1/3
DM, where L/N

1/3
DM is the mean inter-

particle separation. This refers to the maximum permitted separation between
two particles. A group i.e. halo is found from a set of inter-linked particles.

Our halos are approximated as spheres and ideally, we choose b such that
each halo encompasses a volume with an overdensity ∆c ≈ 18π2 i.e. 178 times
the critical density ρc(z) (Bryan & Norman (1998)). The Python package hmf

(Murray et al., 2013) provides an approximation relating ∆c and b:

∆c(z) =
9

2πb3
Ωm(z). (2.6)

As z → ∞, Ωm(z) → 1 in our cosmology. Therefore, b = 0.2 results in a predicted
overdensity of ∆c ≈ 178 and this is the value we choose for our FOF algorithm.

The HOP halo finder accounts for the distances between particles as well as
the computed density of each particle. Rather than creating a continuous density
field in the simulation volume, the density of each particle at its given position
is estimated using a spherically symmetric cubic spline kernel (Monaghan &
Lattanzio (1985)) on its Ndens = 64 nearest neighbours. The density is normalised
to the average density of particles within the simulation box e.g. a particle with a
computed density of δ = 80 refers to a position 80 times denser than the average
i.e. an overdensity (Skory et al. (2010)). A link is made by hopping from a
given particle to the densest of its Nhop = 64 neighbours. This process continues,
forming a chain of increasing particle density until we reach a particle that is its
own densest neighbour. All chains sharing the same densest particle are part of
the same group. If the maximum particle density within a group is above a set
threshold overdensity δpeak, that group is defined as a halo. We use a threshold
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overdensity of δpeak = 100. This value was chosen to calibrate the HOP finder
with the FOF finder so both halo finders found a similar halo number and mass
range for the Enzo, L = 0.5 cMpc/h, NDM = 5123, z = 10 snapshot.

The halo masses found from these halo catalogues are the FOF and HOP
masses i.e. the mass of the halo is defined as the sum of the masses of the particles
that make up the halos. After we create halo catalogues based on these halo
finders, we only include halos made up of at least NDM, min = 100 particles to
reduce numerical over-counting (i.e. halos must be well resolved (by at least 100
particles) before we identify them as halos).

We find that there is little difference between the number densities found using
FOF and HOP for a given simulation suite, with HOP underestimating the FOF
number densities by a factor of ≈ 2 at most (see Figure 2.1 for a comparison).
Given that the halo finder parameters were calibrated at z = 10.0, it is not
surprising that there is little mass variance in their number density ratio at this
redshift. In §2.3, we show the results for FOF only and leave those from HOP to
§2.5.
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Figure 2.1: Comparing the FOF and HOP halo number densities derived from
Enzo and SWIFT simulation data (with halo masses on a logarithmic scale). We
show how the ratio of the HOP number density to the FOF number density varies
with halo mass. The HOP number density is within a factor of 2 of its FOF
counterpart - particularly at the z = 10 outputs. Some larger deviations at higher
z are seen as expected.
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2.2.3 Numerical Halo Number Densities

A halo catalogue is created from each snapshot with a specific halo finder using the
yt1 and yt-astro-analysis packages (Turk et al. (2011), Smith et al. (2022)). An
array of halo mass values is generated from each halo catalogue, filtered to exclude
halos consisting of < NDM, min particles. For each array, the halo mass values are
binned on a logarithmic scale into 24 histogram bins with Mmin = 103.75 M⊙/h
and Mmax = 1011.75 M⊙/h. Halo catalogues from a given simulation suite, halo
finder and redshift, z, are combined, giving rise to 12 datasets (see Table 2.3 for
more detail). For each Enzo dataset, we combine halo catalogues based on 12
simulation boxes. For each SWIFT dataset, we combine halo catalogues based on
13 simulation boxes (see Tables 2.1 and 2.2 for more detail). In our algorithm
below, we index datasets with i ∈ {1, · · · , 12}, mass bins with j ∈ {1, · · · , 24},
Enzo simulation boxes with k ∈ {1, · · · , 12}, and SWIFT simulation boxes with
k ∈ {1, · · · , 13}.

Simulation Halo finder Snapshot Redshift (z)

Enzo

FOF
20.0

15.0

10.0

HOP
20.0

15.0

10.0

SWIFT

FOF
20.0

15.0

10.0

HOP
20.0

15.0

10.0

Table 2.3: The 12 datasets derived by combining halo catalogues for each simulation
suite, halo finder, and redshift combination.

For example, consider the i = 3 dataset (Enzo, FOF, z = 10.0). Say we wish
to find the number density nnum

halo, i=3(Mmid, j) of the jth bin centred at some mass
log10(Mmid, j/h−1 M⊙). We count the number of halos Nhalo, 3,j,k in this bin for
each simulation box ∀k = 1, · · · , 12 and this specific halo number density is given
as:

nnum
halo, 3,j,k(Mmid, j) =

Nhalo, 3,j,k

Vk

, (2.7)

1We use a version of yt called yt-swift developed by Rennehan (2022) as the most recently
available version of yt cannot load SWIFT output data.
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where Vk is the comoving volume of the kth simulation box. We find the halo
number density nnum

halo, 3(Mmid, j) by averaging over all non-zero number densities
across all 12 simulation boxes:

nnum
halo, 3(Mmid, j) =

1

S3,j

∑
k

nnum
halo, 3,j,k(Mmid, j), (2.8)

where S3,j is the number of halo catalogues that found a non-zero halo number
density for the jth bin in this dataset. We can generalise the above equation for
the ith dataset and jth bin as:

nnum
halo, i(Mmid, j) =

1

Sij

∑
k

nnum
halo, ijk(Mmid, j). (2.9)

2.2.4 (Semi-)Analytical Halo Mass Functions

We compare our numerical halo number densities with those derived from both
analytical forms and popular fits. The number density (units: h3 cMpc−3) of dark
matter halos at a given redshift, z, in a mass bin centred at log10(Mmid/h−1 M⊙)

with a width of ∆ log10M is defined as:

nfit
halo(z,Mmid) =

∫ Mb(Mmid)

Ma(Mmid)

dn

dM
(z,M) dM,

log10Ma(Mmid) = log10

(
Mmid

h−1 M⊙

)
− ∆ log10M

2
,

log10Mb(Mmid) = log10

(
Mmid

h−1 M⊙

)
+

∆ log10M

2
.

(2.10)

The halo mass function (units: h4 cMpc−3 M−1
⊙ ) is the differential halo number

density per unit mass and is defined as:

dn

dM
(z,M) =

ρ̄m,0

M2
f(σ(z,M))

∣∣∣d lnσ(z,M)

d lnM

∣∣∣. (2.11)

Here ρ̄m,0 (units: h2 M⊙ cMpc−3) and σ(z,M) refer to the mean density of the
Universe and mass variance respectively. The exact form of f(σ(z,M)) depends
on the choice of fitting function for the halo mass function.

The mass variance is given as:

σ2(z,M) =
1

2π2

∫ ∞

0

k2 P (z, k) W̃ 2(kR(M)) dk, (2.12)

where P (z, k) is the linear power spectrum and W̃ (kR) is a window function with
a filter defined by R = R(M). We use the Top Hat window function given as:

W̃ (kR) =
3

(kR)3
[sin(kR)− (kR) cos(kR)] , (2.13)
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W (r) =


3

4πR3 if r ≤ R

0 if r > R.

(2.14)

The linear power spectrum evolves with z as:

P (z, k) = d(a(z))2 P (z = 0, k), (2.15)

where a(z) = 1/(1 + z) and d(a) is the normalised linear growth factor (Lukić
et al. (2007)) given as:

d(a) =
D+(a)

D+(a = 1)
, (2.16)

D+(a) =
5Ωm,0

2

H(a)

H0

∫ a

0

da′

[a′H(a′)/H0]
3 . (2.17)

The exact form of P (z = 0, k) depends on the cosmology and the choice of
transfer function. Like with our simulations, we initialise the hmf objects with
the Eisenstein & Hu (1998) transfer function with no baryon acoustic oscillations.

Press-Schechter Theory

In Press & Schechter (1974) (PS), a spherical collapse model is assumed for dark
matter halos and the probability of reaching a threshold density field value follows
a Gaussian distribution. Thus the fitting function for PS is given as:

fPS(σ) =

√
2

π

δc

σ
exp

(
− δ2c

2σ2

)
, (2.18)

where δc ≈ 1.686 is the critical overdensity required for a region to spherically
collapse into a dark matter halo. A limitation of the PS fitting function is its
tendency to overestimate the number of lower-mass halos and underestimate the
number of higher-mass halos compared to N-body simulations (Lacey & Cole
(1994), Sheth & Tormen (1999)). Since this seminal paper, many other fitting
functions have been developed that aim to correct for this discrepancy as well as
attempting to add additional sophistication to the modelling. In this work, we
explore four other halo mass fitting functions in addition to PS.

Sheth, Mo & Tormen and Beyond

The Sheth et al. (2001) (SMT) halo mass function has a similar form to PS but
assumes ellipsoidal collapse and is given as:

fSMT(σ) = A

√
2a

π

[
1 +

(
σ2

aδ2c

)p]
δc

σ
exp

(
−aδ2c
2σ2

)
, (2.19)
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where A = 0.3222, a = 0.707 and p = 0.3. We also test fitting functions developed
by Reed et al. (2007) (Reed07) and Watson et al. (2013) (WatsonFoF refers to
a fit using the Friends-of-Friends halo finder, WatsonSO refers to a fit using the
Spherical Overdensity halo finder). The PS and SMT fits are widely-used and
based on an analytical formalism, with no restriction on redshift or halo mass
range. The Reed07, WatsonFoF and WatsonSO fits are based on simulation
results, all with a redshift range of z ∈ (0, 30) and no explicit restriction on halo
mass (see Table 2.4). While many other halo mass fitting functions exist, we
choose these fits as they were all calibrated across the redshift range of interest to
us (i.e. z > 10). Other fitting functions are typically calibrated for lower redshifts.

Fitting function z range Reference

PS No limit Press & Schechter (1974)

SMT No limit Sheth et al. (2001)

Reed2007 0 - 30 Reed et al. (2007)

WatsonFoF 0 - 30 Watson et al. (2013)

WatsonSO 0 - 30 Watson et al. (2013)

Table 2.4: The fitted halo mass functions we use to compare to HMFs derived
from numerical simulations.

We use the Python package hmf to compute halo number densities derived from
the HMFs described above.

2.3 Results

As previously stated, the goal of this work is to compare halo number densities
derived from simulation results with those derived from popular fits, and to test
how well the fits can predict JWST halo mass abundances compared to simulations
(e.g. Boylan-Kolchin, 2023).

In Figure 2.2, we compare the HMFs from Enzo and SWIFT data (dashed lines)
with the chosen fits (solid lines) for z = 20.0, z = 15.0 and z = 10.0 using the FOF
halo finder. The black rectangles indicate the high mass range depicted in more
detail in Figure 2.3. The range of halo masses selected in the black rectangles
is bounded by the approximate least massive halos which would host galaxies
that are detectable by JWST at these epochs up to the most massive halo masses
accessible by the numerical simulations at that redshift. This is only possible for
our outputs at z = 10.0 and z = 15.0 as galaxy (and indirectly halo) masses large
enough to be observed (except perhaps via extreme lensing) by JWST are simply
not formed by z = 20.0 in a ΛCDM universe. Hence, we focus our analysis on the
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z = 15.0 and z = 10.0 outputs in particular.
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Figure 2.2: Comparing the Enzo and SWIFT halo number densities with five halo
number densities derived from fits (see Table 2.4) at z = 20.0 (upper left panel),
z = 15.0 (upper right panel) and z = 10.0 (lower panel) using the FOF halo
finder (with halo masses and number densities on a logarithmic scale). The black
rectangles indicate the regions for more detailed analysis as seen in Figure 2.3.
The yellow shaded regions represent the approximate range of halo masses hosting
galaxies detected by JWST at z ≥ 10.0. Over the halo mass range selected at
z = 10.0, all but the PS fit agree with numerical results within a factor of 2.

Overlaid onto Figures 2.2 to 2.5 are yellow rectangles which act as a visual aid,
depicting an estimate for the range of halo masses that host recently-observed
JWST galaxies and galaxy candidates. We choose sources with 10.0 < z < 15.0
2 and with an estimate of M∗ or Mhalo available. These sources include GN-z11
(Scholtz et al., 2024), Maisie’s Galaxy (Arrabal Haro et al., 2023), GS-z14 (Helton
et al., 2025) and others (Chakraborty et al., 2024). If there exists no estimate of
Mhalo yet for a given source, we estimate it using the following equation:

Mhalo(z,M∗) =
Ωm(z)

Ωb(z)

M∗

ϵ∗
, (2.20)

where we set the star formation efficiency parameter ϵ∗ = 0.1. The width of the
yellow rectangle is determined by the minimum and maximum halo masses in our
sample and does not vary with redshift due to the small number of sources.

In Figures 2.4 and 2.5, we take the ratios of the semi-analytic halo number
densities against the Enzo and SWIFT outputs respectively to quantify the overall
disagreements at z = 10.0 and z = 15.0. Over the full mass range, for both
simulation suites and halo finders, we find the fits considered agree generally

2We use photometric redshift only if spectroscopic redshift is not yet available.
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Figure 2.3: A zoom-in onto the black rectangles identified in Figure 2.2 (with halo
masses and number densities on a logarithmic scale). These mass ranges represent
the most massive halos accessible via numerical simulation at these redshifts.
At this higher level of detail we see some discrepancy between the numerical
halo mass functions of Enzo and SWIFT and their (semi-)analytical counterparts,
particularly at z = 15.0. The ratio of each (semi-)analytic fit to numerical results
is shown in Figure 2.4 and Figure 2.5.

within an order of magnitude of the numerical results, with the exception of the
PS fit. The most favourable fits, SMT and WatsonFoF, agree within a factor of ∼
2 for many mass ranges and redshifts. Additionally, the fits improve as redshift
decreases - not just between the numerical results and the (semi-)analytic results
but even among the (semi-)analytic fits themselves.

6 7 8 9 10 11
Mhalo [h 1 M ]

10 2

10 1

100

101

n f
it/n

sim

z=15.0

PS
SMT
Reed2007
WatsonFoF
WatsonSO
Enzo
JWST halo masses

6 7 8 9 10 11
Mhalo [h 1 M ]

10 2

10 1

100

101

n f
it/n

sim

z=10.0

Figure 2.4: The ratios of the fitted halo number densities to the numerical halo
number densities, derived from Enzo simulations and using the FOF halo finder
(with halo masses on a logarithmic scale). Differences between the Enzo and
the (semi-)analytical HMFs are typically less than a factor of two at z = 10.0,
increasing to a factor of 5 at z = 15.0 (excluding the PS fit).

At the lower mass range (106 to 107 h−1 M⊙), the semi-analytic fits overestimate
the halo number densities by up to a factor of ∼ 2 compared to either Enzo or
SWIFT data. At the mid-range masses (107 to 109 h−1 M⊙) at z = 10.0, all but the
PS fit overestimate the numerical simulations by less than a factor of 2. This is
best illustrated by the right panels of Figures 2.4 and 2.5. For the same mass range
at z = 15.0, there is a greater discrepancy with all but the SMT and WatsonFOF
fits underestimating the halo number densities by up to a factor of ∼ 5 compared
to numerical simulations (see the left panels of Figures 2.4 and 2.5).

In the JWST mass range, we see the greatest discrepancies. At z = 15.0, the
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PS fit underestimates the Enzo halo number density by a factor of ∼ 100 (see
Figure 2.4 (left panel)). The other fits agree within a factor of ∼ 50 (WatsonSO)
in the worst case with the SMT fit providing the closest match by agreeing within
a factor of ∼ 2. We see a similar story at z = 10.0 with a less extreme discrepancy
(PS underestimating by a factor of ∼ 10, the other fits agreeing within a factor
of ∼ 2 (see Figure 2.4 (right panel))). This is consistent with the results and
conclusions of Yung et al. (2024b).
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Figure 2.5: The ratios of the fitted halo number densities to the numerical halo
number densities, derived from SWIFT simulations and using the FOF halo finder
(with halo masses on a logarithmic scale). Similar to the Enzo result, SWIFT shows
all fits except PS agreeing within a factor of ∼ 2 for all but the highest masses
at z = 10.0. There is a greater discrepancy present at z = 15.0, with some fits
underestimating the numerical results by a factor of ∼ 100 at the high-mass range.

For the SWIFT simulations at z = 15.0, we see a strong deviation towards higher
masses which was not present for the Enzo simulations (see Figure 2.5 (left panel)).
Both PS and WatsonSO underestimate the numerical halo number densities by a
factor of ∼ 100, and SMT agrees best within a factor of ∼ 10. It appears here
that the Enzo runs are better able to resolve halos at earlier times perhaps due to
the inherent refinement strategy. A detailed analysis of the difference between
the numerical codes is outside the scope of this study and comparisons in this
direction have been undertaken in the past (e.g. O’Shea et al., 2005; Regan et al.,
2007; Hayward et al., 2014). At z = 10.0, there is reasonable agreement between
the numerical (SWIFT) results and the analytic fits (see Figure 2.5 (right panel)).
The PS fit underestimates the numerical results by a factor of ∼ 10, with the
other fits generally agreeing within a factor of ∼ 2.

In Figure 2.3 (right panel), we see a discrepancy between the Enzo and SWIFT

results in the high-mass range at z = 15.0. Previous work (e.g. Warren et al., 2006;
More et al., 2011) has shown that the FOF mass is sensitive to mass resolution
and the presence of substructure, which will be strongly dependent on redshift and
which is difficult to correct for in general. It will also depend on local clustering,
which can lead to distinct structures being linked by bridges of particles. This is
the most likely explanation for the variance between Enzo and SWIFT at z = 15.0.
Note that this variance is absent from the HOP profiles (see Figure 2.7).
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In summary, the agreement between the numerical N-body solvers and the
(semi-)analytic fits depends both on the choice of fit and the redshift z. We find
that the SMT fitting function provides the closest fit overall. With Enzo, there
are deviations of at most a factor of ∼ 2 at z = 15.0 (for low halo masses which
host galaxies that are currently unobservable) and converging to much less than a
factor of two within the JWST window at z = 10.0. For SWIFT, the agreement
with SMT is equally excellent at z = 10.0 but deviates somewhat for the higher
halo masses at z = 15.0. The WatsonFoF fitting function provides the second
best fit overall while the other fitting functions deviate at worst by a factor of
∼100 at z = 15.0. These results suggest that both the SMT and WatsonFoF fits
are the least likely to be a dominant source of error when testing high redshift
observations against ΛCDM models.

2.4 Discussion

The recent explosion of data from the high-z Universe, particularly beyond z = 10,
by JWST has led to a number of claims that the data is in tension with our galaxy
formation and cosmological models (e.g. Boylan-Kolchin, 2023; Arrabal Haro et al.,
2023; Yung et al., 2024b; Finkelstein et al., 2024). The Universe beyond z = 10

however is likely to be significantly different to the later and present-day Universe.
At z ≳ 10, galaxies are still in their infancy, with the most massive galaxies at
those epochs having stellar masses less than 1010 M⊙ (these would be classified
as dwarfs in the present-day Universe). Moreover, there is strong evidence that
the astrophysical processes at play at z = 10 are sufficiently different to those of
the present-day Universe and that they make significant alterations to the galaxy
properties. This is particularly evident in galaxies like GN-z11 which is thought
to harbour a massive black hole at its centre (Maiolino et al., 2024), moreover this
galaxy contains species abundances which are difficult to explain through standard
processes (e.g. Bunker et al., 2023; Cameron et al., 2023; Charbonnel et al., 2023;
Nandal et al., 2024). This peculiarity and lack-of-understanding is not unique
to GN-z11 with a number of galaxies displaying properties which has evoked
confusion within the community (e.g. Maiolino et al., 2025). The most luminous
galaxies observed by JWST remain in tension with state-of-the-art cosmological
simulations (e.g. Keller et al. (2023)) with simulations struggling to model their
extreme brightness at very early times. The reasons behind this are currently
unknown but a greater emphasis on processes specific to the early Universe such as
Pop III star formation and early black hole formation (e.g. McCaffrey et al. (2023))
may offer a pathway forward. It has also been argued that this tension may be
resolved with the use of high-resolution simulations targeted at the high-redshift
Universe (see McCaffrey et al. (2023)).
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A key part of making progress in understanding the high-z Universe is therefore
to identify sources of systematic error in our models at high-z. Some sources
of uncertainty in counting galaxies at such redshifts include cosmic variance
(especially significant at the distances considered), error in stellar mass estimation
and the presence of backsplash halos (halos that have lost some dark matter from
the host halo, giving the impression of a higher baryon-dark matter ratio). These
uncertainties have been explored thoroughly by Chen et al. (2023). In this work
we focus on exploring differences in fitting functions to the universal HMF and
how they compare against direct N-body simulations at z ≥ 10. In particular, we
compare a wide range of fitting functions in use in the literature (see Table 2.4)
against the adaptive mesh refinement code Enzo and against the N-body SPH
code SWIFT.

We find that, for both Enzo and SWIFT, the match against the (semi-)analytic
halo mass functions varies by fit, halo mass range and redshift z, with many fits
agreeing with numerical results within a factor of ∼ 2 for low and mid-range halo
masses. The match against the standard Press & Schechter (1974) formalism is less
accurate with deviations of up to an order of magnitude at z = 10.0 and over an
order of magnitude at z = 15.0. Similarly, when comparing against other standard
fitting formula (see Table 2.4), we again see good agreement with deviations
typically within an order of magnitude up to z = 15.0 inside the window in which
JWST can approximately observe high-z galaxies. The SMT and WatsonFoF fits
provide the best agreements with numerical results by generally being within a
factor of 2 even within the JWST mass window at z = 15.0 and z = 10.0. For the
z = 20.0 snapshots, the (semi-)analytic results deviate from the numerical results
by having significantly different power-law slopes from the Enzo or SWIFT results
(see Figure 2.2 (upper left panel) and Figure 2.6 (upper panel)). Here, many of
the (semi-)analytic fits overestimate the halo number densities compared to the
numerical simulations, with the exception of the PS fit which underestimates the
halo number densities. This suggests that there may be a calibration issue for
these fits at higher redshifts. The power laws employed for these fits compare
more favourably with numerical results at lower redshifts.

We caution that the spatial resolution employed, controlled via the softening
parameter for SWIFT and via the level of maximum refinement with Enzo, is set
relatively high for our simulations. For example, we use a softening length set to
approximately the mean interparticle spacing divided by 25. This is slightly lower
than the resolution we evolve the Enzo simulations with. This level of gravity
resolution, specifically the softening length and spatial resolution here, is likely to
be significantly higher than that used for typical galaxy formation simulations
designed to run to z ∼ 0 (e.g. Power et al., 2003, 2016; Zhang et al., 2019). It is
also worth noting that the gravitational collapse of dark matter halos is sensitive
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to the large-scale gravitational field, which in a numerical simulation depends on
the size of the simulation volume. Previous work (e.g. Power & Knebe, 2006) has
highlighted how the mass function is sensitive to simulation volume, with a deficit
of halos of a given mass at high masses. This effect is most pronounced in studies
of the mass function at high redshifts, where the necessary high mass resolutions
and large simulation volumes make these simulations particularly challenging. We
therefore caution the reader that matching the results from numerical simulations
designed primarily for large-scale investigations may struggle to calculate the
correct halo properties and abundances at z ≳ 10 (see e.g. Keller et al., 2023)
unless the simulations are truly focused on high-z study (see e.g. McCaffrey et al.,
2023).

Nonetheless, overall we find reasonable agreement between N-body simulations
and both (semi-)analytic and fitting functions to HMFs, consistent with the
results from Yung et al. (2024b), and that these functions (especially SMT and
WatsonFoF) are unlikely to lead to large errors in our modelling of high-z host
halos when appropriately modelled.

2.5 Alternative Halo Finding Techniques

In addition to the widely-used Friends-of-Friends halo finding algorithm, we also
investigate how a different halo finder would impact our results. As discussed in
§2.2 we also use the HOP halo finder (Eisenstein & Hut (1998)) in our analysis.
In Figures 2.6 to 2.9, we reproduce Figures 2.2 to 2.5 from §2.3 respectively but
with the halo finding technique switched to HOP instead of FOF.

Using the HOP halo finder, we find very similar results to the FOF method.
We see a factor of ∼ 2 to 3 difference between the HOP numerical results and the
SMT and WatsonFoF fits in particular at both z = 15.0 and less than a factor of
2 at z = 10.0. At worst, the difference between HOP and the PS fitting function
varies by a factor of 100.

We see little difference between FOF and HOP (see Figure 2.1) - a finding
supported by other research studies (Knebe et al., 2011). However, as mentioned
in §2.3, the use of the HOP halo finder appears to narrow the difference between
the Enzo and SWIFT results themselves, particularly at z = 15.0 (see Figure 2.3
(left panel) and Figure 2.7 (left panel)). This may be due to how the FOF mass is
computed within the simulations.
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Figure 2.6: Comparing the Enzo and SWIFT halo number densities contrasted with
5 halo number densities derived from fits at z = 20.0 (upper left panel), z = 15.0
(upper right panel) and z = 10.0 (bottom panel) using the HOP halo finder (with
halo masses and number densities on a logarithmic scale).
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Figure 2.7: High-mass sections of Figure 2.6 (upper right and bottom panels)
shown in more detail.

48



6 7 8 9 10 11
Mhalo [h 1 M ]

10 2

10 1

100

101

n f
it/n

sim

z=15.0

PS
SMT
Reed2007
WatsonFoF
WatsonSO
Enzo
JWST halo masses

6 7 8 9 10 11
Mhalo [h 1 M ]

10 2

10 1

100

101

n f
it/n

sim

z=10.0

Figure 2.8: The ratios of the fitted halo number densities to the numerical halo
number densities, derived from Enzo simulations and using the HOP halo finder
(with halo masses on a logarithmic scale).
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Figure 2.9: The ratios of the fitted halo number densities to the numerical halo
number densities, derived from SWIFT simulations and using the HOP halo finder
(with halo masses on a logarithmic scale).
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Chapter 3

Predicting the Number Density of
Heavy Seed Massive Black Holes due
to an Intense Lyman-Werner Field

3.1 Introduction

Observations of high-z (i.e. z ≳ 6) quasars, with masses in excess of 108 M⊙,
indicate that the number density of such massive objects is approximately 1
per cGpc3 (Bañados et al., 2018; Inayoshi et al., 2020). The origin of these
high-z quasars poses a major challenge to our understanding of compact object
formation and evolution in the early Universe. However, these extreme mass
objects represent only the tip of the iceberg with smaller mass black holes likely
being very much more abundant. Prior to the launch and subsequent observations
of the James Webb Space Telescope (JWST), the number densities of this smaller
mass population at high redshift could only be inferred from existing relations
(Mortlock et al., 2011; Bañados et al., 2018; Matsuoka et al., 2019; Venemans
et al., 2020; Wang et al., 2021; Yang et al., 2021; Izumi et al., 2021; Andika et al.,
2022).

Recent observations of massive black holes (MBHs) with masses between 106

and 108 M⊙ in the early Universe (z ≳ 4) have however started to indicate that the
population of MBHs is potentially relatively high and certainly at the upper end
of what theoretical models had previously suggested (e.g. Habouzit et al., 2016;
Greene et al., 2020; Kokorev et al., 2023; Larson et al., 2023; Maiolino et al., 2024;
Greene et al., 2024; Harikane et al., 2023). Significant uncertainties in determining
the nature of a large population of so-called Little Red Dot (LRD) galaxies mean
that it is too early, as of yet, to get clarity on the actual MBH population at high
redshift (Lambrides et al., 2024; Li et al., 2025; Ma et al., 2025). Nonetheless,
conservative estimates of the MBH population based on observations of LRDs
indicate MBH number densities in excess of 10−4 cMpc−3 (e.g. Pérez-González
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et al., 2024) (as opposed to a number density of approximately 10−9 cMpc−3 for
the MBHs with masses in excess of 108 M⊙).

The question then arises as to what is the formation process that drives the
existence of this large population of MBHs? In this work we focus on the so-called
heavy seed pathway, where the initial black hole has a mass in excess of 103

M⊙(Regan & Volonteri, 2024). While it is possible that the entire population of
MBHs originates from light seeds with initial masses of less than 103 M⊙, we do
not investigate that scenario here and instead direct interested readers to papers
which investigate that channel (e.g. Madau & Rees, 2001; Alvarez et al., 2009;
Madau et al., 2014; Lupi et al., 2016; Smith et al., 2018; Shi et al., 2024; Mehta
et al., 2024).

For forming heavy seed MBHs, three mainstream (astrophysical) mechanisms
have come to the fore which offer possible pathways to achieving the masses of
this population within the required time-frame. All of the mechanisms we will
discuss, except where we explicitly note, predict the formation of a super-massive
star (SMS) as an intermediate stage and subsequently a transition into a MBH.
This is often dubbed “Direct Collapse Black Hole (DCBH)" formation in the
literature which is somewhat incorrect given the intermediate stage of stellar
evolution which can, in theory, continue for ≥ 1 Myr. In fact, a more correct use
of the DCBH terminology relates to the concept of the so-called “Dark Collapse"
recently introduced into the literature by Zwick et al. (2023) and Mayer et al.
(2025). We will therefore refrain from using the DCBH term here since we focus
on the formation of massive stellar objects as precursors to MBH formation.

The first mechanism theorised to generate MBH seeds is through baryonic
streaming velocities. Relative velocity differences between baryons and dark
matter will arise following recombination (Tseliakhovich & Hirata, 2010). While
the mean offset will be zero there will, nonetheless, be regions of the Universe
where variations from the mean will exist. It is within these regions that the
relative velocities can impact the early formation of structure. In particular,
streaming motions can act to suppress star formation in the lowest mass halos,
pushing the onset of star formation to higher mass halos and perhaps all the way
up to the atomic-cooling limit (Naoz et al., 2012, 2013; Tanaka & Li, 2014; Latif
et al., 2014b; Hirano et al., 2017; Schauer et al., 2017). In regions impacted by
streaming velocities, the additional velocities of the baryons with respect to the
dark matter means that baryons take additional time to settle in the halo centres,
thus allowing the halo to grow in mass. Whether realistic streaming motions
can truly allow halos to grow to the atomic-cooling limit without triggering star
formation is unclear but it may be that the combination of streaming motions
with a sufficiently intense Lyman-Werner (LW) flux (described below) may allow
for this to occur (Kulkarni et al., 2021; Schauer et al., 2021).
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The second mechanism is through the rapid growth of structure itself, be it the
early rapid assembly of galaxies (Yoshida et al., 2003) or MBH formation triggered
through mergers (Mayer et al., 2010, 2015; Zwick et al., 2023; Regan, 2023). In the
case of early rapid assembly, halos below the atomic-cooling threshold experience
rapid minor mergers and hence rapid growth. If the growth is particularly rapid
then the heating caused by the dark matter inflows can offset the ability of H2 to
cool the gas effectively (Fernandez et al., 2014; Wise et al., 2019; Lupi et al.,
2021). In this scenario normal metal-free (Population III; Pop III) star formation is
delayed because the gas is unable to cool. Instead the halo continues to accumulate
matter without forming stars. If the heating (i.e. rapid growth) is maintained
then the halo can grow to the atomic-cooling limit where cooling by neutral
hydrogen is triggered and star formation occurs regardless. However, having
cooling commence at this mass scale offers the opportunity for SMS formation
to occur as the gravitational potential is now sufficiently deep to enable this
mechanism (e.g Regan et al., 2020; Latif et al., 2022; Regan, 2023).

In addition to this pathway, the related pathway of major mergers can drive
huge gas inflows directly into the centres of merging halos. The large gas inflows
can in some cases initiate a dark collapse through the formation of a super-massive
disk (Zwick et al., 2023) and ultimately the direct formation of a MBH (Mayer
et al., 2010, 2024). While the investigations of Mayer et al. (2024) focused on
very massive objects and the formation in particular of high-z quasars, it is likely
that this mechanism also acts on smaller mass scales, leading to the formation
of a population of high-z MBHs with masses closer to the expected MBH seed
masses (Regan, 2023).

The final mechanism and the one we will focus on in this Chapter is driven by
local sources of LW radiation. LW radiation is emitted by stars and is composed
of radiation below the hydrogen ionisation edge at photon energies between 11.2
and 13.6 eV. In order to form a Pop III star, the gas within a mini-halo1 must
cool down to Tgas ≈ 200 K, allowing the gas to achieve the required densities and
pressures to ignite star formation. Sufficiently intense LW radiation works against
this process by dissociating H2, thus removing (or at least suppressing) a critical
coolant required for star formation to take place. In the primordial Universe, the
formation of H2 takes place via two possible routes (Galli & Palla, 1998). The
first is through the radiative association of H and H+ below i.e. the H+

2 channel:

H + H+ → H+
2 + γ,

H+
2 + H → H2 + H+.

(3.1)

This reaction is only important at very high redshift (z ≳ 365) when TCMB > 103

1We use the term mini-halo to refer to halos above Mhalo = 105 M⊙ and below the atomic-
cooling threshold.
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K and hence is less relevant for galaxy formation. The more relevant reaction is
the associative detachment reaction of H and H− i.e. the H− channel which gives

H + e− → H− + γ,

H− + H → H2 + e−.
(3.2)

This is the critical reaction of H2 formation in the high-z Universe relevant for
galaxy formation and depends sensitively on the H− abundances as well as the
relic e− fraction after recombination (Smith et al., 2008). In opposition to these
formation pathways is LW radiation which can dissociate H2. Radiation in the
LW band excites electrons in the H2 molecule, breaking the molecule down into
its constituent atoms as such:

H2 + γLW → H∗
2 → H+H, (3.3)

where initially the LW photons excite electrons in the H2 molecule into an excited
state from where they can decay with some probability into two hydrogen atoms.
Crucially by removing the (inefficient) coolant H2, the gas cannot cool and hence
star formation is suppressed until the halo reaches the atomic-cooling limit,
allowing the gas to cool and condense via neutral hydrogen transitions.

The intensity of LW radiation required to achieve full star formation suppression
in mini-halos has been well-studied over the past decade. The consensus is that,
while there is some spectral dependence on the critical flux of LW radiation required,
values of at least 300 J21 are required for a T ≳ 104 K spectrum (e.g. Latif et al.,
2014a; Regan et al., 2017) while values of as high as 1000 J21 may be required for
a spectrum composed of Pop III stars only (i.e. T∼ 105 K spectrum) (Agarwal &
Khochfar, 2015; Agarwal et al., 2016) (where J21 = 10−21 erg s−1 Hz−1 sr−1 cm−2).
The value of the LW flux required is then known as the critical flux, Jcrit. The
question then becomes under what circumstances can a LW flux greater than Jcrit

be achieved in practice? The goal of this work is to re-examine the methodology
introduced by Dijkstra et al. (2008); Dijkstra et al. (2014) (hereafter D08 & D14)
while also augmenting the models with data from the Renaissance (Chen et al.,
2014; O’Shea et al., 2015; Xu et al., 2016a) simulation suite. Finally, we also
compare the LW-only channel against more recent estimates of MBH heavy seed
number densities through other channels (e.g. Trinca et al., 2022; McCaffrey et al.,
2025). Using these combined results, we put tight limits on the number density of
MBH seeds formed via LW feedback only and critically examine how viable the
LW-only pathway is in the face of recent JWST observations.

The structure of the Chapter is as follows: In §3.2, we outline the methodology
including the model from D14 and the relevant output post-processed from
Renaissance. In §3.3, we deliver the results of our analysis, showing an updated
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heavy seed number density plot. In §3.4, we summarize and discuss our results in
light of recent JWST observations and other models in the literature.

3.2 Methodology

In this section, we detail our application of the heavy seed formation model used by
D08 and D14. In §3.2.1, we describe the conditions a halo must meet to potentially
host a heavy seed. In §3.2.2, we introduce the Renaissance simulations and how
we post-process the data to supplement the fiducial (analytic-only) model. In
§3.2.3, we define the halo mass function and how we use it to compute the halo
number density. In §3.2.4, we discuss the impact of metal pollution, both from
merger history and from neighbouring galaxy outflows. Finally, in §3.2.5, we show
how the supercritical LW probability is computed, both in the fiducial model and
one informed by Renaissance data.

3.2.1 Formation of Heavy Seeds

Here we refer to heavy seeds as MBH seeds that have initial masses ≥ 103 M⊙,
as opposed to light seeds with initial masses < 103 M⊙. We find the heavy
seed number density nheavy seeds(z) (units: cMpc−3) as a function of redshift z

(10 ≤ z ≤ 30) by computing the number density of dark matter halos which
meet the criteria to host heavy seeds (assuming one heavy seed forms per host
halo). For the purpose of this study, the dominant criteria is the impact of a LW
radiation field as discussed in §3.1 and in detail below.

Consider a potential host halo of mass Mtarget at redshift z (see Figure 3.1).
It is surrounded by neighbouring dark matter halos of various masses, M , and
physical separations, r. At this high-redshift range, the comoving distance from an
observer on Earth to such a host halo is ≥ 9 cGpc (at z = 10.0, the proper distance
would be ≳ 800 Mpc). We are considering physical separations between the host
halo and its neighbours of ≲ 10 Mpc. Since these separations are negligible
compared to the proper distances from Earth, we approximate the neighbouring
halos as having the same redshift as the potential host.

To form light seeds within a halo, baryonic gas would cool and fragment to
form stars which would later collapse into stellar black holes if the progenitor
stellar mass M∗ ≳ 25M⊙ (see Figure 1 of Heger et al. (2003)).2. Thus to reduce
fragmentation and the formation of light seeds (forming heavy seeds instead), the
temperature of the gas within the target halo must remain high (Tgas ≳ 8000 K).
This can be achieved if the target halo meets the following criteria:

2At time of writing, it is still not clear whether there is a mass gap between the most massive
neutron stars (≈ 2 M⊙, Tolman-Oppenheimer-Volkoff limit (Heger et al., 2003)) and a minimum
stellar black hole mass (≈ 5 M⊙) (Farr et al., 2011; Kreidberg et al., 2012; Abbott et al., 2019).
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r

M

Mtarget

Figure 3.1: Target halo surrounded by neighbouring halos of various masses and
physical separations. Here M refers to the mass of a given neighbouring halo, r is
the physical separation between the neighbouring halo and the (central) target halo.
The central target halo is later defined as having a mass Mtarget = Mmin(z) which
is exactly equivalent to the virial mass of a halo at redshift z with temperature
Tvir = 104 K.

1. it is massive enough for the gas to cool via atomic hydrogen only;

2. it is chemically pristine i.e. free from metal enrichment;

3. it receives sufficient LW radiation from within its neighbours to suppress
H2 cooling.

The number density of dark matter halos (units: cMpc−3) meeting these criteria
(and thus the heavy seed number density) is described as:

nheavy seeds(z) =

∫ ∞

Mmin(z)

dMtarget
dnSMT

dM
(z,Mtarget)

× Ppristine(z)PLW(z,Mtarget).

(3.4)

We now briefly define each term in the above integral. We integrate over
Mtarget, the mass of a halo that is a potential heavy seed (or equivalently MBH)
formation site. Here Mmin(z) is the minimum mass where the virial theorem is
satisfied with Tvir = 104 K (Barkana & Loeb, 2001) i.e. the atomic-cooling limit
and is given as:

Mmin(z) = 4× 107
(
1 + z

11

)−3/2

M⊙. (3.5)

We integrate the halo mass function dnSMT
dM

(z,Mtarget) (units: M−1
⊙ cMpc−3)

to find the number density of halos greater than or equal to the atomic-cooling
limit. The halo mass function gives the number of halos per comoving volume per
unit mass. It was originally derived analytically in a seminal paper by Press &
Schechter (1974). In this work we use the semi-analytic form from Sheth et al.
(2001) (SMT) which assumes ellipsoidal halo collapse (as opposed to the idealised
spherical collapse assumed by Press & Schechter (1974)). We implement it using
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the Python package hmf, developed by Murray et al. (2013).
The quantity Ppristine(z) refers to the probability of a target halo being pristine

i.e. free from metal pollution. In §3.2.4, we discuss both the model used by D14
and one derived from Renaissance data and refer to the derived probabilities
as Ppristine, fid.(z) and Ppristine, Ren.(z) respectively. Ppristine, fid.(z) accounts only for
metal pollution inherited via merging episodes and is based on previous work by
Trenti & Stiavelli (2007); Trenti & Stiavelli (2009). This involves tracking Pop
III star formation by noting how the minimum halo mass where H2 cooling may
occur, MH2(z, Jbg), varies as a function of redshift z and LW background flux Jbg.
Ppristine, Ren.(z) accounts for both inherited metal pollution and metal enrichment
via supernovae outflows from neighbouring halos and does not distinguish between
the two.

Finally, a given target halo receives LW radiation from its neighbours (which
dissociates H2) but also metal outflows from supernovae (which act as a coolant).
If the target halo receives a total LW flux exceeding a threshold flux (J > Jcrit),
it is a candidate for heavy seed formation due to the sufficient dissociation of
H2. The quantity PLW, fid.(z,Mtarget) refers to the probability of a target halo
at redshift z and of mass Mtarget receiving supercritical LW radiation while also
avoiding metal outflows from its neighbouring halos in the fiducial model. The
analogous quantity PLW, Ren.(z,Mtarget) refers only to supercritical LW radiation
as metal outflows are accounted for by Ppristine, Ren.(z) (see §3.2.4 for more detail).
In this model, Jcrit is a parameter and we evaluate the supercritical probability,
and subsequently the heavy seed number density, at Jcrit = 300 and 1000 J21. This
probability is highly dependent on the form of the mean LW luminosity density
⟨LLW(z,M)⟩. We investigate both the form described by D14 and one derived
from Renaissance data, referred to as ⟨LLW, fid.(z,M)⟩ and ⟨LLW, Ren.(z,M)⟩
respectively.

We describe each of the terms in Eq. 3.4 in greater detail in §3.2.3, §3.2.4
and §3.2.5 below. Our cosmology is similar to that used by D14: ns = 0.9624,
h = 0.6711, Ωm,0 = 0.317512, Ωb,0h2 = 0.022069, ΩΛ = 0.682433, Ωr,0 = 0.000055

and σ8 = 0.8344. The impact of a specific cosmology on our model is however
likely to be minimal. Note that we use units with factors of h when performing
calculations. This is to be consistent with units used in hmf3 and halomod4, two
Python packages that we use to compute the halo mass function, power spectrum
and halo bias factor (Murray et al., 2013; Murray et al., 2021). Our final results
in Figure 3.7 have been converted to units without factors of h.

3hmf: https://pypi.org/project/hmf/1.6.2/
4halomod: https://github.com/halomod/halomod/
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3.2.2 Renaissance Simulations

The Renaissance simulations (Xu et al., 2013, 2014; Chen et al., 2014; O’Shea
et al., 2015; Smith et al., 2018; Wise et al., 2019) were run using the massively
parallel adaptive mesh refinement Enzo code (Bryan et al., 2014; Brummel-Smith
et al., 2019). We briefly describe the Renaissance suite here, but refer the
interested reader to the previous papers for a more complete discussion. The
Renaissance simulation suite is composed of three zoom-in regions extracted
from a parent volume of (40 cMpc)3. The three separate zoom-in regions were
named the Rarepeak (RP) region, the Normal region and the Void region. Each
volume was smoothed on a scale of 5 cMpc, with the RP region corresponding to a
mean overdensity of ⟨δ⟩ ≡ ⟨ρ⟩

Ωmρc
− 1 ∼ 0.68 and the Normal region corresponding

to ⟨δ⟩ ≡ ⟨ρ⟩
Ωmρc

− 1 ∼ 0.09. The RP and Normal subregions have volumes of
133.6 and 220.5 cMpc3 respectively. They were re-simulated with an effective
initial resolution of 40963 grid cells and particles within the central, most refined
regions, and have a particle mass resolution of 2.9 × 104 M⊙. In addition to
the initial nesting procedure, which allows the RP and Normal regions to be
selected, up to 8 further levels of refinement are allowed, giving a total maximum
spatial resolution of ≈ 19 cpc. For this study we focus on the Normal region only
since it is a representative volume of mean cosmic density. This is potentially
quite conservative since it is less likely to find high values of PLW(z, Jcrit) within
Normal regions. We make this choice since the alternatives (RP and Void) would
be difficult to relate to observations.

From Renaissance we can compare some of the key characteristics of the
D14 model against simulation datasets in order to test the veracity of some of
the key underlying assumptions of the model. Considering again Eq. 3.4, we
see that calculating the number density depends on the halo mass function, the
probability of a halo receiving supercritical flux and the probability of a halo
remaining pristine. From Renaissance the key quantities that can be extracted
are the mean LW luminosity densities ⟨LLW, Ren.(z,M)⟩ as a function of redshift
and neighbouring halo mass and the pristine fraction of halos PLW, Ren.(z,Mtarget)

as a function of redshift and target halo mass.
Note that while previous works (see e.g. Smith et al. (2018); McCaffrey et al.

(2025)) showed that Renaissance post-processed black holes struggled to grow to
heavy seed scales i.e. MBH ∼ 105 M⊙, we are only interested in halos themselves
as hosts whose environment fits the criteria to later form heavy-seed black holes.
We do not investigate the later growth and dynamics of these black holes in this
study.

However, we begin our analysis by examining the halo mass function, which is
the main driver of the number of heavy seeds. We then move onto the pristine
fraction (where Renaissance will play a role) and the probability of a halo
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receiving a super-critical flux (where again Renaissance will play a role).

3.2.3 Halo Mass Function

In Figure 3.2, we show how the halo mass function varies with halo mass
(107 h−1 M⊙ ≤ Mtarget ≤ 1010 h−1 M⊙) at a number of fixed redshifts. More
massive halos become significantly rarer at all redshifts, with the higher redshifts
showing increased rarity of high mass halos as expected in a ΛCDM cosmology.
The halo mass function is relatively well calibrated against N-body simulations at
lower redshifts but can differ from N-body runs at high-z by up to an order of
magnitude (for a discussion on this point see Yung et al., 2024a; O’Brennan et al.,
2024). However, for the halo masses which we are concerned with here (i.e. close
to the atomic-cooling limit) the differences are approximately a factor of two and
we do not investigate systematic differences due to the halo mass function here.
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Figure 3.2: Halo mass function vs. halo mass at a number of redshifts. The lines
shown here are generated using the hmf package developed by Murray et al. (2013).
We use the SMT halo mass function and the modified Planck13 cosmology (used
also by D14). The rarity of halos in a given mass range increases with increasing
redshift.

Since the halo mass function decreases by several orders of magnitude with
increasing halo mass, we approximate Eq. 3.4 as:

nheavy seeds(z) ≈
[∫ ∞

Mmin(z)

dMtarget
dnSMT

dM
(z,Mtarget)

]
× Ppristine(z)PLW(z,Mmin(z)),

nheavy seeds(z) ≈ nhalo(Mtarget > Mmin(z))

× Ppristine(z)PLW(z,Mmin(z)),

(3.6)

i.e. when computing PLW in §3.2.5, we approximate all potential formation sites
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at some redshift z as having a fixed mass of Mtarget = Mmin(z).

3.2.4 Metal Pollution

Metal pollution can come in two forms. Firstly it can be inherited “genetically”
through the hierarchical assembly process and secondly it can come from outflows
from neighbouring halos. For the fiducial (analytic-only) model these two forms are
computed separately, while for the model where we additionally use Renaissance

data we simply calculate the halo metallicity (or more precisely the probability of
a halo being metal-enriched via mergers or outflows from neighbours).

Genetic Metal Pollution

Starting with the fiducial model: consider a target halo at redshift z with mass
Mtarget. During previous episodes of halo merging, this target halo may have
had a progenitor halo that became metal-enriched via supernova outflows from
Pop III stars. If so, then the target halo would inherit this metal pollution i.e.
genetic metal pollution. The quantity Pgen, fid.(z) refers to the probability of
the target halo being met with this genetic metal pollution i.e. it has a metal-
enriched progenitor halo. The quantity Ppristine, fid.(z) = 1− Pgen, fid.(z) refers to
the probability of the target halo avoiding this genetic metal pollution i.e. it does
not have a metal-enriched progenitor halo.

In our fiducial model, as with D14, we base the form of Pgen, fid.(z) on the model
proposed by Trenti & Stiavelli (2007) (TS07) and Trenti & Stiavelli (2009) (TS09).
TS07 investigated the formation of the first generation of Pop III stars within dark
matter halos and tracked their descendant halos using a combination of GADGET2
N-body simulations and a Monte Carlo method based on linear theory. Using
these simulation results, TS09 found how MH2(z, Jbg) (units: h−1 M⊙) varied as a
function of redshift z and LW background flux Jbg. MH2 refers to the minimum
mass where H2 cooling may occur within a progenitor halo, and later Pop III star
formation. The LW background flux Jbg is described in TS09 in their section 2
just before their Eq. (10) and by Eq. (18) and (19). It is used to compute MH2 ,
described by their Eq. (9), (12) and (13). From z = 30 to z = 10, Jbg ranges
from ∼ 10−4 to 5 J21. Since TS09 found Jbg(z) as a function of z, MH2 is strictly
a function of z only. This mass MH2 is plotted against redshift z in their Figure 1
(upper right panel). We could not verify these masses for 10 ≤ z ≤ 30 but there
may be subtleties in their model regarding Pop II and III star formation that we
do not capture (see TS09 section 2.7).

Figure 3.3 (a recreation of TS09 Figure 1 (upper right panel) using the
masses that TS09 found) shows how this mass increases by a factor of ≈ 30

as redshift decreases from z ≈ 20 to z ≈ 10. Conversely, the atomic-cooling
limit Mmin(z) increases only by a factor of ≈ 4 in the same redshift range and

59



Mmin(z) < MH2(z, Jbg) at z ≲ 13. Thus a progenitor halo is more likely to cool
via atomic hydrogen than H2 at low redshifts.
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Figure 3.3: A recreation of Figure 1 (upper right panel) from Trenti & Stiavelli
(2009). In this redshift range, the minimum halo mass for H2 cooling to occur (solid
black line) sharply increases as z decreases and is greater than the atomic-cooling
limit (blue dashed line) at z ≲ 13. The red dashed vertical line marks z = 20, the
highest redshift considered by D14.

As a result, TS09 have shown that Pop III star formation is more likely to be
delayed in the progenitor halo as redshift decreases. Subsequently the probability,
Pgen, fid.(z), of a target halo having a metal-enriched progenitor decreases as redshift
decreases (see the blue line of our Figure 3.4 for a recreation of TS09 Figure 1
(lower right panel)). TS09 found that Pgen(z = 20) ≈ 0.9 and Pgen(z = 10) ≈ 0.1.

We now look at metal enrichment in Renaissance. For the Renaissance halos,
we select only halos above the atomic-cooling threshold mass, Mmin, and from the
Normal region only. We show the probability of a halo being metal-enriched in
Renaissance, Penriched, Ren.(z), in Figure 3.4 as the orange line i.e. the fraction
of halos found to be metal-enriched at a given redshift. Note that this metal
enrichment is from both genetic pollution and external enrichment and hence
direct comparisons should be treated with this in mind. We define a halo as
metal-enriched if Z ≥ 10−16 Z⊙. At high redshifts (z ≳ 18), the metal-enriched
fraction is zero due to the fact that there are no halos with masses in excess of
Mmin at that point in the simulation (sub)volumes. As structure formation evolves
and halos accrete sufficient mass, then the first atomic halos are predominantly
star-forming and metal-enriched and hence Penriched, Ren.(z) is exceptionally high
at z ∼ 18. As more and more halos form, then the number (and fraction) of
metal-enriched halos decreases substantially approaching 70% by the end of the
simulation at z ∼ 10. No turnover is seen but this is expected to occur as metal
diffusion becomes more widespread over cosmic time. Note that the apparent
sharp increase in Penriched, Ren. from z ≈ 18 to 17 in Figure 3.4 is likely noise due
to small number statistics i.e. there are very few halos in this redshift range that
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Figure 3.4: The probabilities Pgen, fid., Penriched, Ren., Ppristine, fid. and Ppristine, Ren. as
functions of redshift z. Pgen, fid. (blue line) is the probability for genetic metal
pollution to occur within a target halo with Tvir = 104 K and is a recreation
of Figure 1 (lower right panel) from Trenti & Stiavelli (2009). From z = 20 to
z = 10, Pgen, fid.(z) sharply decreases i.e. a target halo at low redshift is less
likely to have a metal-enriched progenitor halo. Penriched, Ren. (orange line) is the
probability of a target halo with M ≥ Mmin(z) being metal-enriched within the
Renaissance simulation suite. This refers to both genetic and external metal
pollution. Ppristine, fid. (green line) and Ppristine, Ren. (red line) are the complements
of the probabilities described above. The dashed red line marks z = 20.

are massive enough to be counted in this analysis.
The Renaissance results are clearly deviant from the analytical models - likely

due to the self-consistent treatment of structure formation and metal enrichment
available to the hydrodynamic simulations. However, as noted already, we need
to be somewhat careful here. Metal enrichment in the Renaissance halos can
come from either genetic enrichment as well as external enrichment (via outflows
from neighbouring galaxies). While we see a similar trend to the analytic models
of TS07 and TS09, we clearly see that the hydrodynamical simulations predict
higher values of (genetic and external) metal pollution than the analytic models.
The green and red lines shows the same result, albeit inverted since we show the
pristine fractions Ppristine, fid. and Ppristine, Ren. respectively (which are required each
of our models). For the fiducial model, we address the issue of external metal
enrichment in the next subsection.

Metal Pollution From Neighbouring halos

Within a neighbouring halo of mass M (units: h−1 M⊙), massive stars eject
metals as supernovae at the end of their lives. We approximate this phenomenon
by assuming a fraction of stars within the halo enter their supernova phase
simultaneously and there is a single physical radius of metal pollution rs(z,M, t)
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(units: h−1 Mpc) growing from the halo centre as t increases. It is given as:

rs(z,M, t) =
(E0νf∗Ωb,0M

ρgas(z)Ωm,0

)1/5

t2/5, (3.7)

where E0 = 1051 erg is the supernova explosion energy, ν = 0.01M−1
⊙ is the

number of supernova per unit mass formed, and ρgas(z) = ∆Ωb,0ρc,0(1 + z)3 is
the density of the ambient gas. We set our overdensity parameter to ∆ = 60.
We assume that the beginning of the target halo collapse, the beginning of star
formation within the neighbouring halo and the beginning of the neighbouring
supernova phase occur simultaneously (at t = 0). The target halo must avoid
metal pollution while t < tff(z) where tff(z) is the free-fall time of the target
halo. In other words for a set redshift z and neighbouring halo mass M , the halo
separation r > rs(z,M, t = tff(z)) since rs increases monotonically with t. When
computing the heavy seed number density in the fiducial model, we include a
Heaviside function Θ[r− rs(z,M, tff(z))] to only include metal-free halos described
above. Note that this is only necessary for the fiducial model. When modelling
using the Renaissance data, we do not need to include the Heaviside function
as this information is already contained as part of the pristine fraction of halos
Ppristine, Ren.(z).

3.2.5 Supercritical Flux

Here we derive PLW(z,Mtarget) i.e. the probability of a target halo receiving super-
critical LW radiation. Since we use the approximation described in Eq. 3.6, this
probability is now a function of z only i.e. PLW(z,Mtarget) = PLW(z,Mmin(z)) =

PLW(z). We compute this analytically by approximating that the LW flux received
by the target halo is dominated by a single luminous nearby source. We integrate
a probability density over LW flux J :

PLW, fid.(z) =

∫ ∞

log10 Jcrit

d log10 J
dPfid.

d log10 J
(z, J),

PLW, Ren.(z) =

∫ ∞

log10 Jcrit

d log10 J
dPRen.

d log10 J
(z, J).

(3.8)

Here J is in units of J21 and we integrate over the logarithmic value. The LW flux
probability density is found by integrating over all possible masses (units: h−1

M⊙) and physical separations (units: h−1 Mpc) of neighbouring halos:
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dPfid.

d log10 J
(z, J) =

∫ Mb,fid.

Ma

dM

∫ rmax(z)

rmin(z,M)

dr
d2P

dMdr
(z,M, r)

× dP

d log10 L
(⟨LLW, fid.(z,M)⟩, J, r)

×Θ[r − rs(z,M, tff(z))],

dPRen.

d log10 J
(z, J) =

∫ Mb,Ren.

Ma

dM

∫ rmax(z)

rmin(z,M)

dr
d2P

dMdr
(z,M, r)

× dP

d log10 L
(⟨LLW, Ren.(z,M)⟩, J, r).

(3.9)

Here d2P
dMdr

(z,M, r) (units: h2 M−1
⊙ Mpc−1) is the probability density used to count

the number of neighbouring halos in a given mass-separation bin, we assign a LW
luminosity to each halo using the probability density dP

d log10 L
(⟨LLW(z,M)⟩, J, r) and

Θ[r − rs(z,M, tff(z))] is a Heaviside function used to account for metal pollution
via supernova outflows from a neighbouring halo in the fiducial model. Now we
define each term in the integral over M and r below.

Counting the Neighbouring Halos

If the neighbouring halos were uniformly distributed in space, then the probability
of finding a neighbouring halo with halo mass [M,M + dM/2] and physical
separation [r, r + dr/2] from the target halo would be:

d2P

dMdr
(z,M, r) dMdr = 4πr2(1 + z)3

dnSMT

dM
(z,M) dMdr. (3.10)

Here 4πr2 dr is the physical volume of the shell surrounding the target halo,
dnSMT
dM

(z,M) dM is the halo number per unit comoving volume and (1 + z)3

converts from it from comoving to physical volume. But this only holds for a
comoving separation rco, max ⪆ 100 cMpc.5 We must additionally account for dark
matter clustering leading to deviations from the mean matter density ρ̄m at close
range. We denote this deviation δ(z, rco) by:

1 + δ(z, rco) =
ρm(z, rco)

ρ̄m(z)
. (3.11)

Rather than computing δ(z, rco) directly, we find a related quantity: the
dimensionless two-point halo-halo correlation function ξhh(z,Mmin(z),M, rco). This
accounts for the excess probability of finding a neighbouring halo of mass M at a

5We computed this by finding rco, max such that ξmm < 0 for r > rco, max and halos are no
longer correlated.
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comoving separation of rco from our target halo of mass Mmin(z), both at redshift
z. We can separate the M -dependence using the dimensionless halo bias terms
b(z,M) and the rco-dependence using the dimensionless two-point matter-matter
correlation function ξmm(z, rco) (van den Bosch et al., 2013):

ξhh(z,Mmin(z),M, rco) ≈ b(z,Mmin(z))b(z,M)

× ξmm(z, rco).
(3.12)

The redshift and mass dependence of the halo bias terms b(z,M) are determined
by a fitting function developed by Sheth et al. (2001). We can later relate physical
and comoving separations by:

r =
1

1 + z
rco. (3.13)

The quantity ξmm(z, rco) is found by taking the inverse Fourier transform of
the nonlinear power spectrum P (z, k) in spherical coordinates where we assume
the power spectrum is spherically symmetric:

ξmm(z, rco) =
1

2π2

∫ ∞

0

dk k2P (z, k)
sin(krco)

krco
. (3.14)

We note that the linear power spectrum P (z, k) varies with z as:

P (z, k) = d(a(z))2 P (z = 10, k), (3.15)

where a(z) = 1/(1 + z) and d(a) is the normalised linear growth factor at z = 10

(Lukić et al. (2007)):

d(a) =
D+(a)

D+(a = 1/(1 + 10))
, (3.16)

D+(a) =
5Ωm,0

2

H(a)

H0

∫ a

0

da′

[a′H(a′)/H0]
3 . (3.17)

Thus we can approximate the redshift dependence of the matter-matter correlation
function as:

ξmm(z, rco) ≈ d(a(z))2 ξmm(z = 10, rco). (3.18)

We create a fitting function based on arrays of rco and ξmm(z = 10, rco) values.
This allows us to find ξmm(z, rco) using Eq. 3.18, rather than computing it via
integration as in Eq. 3.14 which is much more computationally heavy. For brevity,
we shall refer to ξhh(z,Mmin(z),M, rco) as ξhh. Finally, the probability of finding
a neighbouring halo with halo mass [M,M + dM/2] and physical separation
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[r, r + dr/2] is given by:

d2P

dMdr
(z,M, r) dMdr = 4πr2(1 + z)3

× dnSMT

dM
(z,M)[1 + ξhh] dMdr.

(3.19)

For the fiducial model, we integrate over the halo mass range [Ma,Mb,fid.] =

[Mmin(z), 10
15 M⊙]. For the model informed by Renaissance data, we integrate

over the range [Ma,Mb,Ren.] = [Mmin(z), 10
9 M⊙] since no halos were found above

this mass range for the redshifts considered (11.6 ≤ z ≤ 18.6). We define the
minimum physical separation as rmin(z,M) = 2rvir(z,M) where rvir is the virial
radius of the neighbouring halo (Johnson (2012)). This avoids a neighbouring
halo overlapping with the target halo.

rvir(z,M) = (7.84× 10−4)
( M

108 h−1M⊙

)1/3

Ω
−1/3
m,0

×
(1 + z

10

)−1

Mpc/h.
(3.20)

We set the maximum physical separation rmax(z) = rco, max/(1 + z). We found
rco, max ≈ 119.448 cMpc/h, which is the maximum comoving separation where
ξmm(z = 10.0, rco) > 0. Beyond this value, a distant halo would no longer be
correlated with the target halo.

Assigning Lyman-Werner Luminosity Density

Given a subset of neighbouring halos each with mass M (units: h−1 M⊙) and
physical separation r (units: Mpc/h) from the target halo, how do we assign a LW
flux to each of them? The most luminous halos would be the rarest, so we assume
that the LW luminosity densities of this subset follow a lognormal distribution in
L. The LW flux J can be related to L as L = 16π2r2J , and thus this becomes a
lognormal distribution in r. The probability density that a neighbouring halo of
mass M and physical separation r has a LW luminosity density L is given as:

dP

d log10 L
(⟨LLW(z,M)⟩, J, r) = 1

σLW
√
2π

exp

[
−(x− µ)2

2σ2
LW

]
, (3.21)

where σLW = 0.4, x = log10 L (L in units of 1026 erg s−1 Hz−1) and µ =

log10⟨LLW(z,M)⟩ (adapted from Eq. 3 of Dijkstra et al. (2008)). A LW lu-
minosity density (and LW flux) is assigned to each halo such that they follow a
lognormal distribution in r with a mean LW luminosity density ⟨LLW(z,M)⟩. In
our fiducial model, we adapt the model used by D08 and D14.

To compute ⟨LLW, fid.(z,M)⟩, we must first consider the mean LW photon
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production rate ⟨Q(t)⟩ (units: h s−1 M−1
⊙ ):

⟨Q(t)⟩ = (Q0)[1 + (t6/4)]
−3/2e−t6/300, (3.22)

where Q0 = 1047 photons s−1 M−1
⊙ and t = (t6) (10

6 yr). This quantity is derived
from the Starburst99 population synthesis model developed by Leitherer et al.
(1999) while assuming that star formation occurs with a Salpeter initial mass
function. The mean LW luminosity density ⟨LLW, fid.(t,M)⟩ (units: erg s−1 Hz−1)
of a halo of mass M at a time t after star formation begins is given as:

⟨LLW, fid.(t,M)⟩ = hP⟨ν⟩
∆ν

⟨Q(t)⟩fescf∗
Ωb,0

Ωm,0

M, (3.23)

where hP is Planck’s constant, ⟨ν⟩ is the mean LW frequency, ∆ν is the LW
frequency range, fesc = 1 is the LW photon escape fraction and f∗ = 0.05 is the
star formation efficiency. For possible heavy seed formation, it is imperative that
the gas within the target halo fully collapses before it may cool and fragment to
form stars. It must receive supercritical LW flux from its neighbouring halos for
the duration of its free-fall time tff(z):

tff(z) =

√
3π

32Gρ(z)
∼ 83

[
1 + z

11

]− 3
2

Myr, (3.24)

where the density of a halo ρ(z) ≈ 200ρ̄m(z) and we assume that star formation
begins in all neighbouring halos simultaneously. Since ⟨LLW, fid.(t,M)⟩ monotoni-
cally decreases as t increases, if the target halo receives supercritical LW flux at
t = tff(z), then it has received supercritical LW flux at t < tff(z). Therefore we
evaluate ⟨LLW, fid.(t,M)⟩ at t = tff(z), making it strictly a function of z and M

only.
Figure 3.5 depicts how ⟨LLW, fid.⟩ varies with z for three different values of M .

The different values of M are marked as solid lines and vary from 4× 107 M⊙ up
to 6× 108 M⊙. What we see is that for the fiducial model, the mean luminosity
increases with redshift - primarily driven by the dependence on the free-fall time
which depends on redshift z.

To test the physicality of this model we again appeal to Renaissance and
plot the mean LW luminosity ⟨LLW, Ren.⟩ as a function of halo mass and redshift
from Renaissance. When calculating the LW flux from Renaissance halos, we
first determine the stellar mass of that halo and from that calculate the mean LW
flux that is produced by that stellar mass according to the Renaissance model.
While the data for the largest halo masses is relatively sparse (green data points),
the data for the smaller halos is well sampled. In this case we see a relatively flat
(slightly decreasing) LW luminosity as a function of redshift. For the lowest mass
halos we would expect a slightly lower star formation efficiency and hence a lower
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Figure 3.5: Mean LW luminosity density vs. redshift for a number of halo masses.
This is the luminosity density, in units of erg s−1 Hz−1, emitted by halos with
the masses shown in the legend. The mean LW luminosity density in the fiducial
model is given by Eq. 3.23. This quantity increases as time decreases and it is
evaluated at the free-fall time. The free-fall time decreases as redshift increases,
thus the mean luminosity increases as redshift increases. We are evaluating the
luminosity when the stars are younger (and hence more luminous) at higher
redshift. We also plot data points from the Renaissance simulation suite with
the mean LW luminosity emitted from halos of a given mass as a function of z. In
this case the mean LW luminosity is almost flat with a small decrease (i.e. lower
star formation efficiencies) seen for the lowest mass halos. The Renaissance data
points shown are the median values within a redshift bin, with the error bars
being the interquartile range.

mean LW luminosity. However, what we do not see, and is a limitation of the
fiducial model, is a mean LW luminosity density which increases with redshift
over this range. This divergence of the analytic and hydrodynamical models will
feed into our results. Having now introduced the methodology behind our analysis
we now present our results.

3.3 Results

As previously stated, the aim of this work is firstly to reproduce and verify the
results from D14 and secondly to compare the results of this analysis against the
results of other numerical experiments from the literature. We augment this goal
by also taking advantage of the Renaissance suite of simulations and use some of
the relevant Renaissance data in the analytic models. Although the Renaissance
suite cannot capture the rare halos that experience super-critical LW radiation
at the values thought necessary to produce heavy seeds (i.e. Jcrit ≳ 300 J21), it
is nonetheless an important check on the self-consistency of the analytic model,
particularly the probability of finding pristine halos Ppristine(z) as a function of
redshift and the mean LW luminosity density ⟨LLW(z,M)⟩ as a function of halo
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mass and redshift.

3.3.1 Supercritical Probability

In previous works, Jcrit was chosen to be 30 – 300 J21 for a T = 104 K blackbody
spectrum (see Shang et al. (2010)) and 1000 J21 for a T = 105 K spectrum (see
Wolcott-Green et al. (2011)). D14 chose Jcrit = 300 J21 as an intermediate value
between these two spectra. In this work we follow D14 and choose Jcrit = 300J21

as a critical threshold for the LW pathway. We also investigate solutions with
Jcrit = 1.0, 30.0 and 1000.0 J21.

10 15 20 25 30
z

10 9

10 7

10 5

10 3

10 1

P L
W

(z
)

Jcrit = 1.0 J21, fid.
Jcrit = 30.0 J21, fid.
Jcrit = 300.0 J21, fid.
Jcrit = 300.0 J21, Ren.
Jcrit = 1000.0 J21, fid.
Jcrit = 1000.0 J21, Ren.

Figure 3.6: The supercritical probability vs. redshift. The probability of a halo
receiving a super-critical LW flux is given by the y-axis. Line colours refer to
values of Jcrit. As expected, the probability of a halo receiving a high flux (e.g.
Jcrit ≥ 300 J21) is low. The solid lines are from the fiducial model. The points are
from the Renaissance-augmented models. For these models, the probability of a
halo receiving a super-critical flux drops sharply with redshift - more in line with
expectations.

In Figure 3.6, we plot the probability of a target halo receiving a supercritical
flux PLW(z) at different redshifts. The probability is plotted for a range of different
values of the critical flux, Jcrit, from Jcrit = 1.0 J21 up to Jcrit = 1000.0 J21. Solid
lines are from the fiducial model as described by the first line of Eq. 3.8 and
the first line of Eq. 3.9. We also account for metal pollution from neighbouring
halos using the Heaviside function (see the first line of Eq. 3.9). As expected the
probability of a target halo receiving a flux in excess of J = 1.0 J21 is very high.
In this case by a redshift of z = 10, approximately 1 in 10 halos meeting the target
halo criteria will receive a flux greater than or equal to J = 1.0 J21. However, the
probability of a target halo receiving significantly higher fluxes is much less. For
example the probability of a target halo receiving a flux in excess of J = 1000.0
J21 at z = 10 is less than 1 in 109. We test our fiducial model at Jcrit = 1.0 and
30.0 J21 to verify that PLW should increase as Jcrit increases. Note that in this
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model, the peak in terms of probabilities occurs at z ∼ 15 and decreases at higher
and lower redshifts.

It should also be noted that the probability of a halo receiving a supercritical
flux does not decrease as rapidly as perhaps expected towards very high redshift
(i.e. z ≥ 20). This is an inherent characteristic of the fiducial model. The model
requires that a target halo is illuminated by a super-critical flux for a free-fall
time (see §3.2.5). While the number of star-forming halos decreases as per the
halo mass function, the free-fall time shrinks dramatically with redshift. The two
effects cancel each other out somewhat and hence the probability of receiving a
super-critical flux does not decrease as redshift increases as rapidly as expected.

Overplotted in Figure 3.6 are the results from the Renaissance-augmented
model as described by the second line of Eq. 3.8 and the second line of Eq.
3.9. The green and red dots refer to median PLW, Ren.(z) values of each redshift
bin at Jcrit = 300 and 1000 J21 respectively. We augment the fiducial model
based on D14 with the mean LW values ⟨LLW, Ren.(z,M)⟩ instead of the analytic
model values ⟨LLW, fid.(z,M)⟩. We also do not account for the influence of metal
pollution in the Renaissance-augmented model here and thus comparisons to
the fiducial model must be made cautiously. We account for metal pollution for
the Renaissance-augmented model when plotting formation site number density
nheavy seed host(z) as a function of redshift z in Figure 3.7 (see §3.3.2). We set
Jcrit = 300 and 1000 J21 for the Renaissance-augmented models only. This was
to provide a comparison to the fiducial dataset of D14 at Jcrit = 300 J21 (see black
dots of Figure 3.7) and also to test the model at Jcrit = 1000 J21 which may be an
appropriate value for a T = 105 K spectrum (see Wolcott-Green et al. (2011)). For
the simulation values, we see a much steeper decline in the probability of a halo
receiving a super-critical flux (driven mainly by the mean LW luminosity density).
Hence, for redshifts approaching z ∼ 20 the probability of a halo receiving a
supercritical flux is negligible. This is in comparison to the analytic model where
the probabilities only decline slowly.

Note that we do not include any direct comparison to observational nor
simulation data. It is not possible to derive these probabilities from observations
especially at such high redshifts. As stated earlier, the Renaissance simulations
cannot capture the incredibly rare halos that receive such high levels of LW
radiation. Any nonzero probabilities from other large-scale simulations would
likely yield very low values e.g. less than 10−9.

3.3.2 Heavy Seed Number Density

Putting everything together, we now plot the number density of halos acting as
heavy seed formation sites nheavy seed host(z) as a function of redshift z in Figure
3.7. In total we plot 10 datasets. With the exception of the black dots, all
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dotted datasets are the median values of a redshift bin. These datasets include:
our fiducial model with Jcrit = 300 J21 (green line) and Jcrit = 1000 J21 (red
line); our Renaissance-augmented model with Jcrit = 300 J21 (green dots) and
Jcrit = 1000 J21 (red dots); the heavy seed number density from Trinca et al. (2022)
(solid blue line with circular markers); the DCBH number density from Chiaki
et al. (2023) (solid magenta line with circular dots); the heavy seed formation site
number density from McCaffrey et al. (2025) (orange dots); and the heavy seed
formation site number density from D14 with Jcrit = 300 J21 (black dots).

We also include an AGN number density estimate from Inayoshi (2025). This
model is based on the observed and inferred abundance of LRDs, suggesting that
LRDs are a phase in galaxy evolution. The brown dashed line in Figure 3.7 shows
this fit for 6 ≤ z ≤ 10. The brown dots are the inferred AGN number densities
based on recent observations for 6.5 ≤ z ≤ 8.5 from Kokorev et al. (2024) and
Kocevski et al. (2025). The fit from Inayoshi (2025) was normalised such that the
AGN number density matches the observed LRD number density of ≈ 3× 10−5

cMpc−3 for z ∼ 4 − 7. We include these estimates to provide context for our
heavy seed datasets but we must note that a heavy seed number density cannot be
directly compared to these AGN number density estimates. These AGN number
densities which are informed by recent observations likely account for only the
most active of AGN, while in reality many AGN will be quiescent and thus making
the total AGN number density larger. We also note that only a fraction of heavy
seeds will undergo efficient growth to reach SMBH masses by z ∼ 6. Thus in
Figure 3.7, if a heavy seed number density estimate at z ∼ 10 is equal to or greater
than this AGN number density estimate, that pathway may be viable to account
for SMBH number densities. If a heavy seed number density estimate is less than
the AGN number density estimate, that pathway can at best only account for a
fraction of SMBHs.

For our fiducial models (green and red lines), we are unable to match results
from D14 (black dots) exactly despite following their methodology and our results
deviate from theirs, particularly at high redshift. Without access to their code base
we cannot determine where the discrepancy arises. Our code base and pipeline
will be publicly available on GitHub but until then may be accessed upon request.

Both the results from the fiducial model and the results of D14 do however
agree that the number density of heavy seed black holes (or indeed heavy seed
hosting halos) is less that 10−6 cMpc−3 at z ≳ 10. With the number density of
MBH hosting galaxies at least two orders of magnitude greater than this (and
potentially likely much higher) at z ≳ 4 (e.g. Pérez-González et al., 2024; Inayoshi,
2025), the LW channel is likely unable to explain the high abundances of MBHs
in the early Universe based on our fiducial model. This is the first takeaway from
our analysis.
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Figure 3.7: Number density of heavy seeds vs. redshift. Black dots are original
points taken from D14, green and red lines show our use of the same analytic
model methodology as outlined in D14, the green and red dots use Renaissance-
informed data as part of the analytic model, orange dots are from McCaffrey
et al. (2025), the solid blue line with circular markers is from Trinca et al. (2022),
the solid magenta line with circular markers is from Chiaki et al. (2023) (with
internal radiation), and the brown lines are from Inayoshi (2025) (dashed line for
the AGN number density fit; dots for the LRD number density estimate based on
observations). The LW-only channel models (D14, fiducial model, Renaissance-
augmented model) are unable or only very marginally able to reproduce recent
JWST high-z AGN number density of ≳ 10−4 cMpc−3. On the other hand, the
models of McCaffrey et al. (2025), Trinca et al. (2022) and Chiaki et al. (2023)
produce higher number densities and are thus more compatible with recent JWST
observations.

We plot the results using values obtained from the Renaissance-informed
analytic models as green (Jcrit = 300 J21) and red dots (Jcrit = 1000 J21). In this
case the results are more encouraging - albeit with a steeper decline. Note that we
are not using the Renaissance output to make predictions but use their mean LW
luminosity density values ⟨LLW, Ren.(z,M)⟩ and the impact of genetic and external
metal pollution is informed by their Ppristine, Ren.(z) function (see Figure 3.5 and
Figure 3.4 respectively). We see that the number density of heavy seed hosting
halos peaks at approximately 10−4 cMpc−3 at z ∼ 12.5 for Jcrit = 300 J21. These
numbers are on the face of it consistent, albeit marginally, with the recent results
from JWST (see AGN number density estimates from Inayoshi (2025) (brown
dots and brown dashed line)). However, our models are for the seeds and not the
candidate AGN detected by JWST. Given the growth requirements of the seeds
combined with the expected duty cycle of AGN, these number densities are still
likely incompatible with current JWST observations.

We also plot more recent results by Trinca et al. (2022) (solid blue line with
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circular markers), Chiaki et al. (2023) (solid magenta line with circular dots)
and McCaffrey et al. (2025) (orange dots). McCaffrey et al. (2025) used the
Renaissance simulations to analyse the formation and later the growth of heavy
seed black holes while accounting for rapid assembly and merger history of halos.
We do not account for growth in this comparison and only consider their number
density of heavy seed formation sites. They used the following criteria when
identifying halos that may host massive black holes:

• Tvir ≳ 104 K,

• Z < 10−3 Z⊙,

• M(r < 0.5Rvir)/M(r < Rvir) > 0.5,

• Ṁ > 0.1M⊙ yr−1.

The results from McCaffrey et al. (2025) show that the formation of heavy seed
MBHs via the so-called rapid assembly channel results in significantly higher
number densities with values of approximately 10−2 cMpc−3 or higher. These
results from McCaffrey et al. (2025) are consistent with recent JWST results
(again with the caveat that the growth of seeds and the duty cycle of AGN will
push these number densities downwards).

Trinca et al. (2022) performed a similar analysis to McCaffrey et al. (2025)
using the Cosmic Archaeology Tool (CAT), a semi-analytic model which
allowed them to follow the formation of the first stars and black holes while
accounting for accretion and mergers. They also account for how star formation
in mini-halos can be affected by LW flux from nearby highly star-forming galaxies.
This inhibits H2 cooling and potentially sterilises these halos until they reach the
atomic-cooling regime. In their model, if a dark matter halo meets the following
conditions:

1. Tvir ≳ 104 K,

2. Z < 10−3.8 Z⊙,

3. JLW > 300 J21,

then a heavy seed black hole with MBH = 105 M⊙ is set at the centre of the galaxy
within the halo. Their data in Figure 3.7 indicate the number density of newly-
formed heavy seeds at a given redshift. Their results show similar number densities
to McCaffrey et al. (2025) with peak values 10−2 cMpc−3. Their model shows
number densities significantly beyond the LW-only channel, again compatible with
more recent results from JWST.

When computing the number density of DCBHs, Chiaki et al. (2023) consider
both external and internal LW radiation, rather than only external sources like we
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do. They make a direct comparison to Trinca et al. (2022) by considering halos
with Tvir > 104 K, Jcrit = 300 J21 and Z < 10−3.8 Z⊙. Internal radiation from a
single halo depends on its LW photon emissivity (from both Pop III and Pop II
stars) and the radius of the galaxy hosted by that halo (where the galaxy radius
is 10% of the halo virial radius). External radiation received by a single halo is
computed from the total LW flux from all other halos and is dependent on LW
photon emissivity and the distance between the target and source halos. Metal
pollution is accounted for via chemical evolution equations of Pop I/II stars and
supernova winds. Their highest number density value is almost 10−1 cMpc−3 at
z = 10.

Additionally, Bhowmick et al. (2021) explored a similar LW channel with
the inclusion of low gas angular momentum to track SMBH seed formation and
Bhowmick et al. (2024) used the BRAHMA simulations to track DCBH formation.
Both works found that more efficient heavy seeding channels may be necessary to
account for the most massive black holes at high redshift.

In summary, Figure 3.7 tells us that D14, our re-implementation of the D14
model and the Renaissance-augmented model show results which are incompatible
with recent JWST data. Other pathways investigated by McCaffrey et al. (2025),
Trinca et al. (2022) and Chiaki et al. (2023) appear more promising to explain the
overall MBH population. A similar result was shown by Bhowmick et al. (2021).

3.4 Discussion and Conclusions

In this Chapter, we have reviewed the analytic model of Dijkstra et al. (2014) in
terms of calculating the number density of MBHs that can be formed through
the so-called Lyman-Werner (LW) channel. In this framework, a super-critical
flux of LW radiation irradiates a target halo. The target halo must have a mass
exceeding the atomic-cooling threshold and must be metal-free. The super-critical
flux required can vary from halo to halo but is likely to be excess of 300 J21. Such
a high value can only be produced by a nearby neighbouring halo. A weakness of
this model is assuming that there is no correlation between a halo being metal-free
and receiving a super-critical LW flux i.e. we multiply the probabilities Ppristine(z)

and PLW(z, Jcrit). More realistically, a super-critical LW flux may suppress star
formation in a progenitor halo and thus the target halo has an increased probability
of being metal-free. Such an analysis of the merger history of the target halos is
beyond the scope of this study.

In agreement with D14, we find that the number density of target halos
receiving a critical flux in excess of 300 J21 is approximately 10−6 cMpc−3 at
z = 10 (see Figure 3.7). The number densities drop, as expected, towards higher
redshifts. Despite considerable effort, we were unable to reproduce the exact
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results of D14 and our fiducial model results differ from the D14 results at z > 10.
We varied the cosmology implemented, the integration limits for neighbouring halo
mass M and separation r, how the halo-halo correlation function was computed
and the definition of the mean LW luminosity density. Our analysis tools and
pipeline will be available on GitHub. Our analysis, following the methodology
of D14, shows that the number density of heavy seeds is almost constant out to
very high redshift (z ≳ 20) - this is primarily due to how the mean LW luminosity
⟨LLW, fid.(z,M)⟩ produced by a halo is calculated in the D14 model. Nonetheless,
our analysis agrees very well with the D14 as we approach z = 10. However, in
both cases the number densities remain close to or below 10−6 cMpc−3.

To check the physical consistency of the D14 model, we augment the analytic
model with information taken directly from the Renaissance simulation suite.
Specifically, we take data of the mean LW luminosity density ⟨LLW, Ren.(z,M)⟩
produced as a function of redshift and halo mass and the pristine fraction
Ppristine, Ren.(z) of halos as a function of redshift (see Figures 3.5 and 3.4). Using
this augmented model, we find that number density of heavy seed hosting halos
increases steeply between z ∼ 18 and z ∼ 10. The peak number density of heavy
seed hosting halos reaching values close to 10−4 cMpc−3 at z ∼ 10.

The Renaissance-informed models are nonetheless still likely incompatible
with the recent results on AGN fractions at high-redshift (e.g. Pérez-González
et al., 2024; Greene et al., 2024; Inayoshi, 2025) given subsequent growth re-
quirements of the seeds combined with the expected duty cycle of AGN. A slight
weakness of this model is the lack of incorporation of baryonic matter streaming
velocities (Tseliakhovich & Hirata, 2010). This would suppress star formation in
halos with masses ≲ 106 M⊙ (Tseliakhovich et al., 2011; O’Leary & McQuinn,
2012; Xu et al., 2014). This is an order of magnitude below the Mmin values we
consider, so this may not affect our results greatly. It could push Ppristine, Ren.(z) to
higher values since star formation would be suppressed in more progenitor halos,
leading to more target halos avoiding genetic metal pollution.

We have shown through our heavy seed number density predictions that
the LW-only channel is likely sub-dominant compared to other channels when
accounting for AGN number density estimates based on recent observations. While
these observations are still hotly debated and the exact make-up of the JWST
galaxies unclear, even if some fraction of the galaxies host AGN (as is strongly
suspected) then the LW-only channel cannot be responsible - the predicted number
densities are simply too low.
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Chapter 4

Summary and Conclusions

4.1 Aims

It is an incredibly exciting time for both theoretical and observational astrophysics
(at time of writing but hopefully still at time of reading). With the recent launch
of the James Webb Space Telescope (JWST), we have thrown open a window
to the high-redshift Universe by observing distant galaxies and quasars never
seen before. These data have challenged our models of supermassive black hole
(SMBH) formation and may be key to revealing their origins. Additionally, the
upcoming launch of the Laser Interferometer Space Antenna (LISA) promises
detections of gravitational waves of black hole mergers from the high-redshift
Universe. What sets it apart from existing ground-based gravitational wave
detectors is the capability of detecting mergers from intermediate-mass black holes
(IMBHs). This population would bridge the mass gap between stellar mass black
holes and SMBHs and act as a potential seed for SMBHs.

In §2, we aimed to test well-known fitting functions of the halo mass function
at high redshift against simulation results. We had this goal in mind to investigate
if these fitting functions could be a source of error when comparing JWST data
to cosmological models. We do this by running dark matter-only Enzo and
SWIFT simulations, creating halo catalogues from the output and using these
halo catalogues to create numerical number density functions. We compare these
to number densities derived from popular fitting functions: Press & Schechter
(1974), Sheth et al. (2001), Reed et al. (2007) and Watson et al. (2013) (both
Spherical Overdensity (SO) and Friends-of-Friends (FoF)). When creating the
halo catalogues, we use both the FOF (Friends-of-Friends (Efstathiou et al., 1985))
and HOP (particle "hopping" (Eisenstein & Hut, 1998)) halo finders to minimise
our results being biased by our choice of halo finder.

In §3, our goal is to compare the number density of IMBHs informed by an
analytic model accounting for Lyman-Werner (LW) radiation and metal pollution
(Dijkstra et al., 2014) with one informed by Renaissance simulation results. This
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is to investigate whether or not recent JWST observations could be accounted for
by this heavy seed formation pathway alone. In both models, we use the Sheth
et al. (2001) halo mass function and we assume that the LW flux received at a
prospective formation site is dominated by a single nearby neighbouring source.
In our fiducial model, the mean LW luminosity density emitted by a neighbour is
determined by an analytic function of redshift z and mass M , and we account
for both genetic metal pollution from progenitor halos and external supernova
outflows from neighbours. In the Renaissance-informed model, the mean LW
luminosity density is determined from the mean luminosity of a given mass bin
at a given redshift. We also account for metal pollution but with no distinction
between genetic and external enrichment.

4.2 Conclusions

In §2, we find that generally there is reasonable agreement between number
densities from the (semi-)analytic halo mass functions and from the simulation
output. Our simulations begin at z = 127 and end at z = 10. We take output at
snapshots z = 20, z = 15 and z = 10 as they are part of an era of the Universe that
is relatively unexplored. We also end our simulations at z = 10 as now we are able
to observe objects at this redshift thanks to JWST. The agreement is strongest
at the lowest masses (106 to 107 h−1 M⊙) and z = 10 where the fits overestimate
the number densities by a factor of ∼ 2 compared to simulation data. At higher
redshifts (z = 15) and masses (M > 107 h−1 M⊙), the discrepancy widens with
the Press & Schechter (1974) fit performing the poorest (underestimating the
simulated number density by a factor of ∼ 100) and the Sheth et al. (2001)
performing the best (at best agreeing with the simulated number density within
a factor of 2). We find that the discrepancy is wider when comparing SWIFT to
Enzo for the highest masses (M ∼ 109 to 1010 h−1 M⊙) at z = 15 using the FOF
halo finder. The SMT fit underestimates the SWIFT number density by a factor
of ∼ 5 in this mass window but overestimates the Enzo number density by less
than a factor of 2 in the same window. This may be due to how the FOF halo
finder is employed between the different simulation suites. This cross-simulation
discrepancy is absent when considering the HOP halo finder. Given this agreement
between (semi-)analytic fits and numerical simulations, the halo mass function
(especially SMT and WatsonFoF) is unlikely to be a significant source of error
when comparing JWST data to ΛCDM predictions of the high-redshift Universe.
Possibly more dominant sources of error include cosmic variance, stellar mass
estimation and some halos losing dark matter (giving the impression of a higher
baryon-dark matter ratio) which were all explored by Chen et al. (2023).

In §3, we are unable to replicate the number density values of Dijkstra et al.
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(2014) using their model. Our redshift range is 10 ≤ z ≤ 30 and our number
density values match for z = 10 but deviate as redshift increases. We find that
both the LW supercritical probability and heavy seed number density vary little
with redshift for a fixed value of Jcrit. The halo mass function decreases as redshift
increases while the mean LW luminosity density increases with redshift due its
dependence on the free-fall time. These effects somewhat cancel each out and we
are left with relatively flat redshift evolution, with the number density peaking at
z ∼ 15 and slowly decreasing as redshift increases z ≳ 15. In the Renaissance-
informed model, we see a much sharper decrease in number density as redshift
increases. This is due in part to the Renaissance-informed mean LW luminosity
density either varying little with redshift (low mass) or decreasing as redshift
increases (high mass). The highest number densities produced (nheavy seed host ∼
10−4 cMpc−3, z ∼ 10, Jcrit = 300 J21, Renaissance-informed model) are too low to
account for JWST observations. These number densities refer to seed black holes
only and due to the accretion rates and AGN duty cycles required for SMBHs,
they would be too low to account for the AGN number densities from JWST
observations. A model that accounts for rapid assembly due to major and minor
galaxy mergers would be more promising (see McCaffrey et al. (2025)).

4.3 Future Work

As stated in the previous section, the inclusion of rapid assembly to our heavy
seed formation model from §3 would make it more physical. This would involve
accounting for major and minor mergers of halos (and their galaxies), which would
heat the gas and delay star formation. This would result in the dark matter halo
(prospective formation site) growing and creating a deeper potential well, allowing
for supermassive star (SMS) formation. Tracking such an effect would require
merger trees showing the merger history of a given halo. This could be achieved
using either the C package consistent-trees (Behroozi et al., 2012) or the C++
package TreeFrog (Elahi et al., 2019). As shown by McCaffrey et al. (2025), the
number densities produced could align better with JWST observations.

Additionally, baryonic streaming velocities would act as another mechanism
to inhibit cooling and delay typical star formation. The velocities of the baryons
relative to the dark matter would result in the baryons needing additional time to
lose their kinetic energy before they could collapse, also allowing the dark matter
potential well to deepen and later have a SMS form. Kulkarni et al. (2021) have
shown that this is not simply an effect that acts independently of LW radiation:
the two effects are not multiplicative but will influence one another.

In §3, we also treat metal enrichment acting independently of LW background
radiation but a more robust treatment would account for its dependence on the
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background flux Jbg (Trenti & Stiavelli, 2009).
A natural extension to estimating the IMBH number density would be estimat-

ing the number density of IMBH binary systems. Gravitational waves from these
binary merging events would be detectable by the upcoming space-based detector
LISA. Like with the influence of rapid assembly mentioned above, computing the
number density of binaries would require building merger trees and accounting
for what are the most favourable merging conditions.
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