
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 7, NO. 5, OCTOBER 2023 1405

Evolutionary Neural Architecture Search for Facial
Expression Recognition

Shuchao Deng, Zeqiong Lv, Student Member, IEEE, Edgar Galván , Member, IEEE,
and Yanan Sun , Member, IEEE

Abstract—Facial expression is one of the most powerful, natural,
and universal signals for human beings to express emotional states
and intentions. There are many applications for facial expression
recognition (FER) in human society such as healthcare. Thus, the
importance of correct and innovative FER approaches in Artificial
Intelligence is evident. However, commonly used methods suffer
from a lack of classification generalization in FER. To tackle
this problem, we propose a generic facial expression recognition
network based on evolutionary neural architecture search, called
ENAS-FERNet, which can automatically evolve neural network
architectures using both laboratory-controlled and in-the-wild
FER datasets. The experiments of ENAS-FERNet were carefully
designed and compared with state-of-the-art (SOTA) methods in
the case of training from scratch. In addition, we validated the
interference resistance of ENAS-FERNet on the synthetic noisy
FER dataset and analyzed the time consumption of ENAS-FERNet.
Comprehensive experimental analysis and results show that the
proposed ENAS-FERNet method achieves the most well-known
results on the CK+, Affect-Net, and RAF-DB (10%) datasets, as
well as competitive results on the JAFFE, RAF-DB, and RAF-DB
(20%) datasets. The results of these experiments show that our
ENAS-FERNet has good classification generalization capabilities
on these challenging datasets.

Index Terms—Facial expression recognition, evolutionary neural
architecture search, neural network architectures.

I. INTRODUCTION

FACIAL expression recognition (FER) has a variety of ap-
plications in human society, such as medical care, human-

computer interaction, communication, automotive, and robotics
manufacturing [1], [2], to mention some. FER has recently
attracted increasing attention in the research community and
it is not surprising to see a large number of scientific papers in
this area, many of which are focused on proposing methods
that perform well on FER tasks [3]. According to whether
the design of neural network architectures can be automated,

Manuscript received 19 January 2023; revised 4 April 2023; accepted 18 May
2023. Date of publication 10 July 2023; date of current version 25 September
2023. This work was supported in part by the National Natural Science Foun-
dation of China under Grant 62276175, in part by Zhejiang Lab under Grant
2022PG0AB02, and in part by Key R&D Projects in Sichuan Province under
Grant 2023YFG0031. (Corresponding author: Yanan Sun.)

Shuchao Deng, Zeqiong Lv, and Yanan Sun are with the College of
Computer Science, Sichuan University, Chengdu 610065, China (e-mail:
shuchao@stu.scu.edu.cn; zq_lv@stu.scu.edu.cn; ysun@scu.edu.cn).

Edgar Galván is with the Naturally Inspired Computation Research Group,
Department of Computer Science, Maynooth University, W23 F2K8 Maynooth,
Ireland (e-mail: edgar.galvan@mu.ie).

Digital Object Identifier 10.1109/TETCI.2023.3289974

common FER methods include manually designed neural net-
work architectures using human expertise [3], and automatically
designed neural network architectures through neural architec-
ture search (NAS) [4]. The former is very common for FER.
Manually designed neural network architectures in the early
stages mainly used hand-crafted feature extraction or shallow
learning techniques (e.g., local binary patterns [5]). The most
important properties of the local binary-based method are its
tolerance to light variations and the simplicity of its calculations,
but with the advent of various challenging datasets such as
RAF-DB [6] and Affect-Net [7], the method has struggled to
be effective. Nowadays, with the rapid increase of data, deep
learning (DL) [8] algorithms, a subset of machine learning
algorithms, are inspired by deep hierarchical structures of human
perception as well as production systems. These algorithms
have achieved extraordinary results in different exciting areas
including computer vision, speech recognition, board games,
and video games, to mention a few examples. Multiple DL
architectures have been proposed in the specialized literature,
where convolutional neural networks (CNNs) [9] are the most
well-known networks thanks to their wide applicability in Eu-
clidean data problems. These CNNs have become the standard
architectures for FER tasks in multiple scientific works such as
Deep-Emotion [3], Emotion-FAN [10], RAN [11], and SCN [12]
in laboratory-controlled and in-the-wild datasets, thanks to out-
performing other non-CNN techniques. While these manually
designed network architectures have yielded interesting results,
finding a well-performing architecture is often a very tedious
and error-prone process [13]. Moreover, as the related tasks
change, the corresponding network architecture should very
often change too. It is obvious that there is a strong need to
design an automatic network architecture method for FER.

NAS [4] is an area of growing interest as demonstrated by the
large number of scientific works published in recent years [14].
Broadly speaking these works can be classified into three differ-
ent categories: reinforcement learning (RL)-based [4] methods,
gradient-based [15] methods, and evolution-based methods [16].
Other methods outside of these three categories have also been
proposed in the specialized literature including Monte Carlo-
based simulations [17], random search [18], and sequential
model-based optimization (SMBO) [19]. The RL-based method
regards architecture generation as a process in which an intelli-
gent agent selects an action and tests the network performance
on a test set to obtain reward values that guide the generation of
the architecture. There are a lot of works based on RL emerging

2471-285X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8474-5234
https://orcid.org/0000-0001-6374-1429
mailto:shuchao@stu.scu.edu.cn
mailto:zq_lv@stu.scu.edu.cn
mailto:ysun@scu.edu.cn
mailto:edgar.galvan@mu.ie

1406 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 7, NO. 5, OCTOBER 2023

in many kinds of literature such as NAS-RL [4], MetaQNN [20],
EAS [21], Block-QNN-S [22], and NASNet [23]. Among them,
NAS-RL and MetaQNN are widely recognized as pioneers in
the field of NAS. Specifically, NAS-RL employs a recurrent
network for generating model descriptions of neural networks
and uses reinforcement learning for training this RNN, which
maximizes the expected accuracy of the generated architec-
tures on the specified validation set. MetaQNN automatically
generates high-performing neural network architectures for a
given learning task based on reinforcement learning. However,
both NAS-RL and MetaQNN have the problem of being time-
consuming [14]. To reduce the search cost, EAS explores the
architecture space based on the current network and reuses
its weights. At the same time, BlockQNN is proposed for the
same purpose, which automatically builds high-performance
networks using the Q-Learning paradigm with an epsilon-greedy
exploration strategy. From the design of search space to reduce
the search cost, NASNet designs a transferable search space,
which can find a building block on the small dataset and then
transfer the found block to the large dataset without researching.
Although these RL-based methods can reduce the cost to some
extent, they are still inefficient because they regard NAS as a
black-box optimization problem in a discrete search strategy.

To be more efficient, the gradient-based method is developed,
and a number of representative works have emerged recently. For
example, the well-known DARTS [24] transforms the space of
discrete neural architectures into continuous forms and further
uses gradient optimization techniques to search for neural ar-
chitectures. DAS [25] is similar to DARTS but DAS focuses
more on the hyperparameters of the searched convolutional
layers. For sufficient stability during the process of search,
P-DARTS [26] is developed by using progressive search for
increasing the depth of the network architecture and proposing
regularization of the search space. To reduce memory usage and
improve the search efficiency of DARTS, Xu et al. [27] propose
PC-DARTS, which applies channel sampling for replacing the
convolution operation on all channels in DARTS. Although
the gradient-based approach can efficiently address the large
time-consuming drawbacks of RL-based methods, this approach
relies heavily on human intervention. To achieve the purpose of
reducing human intervention as much as possible, researchers
propose evolution-based methods inspired by nature. For ex-
ample, Large-scale Evolution [28] is seen as a pioneer in the
use of evolutionary strategies for NAS and evolves an optimal
architecture automatically from the simplest single-layer net-
work. Subsequently, more and more evolutionary algorithms for
NAS are proposed from reducing the search cost and enriching
the search space. Among them, GeNet [29] proposes a new
encoding strategy for alleviating the problem of large search
space in Large-scale Evolution, which represents the network
architecture as a fixed-length string. To achieve more flexible
encoding, Masanori et al. [30] use Cartesian genetic program-
ming (CGP) to automatically construct CNN architectures as
a variable-length string for image classification. Furthermore,
to make the architecture more diverse and efficient, Amoe-
baNet [31] proposes aging evolution, a variant of tournament
selection that facilitated the retention of individuals with poten-
tial. AmoebaNet has the ability to explore a diverse search space

by introducing age evolution which ensures diversity and merit
in the evolutionary process.

Although these NAS algorithms perform better than those
hand-crafted methods, these works still have some limitations.
First, the RL-based methods require high computational power.
For example, to obtain a well-performing network architecture
on the CIFAR-10 dataset, NAS-RL [4] and NASNet [23] took
22,400 and 2,000 GPU Days, respectively. Other methods such
as MetaQNN [20] and Block-QNN [22] consumed about 100
GPU Days, and even ENA [21], a specific optimized method,
required at least 10 GPU Days. As mentioned above, RL-based
methods are too time-consuming to be used on challenging
FER datasets. Second, the gradient-based methods require a
priori knowledge. For example, the DARTS-like methods such
as DAS [25], P-DARTS [26], and PC-DARTS [27] choose to
optimize a predefined super network directly and the best sub-
network can be decoupled from the super-network according
to the learned hybrid operation weights. However, predeter-
mining an ideal supernetwork is a difficult process and relies
heavily on prior knowledge [14], [24], [32]. Therefore, the
gradient-based methods are difficult to achieve a completely
automated search on diverse and challenging FER datasets, i.e.,
their classification generalization capability is weak. Finally,
evolution-based methods can achieve completely automated
search network architectures, but existing approaches still have
the limitation of requiring a large amount of computation. For
example, the Large-scale Evolution [28] and AmoebaNet [31]
mentioned above spend 2,600 and 3,150 GPU Days on the
CIFAR-10 dataset, respectively. Although other evolution-based
methods such as GeNet [29] and CGP [30] spent 17 and 14.9
GPU Days respectively on the CIFAR-10 dataset, they are still
time-consuming and GeNet as mentioned above has the limi-
tation of fixed-length encoding. To reduce the high time con-
sumption, improve the classification generalization capability
and improve flexibility of variable-length encoding, we propose
a generic automated Facial Expression Recognition Network
based on Evolutionary Neural Architecture Search called ENAS-
FERNet. Specifically, ENAS-FERNet can achieve a completely
and generically automated search based on GAs. And ENAS-
FERNet can achieve efficient search by designing the basic unit
module combined with the proposed variable-length encoding
strategy. Therefore, ENAS-FERNet can automatically evolve
based on different datasets and ultimately return a network
architecture with good performance. The main contribution of
this work is addressing these issues that impede further progress
of NAS on FER research. Specifically, the contributions of this
work are as follows:
� We propose a generic network architecture model

for automatic FER called ENAS-FERNet, which can
automatically find a well-performing architecture for
a given dataset and avoid the tedious and error-prone
process involved in manual methods. To the best of our
knowledge, this is the first automated facial expression
recognition network designed in combination with GAs.

� ENAS-FERNet is able to encode neural network ar-
chitectures as individuals in a population and to auto-
matically evolve them for different datasets to obtain a
well-performing network architecture, thus solving the

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: EVOLUTIONARY NEURAL ARCHITECTURE SEARCH FOR FACIAL EXPRESSION RECOGNITION 1407

problem of poor classification generalization that exists in
current automated methods.

� ENAS-FERNet contains several features. First, we pro-
pose the variable-length encoding strategy to improve the
efficiency of variable-length encoding in traditional GAs.
Next, skip connection is incorporated into the proposed
algorithm to handle complex data. Finally, a global cache
system is set up to search more efficiently.

� The experimental results show that ENAS-FERNet has
good classification generalization capabilities and solves
the time-consuming problems of existing automated meth-
ods. Specifically, it achieves the best-known results on
the CK+, Affect-Net, and RAF-DB (10%) datasets, and
competitive results on the JAFFE, RAF-DB, and RAF-DB
(20%) datasets in the case of training from scratch.

The remainder of this article is organized as follows. Back-
ground on NAS is provided in Section II. In Section III, we
provide a detailed description of the related work on FER, after
which we specify the proposed network model ENAS-FERNet
in Section IV. The experiments and related analysis are then
discussed in Section V. Finally, the conclusion and future work
are given in Section VI.

II. BACKGROUND ON NAS

A. Neural Architecture Search

Machine learning and deep learning are now being used in an
increasing number of fields such as computer vision, healthcare,
communication, automotive, and robotics. This has led to man-
ual and automated methods for the correct configuration of these
networks. Google’s proposal of NAS [4] caused a boom in the
research community. Since then, NAS has attracted an increasing
number of researchers due to its ability to automatically search
for a well-performing network [33]. There are three main parts in
NAS: search space [21], search strategy [31], and performance
estimation [20].

Search space: The search space defines the search area in
which architectures can be searched or represented. The size of
the search space affects the speed of the search. Specifically,
a large search space can lead to a search process that takes
too much time or even fails to effectively search for network
architectures with good performance, and vice versa, a small
search space can lead to a very limited search for network
architectures that may not contain network architectures with
good performance. Combining a priori knowledge about net-
work architectures that are well suited for a particular task can
reduce the size of the search space, and thus, simplifying the
search. This, however, introduces human bias [34], which may
prevent finding novel architectures that are beyond the reach of
current human knowledge. With the development of NAS, the
construction of search spaces is divided into two main categories,
namely chain-based search spaces [34] and cell-based search
spaces [31].

Search strategy: A search strategy is a method used to search
for how to efficiently search in the exponential large or even
unbounded search space. It weighs up the trade-off between
how quickly to explore and how efficiently to exploit the search

space. Since, on the one hand, it is desirable to quickly find well-
performing architectures and, on the other hand, avoid premature
convergence by getting stuck in local optima [34]. In general,
search strategies can be divided into reinforcement learning-
based search strategies [4], gradient-based search strategies [24]
and evolutionary computation-based search strategies [35]. Each
of these three search strategies has its own performance charac-
teristics. In terms of search speed, the reinforcement learning-
based search strategy requires a high time cost, while the gradient
descent-based search strategy is fast, and the evolutionary-based
search strategy lies between the two.

Performance estimation: The goal of NAS is usually to find
network architectures that achieve high (classification) perfor-
mance on data. Performance estimation in general represents
the evaluation of the performance of network architectures. For
the field of computer vision, the most common approach is to
validate the searched network architecture on a specific dataset.
Unfortunately, however, this approach is computationally ex-
pensive [31], while somewhat hindering the network architec-
tures that can be searched for. As a result, the ability to effectively
reduce the search cost is a very worthwhile area of research.
Recently, many researchers have focused on developing methods
to reduce the cost of performance estimation [36], such as the
weight sharing mechanism [24], early stopping mechanism [37],
and performance predictor [38].

Although existing automated methods have achieved good
results compared to manually designed neural network archi-
tectures, they still have many limitations. On the one hand,
DARTS and Auto-FERNet require a lot of a priori knowledge,
which is often difficult to obtain, resulting in a lack of clas-
sification generalization capability due to the lack of a priori
knowledge on different datasets, which can lead to good results
on some datasets, but poor results on others. On the other
hand, ConvGP [39] and CGP are approaches based on genetic
programming from a fully automated perspective, which can
fully automate the search for neural network architectures for
different datasets, but these approaches have the limitation of
being time-consuming.

B. Genetic Algorithm

In this work, we propose a generic automated FER network
named ENAS-FERNet, which aims to solve the problems of poor
classification generalization and high time required in existing
automated methods. For the FER task, we use a genetic algo-
rithm (GA) to automatically search well-performing network
architectures. This evolutionary algorithm was introduced by
Holland [40] in the 1970 s and was highly popularized by
Goldberg [41]. This was due to the fact of achieving extraordi-
nary results as well as reaching multiple research communities,
including the machine learning and the neural networks commu-
nities. GAs was frequently described as function optimizers, but
now the tendency is to consider GAs as search algorithms able
to find near-optimal solutions. Multiple forms of GAs have been
proposed in the specialized literature. The bitstring fixed-length
representation is one of the most predominant encodings used in
GAs. Crossover, as the main genetic operator, and mutation as

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

1408 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 7, NO. 5, OCTOBER 2023

Fig. 1. Flow chart of genetic algorithm.

the secondary operator, reproduce offspring over several genera-
tions. In this work, we use ingenious ideas to overcome the issues
of NAS on FER when using a variable-length encoding strategy,
as adopted in this work, as opposed to the restrictive fixed-length
representation used on FER tasks, as briefly discussed before.
As shown in Fig. 1, the proposed algorithm follows the standard
procedures of GA (Population initialization, fitness evaluation,
crossover & mutation, and environmental selection). Specifi-
cally, we first form multiple individual network architectures
using the proposed variable-length encoding strategy to form
the population initialization. Next, we perform crossover and
mutation operations on the populations to guide the population
update. We then perform fitness evaluations on the individuals.
Finally, the next generation population is derived by environ-
mental selection.

III. RELATED WORK

With the emergence of many challenging datasets such as
RAF-DB and AffectNet in recent years, many researchers have
begun to explore more diverse approaches for FER tasks.

Manually designed neural network architecture for FER:
In the early stages of FER, Aouayeb et al. [42], proposed a
FER system based on local binary patterns (LBP) as a feature
extractor. Moreover, in this work, a local linear embedding
technique is used to reduce the feature dimensionality, and
a support vector machine is used for the classification part.
Shan et al. [5] proposed a two-stage sparse learning framework.
This is used to locate some common and specific information
among different facial expressions, and then it performs the
FER task. Recently, with the advancement of DL architectures,
along with the proliferation of data generated through social
media, more challenging and rich datasets are publicly available.
Meng et al. [3], proposed Deep-Emotion, a DL approach based
on attentional CNNs. The proposed framework focuses on the
important parts of the face and achieves significant improve-
ments over previous models. Meng et al. [10] proposed Emotion-
FAN, which consists of the feature embedding module and the
frame attention module for embedding face images into feature
vectors and learning multiple attention weights for adaptive
aggregation of feature vectors, respectively, to form a single

discriminative video representation. Ding et al. [43] proposed
FaceNet2ExpNet. This uses a novel distribution function to
model the high-level neurons of the expression network from the
model itself. In FaceNet2ExpNet a two-stage training algorithm
is elaborated. In the pre-training phase, the convolutional layers
of the expression network are trained and regularized by the
face net, while, in the refinement phase, FaceNet2ExpNet adds
fully connected layers to the pre-trained convolutional layers
and trains the network jointly. Pourmirzaei et al. [44] proposed
HMTL. This is similar to FaceNet2ExpNet in that it combines
self-supervision as an auxiliary task merged into the supervised
learning training environment. As an auxiliary task to supervised
learning training, more information than labels can be obtained
from self-supervised learning input data. With the emergence
of large-scale in-the-wild datasets, many more effective meth-
ods have been proposed by researchers. For example, Wang
et al. [11] proposed the Region Attention Network (RAN) to
adaptively capture the importance of facial regions to occlusion
and change thereby addressing the real-world problems of pose
and occlusion robustness. However, RAN ignores the uncer-
tainty in the dataset, and for this reason, Wang et al. [12] propose
the Self-Cure Network (SCN) based on RAN, which effectively
suppresses uncertainty and prevents the deep network from
over-testing uncertain facial images. These above-mentioned
methods, although performing well on the specified datasets,
require a priori knowledge to design the network architecture
with good performance. Thus, the ability to automatically design
network architectures for FER tasks has become a pressing
matter.

Automatically designed neural network architecture for FER:
NAS was born with the growing need for automatically designed
network architectures. Recently, some researchers have begun
to explore the use of NAS in FER, achieving interesting results.
For example, Aghera et al. [45], proposed MnasNet-FER, an
automatic mobile neural architecture-based approach for FER
tasks, which aims to search for a lightweight model using RL.
However, as pointed out by the authors, this approach is costly in
search and difficult to balance between obtaining a lightweight
architecture while at the same time obtaining a well-performing
network. Liu et al. [24] proposed DARTS, which transforms the
space of discrete neural architectures into continuous differen-
tiable forms and uses gradient optimization techniques to search
for neural architectures. Although the time required is alleviated,
this method requires a predetermined number of layers of the
network architecture. Li et al. [46] proposed AutoFERNet based
on DARTS, drawing on a simple but effective facial expression
similarity (FES)-based rescaling method for in-the-wild datasets
to alleviate the uncertainty problem caused by natural factors
and annotator subjectivity. However, this approach is still based
on DARTS and still suffers from the fact that it requires a
priori knowledge and cannot be fully automated. To achieve
full automation of architecture search, Evans et al. [30] proposed
ConvGP based on genetic programming. ConvGP can exploit the
flexibility of the GP representation. A program is automatically
evolved to learn the coefficients of a convolutional filter and de-
tect useful regions in an image, from which features are extracted
to build a classifier. Unlike ConvGP, Masanori et al. [30] propose

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: EVOLUTIONARY NEURAL ARCHITECTURE SEARCH FOR FACIAL EXPRESSION RECOGNITION 1409

Fig. 2. General flowchart of ENAS-FERNet, whose main body follows the basic steps of the GA. Specifically, ENAS-FERNe encodes the neural network
architecture as an individual in a population using the proposed variable-length encoding strategy, then performs the proposed crossover and mutation operations on
the population, and finally selects the next generation population by environmental selection. Furthermore, we have designed two basic modules, ConvBlock and
ResBlock, to encode the individuals in the population, a Cache System to improve the search efficiency involving fitness evaluation, and four mutation operations
to find better individuals.

an automated CNN architecture for image classification tasks
based on Cartesian Genetic Programming (CGP), which uses
highly functional modules and the structure and connectivity of
the CNN represented by the CGP encoding method is optimized
to maximize verification accuracy. Although these methods of
ConvGP and CGP successfully address the problem of DARTS
requiring a priori knowledge, both suffer from the excessive time
required.

IV. EVOLUTIONARY NEURAL ARCHITECTURE SEARCH FOR

FER (ENAS-FERNET)

This section provides a detailed description of the proposed
ENAS-FERNet, which can be divided into ENAS-FERNet
(ConvBlock) and ENAS-FERNet (ResBlock) models. We first
give a general introduction to the ENAS-FERNet, followed by
the proposed variable-length encoding strategy. Then, popula-
tion initialization and fitness evaluation are described, followed
by the crossover and mutation operations. Finally, we describe
the environmental selection of the populations.

A. Overview

Considering the respective characteristics of NAS and FER
tasks, we design a generic automatic FER Network based
on Evolutionary Neural Architecture Search (ENAS-FERNet).
ENAS-FERNet follows the basic steps of the GA, and its gen-
eral flow chart is shown in Fig. 2. Specifically, we first use a
variable-length encoding strategy to encode the network archi-
tecture and thus complete the population initialization. Next, the
proposed crossover and mutation operations are performed in the
population. We choose the single-point crossover because it is a

traditional crossover method with good performance [35]. Then,
we perform the mutation operation on the network architectures
represented by the individuals. Finally, the environmental se-
lection is carried out on the parent population and the offspring
population resulting from the crossover and mutation operations
to form the next generation of populations.

In general, after initializing the population, the offspring
individuals are generated by the NAS strategy (i.e., crossover and
mutation operators). These offspring individuals are then trained
to obtain their performance. Finally, environmental selection is
used to produce the next generation population after all offspring
have been trained. Therefore, the NAS strategy is applied before
training the individual networks. It is worth noting that we have
designed a cache system for evaluating the fitness of individuals
in the population to improve the efficiency of the search. If
the network architecture represented by an individual in the
population is already present in the cache system, then the fitness
of the individual can be obtained without further computation,
while in the opposite case, the fitness of the individual needs
to be computed in conjunction with the dataset. The implemen-
tation of the crossover, mutation and environmental selection
operations involved in ENAS-FERNet will be visualized in
Section IV-C.

B. Variable-Length Encoding Strategy

The fixed-length encoding strategy was often employed for
GAs in the early NAS works, which was mainly influenced
by the fixed length of individual chromosomes in nature. For
example, GeNet used a fixed-length string to represent the
network architecture and still suffered from the shortcomings

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

1410 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 7, NO. 5, OCTOBER 2023

Fig. 3. Top: A neural network architecture is formed by stacking 3 ConvBlocks and 2 pooling layers, where a ConvBlock represents two convolutional layers and we
use a number between (0, 0.5) for the max pooling layer and a number between [0.5, 1) for the mean pooling layer. Thus, the string “64-128-0.3-128-256-0.8-256-512”
represents a neural network with a depth of 8. Bottom: A neural network architecture is formed by stacking 4 ResBlocks and 3 pooling layers, where a ResBlock
represents two convolutional layers combined with a skip connection. Therefore, the string “64-128-0.7-128-256-0.2-256-256-0.3-256-512” represents a neural
network with a depth of 11. Among them, “FC” represents the fully connected layer.

of the fixed encoding strategy. In this case, the depth of the
encoded network architecture had to be predefined in advance.
However, in the ideal case, we do not know the depth of the
optimal network architecture, and the fixed encoding strategy
leads to the problem that the final obtained network architecture
may be incorrectly estimated. Although many researchers have
designed many variable-length encoding strategies, the resulting
network architecture is still not optimal and not matched because
the authors did not redesign the crossover operation accordingly
or suffer from achieving precision [35]. For example, binary
encoding is the widely used variable-length encoding strategy,
but it requires effort between binary conversions and suffers from
Hamming cliffs resulting in reduced accuracy [47]. In the value
encoding strategy, the chromosome can be represented using
a specific string such as a character and integer number [48].
Although the value encoding strategy is mainly used in solv-
ing problems with more complicated values, it still lacks the
crossover operations corresponding to its encoding strategy [48].
For the above reasons, we propose a variable-length encoding
strategy and the corresponding crossover operator to improve
the performance of the algorithms and solve their inefficiencies
in terms of accuracy.

Each individual represents a valid neural architecture for
the FER tasks. The variable-length encoding strategy is used
to construct an individual. This encoding strategy forms the
network architecture by stacking the basic unit blocks in the
designed search space. Specifically, the search space consists of
the following basic units: 3× 3 convolution, 2× 2 max pool-
ing, 2× 2 mean pooling, and the skip connection. With these
basic units, we constructed two basic modules, ConvBlock and
ResBlock, where a ConvBlock consists of two basic principal
convolutional layers. It is worth noting that we have combined
the skip connection with the ConvBlock, which in turn forms the
ResBlock. The skip connection is able to connect the neurons
of the layers that are not adjacent. The skip connection was
first proposed by Gers et al. [49] and often used as a gate

TABLE I
THE SEARCH SPACE IS FORMED BY STACKING THE BASIC UNITS CONVBLCOK

OR RESBLCOK, MAX POOLING AND MEAN POOLING. IN THE TABLE, C STANDS

FOR NUMBER OF OUTPUT CHANNELS, K STANDS FOR RECEPTIVE FIELD SIZE

(KERNEL SIZE), AND S STANDS FOR STRIDE SIZE

mechanism, which can effectively train neural networks such as
long short-term memory [50] and avoid the vanishing gradient
problem [49]. The ConvBlock or ResBlock is stacked with
pooling layers to form a neural network architecture, as shown
in Fig. 3. The number of feature maps of the CNN architecture
layers can be varied so that they can be set to 64, 128, 256, 512,
and the stride size is defined to 1× 1, inspired by the ResNet
series [51]. The pooling layer is divided into mean pooling and
max pooling, and the step size is set to 2× 2. These basic units
can be presented more clearly in Table I. The best potential
neural network architecture can be searched without knowing
the optimal structure of the network, which is achieved by our
proposed variable-length encoding strategy.

A population consists of many individuals formed by the
variable-length encoding strategy. The individual shown in Fig. 3
represents an example of a CNN architecture using the variable-
length encoding strategy, where the top of Fig. 3 represents
a network architecture formed by stacking ConvBlocks and
pooling layers, and the bottom of Fig. 3 represents a network
architecture formed by stacking ResBlocks and pooling layers. It
should be noted that the code above the ConvBlock or ResBlock

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: EVOLUTIONARY NEURAL ARCHITECTURE SEARCH FOR FACIAL EXPRESSION RECOGNITION 1411

represents the number of corresponding feature maps in the
relevant convolutional layer, and the code above the pooling
layer represents the max pooling layer if the number is between
(0,0.5) and the mean pooling layer if it is between [0.5,1). Thus,
we can see that the string “64-128-0.3-128-256-0.8-256-512” at
the top of Fig. 3 represents a network architecture with a depth
of 8 formed by 3 ConvBlocks and 2 pooling layers; the string
“64-128-0.7-128-256-0.2-256-256-0.3-256-512” at the bottom
of Fig. 3 represents a network architecture with a depth of 11
formed by 4 ResBlocks and three pooling layers. By evolving
this, our automatic facial expression recognition network is
able to explore more diverse network architectures, including
networks of different depths. This is an important element since
deeper networks have been reported to generate better results
on multiple tasks so that our proposed approach handles this
naturally. This is a crucial element differentiating our approach
to other methods that use fixed-length representations that do
not allow for the depth of a network to adapt during evolution.

C. Population Initialization

The initialized search space is a subspace of the search space
i.e., it determines which types of network architectures can
appear in the initialized population [32]. There are three main
approaches to determine the initialization search space in the
search space, namely, trivial space [28], random space [33],
and well-designed space [52]. The first two can be considered
as directly designed initialization population operations, and
although in principle they can contain many network architec-
tures, the search space is often exponential and time-consuming
to search. For this reason, our method can be considered as
the latter for initializing populations and we constructed two
types of initialized network architecture models, ENAS-FERNet
(ConvBlock) and ENAS-FERNet (ResBlock) as shown in Fig. 3.
We use ConvBlock or ResBlock and pooling layer stacking
to form the network architecture, which is then represented
as individuals in the population. The proposed variable-length
encoding strategy is then used to continuously encode the net-
work architecture with different lengths until the number of
populations is reached as shown in Fig. 2, which leads to the
population initialization.

D. Fitness Evaluation

After the population initialization is completed, we train and
validate the network architecture represented by the individuals
in the population on the specified dataset, and use the classifi-
cation accuracy as the fitness value of corresponding individual.
The network architecture and the corresponding fitness value
are then stored in the designed cache system. If the network
architecture of an individual is validated in subsequent popu-
lations, we first request the cache system before training the
network architecture, and if the same network architecture exists
in the cache system, then the corresponding fitness value can be
obtained directly without extra training. This avoids redundant
calculations and thus improves the search efficiency.

E. Crossover and Mutation

After the population initialization and fitness evaluation, we
update the population using the proposed algorithm. The de-
tails of crossover, mutation, and environmental selection are
shown in Algorithm 1. Specifically, the first part corresponds
to crossover (Lines 1-18), immediately followed by mutation
(Lines 19-26) and finally succeeded by environmental selection
(Lines 27-37). In this subsection, we focus on the description of
crossover and mutation operations in population updating, and
the environmental selection is presented in the next subsection.
During the crossover operation, there will be |Pt| offspring
produced. Specifically, two parents are first selected (Lines 3-7).
This binary tournament selection and it is popular in GAs for
single-objective optimization. Once the parent individuals are
selected, we generate a random number between 0 and 1 and
determine whether to perform the crossover operation based
on a predefined probability. If the generated random number
is less than the predefined probability, the network architecture
represented by the parent individual is divided into two parts,
and the two parents exchange the corresponding parts with each
other to form offspring individuals (Lines 9-14). If this is not the
case, the selected individuals are directly put intoQt as offspring
individuals (Line 16).

When performing mutation operations, a random number r
is generated first (Line 20), which plays the role of judging
whether or not to proceed to perform mutations. Specifically,
if r is below than pm (Lines 21-25), the mutation operation will
be performed on the current individual. When the conditions are
met to mutate an individual, a position i is randomly selected
from the current individual. At the same time one mutation
operation op is selected from the defined mutation list lm, which
is based on the probabilities predefined by pl. Then, the mutation
operator op is performed on the selected position i. The mutation
operators are defined in lm as follows.

i) Adding a random pooling layer to the network architec-
ture at the selected position.

ii) Adding a random Block with a random initial value to the
network architecture at the selected position.

iii) Removing pooling or Block layer at the selected position.
iv) Changing the pooling layer to another type or changing

the value of Block layer at the selected position.
It is worth noting that the optimal depth can be found through

mutation operators. Particularly, we denote the first two mutation
operators as the “depth-increasing operator”, which provides
a possibility to increase the depth of the network architecture
represented by an individual, while the third mutation operator
provides a possibility to decrease the depth, which is denoted as
the “depth-decreasing operator”. For example, if N is the optimal
depth of network architecture represented by an individual, after
the random initialization, some individuals may have the depth
of network architecture smaller than N, while others are greater
than N. During evolution, each individual has a chance to be
mutated. If the depth of the individual is greater than N and the
depth-decreasing operator is selected, the depth of individual
will be decreased towards N, and vice versa. In general, when
the population is randomly initialized, the depth of the optimal

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

1412 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 7, NO. 5, OCTOBER 2023

Algorithm 1: Population Updating.

individual network can be found by performing either the depth-
increasing operator or the depth-decreasing operator.

F. Environmental Selection

Finally, we use a binary tournament selection and elitist
strategy for environmental selection to form the next generation
population. The former method randomly selects two individuals

among the parent population and the offspring and then selects
the better individual as the parent of the next generation until
the number of selected individuals is equal to the population
size (Lines 28-32). The latter operator works as follows: if the
best individual from the previous generation is not in the next
generation, then we replace the worst individual in the generation
with the best individual to form the new generation of parents
(Lines 33-36). In principle, an ideal population should contain
not only good individuals but also relatively poor individuals
to enhance population diversity. For this purpose, binary tour-
nament selection is often utilized. However, using only binary
tournament selection may miss the best potential individual,
resulting in an algorithm that fails to evolve toward a better
direction. Therefore, we explicitly employ elitism, as explained
before.

V. EXPERIMENTS AND DISCUSSION OF RESULTS

In this section, we first describe the datasets used in our work
and our implementation details in the first two subsections. We
then validate the effectiveness of the proposed ENAS-FERNet
on representative laboratory-controlled and in-the-wild datasets.
Finally, we present ablation studies to better understand ENAS-
FERNet.

A. Datasets

To evaluate our method, we use two representative datasets
under laboratory-controlled conditions, namely CK+ [53] and
JAFFE [54], [55], and two popular in-the-wild facial expression
datasets, namely RAF-DB [6] and AffectNet [7]. These datasets
cover different scales of face images, challenging conditions,
balanced and unbalanced gender images. Thus, these datasets
represent problems of various degrees of difficulty, size, and
dimensionality reasonably well. Moreover, we carefully choose
these benchmark problems so that our extensive evaluations of
the proposed methods (along with those used for comparison
purposes) are not problem dependent allowing us to draw a
reasonable conclusion.

CK:. The extended Cohn-Kanade (CK+) dataset [53] includes
a total of 593 video sequences across 123 different subjects,
which ranges in age from 18 to 50 years old, of various genders
and backgrounds. Each video shows a facial transition from
neutral to other expressions, where the recording speed is 30
frames per second (FPS) and the final result is a resolution of
640x490 or 640x480 pixels per image. In these videos, there are a
total of 327 images labeled as one of seven expression categories:
anger, contempt, disgust, fear, happiness, sadness, and surprise.
It is worth noting that the CK+ dataset is currently the most
extensively used laboratory-controlled dataset in the world and
is also the experimental dataset chosen for the majority of facial
expression recognition methods. We divided the dataset into the
training set, validation set, and testing set, as 687, 101, and 193
images, respectively.

JAFFE: The JAFFE dataset [54], [55] comprises a total of
213 images, which cover different facial expressions from ten
different Japanese female subjects. Each subject was required to
make seven facial expressions and 60 annotators annotated the

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: EVOLUTIONARY NEURAL ARCHITECTURE SEARCH FOR FACIAL EXPRESSION RECOGNITION 1413

images with average semantic scores for each facial expression.
This dataset is currently applied to most facial expression recog-
nition methods as a benchmark dataset. In our experiments, we
used 120 images for training, 23 images for validation, and 70
images for testing (10 images per emotion in the test set, plus
10 images for the neutral expression).

RAF-DB: The Real-world Affective Faces Database (RAF-
DB) [6] is a typical dataset for in-the-wild facial expression,
which consists of 29672 facial images labeled with basic or com-
pound expressions by 40 independent annotators. This dataset
contains a wide range of rich scenarios that closely resemble
realistic facial expressions, e.g. it covers people of different ages,
genders and ethnicities, and has gestural variations, slight per-
turbations, different coupling situations (e.g. glasses, facial hair
or self-occlusion) and post-processing operations (e.g. various
filters and special effects) in the expressions. It is currently the
most widely used in-the-wild dataset and is the experimental
dataset chosen by most methods. In our experiment, only images
with basic emotions were used, including 12,271 images as
training data and 3,068 images as testing data.

AffectNet: The AffectNet [7] is a large in-the-wild dataset of
approximately one million images, obtained by searching the
internet using keywords. There are around 400,000 images in
AffectNet that have been manually labeled for the presence
of eight facial expressions (neutral, happy, angry, sad, fear,
surprise, disgust, and contempt) and the intensity of their value
and evocation. Specifically, AffectNet has an imbalanced testing
set, a balanced validation set, and an imbalanced training set.
We report mean class accuracy on the validation set where each
category contains 500 samples.

B. Implementation Details

The GA used by ENAS-FERNet followed the commonly used
settings [35], with population size and the generations to 20,
and the crossover and mutation probabilities to 0.9 and 0.2,
respectively. Recall that we use different types of mutations,
we define 0.9 for adding a block (ConvBlock or ResBlock), and
0.1 for the rest of the three mutations, as described in Section IV.
When the verification accuracy is as expected or the evolutionary
process reaches the max number of generations, we terminate
the algorithm. For network training, we resize all training data to
48 × 48, set the batch size to 64, and choose stochastic gradient
descent (SGD) as the optimization method. The momentum of
SGD is set to 0.9 and the weight decay of SGD is set to 3e-4.
For laboratory-controlled datasets such as CK+ and JAFFE, we
trained a total of 600 epochs. We set the initial learning rate
to 0.025 and adjusted the learning rate to 0.017 at the 100th
epoch, 0.001 at the 300th epoch, and 0.0001 at the 500 epoch.
For in-the-wild datasets such as RAF-DB and AffectNet, we
trained a total of 100 epochs and set the initial learning rate to
0.1, and divide it by 10 after 60 epochs and 80 epochs. These
detailed hyperparameter settings can be presented more clearly
in Table II. All experiments were performed on an Ubuntu server
with an NVIDIA 2080 Ti GPU card using Pytorch. The results
reported and discussed in the following section, are the result of
five runs for each of the datasets described before.

TABLE II
THE SETTINGS OF THE RELEVANT HYPERPARAMETERS USED IN THE

EXPERIMENT

C. Comparison With Peer Competitors

In this subsection, we evaluated the proposed ENAS-FERNet
on both laboratory-controlled and in-the-wild datasets, compar-
ing its performance with state-of-the-art (SOTA) methods that
were trained from scratch.

Comparison with peer competitors on laboratory-controlled
facial expression datasets: To show the effectiveness and ef-
ficiency of the proposed algorithm, we selected the SOTA al-
gorithms as peer competitors, which are trained from scratch.
Among these methods, manually designed network architec-
tures are Deep-Emotion [3], Ensemble Multi-feature [56],
LBP [42], SAFER [57], Emotion-FAN [10], FFER [58],
HMTL [44], and Vision Transformer-based methods [59]. Au-
tomatically designed neural network architectures are gradient-
based automated NAS methods such as Auto-FERNet [46] and
DARTS [24] and genetic programming-based automated NAS
methods such as ConvGP [30] and CGP [30]. These methods
include both manually designed neural network architectures
and automatically designed neural network architectures, rep-
resenting the best neural network architectures for the field of
facial expression recognition, trained from scratch.

As shown in Table III, through experimental comparative
analysis, our approach was trained from scratch and did not
use additional data. Our ENAS-FERNet (ResBlock) approach
achieved 100% accuracy on the CK+ dataset, reaching the
best-known results to date, and 95.71% accuracy on the JAFFE
dataset, higher than most methods. For the CK+ dataset, most
methods can achieve around 99% accuracy due to its small size
and the high quality of the dataset, and our proposed method
is able to break the 1% bottleneck due to the ability of our
method to automatically evolve a better network architecture
for a specific dataset. Our ENAS-FERNet (ResBlock) is only
1.43% behind the current SOTA approach on the JAFFE dataset
and is higher than the majority of methods. This may be due
to the fact that the JAFFE dataset is too small for a particular
image to be recognized, that other methods have special settings
for this dataset, and that our general-purpose method has a
slightly lower accuracy classification rate. Notably, our method
ENAS-FERNet (ConBlock), which is based on ConBlock as
the basic block, achieves 99.49% and 97.14% classification
accuracy on the CK+ and JAFFE datasets in only 13.33 and 11.00
hours, respectively. Auto-FERNet achieved 98.89% classifica-
tion accuracy in 19.00 hours on the CK+ dataset and its time and
classification accuracy were lower than those of ENAS-FERNet

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

1414 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 7, NO. 5, OCTOBER 2023

TABLE III
COMPARISON WITH PEER COMPETITORS IN THE CASE OF WITHOUT TRAINING FROM SCRATCH ON LABORATORY-CONTROLLED FACIAL EXPRESSION DATASETS

(CK+ AND JAFFE) THE ‘+’ AND ‘-’ SYMBOLS OF CONVGP ARE USED TO INDICATE THAT THE AVERAGE TESTING ACCURACY OF THE PROPOSED METHOD IS,
RESPECTIVELY, SIGNIFICANTLY BETTER AND SIGNIFICANTLY WORSE COMPARED TO THAT OF A GIVEN CLASSIFIER

(ConvBlock). Auto-FERNet achieved 97.14% classification ac-
curacy in 19.00 hours on the JAFFE dataset. Although the
classification accuracy of ENAS-FERNet (ConvBlock) was the
same as Auto-FERNet, our time cost was only about 1/2 of
Auto-FERNet. Furthermore, DARTS achieved 99.85% classifi-
cation accuracy in 19.32 hours on the CK+ dataset. Although
the classification accuracy of ENAS-FERNet (ConvBlock) was
0.36% lower than DARTS, ENAS-FERNet (ConvBlock) took
about 11 hours less than DARTS. DARTS achieves 92.86%
classification accuracy in 3.46 hours on the JAFFE dataset,
which is lower than the proposed ENAS-FERNet (ConvBlock)
despite its inherent advantage in speed based on gradient. From
the perspective of being completely free of manual assistance,
the ConvGP method achieves the highest classification accuracy
of 96.67% in 18.18 hours on the JAFFE dataset. It is lower than
the 97.14% achieved by ENAS-FERNet (ConvBlock), and the
time required by ENAS-FERNet (ConvBlock) is only about 1/2
of ConvGP. ConvGP (No pooling) achieves 90.00% in 43.61
hours on the JAFFE dataset. ENAS-FERNet (ConvBlock) is
7.14% more accurate than ConvGP (No pooling) and takes
only 1/4 of ConvGP (No pooling)’s time. The classical CGP
method achieves 98.45% accuracy in 12.00 hours on the CK+
dataset and 90.00% in 19.25 hours on the JAFFE dataset, which
are lower than the 99.49% and 97.14% accuracy achieved by
the proposed ENAS-FERNet (ConvBlock). In addition, ENAS-
FERNet (ConvBlock) takes about the same time as the CGP on
the CK+ dataset but is only about 1/2 of the CGP on the JAFFE
dataset.

In general, ENAS-FERNet (ConvBlock) and ENAS-FERNet
(ResBlock) can achieve competitive results on both CK+ and
JAFFE datasets, which indicates that they have good general-
ization capability, and ENAS-FERNet (ResBlock) can achieve
better results compared with ENAS-FERNet (ConvBlock) on
the CK+ dataset, which is due to the fact that ResBlock can
greatly eliminate the difficulty of training neural networks with
too much depth and find a deeper neural network architecture.
Meanwhile, the manually designed neural network architectures

require manual assistance completely, and the automatically
designed neural architectures require partial manual assistance
such as Auto-FERNet and DARTS, which still rely more or less
on manual assistance. Although such methods as ConvGP and
CGP can also be completely free of manual assistance, these
methods are less effective and time-consuming. Our method is
able to obtain good performance completely without manual
assistance. Overall, existing methods have poor generalization
capability. On the contrary, our proposed algorithm performs
well on all datasets, which also indicates better generalizability
of ENAS-FERNet.

Comparison with peer competitors on in-the-wild facial ex-
pression datasets: While the above experiments demonstrate
that our approach ENAS-FERNet has achieved good results
on laboratory-controlled datasets. Realistic facial expression
recognition is more challenging and relevant to our daily lives, so
it is essential to validate our method on in-the-wild datasets. Here
we focus on two of the most popular in-the-wild datasets and
compare our approach ENAS-FERNet with their peer competi-
tors. We also selected the SOTA algorithms as peer competitors,
which are trained from scratch. Among these methods, man-
ually designed network architectures are CurriculumNet [60],
MetaCleaner [61], ResNet18 [51], SCN [12], VGG-16 [62],
and EfficientFace series [63]. Automatically designed neural
network architectures are gradient-based automated methods
such as DARTS and genetic programming-based automated
search methods such as CGP. These methods represent the best
networks in manual and automated neural network architectures
in the case of training from scratch.

Compared with the manually designed neural network ar-
chitecture as shown in Table IV, ENAS-FERNet (ConvBlock)
achieved 83.87% accuracy on the RAF-DB dataset, outperform-
ing the existing manually designed neural network approach
and establishing a new SOTA result in the case of training
from scratch. The accuracy of FERNet (ResBlock) is 83.41%,
which is higher than most of the manually designed methods,
and achieves competitive results. On the AffectNet dataset,

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: EVOLUTIONARY NEURAL ARCHITECTURE SEARCH FOR FACIAL EXPRESSION RECOGNITION 1415

TABLE IV
THE PROPOSED ENAS-FERNET COMPARES WITH PEER COMPETITORS IN THE CASE OF TRAINING FROM SCRATCH ON RAF-DB AND AFFECTNET DATASETS

WHILE THE LFE STANDS FOR LOCAL-FEATURE EXTRACTOR AND CSM STANDS FOR CHANNEL-SPATIAL MODULATOR, RESPECTIVELY

ENAS-FERNet (ConvBlock) with accuracy of 53.15% and
ENAS-FERNet (ResBlock) with accuracy of 50.05% achieved
competitive results among the manually designed neural net-
work architectures. Compared to automated methods, for ex-
ample, DARTS achieved 79.27% accuracy in 28 hours on the
RAF-DB dataset. Although DARTS is faster due to its gradient
approach, DARTS requires partial manual assistance and cannot
be fully automated. 79.27% accuracy of DARTS is lower than
ENAS-FERNet (ConvBlock) with 83.87% and ENAS-FERNet
(ResBlock) with 83.41%. DARTS achieved 48.80% accuracy
in 106 hours on AffectNet dataset, which is lower than ENAS-
FERNet (ConvBlock). CGP achieved the accuracy of 76.73% on
the RAF-DB dataset in 124 hours. Although CGP can be fully
automated without manual assistance, the accuracy of CGP is
lower than ENAS-FERNet (ResBlock). Specifically, CGP with
the accuracy of 76.73% is lower than the accuracy of 83.87% for
ENAS-FERNet (ConvBlock) and 83.41% for ENAS-FERNet
(ResBlock). And the CGP accuracy of 124 hours is much
higher than that 36 hours for ENAS-FERNet (ConvBlock) and
49 hours for ENAS-FERNet (ResBlock). Furthermore, DARTS
achieved an accuracy of 48.80% on the AffectNet dataset in 106
hours. Although DARTS is faster due to the gradient method,
DARTS requires some manual assistance and cannot be fully
automated, and the accuracy of 48.80% is lower than ENAS-
FERNet (ConvBlock). CGP achieved 47.05% accuracy on the
AffectNet dataset in 619 hours, although the CGP method can be
fully automated, the accuracy of CGP 47.05% is lower than the
accuracy 53.15% of ENAS-FERNet (ConvBlock) and 50.05%
of ENAS-FERNet (ResBlock). It is worth noting that CGP takes
619 hours on AffectNets dataset, while our ENAS-FERNet takes
at most 170 hours and yields better results, significantly reducing
search costs and improving performance.

When we focus our attention on the RAF-DB and AffectNet
datasets, we see a good number of manually designed methods
that perform relatively well on these datasets. For example,
CurriculumNet designs training curriculum by measuring data
complexity using cluster density which can avoid training noisy-
labeled data in the early stages. MetaCleaner aggregates the
features of several samples in each class into a weighted mean
feature for classification which can also weaken the noisy-
labeled samples. SCN suppresses the uncertainties efficiently
and prevents deep networks from overfitting uncertain facial

images. Both the improved VGG-16 and ResNet18 have good re-
sults. EfficientFace presents an efficiently robust FER network,
which holds much fewer parameters but is more accurate and
robust to the FER in the wild. All manually designed networks:
CurriculumNet, MetaCleaner, SCN, and EfficientFace improve
the baseline largely but are still inferior compared to the ENAS-
FERNet (ConvBlock) and ENAS-FERNet (ResBlock), which
automatically finds a suitable architecture yielding competitive
results. Overall, ENAS-FERNet achieves the best results among
its peer competitors on the RAF-DB and AffectNet datasets.
Specifically, ENAS-FERNet (ConvBlock) outperforms the best
manual method by 0.04% and 2.04%, respectively. In addition,
there is a significant improvement over classical networks such
as ResNet18 and VGG-16.

In this subsection, we experimentally validate and analyze
the proposed ENAS-FERNet on two representative laboratory-
controlled datasets and two typical in-the-wild datasets, re-
spectively. The comprehensive analysis and results show that
the proposed ENAS-FERNet not only has the ability to search
out the well-performing network architecture automatically and
efficiently, but also has good generalization capability.

D. Ablation Studies

After the comparative analysis of the above experimental
results, ENAS-FERNet performs better or is competitive to
most SOTA approaches in the specialized literature. To better
understand why ENAS-FERNet performs incredibly well and
for a more comprehensive analysis, we focus on the ability of
ENAS-FERNet to handle uncertainty (using noisy datasets as
a measure of uncertainty) on the one hand, and on the other
hand we compared the performance of ENAS-FERNet during
the evolutionary process. Finally, we present a comprehensive
comparative analysis of ENAS-FERNet.

The ability of ENAS-FERNet to handle uncertainty: We next
perform some validation analysis on the representative dataset,
RAF-DB, which is currently the most widely used in-the-wild
dataset and is the experimental dataset chosen by most
methods [12]. The in-the-wild datasets are more challenging
such as uncertainty, and the current prevailing approaches are
mainly based on the manually designed network architecture.
The uncertainties of in-the-wild datasets mainly come from

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

1416 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 7, NO. 5, OCTOBER 2023

TABLE V
THE PROPOSED METHOD ENAS-FERNET IS EXPERIMENTALLY COMPARED WITH SIMILAR COMPETITORS ON RAF-DB DATASETS WITH SYNTHETIC NOISE

PERCENTAGE OF 10% AND 20%, WHICH ARE COMPARED IN THE CASE OF TRAINING FROM SCRATCH

TABLE VI
A COMPREHENSIVE COMPARISON ANALYSIS TABLE OF ENAS-FERNET WITH MANUAL AND AUTOMATED METHODS, IN WHICH MANUAL ∗ REPRESENTS THE

BEST RESULT OF MANUALLY DESIGNED NEURAL NETWORK ARCHITECTURE AND AUTOMATIC∗ REPRESENTS THE BEST RESULT OF AUTOMATICALLY DESIGNED

NEURAL NETWORK ARCHITECTURE. ± MANUAL∗ OR ±AUTOMATIC∗ RESPECTIVELY REPRESENTS HOW MUCH HIGHER OR LOWER THE PROPOSED

ENAS-FERNET IS THAN THE BEST RESULT OF THE MANUALLY OR AUTOMATICALLY DESIGNED NEURAL NETWORK ARCHITECTURE

ambiguous facial expressions, low-quality facial images,
inconsistent annotations, and incorrect annotations (i.e., noisy
labels) [12]. Considering that only the labels can be specifically
quantified and analyzed, we explored ENAS-FERNet at two
levels of noise ratio of 10% and 20% to verify its robustness.
Specifically, we randomly choose 10% and 20% of training data
for each category and randomly change their labels to others.
All peer competitors selected for comparison were trained from
scratch, ensuring a fair comparison.

As shown in Table V, the accuracy of ENASFERNet (Con-
vBlock) is 76.63% and 75.20%, corresponding to 36 hours
and 29 hours, respectively, at the RAF-DB levels of 10% and
20%. The accuracy of the proposed ENASFERNet (ResBlock)
is 77.05% and 74.84%, corresponding to 62 hours and 72
hours, respectively, at the RAF-DB levels of 10% and 20%.
Compared to the manually designed neural network architecture,
ENASFERNet (ConvBlock) and ENASFERNet (ResvBlock)
outperformed the second place by 6.37% and 6.79% at 10%
noise ratio, 11.70% and 11.34% at 20% noise ratio. ENAS-
FERNet (ConvBlock) and ENASFERNet (ResvBlock) do not
require any manual assistance at all and are able to obtain
good performance. Compared to the automatically designed
neural network architectures, for example, DARTS requiring
partial manual assistance obtained accuracies of 76.11% and
75.95% at RAF-DB levels of 10% and 20%, corresponding to
29 and 28 hours, respectively. ENASFERNet (ConvBlock) and
ENASFERNet (ResBlock) have higher accuracy than DARTS
by 0.52% and 0.94% at 10% noise ratio, and new SOTA result
is established in this case of training from scratch. The design
is fully automatic and does not require manual assistance. For
example, the accuracy of CGP with no human help at RAF-DB
level of 10% and 20% is 75.16% and 68.61%, corresponding
to 125 hours and 124 hours, respectively. The accuracies of

ENASFERNet (ResBlock) were higher than that of CGP by
1.89% and 6.32% at a noise ratio of 10% and 20%, and the
time spent by ENASFERNet (ResBlock) were 62 hours and 36
hours, respectively, which were about 1/2 and 1/4 of the time
spent by CGP.

In general, ENAS-FERNet (ConvBlock) and ENAS-FERNet
(ResBlock) can achieve good results on the RAF-DB dataset
with noise ratios of 10% and 20%, which indicates that they have
good generalization ability and also indicates that the fused skip
connection network can train a deeper network architecture and
achieve better results. FERNet (ConvBlock) and ENAS-FERNet
(ResBlock) can achieve lower time consumption, improved
search efficiency and better performance than existing fully
automated automatic search methods. As shown in Table III,
our algorithm achieves the best results in a variety of situa-
tions. With noise rates of 10%, our ENAS-FERNet achieved
the best results and established new SOTA result, specifically,
ENAS-FERNet (ConvBlock) and ENAS-FERNet (ResBlock)
achieved 0.52%, and 0.94% better results than the second best
performing algorithm. Thus, the above experiment reflects the
fact that ENAS-FERNet is very robust against uncertainty.

The performance of ENAS-FERNet during the evolutionary
process: As we have argued throughout the article, the depth of
a deep neural network seems to play an important role in the
performance of the network. We have defined multiple mutation
operators, as described in Section IV. These mutations allow to
automatic modify the depth of the network. To better understand
the effects of these mutations on the accuracy of ENAS-FERNet
and the depth of the network on the RAF-DB dataset, we present
the results in Figs. 5 and 6, respectively. The blue dotted line,
with square markers, represents ENAS-FERNet (ResBlock),
while the red dotted line with star symbols represents ENAS-
FERNet (ConvBlock). Specifically, the blue dotted line reaches

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: EVOLUTIONARY NEURAL ARCHITECTURE SEARCH FOR FACIAL EXPRESSION RECOGNITION 1417

Fig. 4. For each dataset, five images are taken as examples, which correspond
to five expressions: angry, fear, happy, sad, and surprise.

Fig. 5. Test accuracy of the optimal network architecture in populations on
the RAF-DB dataset varies with the growth of population generations.

Fig. 6. Depth of the optimal network architecture in the population on the
RAF-DB dataset varies with the growth of population generations.

global convergence faster and has a higher correct classification
rate than the red dotted line, as shown in Fig. 5, which demon-
strates that adding the skip connection into the designed Block
can achieve better results. Of course, even though the use of skip
connections improves the accuracy to some extent, it may lead to
a tendency for deeper network architectures, as discussed below.
The red dotted line in Fig. 6 shows that the final well-performing
architecture with depth of 15 layers, while the depth of initial

architecture that starts to perform well is greater than 15 layers.
This is where the “depth-decreasing operator” of the proposed
mutation operation comes into play, reducing the depth of the
architecture throughout the evolutionary process and eventually
converging to the optimal network depth. In contrast, the blue
dot in Fig. 6 shows that the depth of the architecture with good
performance in the initial population is 17, which is smaller than
the depth of the architecture with good performance at the end of
the evolution, which is 21. In this regard, the “depth-increasing
operator” in the proposed mutation operation can be used to
increase the depth of the architecture during the evolutionary
process, which will eventually converge to the optimal network
depth.

A comprehensive comparative analysis about ENAS-FERNet:
As mentioned in the introduction, it is a very tedious and error-
prone process for people to design neural network architectures
for FER manually [3], and for this reason NAS methods have
emerged for semi-automated and fully automated design of
neural network architectures [24], [30]. After experimental vali-
dation on several challenging and noisy datasets, ENAS-FERNet
is compared with the manually designed, semi-automated, and
fully automated methods. The comparative analysis is shown in
Table VI. From Table VI, it can be seen that ENAS-FERNet is
higher than the existing manual methods on the CK+, Affect-
Net, RAF-DB, RAF-DB (10%), and RAF-DB (20%) datasets,
ranging from 0.20% to 11.70%, respectively, compared to the
manually designed neural network architectures, etc. ENAS-
FERNet outperforms the existing automated methods on the
CK+, JAFFE, AffectNet, RAF-DB, and RAF-DB (10%) datasets
by 0.15% to 4.60%, respectively, and so on. This well demon-
strates that ENAS-FERNet has good generalization capability
and thus solves the problem of poor generalization capability of
existing manual and automated methods. From the perspective
of time consumption, on the one hand, ENAS-FERNet combined
with variable-length encoding strategy and the cache system can
be comparable and competitive with gradient-based methods in
terms of speed, for example, DARTS takes 19.32 hours and 28
hours on CK+ and RAF-DB (20%) datasets, respectively, and
ENAS-FERNet (ConvBlock) takes 13.33 hours and, 29 hours,
respectively. And another advantage of ENAS-FERNet over
DARTS is that ENAS-FERNet can fully automate the search,
while DARTS requires manual assistance. On the other hand,
ENAS-FERNet has a significant speedup compared with the
genetic programming-based method CGP, for example, CGP
takes 124 hours, 619 hours, 125 hours and 124 hours for the
four datasets RAF-DB, AffectNet, RAF-DB (10%) and RAF-
DB (20%), respectively, in contrast ENAS-FERNet (ResBlock)
takes 49 hours, 170 hours, 62 hours and 72 hours on these four
datasets, which is a significant improvement and can effectively
improve the search efficiency. In addition, we find that most
of the network architectures learned by ENAS-FERNet (Con-
vBlock) consist of a stack of three ConvBlocks combined with
a pooling layer. Similarly, most of the network architectures
learned by ENAS-FERNet (ResBlock) consist of a stack of two
ResBlocks combined with a pooling layer. These results show
that the above two stacking forms of these basic modules are
beneficial to make the model perform better.

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

1418 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 7, NO. 5, OCTOBER 2023

VI. CONCLUSION

In this article, we propose a generic automated FER net-
work ENAS-FERNet, which can be divided into two models
ENAS-FERNet (ConvBlock) and ENAS-FERNet (ResBlock)
depending on the encoding modules. ENAS-FERNet is able to
encode the neural network architecture as the diversity of indi-
viduals in the population, and then update the population by the
proposed crossover and mutation operations, where four types
of mutation operations enable ENAS-FERNet to explore better
individuals, and finally obtain a network architecture with good
performance after continuous evolution. Furthermore, ENAS-
FERNet is validated on two laboratory-controlled datasets, two
in-the-wild datasets and two datasets with synthesized noise for
validation and analysis. The comprehensive analysis and results
show that the proposed ENAS-FERNet has good generalization
capability, which in turn solves the problem of poor generaliza-
tion capability of existing automated methods. ENAS-FERNet
combined with the designed caching system can effectively
improve the search efficiency of ENAS-FERNet and can well
solve the problem of high time consumption of existing fully
automated methods. In the future, there are more challenging
applications for FER where the pose changes or the dataset is
occluded, and we will explore automated FER in these areas.

REFERENCES

[1] A. Dapogny, K. Bailly, and S. Dubuisson, “Dynamic pose-robust facial ex-
pression recognition by multi-view pairwise conditional random forests,”
IEEE Trans. Affect. Comput., vol. 10, no. 2, pp. 167–181, Apr.–Jun. 2019.

[2] D. Liu, X. Ouyang, S. Xu, P. Zhou, K. He, and S. Wen, “SAANet: Siamese
action-units attention network for improving dynamic facial expression
recognition,” Neurocomputing, vol. 413, pp. 145–157, 2020.

[3] S. Minaee, M. Minaei, and A. Abdolrashidi, “Deep-emotion: Facial ex-
pression recognition using attentional convolutional network,” Sensors,
vol. 21, no. 9, 2021, Art. no. 3046.

[4] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2016, in Proc. Int. Conf. Learn. Representations, 2016. [Online].
Available: https://openreview.net/pdf?id=r1Ue8Hcxg

[5] C. Shan, S. Gong, and P. W. McOwan, “Facial expression recognition based
on local binary patterns: A comprehensive study,” Image Vis. Comput.,
vol. 27, no. 6, pp. 803–816, 2009.

[6] S. Li, W. Deng, and J. Du, “Reliable crowdsourcing and deep locality-
preserving learning for expression recognition in the wild,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 2852–2861.

[7] A. Mollahosseini, B. Hasani, and M. H. Mahoor, “AffectNet: A database
for facial expression, valence, and arousal computing in the wild,” IEEE
Trans. Affect. Comput., vol. 10, no. 1, pp. 18–31, Jan.–Mar. 2019.

[8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, 2017.

[10] D. Meng, X. Peng, K. Wang, and Y. Qiao, “Frame attention networks for
facial expression recognition in videos,” in Proc. IEEE Int. Conf. Image
Process., 2019, pp. 3866–3870.

[11] K. Wang, X. Peng, J. Yang, D. Meng, and Y. Qiao, “Region attention
networks for pose and occlusion robust facial expression recognition,”
IEEE Trans. Image Process., vol. 29, pp. 4057–4069, 2020.

[12] K. Wang, X. Peng, J. Yang, S. Lu, and Y. Qiao, “Suppressing uncertainties
for large-scale facial expression recognition,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 6897–6906.

[13] Q. Lin, Z. Fang, Y. Chen, K. C. Tan, and Y. Li, “Evolutionary architectural
search for generative adversarial networks,” IEEE Trans. Emerg. Topics
Comput. Intell., vol. 6, no. 4, pp. 783–794, Aug. 2022.

[14] P. Ren et al., “A comprehensive survey of neural architecture search:
Challenges and solutions,” ACM Comput. Surv., vol. 54, no. 4, pp. 1–34,
2021.

[15] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proc. Brit.
Mach. Vis. Conf., Sep. 2016, pp. 87.1–87.12.

[16] T. Back, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. London,
U.K.: Oxford Univ. Press, 1996.

[17] R. Negrinho and G. Gordon, “DeepArchitect: Automatically designing
and training deep architectures,” 2017, arXiv:1704.08792.

[18] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-
tion,” J. Mach. Learn. Res., vol. 13, no. 2, pp. 281–305, 2012.

[19] C. Liu et al., “Progressive neural architecture search,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 19–34.

[20] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” in Proc. Int. Conf. Learn. Rep-
resentations, 2016. [Online]. Available: https://openreview.net/pdf?id=
S1c2cvqee

[21] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 4095–4104.

[22] Z. Zhong, J. Yan, and C.-L. Liu, “Practical network blocks design with
Q-learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 2423–2432.

[23] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2018, pp. 8697–8710.

[24] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” in Proc. Int. Conf. Learn. Representations, 2018. [Online]. Avail-
able: https://openreview.net/pdf?id=S1eYHoC5FX

[25] R. Shin, C. Packer, and D. Song, “Differentiable neural network architec-
ture search,” 2018. [Online]. Available: https://openreview.net/forum?id=
BJ-MRKkwG

[26] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable archi-
tecture search: Bridging the depth gap between search and evaluation,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 1294–1303.

[27] Y. Xu et al., “PC-DARTS: Partial channel connections for memory-
efficient architecture search,” in Proc. Int. Conf. Learn. Representations,
2020. [Online]. Available: https://openreview.net/pdf?id=BJlS634tPr

[28] E. Real et al., “Large-scale evolution of image classifiers,” in Proc. Int.
Conf. Mach. Learn., 2017, pp. 2902–2911.

[29] L. Xie and A. Yuille, “Genetic CNN,” in Proc. IEEE Int. Conf. Comput.
Vis., 2017, pp. 1379–1388.

[30] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Proc. Genet. Evol. Comput. Conf., 2017, pp. 497–504.

[31] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proc. AAAI Conf. Artif. Intell.,
2019, pp. 4780–4789.

[32] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey on
evolutionary neural architecture search,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 34, no. 2, pp. 550–570, Feb. 2023.

[33] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving deep convolutional
neural networks for image classification,” IEEE Trans. Evol. Comput.,
vol. 24, no. 2, pp. 394–407, Apr. 2020.

[34] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” J. Mach. Learn. Res., vol. 20, no. 1, pp. 1997–2017, 2019.

[35] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically designing
CNN architectures using the genetic algorithm for image classification,”
IEEE Trans. Cybern., vol. 50, no. 9, pp. 3840–3854, Sep. 2020.

[36] X. Xie, X. Song, Z. Lv, G. G. Yen, W. Ding, and Y. Sun, “Efficient
evaluation methods for neural architecture search: A survey,” 2023,
arXiv:2301.05919.

[37] D. Zhou et al., “EcoNAS: Finding proxies for economical neural archi-
tecture search,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2020, pp. 11396–11404.

[38] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, and M. Zhang, “Surrogate-
assisted evolutionary deep learning using an end-to-end random forest-
based performance predictor,” IEEE Trans. Evol. Comput., vol. 24, no. 2,
pp. 350–364, Apr. 2020.

[39] B. Evans, H. Al-Sahaf, B. Xue, and M. Zhang, “Evolutionary deep learn-
ing: A genetic programming approach to image classification,” in Proc.
IEEE Congr. Evol. Comput., 2018, pp. 1–6.

[40] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis With Applications to Biology, Control, and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1992.

[41] J. J. Grefenstette, “Genetic algorithms and machine learning,” in Proc. 6th
Annu. Conf. Comput. Learn. Theory, 1993, pp. 3–4.

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

https://openreview.net/pdf{?}id$=$r1Ue8Hcxg
https://openreview.net/pdf{?}id$=$S1c2cvqee
https://openreview.net/pdf{?}id$=$S1c2cvqee
https://openreview.net/pdf{?}id$=$S1eYHoC5FX
https://openreview.net/forum{?}id=BJ-MRKkwG
https://openreview.net/forum{?}id=BJ-MRKkwG
https://openreview.net/pdf{?}id$=$BJlS634tPr

DENG et al.: EVOLUTIONARY NEURAL ARCHITECTURE SEARCH FOR FACIAL EXPRESSION RECOGNITION 1419

[42] D. G. R. Kola and S. K. Samayamantula, “A novel approach for facial
expression recognition using local binary pattern with adaptive window,”
Multimedia Tools Appl., vol. 80, no. 2, pp. 2243–2262, 2021.

[43] H. Ding, S. K. Zhou, and R. Chellappa, “FaceNet2ExpNet: Regularizing a
deep face recognition net for expression recognition,” in Proc. IEEE 12th
Int. Conf. Autom. Face Gesture Recognit., 2017, pp. 118–126.

[44] M. Pourmirzaei, G. A. Montazer, and F. Esmaili, “Using self-supervised
auxiliary tasks to improve fine-grained facial representation,” 2021,
arXiv:2105.06421.

[45] S. Aghera, H. Gajera, and S. K. Mitra, “MnasNet based lightweight
CNN for facial expression recognition,” in Proc. IEEE Int. Symp. Sustain.
Energy, Signal Process. Cyber Secur., 2020, pp. 1–6.

[46] S. Li et al., “Auto-FERNet: A facial expression recognition network
with architecture search,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 3,
pp. 2213–2222, Jul.–Sep. 2021.

[47] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algo-
rithm: Past, present, and future,” Multimedia Tools Appl., vol. 80, no. 5,
pp. 8091–8126, 2021.

[48] B. Fox and M. McMahon, “Genetic Operators for Sequencing Problems,”
in Foundations of Genetic Algorithms. Amsterdam, The Netherlands:
Elsevier, 1991, pp. 284–300.

[49] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[50] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Con-
tinual prediction with LSTM,” Neural Computation, vol. 12, no. 10,
pp. 2451–2471, Oct. 2000.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[52] S. Fujino, N. Mori, and K. Matsumoto, “Deep convolutional networks for
human sketches by means of the evolutionary deep learning,” in Proc.
IEEE Joint 17th World Congr. Int. Fuzzy Syst. Assoc. 9th Int. Conf. Soft
Comput. Intell. Syst., 2017, pp. 1–5.

[53] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews,
“The extended Cohn-Kanade dataset (CK+) : A complete dataset for action
unit and emotion-specified expression,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit.-Workshops, 2010, pp. 94–101.

[54] M. J. Lyons, M. Kamachi, and J. Gyoba, “Coding facial expressions with
Gabor wavelets (IVC special issue),” 2020, arXiv:2009.05938.

[55] M. J. Lyons, “Excavating AI” re-excavated: Debunking a fallacious ac-
count of the JAFFE dataset,” 2021, arXiv:2107.13998.

[56] H. Zhao, Q. Liu, and Y. Yang, “Transfer learning with ensemble of multiple
feature representations,” in Proc. IEEE 16th Int. Conf. Softw. Eng. Res.,
Manage. Appl., 2018, pp. 54–61.

[57] Y. Yaddaden, M. Adda, A. Bouzouane, S. Gaboury, and B. Bouchard,
“User action and facial expression recognition for error detection sys-
tem in an ambient assisted environment,” Expert Syst. Appl., vol. 112,
pp. 173–189, 2018.

[58] Y. Yaddaden, M. Adda, and A. Bouzouane, “Facial expression recognition
using locally linear embedding with LBP and hog descriptors,” in Proc.
IEEE 2nd Int. Workshop Hum.-Centric Smart Environ. Health Well-Being,
2021, pp. 221–226.

[59] M. Aouayeb, W. Hamidouche, C. Soladie, K. Kpalma, and R. Seguier,
“Learning vision transformer with squeeze and excitation for facial ex-
pression recognition,” 2021, arXiv:2107.03107.

[60] S. Guo et al., “CurriculumNet: Weakly supervised learning from large-
scale web images,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 135–150.

[61] W. Zhang, Y. Wang, and Y. Qiao, “MetaCleaner: Learning to halluci-
nate clean representations for noisy-labeled visual recognition,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 7373–7382.

[62] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[63] Z. Zhao, Q. Liu, and F. Zhou, “Robust lightweight facial expression
recognition network with label distribution training,” in Proc. AAAI Conf.
Artif. Intell., 2021, pp. 3510–3519.

Shuchao Deng received the B.S. degree in computer
science in 2022 from Sichuan University, Chengdu,
China, where he is currently working toward the M.E.
degree in computer science. His research interests
include evolutionary neural architecture search and
physics-informed neural networks.

Zeqiong Lv (Student Member, IEEE) received the
M.E. degree in computer science from Xihua Univer-
sity, Chengdu, China, in 2021. She is currently work-
ing toward the Ph.D. degree in computer science from
Sichuan University, Chengdu. Her research interests
include evolutionary computation, neural networks,
and theoretical analysis of evolutionary algorithms.

Edgar Galván (Member, IEEE) received the Ph.D.
degree in computer science from University of Essex,
Colchester, U.K. He is currently a Senior Researcher
with the Department of Computer Science, National
University of Ireland Maynooth, Maynooth, Ireland.
Previously, he was a Marie Curie Fellow with IN-
RIA Paris-Saclay France, Research Fellow with the
School of Computer Science and Statistics, Trinity
College Dublin, Visiting Researcher with the School
of Computer Science and Engineering, Essex Univer-
sity, and Postdoctoral Researcher with the Complex

and Adaptive System Laboratory, University College Dublin. He has coauthored
more than 80 scientific papers and book chapters. His research interests include
applications to combinatorial optimisation, neural networks, neuroevolution,
games, and software engineering. He has independently ranked as one of the
all-time top 1% researchers of genetic programming, according to University
College London, London, U.K.

Yanan Sun (Member, IEEE) received the Ph.D. de-
gree in computer science from Sichuan University,
Chengdu, China, in 2017. He is currently a Professor
with the College of Computer Science, Sichuan Uni-
versity. His research interests include evolutionary
computation, neural networks, and their applications
on neural architecture search. He designed the indi-
cator of “GPU Day”, which has been widely used
among the community of neural architecture search.
He was ranked as World’s Top 2% Scientists 2021,
collectively released by Stanford University and

Springer. He is an Associate Editor for IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION.

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 15,2025 at 15:01:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

