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ABSTRACT
In this article, we consider tracking control design for fully actuated mechanical systems using position measurements only. A
recently developed hybrid momentum observer is used, which has the property that the momentum estimation error is a passive
output from the estimation error dynamics. To complement this, a tracking error system is constructed with error coordinates
defined between the momentum estimate and the desired momentum. The tracking error dynamics are similarly passive with the
momentum estimation error as the passive input to the tracking error system. Exploiting the passivity of both the observer and
tracking controller subsystems, a passive interconnection is constructed which results in a storage function for the joint observer
and controller systems. It is shown that the joint system is Input-to-State Stable (ISS) with respect to external disturbances and the
effect of the disturbance can be attenuated via tuning gains. The results are numerically demonstrated on a 2-link manipulator
system.

1 | Introduction

Tracking control for mechanical systems has broad practical
applicability, from robotic manipulators to underwater vehicles
and satellite systems. Methods for tracking control have been well
studied over the past decades from multiple approaches. These
approaches have included PID [1], back-stepping [2], geomet-
ric [3], and energy-based approaches [4]. One drawback of many
such nonlinear approaches is the underlying assumption that the
full state vector, including position and velocity information, is
available for control purposes. In contrast to this assumption,
many practical systems have position measurements available
but do not have direct measurements of the system’s velocities.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

© 2025 John Wiley & Sons Ltd.

In response to this limitation, many researcher have investi-
gated methods for tracking control using only position infor-
mation. One of the earliest works on the topic [5] considered
point-to-point and tracking control for Euler–Lagrange systems.
To overcome the lack of velocity information, a velocity observer
was developed and a corresponding regulation control law pro-
posed that ensured asymptotic stability with a bounded region of
attraction, provided that the controller gains were suitably cho-
sen. The design of velocity observers for nonlinear mechanical
systems is known to be technically difficult which has motivated
several authors to investigate tracking control methods without
the use of observers. In the works [6–8] implemented adaptive
schemes using a filtered variable in place of a velocity observer
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to achieve uniformly ultimately bounded stability. Semiglobal
asymptotic tracking was later achieved using a similar approach
in [9]. Similar stability properties were later achieved with the use
of a discontinuous velocity observer in the work [10].

The first truly global solution to the tracking problem using fil-
tered quantities in place of velocity observers was introduced in
[11] where a so-called dirty derivative term was used. Some mild
conditions on the controller gains were introduced as part of the
technical proof to ensure global asymptotic stability of the track-
ing system. This idea was further considered in the subsequent
work [12], which similarly achieved global asymptotic stability.
The geometry of tracking systems with revolute joints was con-
sidered in [13], resulting in semiglobal asymptotic stability of the
tracking system. Researchers have continued to explore track-
ing control methods using filtered quantities in [13, 14], which
yielded similar stability properties with variations to controller
structure and complexity. An alternate approach using passivity
was proposed in [15] using passivity theory, which made use of a
filtered quantity in place of an observer and also achieved global
asymptotic stability of the tracking system. Tangential to these
works, several authors have investigated extensions to the track-
ing problem, such as [16] which extended these ideas to flexible
links while also considering actuator dynamics.

Despite these significant advances in the development of track-
ing control strategies, stability properties remained asymptotic at
best. A significant step forward was made in the work [4], which
used the Immersion and Invariance technique to develop a con-
trol scheme that rendered the target trajectory uniformly globally
exponentially stable. The primary drawback of the approach was
that the control system had a dimension 3𝑛 + 1, where 𝑛 is the
dimension of the configuration space. A simpler method ensur-
ing global exponential stability of the tracking system using a
filtered quantity in place of a velocity observer was introduced in
[17] by exploiting some structural properties of Euler-Lagrange
systems. More recently, the work [18] proposed a control scheme
that achieves global finite time convergence and local exponential
stability while satisfying actuator constraints.

These works have resulted in significant progress toward track-
ing methods using only position information that result in strong
stability guarantees. While many of these works have considered
the role of model uncertainty, however, only a few authors have
directly considered the impact of unmodeled perturbations on
the control system. A constant unknown disturbance was con-
sidered in [8] where the disturbance was compensated for by
an adaptive scheme. The role of an arbitrary bounded external
perturbation was explicitly considered in [19] where a sliding
mode controller was used to guarantee global asymptotic stabil-
ity, rejecting the effects of certain types of model uncertainty and
bounded external perturbations. The trade-off for this guarantee
was chattering in the control signal. This limitation was relaxed in
the later work [20] where robust and adaptive methods were com-
bined to achieved asymptotic tracking with better experimental
performance when compared to prior solutions.

A general summary of the surveyed works related to tracking con-
trol systems using only position measurements is included below.
There is significant variation between the models used and the
type of stability considered, so we have highlighted the control

method, type of stability considered and if the models considered
external disturbances.

With the exception of [7, 8, 19], these prior works have excluded
analysis on the impact of external disturbances on the tracking
control schemes. Additionally, these works are all subject to con-
ditions on the controller gains to ensure the claimed stability
results hold. In this work, we significantly extend the stability
properties of tracking control systems by proposing a tracking
scheme that is Input-to-State stable with respect to external per-
turbations. The control scheme utilizes the hybrid momentum
observer proposed in [21] to estimate the system’s momentum
online. An interesting property of this observer is that the estima-
tion error dynamics are passive, with the estimation error being
a passive output. This property is exploited in this work to inter-
connect the observer with the proposed tracking error dynamics
that are similarly designed to be a passive system. The result of
this interconnection approach is a joint Lyapunov function for
the observer and tracking controller which is valid for all posi-
tive choices of controller gains, avoiding the need for small gain
theorems [22] or separation principles [23, 24]. It is additionally
shown that the impact of bounded disturbances can be attenuated
arbitrarily via a suitable selection of controller gains.

The remainder of the paper is structured as follows: In Section 2,
some requisite background materials on mechanical and hybrid
systems is introduced before formally stating the problem being
addressed. The aforementioned momentum observer, which
is fundamental to the main result, is revised in Section 3.
A tracking control law that results in passive tracking error
dynamics is proposed and interconnected with the observer in
Section 4. The results are then demonstrated numerically on a 2
degree-of-freedom manipulator system in Section 5 before con-
clusions are drawn in Section 6.

Notation. Function arguments are declared upon definition and
are omitted for subsequent use. 0

𝑛×𝑚 denotes a 𝑛 × 𝑚 matrix
where each entry is equal to zero and 𝐼

𝑛
is a 𝑛 × 𝑛 identity matrix.

For 𝑥 ∈ ℝ𝑛, 𝑃 ∈ ℝ𝑛×𝑛, 𝑃 > 0 we define ||𝑥||2
𝑃
= 𝑥⊤𝑃𝑥. For 𝑆 ∈

ℝ𝑛×𝑞 we use the symbol ||𝑆|| to denote its induced norm. For map-
pings 𝐻 ∶ ℝ𝑛 → ℝ and 𝐺 ∶ ℝ𝑛 ×ℝ𝑚 → ℝ we denote the trans-

posed gradient as∇𝐻 ∶=
(
𝜕𝐻

𝜕𝑥

)
⊤

, the transposed Jacobian matrix

as ∇
𝑥
𝐺(𝑥, 𝑦) ∶=

(
𝜕𝐺

𝜕𝑥

)
⊤

. For a real matrix 𝐴 ∈ ℝ𝑛×𝑛, we denote
the symmetric component as symm(𝐴) = 1

2
(𝐴 + 𝐴⊤). For a dis-

crete event occurring at time𝑇 and a time-varying parameter𝜙(𝑡),
𝜙
− = lim

𝑡→𝑇 − 𝜙(𝑡) whereas 𝜙+ = 𝜙(𝑇 ).

2 | Background and Problem Formulation

In this section, some key background materials are summarized,
and the problem being addressed within the article is formally
stated.

2.1 | System Model

This work considers the class of fully actuated mechani-
cal systems described within the port-Hamiltonian formalism,
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described by
[
𝑞̇

𝑝̇0

]

=

[
0
𝑛×𝑛 𝐼

𝑛

−𝐼
𝑛
−𝐷0(𝑞)

][
∇
𝑞
𝐻0

∇
𝑝0
𝐻0

]

+

[
0
𝑛×𝑛

𝐺0(𝑞)

]

𝑢 −

[
0
𝑛×1

𝛿
𝑝0
(𝑡)

]

𝑦 = 𝐺⊤0 (𝑞)∇𝑝0
𝐻0

𝐻0(𝑞, 𝑝0) =
1
2
𝑝
⊤

0𝑀
−1(𝑞)𝑝0 + 𝑉 (𝑞) (1)

where 𝑞 ∈ ℝ𝑛 is the configuration, 𝑝0 ∈ ℝ𝑛 is the canonical
momentum, 𝑉 (𝑞) ∈ ℝ+ is the potential energy,𝑀(𝑞) =𝑀⊤(𝑞) ∈
ℝ𝑛×𝑛 is the uniformly positive definite mass matrix satisfying

𝑚𝐼
𝑛
≤𝑀(𝑞) =𝑀⊤(𝑞) ≤ 𝑚𝐼

𝑛
(2)

for some 𝑚 > 𝑚 > 0, 𝐻0(𝑞, 𝑝0) ∈ ℝ+ is the Hamiltonian, 𝐺0(𝑞) ∈
ℝ𝑛×𝑛 is the full rank input mapping matrix, 𝐷0(𝑞) = 𝐷⊤

0 (𝑞) ∈
ℝ𝑛×𝑛 is the open-loop damping matrix which is positive semidef-
inite and 𝑢, 𝑦 ∈ ℝ𝑛 are the input and corresponding passive
output, respectively. The mass matrix is assumed to be differ-
entiable for all 𝑞 with continuous derivatives. The system is
subject to an external disturbance 𝛿

𝑝0
(𝑡), which satisfies the

bound

𝛾 = sup
𝑡

‖
‖
‖
𝛿
𝑝0
(𝑡)‖‖
‖

(3)

for some 𝛾 ≥ 0. This disturbance could represent, for example,
external forces, input signal imperfections, or modelling errors.
While the bound 𝛾 is assumed to exist, it does not need to be
known for control implementation.

2.2 | Passive Hybrid Systems

A hybrid system with state 𝑥 ∈ ℝ𝑛 and input (disturbance) term
𝑤 ∈ ℝ𝑚 is described by

𝑥̇ = 𝑓 (𝑥,𝑤) for (𝑥,𝑤) ∈ 𝐶

𝑥
+ = 𝑔(𝑥,𝑤) for (𝑥,𝑤) ∈ 𝐷

(4)

where 𝐶,𝐷 ⊂ ℝ𝑛 ×ℝ𝑚 that describe the domains of continu-
ous and discrete dynamics, respectively. Solutions of hybrid sys-
tems, 𝑥(𝑡, 𝑗), are defined on hybrid time domains 𝐸 ⊂ ℝ+ × ℤ+
where𝐸 = ∪𝐽−1

𝑗=0
([
𝑡
𝑗
, 𝑡
𝑗+1

]
, 𝑗

)
for some, possibly infinite, sequence

of times 0 = 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝐽 [25, Definition 2.3].

The solutions of the hybrid system contain aspects of both
continuous-time and discrete-time systems. In this work, the
momentum observer is described by hybrid dynamics, and care
must be given for such systems to the domain on which a solution
exists. For a given hybrid time domain 𝐸, we define

sup
𝑡

𝐸 = sup
{
𝑡 ∈ ℝ+ ∶ ∃𝑗 ∈ ℕ such that (𝑡, 𝑗) ∈ 𝐸

}
(5)

Other properties of solutions such as Zeno and eventually discrete
behaviors can be found in [25, Chapter 2].

There are several notions of passivity for hybrid systems that
are similar to the continuous-time and discrete-time definitions.

Considering the hybrid system (4), we introduce a storage
function 𝑆 ∶ ℝ𝑛 → ℝ and output 𝑦(𝑥) ∈ ℝ𝑚. In this work, we are
interested in flow strictly passive systems, which are defined as
follows:

Definition 1 ([26, Definition 9.4]). The hybrid system (4)
with storage function 𝑆 and output 𝑦 is flow passive if

𝑆̇(𝑥) ≤ −𝜌(𝑥) + 𝑦⊤𝑤 for (𝑥,𝑤) ∈ 𝐶

𝑆
+(𝑥) = 𝑆−(𝑥) for (𝑥,𝑤) ∈ 𝐷

(6)

where 𝜌(𝑥) is a positive semidefinite function of 𝑥. It is flow
strictly passive if 𝜌(𝑥) is positive definite.

2.3 | Problem Approach and Contributions

In this note, we propose a trajectory tracking control law for the
fully actuated mechanical system (1) that uses position measure-
ments only. Given a twice differentiable trajectory,

𝑞
𝑑
(𝑡) ∈ ℝ𝑛 (7)

we propose a dynamic control law that requires only measure-
ments of 𝑞(𝑡) such that the tracking error 𝑞

𝑒
(𝑡) ≜ 𝑞(𝑡) − 𝑞

𝑑
(𝑡)

satisfies

• In the absence of a disturbance, 𝛿
𝑝0
(𝑡) = 0

𝑛×1, the tracking
error 𝑞

𝑒
(𝑡) converges at an exponential rate that can be tuned

via controller gains. In contrast to the exponentially stable
controllers proposed in [4, 17], the stability properties in this
work hold for all positive choices of controller gains, simpli-
fying tuning and implementation.

• The tracking error 𝑞
𝑒
(𝑡) is ISS with respect to the unknown

disturbance 𝛿
𝑝0
(𝑡). Moreover, the influence of the distur-

bances can be attenuated via a choice of controller gains. The
ISS property is a stronger robustness property than has been
considered by the prior works summarized in Table 1. More-
over, the ISS property similarly holds for all positive choices
of controller gains.

To the best of the authorŠs knowledge, this is the first tracking
control scheme using only position measurements that is ISS with
respect to external disturbances.

The proposed control scheme utilizes the momentum observer
reported in [21], which is ISS with respect to external distur-
bances and has passive error dynamics with the momentum esti-
mation error being a passive output. The approach taken here is to
construct a tracking controller using the momentum estimate of
the aforementioned observer such that the tracking error dynam-
ics are also a passive system with the estimation error being a pas-
sive input. This enables the observer and tracking controller to be
interconnected via a power-preserving interconnection, resulting
in a storage function for the joint observer and controller system.
The result of this interconnection is that the joint system is stable
for all positive choices of controller gains both within the observer
and tracking controller.
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TABLE 1 | A summary of related works considering tracking control of mechanical systems using position information only.

Paper Control structure Stability type
External

disturbances

[5] State feedback with velocity observer Asymptotic stability No

[7] Adaptive state feedback with filtered quantity Uniform ultimate bound Yes

[6] Adaptive state feedback with filtered quantity Uniform ultimate bound No

[8] Adaptive state feedback with filtered quantity Uniform ultimate bound Yes

[10] Sliding control Semiglobal asymptotic stability No

[27] Passivity-based state feedback with filtered quantity Semiglobal asymptotic stability No

[4] Passivity-based state feedback with I&I velocity observer Global exponential stability No

[11] State feedback with filtered quantity Global asymptotic stability No

[12] State feedback with filtered quantity Global asymptotic stability No

[13] State feedback with filtered quantity Semiglobal asymptotic stability No

[14] State feedback with filtered quantity Semiglobal asymptotic stability No

[17] State feedback with filtered quantity Global exponential stability No

[19] Sliding control Global asymptotic stability Yes

[20] Adaptive sliding control Global asymptotic stability No

[15] Passivity-based state feedback with filtered quantity Global asymptotic stability No

[18] State feedback with filtered quantity Global finite-time stability No
Note: The controller proposed in this work is exponentially stable and ISS with respect to external disturbances.

3 | Momentum Observer

In this section, we summarize the hybrid momentum observer
for mechanical systems studied in [21]. The observer exhibits
a passivity property that is exploited in the sequel to achieve
tracking control.

3.1 | Momentum Transformation

Similar to the prior works [4, 21, 28], the observer and track-
ing controller are defined in a transformed set of coordinates
with the special property that the kinetic energy is indepen-
dent of the configuration vector. The mass matrix has a unique,
symmetric, and uniformly positive-definite square root that
satisfies

𝑀
−1(𝑞) = 𝑇 2(𝑞) = 𝑇 (𝑞)𝑇 (𝑞) (8)

where

𝑚
− 1

2 𝐼
𝑛
≤ 𝑇 (𝑞) = 𝑇 ⊤(𝑞) ≤ 𝑚−

1
2 𝐼
𝑛

(9)

Using this square root, a momentum transformation is
introduced as

𝑝 ∶= 𝑇 (𝑞)𝑝0 (10)

As 𝑀(𝑞) is differentiable with continuous derivatives, 𝑇 (𝑞) and
𝑇
−1(𝑞) similarly are differentiable with continuous derivatives

(see [21] for details).

Under the momentum transformation (10), the dynamics (1) are
described by

[
𝑞̇

𝑝̇

]

=

[
0
𝑛×𝑛 𝑇 (𝑞)
− 𝑇 (𝑞) 𝑆(𝑞, 𝑝) −𝐷(𝑞)

][
∇
𝑞
𝑉

𝑝

]

+

[
0
𝑛×𝑛

𝐺(𝑞)

]

𝑢

−

[
0
𝑛×𝑛

𝑇 (𝑞)

]

𝛿
𝑝0

𝐻(𝑞, 𝑝) = 1
2
𝑝
⊤

𝑝 + 𝑉 (𝑞)

(11)

where

𝐷(𝑞) = 𝑇 (𝑞)𝐷0(𝑞)𝑇 (𝑞)

𝑆(𝑞, 𝑝) = 𝑇 (𝑞)
[
𝜕
⊤

𝜕𝑞

(𝑇 −1(𝑞)𝑝) − 𝜕

𝜕𝑞

(𝑇 −1(𝑞)𝑝)
]

𝑇 (𝑞)

𝐺(𝑞) = 𝑇 (𝑞)𝐺0(𝑞)

(12)

In the transformed coordinates, 𝐷(𝑞) is the open-loop damping
matrix, which satisfies 𝐷(𝑞) = 𝐷(𝑞)⊤ ≥ 0 and 𝐺(𝑞) is the input
mapping matrix. As both 𝐺0(𝑞) and 𝑇 (𝑞) are full-rank, 𝐺(𝑞) is
full-rank also.

The matrix 𝑆(𝑞, 𝑝) plays a significant role in the definition of the
momentum observer, so its properties should be highlighted. The
matrix is skew-symmetric and is linear an its second argument 𝑝.
Due to this linearity, we can implicitly define a matrix 𝑆(𝑞, 𝑝) ∈
ℝ𝑛×𝑛 satisfying

𝑆(𝑞, 𝑎)𝑏 = 𝑆(𝑞, 𝑏)𝑎 (13)
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for any two vectors 𝑎, 𝑏 ∈ ℝ𝑛. While 𝑆(𝑞, 𝑝) is skew-symmetric,
𝑆(𝑞, 𝑝) is not necessarily skew-symmetric. The matrix 𝑆(𝑞, 𝑝)
is, however, linear in its second argument and all elements are
continuous with respect to 𝑞, 𝑝.

Remark 1. The proposed tracking control scheme requires the
matrices 𝑇 (𝑞), 𝑆(𝑞, 𝑝), and 𝑆(𝑞, 𝑝) for implementation. While
these terms are often difficult to compute in closed form, they can
be computed numerically point-wise for implementation. First,
the matrix 𝑇 (𝑞) can be evaluated as the unique positive-definite
matrix square-root of 𝑀−1(𝑞). Evaluation of 𝑆(𝑞, 𝑝) requires the
partial derivatives 𝜕

𝜕𝑞
𝑖

(
𝑇
−1(𝑞)

)
which can be evaluated point-wise

as the solution to the Lyapunov equation

𝜕

𝜕𝑞
𝑖

(𝑀(𝑞)) = 𝜕

𝜕𝑞
𝑖

(
𝑇
−1(𝑞)

)
𝑇
−1(𝑞) + 𝑇 −1(𝑞) 𝜕

𝜕𝑞
𝑖

(
𝑇
−1(𝑞)

)
(14)

Using these partial derivatives, we construct the matrix

𝐴(𝑞, 𝑝) =
[
𝜕

𝜕𝑞1

(
𝑇
−1(𝑞)

)
𝑝 · · · 𝜕

𝜕𝑞
𝑛

(
𝑇
−1(𝑞)

)
𝑝

]

(15)

which allows evaluation of 𝑆(𝑞, 𝑝) as

𝑆(𝑞, 𝑝) = 𝑇 (𝑞)
[
𝐴
⊤(𝑞, 𝑝) − 𝐴(𝑞, 𝑝)

]
𝑇 (𝑞) (16)

Due to the linearity of 𝑆(𝑞, 𝑝), it can be represented as

𝑆(𝑞, 𝑝) =
𝑛∑

𝑖=1
𝑆(𝑞, 𝑒

𝑖
)𝑝
𝑖

(17)

which allows for evaluation of 𝑆(𝑞, 𝑝) as

𝑆(𝑞, 𝑝) =
[

𝑆(𝑞, 𝑒1)𝑝 𝑆(𝑞, 𝑒2)𝑝 · · · 𝑆(𝑞, 𝑒𝑛)𝑝
]

(18)

3.2 | Momentum Observer

The proposed tracking control scheme assumes the use of the
hybrid momentum observer previously proposed in [21, 29]. The
observer requires direct measurement of the configuration vec-
tor 𝑞 and generates an estimate for the transformed momen-
tum vector 𝑝, given by 𝑝̂ ∈ ℝ𝑛. The particular properties of this
observer that are required for subsequent developments are that
the momentum estimation error is ISS with respect to external
disturbances, and the error dynamics are passive with the estima-
tion error being the passive output. These properties are exploited
in the sequel to extend similar properties to the proposed tracking
system.

The hybrid observer dynamics has state dimension 𝑛 + 1, where
𝑛 is the number of degrees-of-freedom of the underlying mechan-
ical system. The state vector is partitioned into 𝑥

𝑝
∈ ℝ𝑛 which is

a piece-wise continuous state and 𝜙 ∈ ℝ+ which is a piece-wise
constant state. These two terms are used together to form an esti-
mate for the momentum, 𝑝̂. The behavior of the observer are
defined by the hybrid dynamics

⎧
⎪
⎨
⎪
⎩

[𝑥̇
𝑝
, 𝜙̇] = [𝑓

𝑥
𝑝

(𝑞, 𝑝̂, 𝜙), 0], (𝑥
𝑝
, 𝜙, 𝑞) ∈ 

[𝑥+
𝑝
, 𝜙

+] = [𝑥
𝑝
− 𝜅𝑞, 𝜙 + 𝜅], (𝑥

𝑝
, 𝜙, 𝑞) ∈ 𝑐

𝑝̂(𝑥
𝑝
, 𝜙, 𝑞) = 𝑥

𝑝
+ 𝜙𝑞

(19)

where

 ∶=
{

(𝑥
𝑝
, 𝜙, 𝑞) | 𝜙𝑇 (𝑞) − symm(𝑆(𝑞, 𝑝̂)) ≥ 𝜅𝐼

𝑛

}

𝑓
𝑥
𝑝

(𝑞, 𝑝̂, 𝜙, 𝑢, 𝑢
𝑜
) ∶= [𝑆(𝑞, 𝑝̂) −𝐷(𝑞) − 𝜙𝑇 (𝑞)]𝑝̂

− 𝑇 (𝑞)∇
𝑞
𝑉 (𝑞) + 𝐺(𝑞)

[
𝑢 + 𝑢

𝑜

]

(20)

The system model terms used in the observer definition are
defined in (11), (12). The input 𝑢 is the same input used for the
plant (11), whereas 𝑢

𝑜
∈ ℝ𝑛 is an additional observer input that

is utilized as part of the tracking control stage to complete a
passive interconnection between the observer and tracking con-
troller. The solution to the observer (19) is defined on a hybrid
time domain denoted by 

𝑜
.

The behavior of the observer is tuned by a single user-defined
constant 𝜅 ∈ ℝ+ which specifies a minimum amount of damping
that should be present in the observer. Note that the observer sta-
bility properties hold for all positive values of 𝜅. The domains of
continuous and discrete dynamics are defined by the set  which
is a matrix inequality as a function of 𝜅. The term on the left of
the inequality 𝜙𝑇 (𝑞) − symm(𝑆(𝑞, 𝑝̂)) defines the damping of the
observer error dynamics and must be positive to ensure conver-
gence of the solution. Recalling that 𝑇 (𝑞) > 𝑚−

1
2 𝐼
𝑛
, the inequality

can always be satisfied for𝜙 large enough. The role of the discrete
dynamics is to ensure that the observer state 𝜙 is always suffi-
ciently large so that the damping term is always greater than the
user-specified minimum damping 𝜅𝐼

𝑛
. The discrete dynamics for

𝑥
𝑝

ensure continuity of the momentum estimate 𝑝̂ at any discrete
event of the momentum observer.

By ensuring a minimum level of damping for the observer, it is
possible to verify ISS of the estimation error with respect to exter-
nal disturbances and exponential stability when there is no dis-
turbance. The key properties of the observer are summarized in
the following proposition. For further details of the derivations
and extended discussion, please refer to the prior work [21].

Proposition 1 ([21, Proposition 1]). Consider the hybrid
momentum observer (19) for estimating the momentum of the
mechanical system (11) and assume that (11) has a solution
𝑞(𝑡), 𝑝(𝑡) on some time domain 

𝐿
=
[
0, 𝑇

𝐿

)
with 𝑇

𝐿
≤ ∞. The

resulting estimation error system has the following properties:

a. The momentum estimation error 𝑝̃ ∶= 𝑝̂ − 𝑝 has the
dynamics

̇̃𝑝 = [𝑆(𝑞, 𝑝) + 𝑆(𝑞, 𝑝̂) −𝐷(𝑞) − 𝜙𝑇 (𝑞)]

× ∇
𝑝̃
𝐻
𝑜
+ 𝐺(𝑞)𝑢

𝑜
+ 𝑇 (𝑞)𝛿

𝑝0
, (𝑥

𝑝
, 𝜙, 𝑞) ∈ 

𝑝̃
+ = 𝑝̃−, (𝑥

𝑝
, 𝜙, 𝑞) ∈ 𝑐

𝑦
𝑜
= 𝐺⊤(𝑞)𝑝̃

𝐻
𝑜
(𝑝̃) = 1

2
||𝑝̃||2

(21)

and both 𝑝̃(𝑡),𝐻
𝑜
(𝑡) are continuous on 

𝑜
.

b. The observer error dynamics (21) are flow strictly passive
with input-output pairs (𝑢

𝑜
, 𝑦
𝑜
), (𝛿

𝑝0
, 𝑦
𝛿
) and storage function
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𝐻
𝑜
(𝑝̃), satisfying

𝐻̇
𝑜
≤ −2𝜅𝐻

𝑜
+ 𝑝̃⊤𝐺(𝑞)
⏟⏟⏟

∶=𝑦⊤
𝑜

𝑢
𝑜
+ 𝑝̃⊤𝑇 (𝑞)
⏟⏟⏟

∶=𝑦⊤
𝛿

𝛿
𝑝0
, (𝑥

𝑝
, 𝜙, 𝑞) ∈ 

𝐻
+
𝑜
= 𝐻−

𝑜
, (𝑥

𝑝
, 𝜙, 𝑞) ∈ 𝑐

(22)

c. If 𝑢
𝑜
= 0

𝑛×1, the momentum estimate 𝑝̂(𝑡) exists for all 𝑡 ∈ 
𝐿

and the observer estimation error 𝑝̃(𝑡) is ISS with respect to an
unknown input 𝛿

𝑝0
, satisfying the bound

||𝑝̃(𝑡)|| ≤
√

2𝐻
𝑜
(0)𝑒−

1
2
𝜅𝑡 + 𝑚−

1
2 𝜅

−1
𝛾 (23)

for all 𝑡 ∈ 
𝐿

. If 𝛿
𝑝0
= 0

𝑛×1, 𝑝̃ = 0
𝑛×1 is a globally exponen-

tially stable equilibrium.

In the sequel, a tracking controller will be defined that utilizes
the momentum estimate 𝑝̂ as part of the tracking error definition.
For that development, it will be useful to describe the dynamics
of the momentum estimate directly. Considering the definition of
𝑝̂ in (19) and the dynamics of 𝑥

𝑝
, 𝜙 and 𝑞, it can be verified that 𝑝̂

evolves according to

̇
𝑝̂ = [𝑆(𝑞, 𝑝̂) −𝐷(𝑞)]𝑝̂ − 𝑇 (𝑞)∇

𝑞
𝑉 (𝑞) + 𝐺(𝑞)

[
𝑢 + 𝑢

𝑜

]

− 𝜙𝑇 (𝑞)𝑝̃, (𝑥
𝑝
, 𝜙, 𝑞) ∈ 

𝑝̂
+ = 𝑝̂−, (𝑥

𝑝
, 𝜙, 𝑞) ∈ 𝑐

(24)

Note that the momentum estimate is continuous as a function of
time, but has a discontinuous derivative at jump events. When
the dynamics of 𝑝̂ are compared to the dynamics of 𝑝 in (11), it
can be seen that the momentum estimate dynamics are a copy
of the underlying plant dynamics with an additional correction
term −𝜙𝑇 (𝑞)𝑝̃ and an additional input term 𝑢

𝑜
.

4 | Tracking Control Design

In this section, a tracking control law is proposed that controls the
mechanical system (1) to the target trajectory (7). The tracking
control law assumes that the momentum observer (19) is used to
estimate the systemŠs momentum from position measurements.
The novelty of this approach is the construction of a tracking
error system that is defined by the difference between the tar-
get momentum and the estimated momentum. This is in contrast
with most tracking approaches that construct the error coordi-
nate between the target momentum and the true momentum (or
velocities). The advantage in constructing the error dynamics in
this way is twofold. First, the unknown disturbance term 𝛿

𝑝0
(𝑡)

does not appear in the tracking error dynamics, and second, the
resulting error dynamics allow for joint stability analysis of the
observer and controller systems.

4.1 | Feed-Forward Tracking Control

In order to stabilize the target trajectory, a suitable error coordi-
nate is introduced, and a feed-forward controller is proposed. To
this end, we define the tracking error as

𝑞
𝑒
(𝑞, 𝑡) ∶= 𝑞 − 𝑞

𝑑
(𝑡) (25)

where 𝑞 is the plant’s configuration (11) and 𝑞
𝑑

is the target tra-
jectory (7). The error coordinate 𝑞

𝑒
evolves according to

𝑞̇
𝑒
= 𝑞̇ − 𝑞̇

𝑑
= 𝑇

[
𝑝 − 𝑇 −1

𝑞̇
𝑑

]

= −𝑇 𝑝̃ + 𝑇
[
𝑝̂ − 𝑇 −1

𝑞̇
𝑑

] (26)

where 𝑝̂ is the estimate of the momentum from the observer (19)
and 𝑝̃ is the observer’s estimation error.

We similarly require a tracking error for the momentum coordi-
nate to be used for the tracking controller definition. For a given
trajectory 𝑞

𝑑
(𝑡), the target momentum is defined to be

𝑝
𝑑
(𝑞, 𝑡) ∶= 𝑇 −1(𝑞)𝑞̇

𝑑
(𝑡) (27)

It is tempting to then define the momentum error as the dif-
ference between the system’s momentum 𝑝(𝑡) and the target
momentum. Contrary to this, however, we define the momentum
tracking error as the difference between the estimated momen-
tum 𝑝̂, defined in (19), and the desired momentum

𝑝
𝑒
(𝑞, 𝑥

𝑝
, 𝜙, 𝑡) ∶= 𝑝̂(𝑞, 𝑥

𝑝
, 𝜙) − 𝑝

𝑑
(𝑞, 𝑡) (28)

By defining the momentum error in this way, the unknown dis-
turbance term 𝛿

𝑝0
(𝑡) does not appear in the resulting tracking

error dynamics. Additionally, the momentum estimation error
𝑝̃ = 𝑝̂ − 𝑝 appears linearly in the resulting dynamics and can
be treated as an input for the purpose of interconnecting the
observer and controller systems. The dynamics of the tracking
error dynamics and a feed-forward controller are defined in the
following proposition.

Proposition 2. Consider the mechanical system (11) together
with the hybrid momentum observer (19). Defining the gravity com-
pensation and tracking feed-forward control law

𝑢 = −𝑢
𝑜
+ 𝐺−1(𝑞)

{

− [𝑆(𝑞, 𝑝̂) −𝐷(𝑞)]𝑝
𝑑
+ 𝑇 (𝑞)∇

𝑞
𝑉

+
𝜕𝑝

𝑑

𝜕𝑞

𝑇 (𝑞)𝑝̂ + 𝑇 −1(𝑞)𝑞
𝑑
+ 𝑣

} (29)

results in the tracking error dynamics

[
𝑞̇
𝑒

𝑝̇
𝑒

]

=

[
0
𝑛×𝑛 𝑇 (𝑞)

−𝑇 (𝑞) 𝑆(𝑞, 𝑝̂) −𝐷(𝑞)

][
∇
𝑞
𝑒

𝐻
𝑒

∇
𝑝
𝑒

𝐻
𝑒

]

+

[
0
𝑛×1

𝑣

]

−

[
𝑇 (𝑞)

𝜙𝑇 (𝑞) − 𝜕𝑝
𝑑

𝜕𝑞

(𝑞, 𝑡)𝑇 (𝑞)

]

𝑝̃, (𝑥
𝑝
, 𝜙, 𝑞) ∈ 

[
𝑞
+
𝑒

𝑝
+
𝑒

]

=

[
𝑞
−
𝑒

𝑝
−
𝑒

]

, (𝑥
𝑝
, 𝜙, 𝑞) ∈ 𝑐

𝐻
𝑒
= 1

2
‖
‖𝑝𝑒

‖
‖

2

(30)

where 𝑣 ∈ ℝ𝑛 is an additional input for subsequent control design.

Proof. Verification of the 𝑞
𝑒

dynamics on  follows from (26),
together with the definition of 𝑝

𝑑
in Equation (27) and 𝑝

𝑒
in

Equation (28). Verification of the 𝑝
𝑒

dynamics follows from
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taking the time derivative of Equation (28) and substituting the
expressions (27), (24), yielding

𝑝̇
𝑒
= ̇
𝑝̂ − 𝑝̇

𝑑

= [𝑆(𝑞, 𝑝̂) −𝐷(𝑞)]𝑝̂ − 𝑇 (𝑞)∇
𝑞
𝑉 (𝑞) + 𝐺(𝑞)

[
𝑢 + 𝑢

𝑜

]

− 𝜙𝑇 (𝑞)𝑝̃ −
𝜕𝑝

𝑑

𝜕𝑞

𝑇 (𝑞)𝑝 − 𝑇 −1(𝑞)𝑞
𝑑

(31)

Substituting the control law (29) into this expression recovers the
dynamics in Equation (30). The signal 𝑞

𝑒
is continuous on the set

𝑐 as both 𝑞, 𝑞
𝑑

are continuous. Continuity of 𝑝
𝑒

is inherited from
the continuity of 𝑝̂. ◽

Considering the tracking error system (30) the advantage of tak-
ing the momentum error as the difference between the momen-
tum estimate and desired momentum is evident. The states 𝑞

𝑒
, 𝑝
𝑒
,

storage function𝐻
𝑒
, and the interconnection and damping struc-

tures are exactly known for control purposes. The only uncertain
term is the momentum estimation error 𝑝̃which enters the track-
ing error dynamics linearly. Note that the unknown disturbance
term 𝛿

𝑝0
(𝑡) does not appear in these dynamics.

4.2 | Kinetic-Potential Energy Shaping

We now consider secondary control design to render the origin
of the tracking error system (30) attractive. As the state vector,
energy function and interconnection and damping structures of
the tracking system (30) are exactly known for control purposes,
the control objective can be achieved by direct application of a
variety of energy-shaping methods. Here, we utilize the method
of kinetic-potential energy shaping [28] to inject damping into
the configuration tracking error coordinates, resulting in a strictly
flow passive property that will be required for joint analysis of the
observer and controller systems.

Proposition 3. Consider the tracking error system (30) in
closed loop with the KPES control law1

𝑣 = 𝛼
[
𝑆(𝑞, 𝑝̂) −𝐷(𝑞) −𝐾

𝑑

]
𝐾
𝑝

[
𝑞
𝑒
+ 𝛼𝑝

𝑒

]

− 𝑇 (𝑞)𝐾
𝑝

[
𝑞
𝑒
+ 𝛼𝑝

𝑒

]
−𝐾

𝑑
𝑝
𝑒

(32)

where 𝐾
𝑝
∈ ℝ𝑛×𝑛, 𝐾

𝑑
∈ ℝ𝑛×𝑛, 𝛼 ∈ ℝ+ are positive definite tuning

parameters. The following properties hold

a. The closed-loop dynamics have the form

[
𝑞̇
𝑒

𝑝̇
𝑒

]

=

[
−𝛼𝑇 (𝑞) 𝑇 (𝑞)
−𝑇 (𝑞) 𝑆(𝑞, 𝑝̂) −𝐷(𝑞) −𝐾

𝑑

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=𝐹
𝑒
(𝑞,𝑝̂)

[
∇
𝑞
𝑒

𝐻̃
𝑒

∇
𝑝
𝑒

𝐻̃
𝑒

]

−

[
𝑇 (𝑞)

𝜙𝑇 (𝑞) − 𝜕𝑝
𝑑

𝜕𝑞

(𝑞, 𝑡)𝑇 (𝑞)

]

𝑝̃, (𝑥
𝑝
, 𝜙, 𝑞) ∈ 

[
𝑞
+
𝑒

𝑝
+
𝑒

]

=

[
𝑞
−
𝑒

𝑝
−
𝑒

]

, (𝑥
𝑝
, 𝜙, 𝑞) ∈ 𝑐

𝑦̃
𝑒
= −𝑇 (𝑞)

[

𝐼
𝑛
, 𝜙𝐼

𝑛
− 𝜕

⊤
𝑝
𝑑

𝜕𝑞

(𝑞, 𝑡)
]

∇𝐻̃
𝑒

𝐻̃
𝑒
(𝑞
𝑒
, 𝑝
𝑒
) = 1

2
‖
‖𝑝𝑒

‖
‖

2 + 1
2
‖
‖𝑞𝑒 + 𝛼𝑝𝑒‖‖

2
𝐾
𝑝

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

∶=𝑉
𝑑
(𝑞
𝑒
,𝑝
𝑒
)

(33)

b. The closed-loop dynamics (33) are flow strictly passive with
storage function 𝐻̃

𝑒
, input 𝑝̃ and output 𝑦̃

𝑒
, satisfying the

inequality

̇̃
𝐻
𝑒
≤ −2

𝜆
𝑚𝑖𝑛
(𝑄𝑅

𝑐𝑙
𝑄)

𝜆
𝑚𝑎𝑥
(𝑄)

𝐻̃
𝑒
+ 𝑦̃⊤

𝑒
𝑝̃, (𝑥

𝑝
, 𝜙, 𝑞) ∈ 

𝐻̃

+
𝑒
= 𝐻̃−

𝑒
, (𝑥

𝑝
, 𝜙, 𝑞) ∈ 𝑐

(34)

where

𝑄 =

[
𝐾
𝑝

𝛼𝐾
𝑝

𝛼𝐾
𝑝
𝐼
𝑛
+ 𝛼2

𝐾
𝑝

]

, 𝑅
𝑐𝑙
=

[
𝛼𝑇 (𝑞) 0

𝑛×𝑛

0
𝑛×𝑛 𝐷(𝑞) +𝐾

𝑑

]

(35)

Proof. To verify Claim a), note that the gradients of the kinetic-
potential function 𝑉

𝑑
satisfy

∇
𝑞
𝑒

𝑉
𝑑
= 𝐾

𝑝
(𝑞
𝑒
+ 𝛼𝑝

𝑒
)

∇
𝑝
𝑒

𝑉
𝑑
= 𝛼𝐾

𝑝
(𝑞
𝑒
+ 𝛼𝑝

𝑒
)

(36)

As −𝛼𝑇 (𝑞)∇
𝑞
𝑒

𝑉
𝑑
+ 𝑇 (𝑞)∇

𝑝
𝑒

𝑉
𝑑
= 0

𝑛×1, the dynamics of 𝑞
𝑒

can be
seen to match (30). Verification of the 𝑝

𝑒
dynamics follows from

direct substitution of the control law (32) into (30). Continuity of
𝑞
𝑒
, 𝑝
𝑒

at jump events is inherited from Equation (30).

Considering Claim b), first note that the function 𝐻̃
𝑒

satisfies

𝐻̃
𝑒
= 1

2

[
𝑞
𝑒

𝑝
𝑒

]⊤[
𝐾
𝑝

𝛼𝐾
𝑝

𝛼𝐾
𝑝
𝐼
𝑛
+ 𝛼2

𝐾
𝑝

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑄

[
𝑞
𝑒

𝑝
𝑒

]

, ∇𝐻̃
𝑒
= 𝑄

[
𝑞
𝑒

𝑝
𝑒

]

(37)

The time evolution of 𝐻̃
𝑒

along the flow dynamics of Equation
(33) satisfies

̇̃
𝐻
𝑒
= −∇⊤𝐻̃

𝑒

[
𝛼𝑇 (𝑞) 0

𝑛×𝑛

0
𝑛×𝑛 𝐷(𝑞) +𝐾

𝑑

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑅
𝑐𝑙

∇𝐻̃
𝑒

− ∇⊤𝐻̃
𝑒

[
𝑇 (𝑞)
𝜙𝑇 (𝑞) + 𝜕𝑝

𝑑

𝜕𝑞

(𝑞, 𝑡)𝑇 (𝑞)

]

𝑝̃

= −

[
𝑞
𝑒

𝑝
𝑒

]⊤

𝑄𝑅
𝑐𝑙
𝑄

[
𝑞
𝑒

𝑝
𝑒

]

+ 𝑦̃⊤
𝑒
𝑝̃

(38)

Combining the expressions (37), (38) results in the passivity
inequality (34). Continuity of 𝐻̃

𝑒
at a jump event is inherited from

the continuity of 𝑞
𝑒
, 𝑝
𝑒

at jump events. ◽

From Equation (34) it is clear that the tracking error dynamics
are flow strictly passive where the rate of energy dissipation is
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FIGURE 1 | Minimum dissipation rate of the tracking error dynamics
as a function of 𝛼 and 𝐾

𝑝
. The gain 𝐾

𝑑
has been set to 10 for this plot.

lower-bounded by the quantity 𝜆
𝑚𝑖𝑛
(𝑄𝑅

𝑐𝑙
𝑄)

𝜆
𝑚𝑎𝑥
(𝑄)

. Considering the defi-
nitions of 𝑄,𝑅

𝑐𝑙
in Equation (35), it can be seen that the selec-

tion of𝐾
𝑝

and 𝛼 influences both the numerator and denominator
of this expression, making a simple tuning guideline difficult to
establish. Rather, a contour plot of the ratio 𝜆

𝑚𝑖𝑛
(𝑄𝑅

𝑐𝑙
𝑄)

𝜆
𝑚𝑎𝑥
(𝑄)

was gen-
erated for the scalar case (𝑛 = 1) in Figure 1 for the special case
𝑇 (𝑞) = 1, 𝐷(𝑞) = 1, 𝐾

𝑑
= 10. This plot suggests that for a given

choice of𝐾
𝑑
, the tuning gains 𝛼,𝐾

𝑝
can be chosen within a region

relatively small to maximize the dissipation rate. A similar profile
is recovered for different choices of 𝐾

𝑑
.

4.3 | Passive Interconnection of Observer
and Controller

We now consider the joint behavior of the momentum observer
(19) with the tracking control law (32) by exploiting the passivity
properties of each system. From Proposition 1, the momentum
observer is flow strictly passive, satisfying the passivity inequal-
ity (22). In particular, note that the passive output 𝑦

𝑜
is a lin-

ear mapping of the momentum estimation error 𝑝̃. Conversely,
Proposition 3 states that the tracking error dynamics are flow
strictly passive, satisfying the passivity inequality (34). This pas-
sivity inequality has the momentum estimation error as the pas-
sive input. The common appearance of the momentum estima-
tion error within the passivity inequalities of the observer and
tracking control systems allows the two systems to be passively
interconnected.

The passive input to the tracking error dynamics is the momen-
tum estimation error, which is the passive output of the momen-
tum observer. This implies that one direction of the passivity
interconnection is already established through the definition of
the observer and tracking control dynamics. To complete the
passive interconnection of the two systems, the passive output
of the tracking error dynamics, 𝑦̃

𝑒
, needs to be interconnected

FIGURE 2 | Passive interconnection of the momentum observer sys-
tem with the tracking control system. Σ

𝑜
represents the observer system

in Equation (21) and Σ
𝑡

represents the tracking system in Equation (33).

with the passive input to the observer dynamics 𝑢
𝑜
. The total

power-preserving interconnection between the two systems is
given by

[
𝑝̃

𝑢
𝑜

]

=

[
0
𝑛×𝑛 𝐺

−⊤(𝑞)
−𝐺−1(𝑞) 0

𝑛×𝑛

][
𝑦̃
𝑒

𝑦
𝑜

]

(39)

The resulting feedback interconnection is shown in Figure 2.

The feedback interconnection of two passive systems results
in a passive system with storage function that is the sum of
the individual storage function. The resulting storage func-
tion for the interconnected observer and controller systems is
defined as

𝑊 (𝑝̃, 𝑞
𝑒
, 𝑝
𝑒
) = 𝐻

𝑜
(𝑝̃) + 𝐻̃

𝑒
(𝑞
𝑒
, 𝑝
𝑒
) (40)

The resulting passivity inequality is obtained by taking the time
derivative of this expression and substituting in the inequalities
(22), (34), together with the interconnection inputs (39). Making
these substitutions on the flow dynamics results in

𝑊̇ = 𝐻̇
𝑜
+ ̇̃
𝐻
𝑒

≤ −2𝜅𝐻
𝑜
+ 𝑝̃⊤𝐺(𝑞)
⏟⏟⏟

𝑦
⊤

𝑜

𝑢
𝑜
+ 𝑦⊤

𝛿
𝛿
𝑝0

− 2
𝜆min(𝑄𝑅𝑐𝑙𝑄)
𝜆max(𝑄)

𝐻̃
𝑒
+ 𝑦̃⊤

𝑒
𝑝̃, (𝑥

𝑝
, 𝜙, 𝑞) ∈ 

≤ −2𝜅𝐻
𝑜
− 2

𝜆min(𝑄𝑅𝑐𝑙𝑄)
𝜆max(𝑄)

𝐻̃
𝑒
+ 𝑦⊤

𝛿
𝛿
𝑝0
, (𝑥

𝑝
, 𝜙, 𝑞) ∈ 

(41)

As both𝐻
𝑜
, 𝐻̃

𝑒
are continuous at any jump event of the observer,

the interconnected observer and controller system is flow strictly
passive with storage function𝑊 , input 𝛿

𝑝0
and output 𝑦

𝛿
. The fol-

lowing proposition formalizes the stability properties of the joint
system.

Proposition 4. Consider the mechanical system (11) with the
hybrid momentum observer (19) and tracking control law (29),
(32). Setting the observer input as 𝑢

𝑜
= −𝐺−1(𝑞)𝑦̃

𝑒
results in the

following:

a. The joint observer and controller system is flow strictly passive
with storage function𝑊 , input 𝛿

𝑝0
and output 𝑦

𝛿
.
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b. The solution to the interconnected system exists for all time
and is ISS with respect to the external disturbance 𝛿

𝑝0
(𝑡),

satisfying the bound

𝑊 (𝑡) ≤ 𝑊 (0)𝑒−𝜑𝑡 + 1
2𝑚𝜅𝜑

𝛾
2 (42)

where
𝜑 = min

{

𝜅, 2
𝜆min(𝑄𝑅𝑐𝑙𝑄)
𝜆max(𝑄)

}

(43)

c. In the absence of an external disturbance, 𝛿
𝑝0
(𝑡) = 0

𝑛×1,
the equilibrium point (𝑝̃, 𝑞

𝑒
, 𝑝
𝑒
) = (0

𝑛×1, 0𝑛×1, 0𝑛×1) is globally
exponentially stable. Moreover, the function 𝑊 (𝑡) is a strict
Lyapunov function satisfying the bound

𝑊 (𝑡) ≤ 𝑊 (0)𝑒−𝜑𝑡 (44)

Proof. Claim a) follows from (41), together with the fact that
𝐻
𝑜
, 𝐻̃

𝑒
are continuous at any jump event.

Now, we consider Claim b) by first verifying that the forward solu-
tion of the joint observer and controller system exists for all time.
Note that this is nontrivial as hybrid system can exhibit Zeno or
eventually discrete behaviors that should be excluded. To do this,
we first consider the evolution of the joint storage function𝑊 (𝑡).
From (41), the time derivative of 𝑊 (𝑡) along the flow dynamics
satisfies

𝑊̇ ≤ −2𝜅𝐻
𝑜
− 2

𝜆
𝑚𝑖𝑛
(𝑄𝑅

𝑐𝑙
𝑄)

𝜆
𝑚𝑎𝑥
(𝑄)

𝐻̃
𝑒
+ 𝑐

2
𝑝̃
⊤

𝑇 (𝑞)𝑇 (𝑞)𝑝̃
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑦
⊤

𝛿
𝑦
𝛿

+ 1
2𝑐

‖
‖
‖
𝛿
𝑝0

‖
‖
‖

2
, (𝑥

𝑝
, 𝜙, 𝑞) ∈ 

(45)

where 𝑐 is an arbitrary constant from application of Young’s
inequality. Recalling the Definitions (8) and (9), we take 𝑐 = 𝑚𝜅
which results in

𝑊̇ ≤ −min
{

𝜅, 2
𝜆min(𝑄𝑅𝑐𝑙𝑄)
𝜆max(𝑄)

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜑

𝑊 + 1
2𝑚𝜅

‖
‖
‖
𝛿
𝑝0

‖
‖
‖

2

(𝑥
𝑝
, 𝜙, 𝑞) ∈ 

(46)

We now construct a bound for the storage function along the
forward solution of the joint observer controller system via an
induction argument. Suppose that jump events occur at times
𝑡1, 𝑡2, . . . , 𝑡𝑁 and assume that the storage function𝑊 (𝑡) satisfies

𝑊 (𝑡) ≤ 𝑊 (0)𝑒−𝜑𝑡 + 𝑒−𝜑𝑡
∫

𝑡

0
𝑒
𝜑𝜏

1
2𝑚𝜅

‖
‖
‖
𝛿
𝑝0
(𝜏)‖‖

‖

2
𝑑𝜏 (47)

for all 𝑡 ∈
[
0, 𝑡

𝑗

]
. By the comparison [30, Lemma 3.4] and the solu-

tion to a LTI system [30, Chapter 4.9], the solution of the expres-
sion (46) on the interval [𝑡

𝑗
, 𝑡
𝑗+1] satisfies the bound

𝑊 (𝑡) ≤ 𝑊 (𝑡
𝑗
)𝑒−𝜑(𝑡−𝑡𝑗 ) + 𝑒−𝜑𝑡

∫

𝑡

𝑡
𝑗

𝑒
𝜑𝜏

1
2𝑚𝜅

‖
‖
‖
𝛿
𝑝0
(𝜏)‖‖

‖

2
𝑑𝜏 (48)

for 𝑡 ∈
[
𝑡
𝑗
, 𝑡
𝑗+1

]
. Evaluating the bound (47) at 𝑡 = 𝑡

𝑗
and substi-

tuting into (48) recovers the bound (47) on the interval
[
0, 𝑡

𝑗+1
]
.

As the bound (47) holds on the interval
[
0, 𝑡1

]
, it follows by

induction that this bound holds on the hybrid time domain.
Recalling that the external force disturbance 𝛿

𝑝0
(𝑡) satisfies the

bound (3), the inequality (47) can be resolved as

𝑊 (𝑡) ≤ 𝑊 (0)𝑒−𝜑𝑡 + 1
2𝑚𝜅

𝛾
2
𝑒
−𝜑𝑡
∫

𝑡

0
𝑒
𝜑𝜏

𝑑𝜏 (49)

which can be evaluated to find the expression (42).

Now, we verify that the forward solution of the joint observer
and controller system exists for all time via a contradiction argu-
ment. For the sake of contradiction, assume that there exists
some 𝑇 at which the observer exhibits Zeno or eventually dis-
crete behavior. Along the forward solution on the interval [0, 𝑇 )
the storage function 𝑊 (𝑡) satisfies the bound (42), implying that
𝑝̃(𝑡) = 𝑝(𝑡) − 𝑝̂(𝑡), 𝑝

𝑒
(𝑡) = 𝑝̂(𝑡) − 𝑝

𝑑
(𝑡) and 𝑞

𝑒
(𝑡) = 𝑞(𝑡) − 𝑞

𝑑
(𝑡) are all

bounded. From the definition of the flow domain in (20), the sys-
tem is in the flow domain if 𝜙 satisfies

𝜙𝑇 (𝑞) − symm(𝑆(𝑞, 𝑝̂)) ≥ 𝜅𝐼
𝑛

(50)

At any given point 𝑡, 𝑝̂(𝑡) exists within a closed and bounded
neighborhood of 𝑝

𝑑
(𝑡) and 𝑞(𝑡) is within a closed and bounded

neighborhood of 𝑞
𝑑
(𝑡). As the elements of 𝑆(𝑞, 𝑝̂) are continuous

functions of 𝑞, 𝑝̂, each element of symm[𝑆(𝑞, 𝑝̂)] is bounded for
𝑡 ∈ [0, 𝑇 ). This implies that there exists some 𝜙𝑇max such that the
inequality (50) holds for all 𝜙 ≥ 𝜙𝑇max. Consequently, only finitely
many jump events can occur on the interval [0, 𝑇 ), which is a
contradiction. We conclude that the forward solution of the joint
observer and controller systems exists for all time.

Claim c) follows as a special case of Claim b). Setting 𝛾 = 0 in
Equation (42) verifies an exponential rate of convergence for the
joint storage function 𝑊 = 𝐻

𝑜
+ 𝐻̃

𝑒
. As both 𝐻

𝑜
and 𝐻̃

𝑒
are

quadratic in the state variables, exponential convergence of the
states 𝑝̃, 𝑞

𝑒
, 𝑝
𝑒

follows. ◽

It has now been established that the proposed tracking control
scheme is ISS with respect to external disturbances and converges
at an exponential rate in the absence of external perturbations.
As the ISS Lyapunov function 𝑊 (𝑡), defined in Equation (40),
is the sum of the observer and tracking controller storage func-
tions, this implies similar properties hold for both the tracking
and observer systems. More specifically, in the absence of external
disturbances, the momentum observer estimate converges expo-
nentially to the true momentum value, and the tracking error
converges to zero at an exponential rate. In the case that there
is an unknown disturbance acting on the system, the error in the
momentum estimate and the tracking error remain bounded with
the bound dependent on the magnitude of the disturbance.

An overview of the total control structure is provided in Figure 3.
In summary of the system roles, the momentum observer (19)
utilizes measurements of the systems configuration and the
known input to generate an estimate of the systems momen-
tum that is ISS with respect to unknown disturbances. The
feed-forward controller (29) generates the tracking error system
(30) about reference trajectory. This system is then controlled to
be strictly passive with respect to the input-output pair (𝑝̃, 𝑦̃

𝑒
) via

the tracking controller (32). Finally, a passive interconnection
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FIGURE 3 | Block diagram overview of the total ISS tracking control scheme.

between the controller and observer is completed by setting
the observer input as per (39). The closed-loop tracking system
resulting from this interconnection possesses the proved stability
properties due to the fact that the observer and tracking control
systems are individually strictly passive.

5 | Numerical Example

In this section, we numerically demonstrate the key results of
this paper on a 2-degree-of-freedom manipulator system (See
Figure 4). It is verified that in the absence of a disturbance
acting on the system, the joint storage function (40) is a strict
Lyapunov function for the joint observer and controller sys-
tem. It is additionally demonstrated that when a disturbance
is acting, the observer gains 𝜅 can be used to attenuate the
asymptotic effect of the disturbance. Evaluation of all terms
related to the momentum transformation in Equation (11) was
done numerically point-wise using the methods detailed in
Remark 1. All of the source code used to generate these results
is available via https://github.com/JoelFerguson/ISS_Tracking_
for_Mechanical_Systems.

5.1 | Dynamic Equations and Reference
Trajectory

The dynamic equations of the robotic manipulator can be
expressed in the form (1) where 𝑞 = (𝜃1, 𝜃2) are the angular
orientations of the first and second manipulator links with
respect to the horizontal plane, respectively. The canonical
momentum is defined by 𝑝0 =𝑀0(𝑞)𝑞̇ with the mass matrix
given by

𝑀0(𝑞) =

[
𝐽1 +

1
4
𝑚1𝑙

2
1 + 𝑚2𝑙

2
1

1
2
𝑙1𝑙2𝑚2 cos(𝜃1 − 𝜃2)

1
2
𝑙1𝑙2𝑚2 cos(𝜃1 − 𝜃2) 𝐽2 +

1
4
𝑚2𝑙

2
2

]

(51)

where 𝑙1, 𝑙2, 𝑚1, 𝑚2, 𝐽1, 𝐽2 are the lengths, masses, and
moments of inertia of the rigid links. The potential energy has
the form

𝑉 (𝑞) = 𝑚2𝑔
(

𝑙1 sin 𝜃1 +
1
2
𝑙2 sin 𝜃2

)

+ 1
2
𝑚1𝑔𝑙1 sin 𝜃1 (52)

FIGURE 4 | Vertical 2 degree-of-freedom manipulator.

where 𝑔 is the acceleration due to gravity. The input mapping
matrix and the damping matrix are given by

𝐺0 =

[
1 −1
0 1

]

, 𝐷0(𝑞) =

[
𝑑
𝑗1
(𝑞) + 𝑑

𝑗2
(𝑞) −𝑑

𝑗2
(𝑞)

−𝑑
𝑗2
(𝑞) 𝑑

𝑗2
(𝑞)

]

(53)

where 𝑑
𝑗1
(𝑞) and 𝑑

𝑗2
(𝑞) are the state-dependent coefficients of the

friction of the first and second joints, respectively. The detailed
physical parameters are listed in Table 2. Finally, for all simula-
tions, the system was initialized from the configuration 𝑞(0) =
[0, 0]⊤ with the initial canonical momentum 𝑝0(0) = [−1, 2]⊤.
Both the observer and tracking controller definitions require the
system to be described in the noncanonical coordinates (11).
All of the required terms were evaluated numerically point-wise
using the methods described in Remark 1.

For all of the subsequent examples, the reference trajectory and
its derivatives are given by

𝑞
𝑑
(𝑡) =

[
sin(𝑡)

cos(2𝑡)

]

, 𝑞̇
𝑑
(𝑡) =

[
cos(𝑡)

−2 sin(2𝑡)

]

, 𝑞
𝑑
(𝑡) =

[
− sin(𝑡)
−4 cos(2𝑡)

]

(54)
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5.2 | Trajectory Tracking With No Disturbances

First, we consider the tracking performance of the joint observer
and controller system in the special case that no disturbance is
acting on the system. That is, 𝛿

𝑝0
(𝑡) = 02×1. From Proposition 4.c

it is expected that the tracking error converges to zero at an
exponential rate, defined by the parameter 𝜑. It is additionally
expected that the joint storage function𝑊 (𝑡) is a strict Lyapunov
function for the joint system. The 2-degree-of-freedom manip-
ulator system was simulated using the control parameters 𝛼 =
0.1, 𝐾

𝑑
= 10𝐼2, 𝐾𝑝 = 6𝐼2 and for several values of observer tun-

ing gains 𝜅. As the parameter 𝜅 appears directly in the expression
for 𝜑, defined in Equation (43), it is expected that this parameter
would impact the rate of convergence.

The resulting trajectories for each of the controller gains, the
momentum estimation error, and the solution of the strict Lya-
punov function 𝑊 (𝑡) are provided in Figure 5. In each case, it
is clear that 𝑊 (𝑡) decreases strictly as expected. Considering the
definition of 𝜑 in Equation (43), it would be reasonable to pre-
sume that larger values of 𝜅 would result in faster rates of decay
of the function 𝑊 (𝑡). While it can be seen in Figure 5 that dur-
ing the initial transient larger values of 𝜅 do translate into faster
decay rates, it can be seen that this trend quickly vanishes. As
the value of 2 𝜆𝑚𝑖𝑛(𝑄𝑅𝑐𝑙𝑄)

𝜆
𝑚𝑎𝑥
(𝑄)

is equal to 0.7294 for this example, this
term becomes the limiting factor is decay rates for values of 𝜅
greater than this value. The simulation results suggest that taking
𝜅 close the value of 2 𝜆min(𝑄𝑅𝑐𝑙𝑄)

𝜆max(𝑄)
results in faster long-term decay

rates. In each case, however, the tracking error quickly converges
toward zero. It is also notable that the momentum estimation

TABLE 2 | Physical parameters.

Link 1 Link 2

Mass 𝑚1 = 3 𝑚2 = 3
Length 𝑙1 = 1 𝑙2 = 1
Moment of inertia 𝐽1 = 3∕12 𝐽2 = 3∕12
Coefficient of friction 𝑑

𝑗1
= 1 𝑑

𝑗2
= 1

Gravitational acceleration 𝑔 = 9.8

error converges to zero at a similar rate as the trajectory converges
to the desired trajectory. This is shown to emphasize that there is
no timescale separation between the observer and tracking con-
troller dynamics in the proposed approach.

5.3 | Trajectory Tracking With Disturbances

The utility of the observer tuning gain 𝜅 is more apparent
when considering the response of the joint observer and track-
ing controller in the presence of disturbances. In this section,
the 2-degree-of-freedom manipulator was simulated with the
constant bounded disturbance term 𝛿

𝑝0
(𝑡) = [1, 1]⊤ for a variety

of values for 𝜅. From Proposition 4.b, the solution of the joint
observer and tracking controller system is ISS with respect to
external disturbances, satisfying the bound (42). Notably, the
observer tuning gain 𝜅 appears in the denominator of the sec-
ond term, which implies that increasing the value of 𝜅 should
have the effect of attenuating the asymptotic effects of bounded
disturbances.

To test this result, the system was simulated using the tuning
gains 𝛼 = 0.1, 𝐾

𝑑
= 10𝐼2, 𝐾𝑝 = 6𝐼2 and for several values for 𝜅

given by 𝜅 = 1, 5, 10. The resulting trajectories for each set of tun-
ing gains, the momentum estimation error and the value of the
ISS Lyapunov function𝑊 (𝑡) are plotted Figure 6. In each case, it
is immediately clear that increasing the value of the observer gain
𝜅 has the intended effect of attenuating the asymptotic effect of
the disturbance. The function𝑊 (𝑡) initially decays and asymptot-
ically falls below a steady-state bound where the bound is smaller
for larger choices of 𝜅. It can additionally be seen that in the first
0.1 s larger values of 𝜅 result in faster initial convergence toward
the reference trajectory. Somewhat counter-intuitively, however,
is the observation that for the period 0.1–1.5 s the convergence
rate is faster for smaller values of 𝜅. As the value of 2 𝜆min(𝑄𝑅𝑐𝑙𝑄)

𝜆max(𝑄)
is 0.7294 for this example, the authors conjecture that increased
values of 𝜅 encourage energy to be routed to the tracking subsys-
tem for dissipation, rather than being dissipated by the observer
subsystem resulting in the observed trajectories of the ISS Lya-
punov function. This observation align with the observation in
[31, Remark 2] in that injecting additional damping into passive
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FIGURE 5 | Performance of tracking controller for several values of observer tuning gains 𝜅 with no disturbance applied to the system. The top two
plots show the tracking results and the bottom two plots show the momentum estimation error, defined in (21). The right plot shows the value of the
strict Lyapunov function𝑊 (𝑡), defined in (40). The exploded view of the first 0.25 s shows that increasing the tuning gain 𝜅 increases the initial rate of
convergence to the desired trajectory.
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FIGURE 6 | Performance of tracking controller for several values of observer tuning gains 𝜅 with an unknown disturbance acting on the system.
The top two plots show the tracking results, and the bottom two show the momentum observer estimation error, defined in Equation (21). The right
plot shows the value of the ISS Lyapunov function𝑊 (𝑡), defined in Equation (40). It is shown that increasing the tuning gain 𝜅 attenuates the effect of
an unknown disturbance on the tracking performance.

systems does not always result in a faster transient convergence.
It can be seen from the plots of configuration 𝑞(𝑡) and momentum
estimation error 𝑝

𝑒
(𝑡) that the bounded disturbance has caused a

bounded perturbation in both of these quantities. The magnitude
of the perturbation, however, is modulated by the tuning parame-
ter 𝜅 with larger values of 𝜅 leading to smaller steady-state errors.

5.4 | Comparative Study

The proposed control scheme was directly compared numerically
against the controllers proposed in [17–19]. These works were
chosen as they are recent iterations of tracking control using fil-
tered quantity in place of velocity observer, robust sliding mode
methods and finite time methods, respectively. As the alternate
tracking controllers do not have a similar ISS property, compari-
son was only performed for the scenario that there is no external
disturbance acting. That is, 𝛿

𝑝0
(𝑡) = 02×1 for the following simu-

lations. We note that the work [19] utilizes a sliding mode tech-
nique and can reject unknown disturbances up to a predefined
bound. This form of robustness is different from the ISS property
established in this work which holds for disturbances of arbitrary
(but bounded) size. The problem setup used throughout this com-
parative study is the same as was defined in Section 5.1.

As all of the comparison works utilize an Euler–Lagrange system
representation, we note that mechanical systems of the form (1)
can be equivalently written in for form

𝑀(𝑞)𝑞 + 𝐶(𝑞, 𝑞̇)𝑞̇ +𝐷0(𝑞)𝑞̇ + ∇𝑞𝑉 (𝑞𝑑(𝑡)) = 𝐺0(𝑞)𝑢 − 𝛿𝑝0
(𝑡) (55)

where 𝐶(𝑞, 𝑞̇) is the centripetal-Coriolis matrix and all other
terms are as defined in Section 2.1. Details on this system rep-
resentation can be found in [32]. For the robotic manipulator in
Section 5.1, the centripetal-Coriolis matrix has the form

𝐶(𝑞, 𝑞̇) =

[
0 1

2
𝑙1𝑙2𝑚2 cos(𝜃1 − 𝜃2)𝜃̇2

1
2
𝑙1𝑙2𝑚2 cos(𝜃1 − 𝜃2)𝜃̇1 0

]

(56)

For the sake of comparison, both the control input and tracking
performance was considered. Along the nominal trajectory there

is a nominal control input to maintain tracking, given by

𝑢
𝑑
(𝑡) = 𝐺−1

0 (𝑞𝑑(𝑡))
[
𝑀(𝑞

𝑑
(𝑡))𝑞

𝑑
(𝑡) + 𝐶(𝑞

𝑑
(𝑡), 𝑞̇

𝑑
(𝑡))𝑞̇

𝑑
(𝑡)

+𝐷0(𝑞𝑑(𝑡))𝑞̇𝑑(𝑡) + ∇𝑞𝑉 (𝑞𝑑(𝑡))
] (57)

For each of the control laws, the deviation of the computed con-
trol from this nominal control input was computed and compared
as a measure of how control-intensive the scheme is during the
transient to the desired trajectory. Alongside this, the tracking
error was considered as a measure of transient performance.

Two different tunings of the tracking control proposed in this
paper were used. The first set of control gains were chosen as 𝜅 =
1, 𝛼 = 0.1, 𝐾

𝑑
= 10𝐼2, 𝐾𝑝 = 6𝐼2 whereas the second set were cho-

sen to be 𝜅 = 0.3, 𝛼 = 0.18, 𝐾
𝑑
= 0.3𝐼2, 𝐾𝑝 = 1.4𝐼2. The reason for

including two sets of tuning parameters is to emphasize that the
comparative outcomes is largely dependent on the chosen tuning
gains. It should be noted that this is equally true that the compar-
ative tracking schemes of [17–19] could be tuned differently to
obtain a different response. The authors have attempted to detune
the comparison methods so as not to artificially generate large
control inputs. Despite this limitation in direct comparison, the
comparative simulation plots are useful for understanding the
differences in behaviors of the considered techniques.

The resulting output plots from the comparison study is shown in
Figure 7. The first plot shows the size of deviation that the con-
trol action has from the nominal input (57). An exploded view
of the first 0.5 s is included for each plot to highlight the initial
transient performance. All control schemes produced in the ini-
tial control action of similar magnitude, with the largest initial
control response being from the proposed method with tuning
gains 1, and the smallest control input being from the proposed
method with tuning 2. This difference in performance highlights
the role of tuning gains in system performance, emphasizing
that only qualitative performance results should be taken from
the figures. A comparatively small control input to the proposed
scheme with tuning gains 2 was generated by the scheme of
[18] which explicitly considers actuator limits within the con-
trol design. The scheme of [19] is in green and it can be seen
that it maintains a constant deviation from the nominal trajectory

5808 International Journal of Robust and Nonlinear Control, 2025
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FIGURE 7 | Simulation results comparing the tracking controller proposed in this paper (blue, red), the finite-time controller of [18], the tracking
controller using a filtered quantity in place of a velocity observer [17] and the robust sliding mode tracking controller of [19]. The first figure shows the
deviation of each control signal from the nominal control trajectory (57). The second plot shows the norm of the tracking error.

for the full simulation time. As the scheme [19] uses a sliding
method, it generates chattering of the control input which is
the cause of this constant deviation from the nominal control
trajectory.

The second plot of Figure 7 shows the norm of the tracking error
in response to each control scheme. The proposed scheme with
tuning 1 provides the superior tracking performance, whereas all
other methods remain compatible for the majority of the simula-
tion. It is interesting to note that the scheme [18] is a finite-time
method, and it converges to the exact trajectory around 9 s into
the simulation. The residual error after this point is due to limi-
tations in numerical precision. The proposed method guarantees
exponential stability for all choices of controller gains, and it can
be verified from the resulting tracking error that the system is
indeed converging at an exponential rate. The scheme of [17] in
purple is guaranteed to have exponential convergence, but the
control gains must be suitably chosen for the result to apply. It
can be seen that the proposed scheme outperforms this method
with both choices of controller gains.

6 | Conclusion

In this note, we have proposed a method for trajectory track-
ing of the fully actuated mechanical system using only posi-
tion measurements. The approach combined a hybrid momen-
tum observer with the property that the estimation error is a
passive output of the estimation error dynamics. To exploit this
property, a tracking error system was devised with the property
that the momentum estimation error is a passive input to the
error dynamics. Utilizing these properties, a power-preserving
interconnection was formed between the observer and controller
systems, resulting in a storage function for the joint systems. It
was shown that the resulting interconnected system is ISS with
respect to external disturbances.

Motivated by similar works on the topic, several interesting
questions remain for future research. First, many tracking con-
trol works consider the plant model to be unknown and utilize
an adaptive scheme to estimate plant parameters online while

maintaining tracking. It is interesting to investigate if the pro-
posed methods can be modified to include an adaptation law
to estimate plant parameters online while also guaranteeing the
ISS property. Second, the scheme of [18] ensures finite time
convergence whilst satisfying actuator constraints. The authors
believe that it may be possible to modify the shape of the stor-
age functions used by the observer and tracking systems to
achieve similar properties whilst maintaining the ISS property.
Further investigation of these extensions will occur in future
research.
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Endnotes
1 This is the same control law from [28, Proposition 2], applied to the

tracking error system.
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