
I. INTRODUCTION

Implementing reinforcement learning (RL) using
neural networks requires a great deal of engineering
intuition in relation to determining the appropriate
action and critic network structures and tuning the
learning parameters. Thus, claims that RL systems are
able to learn from scratch without a priori knowledge
are not entirely true. In this contribution sequential
learning neural networks are investigated as a means
of obtaining a truly autonomous learning system.

Sequential learning neural networks (also known as
‘constructive’, ‘incremental’, or ‘growing’ networks)
employ a learning procedure that involves growing
and/or pruning networks iteratively as the training
data is presented. Learning is achieved through a
combination of new neuron allocation and parameter
adjustment of existing neurons. New neurons are
added if presented training patterns fall outside the
range of existing network neurons. Otherwise the
network parameters are adapted to better fit the
patterns. This procedure is usually combined with
pruning where neurons which contribute little to the
overall network response over an extended period of
time are removed. The seminal paper by Platt (1991),
proved that sequential learning using a constructive
technique, called resource allocation networks (RAN)
is suitable for online modelling. Since then there have

been many publications on research into application
of this concept to supervised learning problems, e.g.:
Kadirkamanthan and Niranjan (1993), Molina and
Niranjan (1996) and Yingwei et al., (1997).

To date there have only been a handful of publications
which explore the use of sequential learning neural
networks with RL algorithms. In most of these
implementations (e.g. Shiraga et al., 2002 and Rivest
and Precup, 2003) a sliding data window is used to
achieve pseudo on-line learning.

This paper presents a novel sequential learning
model-free action dependent adaptive critic (ADAC)
for online control of a highly nonlinear process. This
methodology overcomes the limitation of an a priori
fixed network architecture normally associated with
ADAC by extending the search to the entire weight
space of the neural network topology. It also searches
for a near minimal network size which suits the
complexity of the learning task and thus increases the
speed and efficiency of computation. This ultimately
results in a fully autonomous controller. 

The paper is organised as follows. Section 2 provides
a brief description of the ADAC framework while the
neural network implementation is discussed in
Section 3. Section 4 describes the inverted pendulum
case study, while Section 5 provides details of the
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simulations performed and the results obtained.
Conclusions and future work are given in section 6.

II. PRELIMINARIES

The fundamental solution to sequential optimisation
or dynamic programming problems uses Bellman’s
Principle of Optimality (Bellman, 1957):... an optimal
trajectory has the property that no matter how the
intermediate point is reached, the rest of the
trajectory must coincide with an optimal trajectory as
calculated with the intermediate point as the starting
point. This principle is applied by devising a
“primary” reinforcement function or reward, r(t), that
incorporates a control objective for a particular
scenario in one or more measurable variables. A
secondary utility is then formed, which incorporates
the desired control objective through time, the so-
called Bellman equation, expressed as

(1)

where γ is a discount factor (0 < γ < 1), which
determines the importance of the present reward as
oppose to future ones. The reinforcement, r(t), takes a
binary form with r(t) = 0 when the event is successful
(objective is met) and r(t) = -1 when it fails (when the
objective is not met). Hence, the purpose of dynamic
programming is to choose a sequence of control
actions to maximise J(t), the cost-to-go.
Unfortunately, this optimisation method is
computationally untenable due to the complexity of
the backward numerical solution process required, i.e.
as a result of the “curse of dimensionality” for real
problems. Thus, there is a need for more tractable
approximation methods. The basis for such methods
is a useful identity derived from Eq. 1, called the
Bellman Recursion equation,

(2)

Si and Wang (2001), formulated a modified version of
Eq. 2, where, instead of approximating J(t), they
proposed that the Critic Network approximates
J(t+1). This is done by defining the future
accumulated reward-to-go at time t, as

(3)

and using the Critic Network to provide as an
approximation to J(t+1) as illustrated in Figure 1. In
this framework, the Critic Network can be trained by
storing the cost at t - 1 i.e.  and using the

current cost , and the current reward, r(t) i.e.

(4)

to determine the error between two successive

estimates of , referred to as the temporal difference
error:

(5)

The cost function that the Critic Network is trained to
minimise is then defined as

(6)

When Ec (t) = 0 for all t, Eq. 6 reduces to 

(7)

where . Hence, it can be seen that by
minimising Eq. 6, the Critic Network output becomes
an estimate of the cost function J(t+1) in Eq. 2, i.e. the
value of the cost function at the next sample time.

Figure 1  Schematic of the Action Dependent 
Adaptive Critic scheme

III. NEURAL NETWORKS IMPLEMENTATION

The sequential learning neural network architecture
used here is based on the Radial Basis Function
(RBF) network. The RBF network output is defined
as:

(8)

where hi is the linear output weight that connects the

ith basis function,  to the output summer. The
basis functions,  are usually localised Gaussian
functions given by:

(9)
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Ĵ t( )
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r t( ) γ r t 1+( ) γ Ĵ t 1+( )+[ ]+=
…=

γk t– 1– r k( )
k t 1+=

∞

∑=
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where ci and  are the centre and width of the

Gaussian function of the ith hidden neuron. Practically
RBFs show superior generalisation for on-line
learning compared to multilayer perceptrons (MLP)
due to the local nature of their neurons. This allows
them to learn information at one operating point of a
nonlinear process without degrading information
learned at other operating regimes (McLoone, 2000).
In other words training of RBF networks is not so
susceptible to learning interference.

In the ADAC, the Critic Network is used to provide
the approximation . Starting with the prediction
error defined in Eq. 5 and the instantaneous estimate
of the Critic Network cost function is given by

(10)

Figure 2  The Action and Critic Network in an ADAC 
implementation

The output of the Critic Network, shown in Figure 2,
above is calculated in a feedforward manner and is
expressed as follows

(11)

where

(12)

Here, , ccj and σcj are the heights, centres and
widths respectively, of the Gaussian basis function
with output yj. is the number of hidden neurons

and x is the input vector. Note that the index Ni+1
includes u(t) (i.e. ), the output of the
Action Network as shown in Figure 2.

The Action Network update is based on the prediction
error given as 

(13)

and the objective function to be minimised is

(14)

The output of the Action Network shown in Figure 2,
is also calculated in a feedforward manner and is
expressed as

(15)

where

 (16)  

Here, , caj and σaj are the heights, centres and
widths respectively, for the Gaussian basis function
with output zj in the action network and is the
number of hidden neurons and x is the input vector.

The weights-update rule for the Critic and Action
Networks is based on a modified version of the
recursive prediction error (RPE) algorithm (Chen et
al., 1990), expressed as follows,

(17)

with (18)

and (19)

(20)

(21)

where P(t), is the inverse of the Gauss-Newton
Hessian, which can be interpreted as the covariance
matrix of the weight estimate w(t). Here, w(t) is a
vector of all the parameters in either the Action or
Critic networks,  is the corresponding
gradient vector and  is the forgetting factor
which is normally set to a fixed value of .

σi
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Finally, e(t) is the prediction error as defined in Eq. 5
for the Critic Network and Eq. 13 for the Action
Network. The components of gradient vector for each
network computed as follows

(22)

The sequential learning growth criterion considered
here is an extension of the On-line Adaptive Centre
Allocation (OLACA) algorithm (McLoone, 2000)
which can explained as follows:

Let (xt, yt) be a new data point to be fitted by the RBF
network. The growth criterion used is given by 

(23)

where  is the distance between the current input
vector, xt, and the centre of the nearest hidden neuron,

, while  is the width of the nearest neuron. The
term  is the maximum neuron separation

allowed while the scalar  determines the degree of
overlap between neurons and is usually set equal to
1.0. 

If the criteria in Eq. 23 is not satisfied then all the
network parameters are adapted using the RPE
training algorithm. However if the growth criteria in
Eq. 23 is satisfied then a new Gaussian basis function
hidden neuron is assigned (shown in Figure 3) as
follows:

, ,   (24)

where ek is the deviation from the desired goal. This is
problem dependent for the Action Network and is
defined as Eq. 5 for the Critic Network. The scalar ,
is a user-defined parameter (usually unity) which
determines the degree of overlap between neurons.

The dimension of P(t), is also increased accordingly,
i.e.

(25)

where the dimension nw is equal to the number of new
parameters associated with the new Gaussian basis
function and O is an appropriately dimensioned null
matrix. 

Figure 3  The OLACA scheme

The pruning procedure, which is based on YingWei et
al. (1997), involves eliminating the Gaussian kernels
(GK) that show the least contribution to the model
output for the past M sample instants, and can be
summarised as follows;

•   Compute the output of all the Gaussian kernel 
functions, .

(26)

•   Find the largest absolute Gaussian basis function 
output value

 and   (27)

•   Determine the normalised contribution factor for 
each basis function:

 and (28)

If  ( , normally set to 1 x 10-5) for M

consecutive sample instants, then prune the jth hidden
neuron and reduce the dimensionality of ,

 and . The window size, M, is problem
dependent and is normally set between 20 and 100.

∇ψ hj
c t( )[ ]

∂Ec t( )
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IV. THE INVERTED PENDULUM 

To test the performance of the proposed sequential
learning neural networks, the ADAC was trained to
control a highly nonlinear inverted pendulum system.
This consisted of a pendulum hinged to the top of a
wheeled cart that travels along a track, as shown in
Figure 4. The goal was to apply a sequence of right
and left forces of fixed magnitude to the cart such that
the pole is balanced and the cart does not hit the end
of the track, i.e. bang-bang control. A zero magnitude
force was not permitted. The state of the cart-pole
system had to be kept out of certain regions of the
state space. There is no unique solution. Any state
space trajectory that did not pass through the regions
to be avoided was acceptable. The only information
provided regarding the goal of the task was the
reinforcement signal, r(t), which signals a failure
when either the pole fell outside +12o or the cart hit
the bounds of the track at + 2.4 m.

Figure 4  The inverted pendulum system

The simulation was based on a detailed analytical
model of the system which included all the
nonlinearities and reactive forces of the physical
system such as friction (Si and Wang, 2001). The
inverted pendulum was constrained to move within
the vertical plane. The input state vector sample time
at time t was specified by four real-valued variables,

, , , and  defined as follows:

 = the horizontal position of the cart, relative 
to the track, in meters,

 = the horizontal velocity of the cart, in 
meters/second,

 = the angle between the pendulum and ver-
tical, clockwise being positive, in degrees,

 = the angular velocity of the pendulum, in 
degrees/second.

All the input states were normalised to lie within
[-1,1] as required by the neural networks. The
description of the dynamics of the inverted pendulum
can be found in Si and Wang (2001). 

V. SIMULATION AND RESULTS

The sequential learning ADAC was compared against
Si and Wang’s (2001) multilayer perceptron (MLP)
neural network implementation to gauge its
performance. The simulation studies were based on
100 runs, each run consisting of 10 trials where the
controller had to control the inverted pendulum within
set boundaries. The external reinforcement signal was
defined as

(29)

The controller was considered successful if it
managed to balance the inverted pendulum for
600,000 time steps, where each time step was 0.02
seconds (i.e. for 3 hours and 20 mins). If after 10 trials
the controller still failed to control the pendulum, that
run was considered a failure and a new run was
initiated with the pendulum states set to zero and all
the networks weights initialised randomly. The
nominal Action Network size in Si and Wang’s (2001)
MLP configuration for this same application was a
4-6-1. The maximum number of neurons was set at 10
for both RBF networks. The height of the new
Gaussian function in the sequential learning
methodology, as defined by Eq. 24, was given as the
larger of the following deviations

 or (30)

where  and  are the normalised deviations
of the angle of the pendulum from the vertical
position (i.e. at ) and the cart position from the
middle of the track respectively.

Figure 5  Performance comparison between the 
sequential learning ADAC and the MLP structure 

based on 100 runs 

Figure 5 shows that the sequential learning ADAC
was able to achieve double the success rate of the
fixed structure MLP implementation. The superior
performance of the ADAC controller compared to the
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MLP structure may be explained by the ability of the
sequential ADAC topology to adapt more rapidly to
new data by adding new neurons (as seen in Figure 6).
It is also aided by the robustness of the RBF topology
to learning interfernce.

Figure 6  The growth profiles of the ADAC networks

A performance comparison based on a typical
successful run by both the sequential learning method
and standard MLP networks is given in Table 1 above.
The higher computation time is expected due to the
learning algorithm chosen, compared to the simple
backpropagation training algorithm that was used by
Si and Wang (2001). However, for the approximation
performance, i.e. the mean prediction error, E[ec], the
sequential learning ADAC was found to be superior
to the conventional method.

VI. CONCLUSIONS AND FUTURE WORK

A new sequential learning ADAC methodology has
been proposed which grows its structure to suit the
complexity of the learning task. This provides an
effective way of obtaining a compact solution without
a priori knowledge of the problem. In contrast, the
conventional ADAC learning strategy proposed by Si
and Wang (2001) requires systematic evaluation of
several different networks to determine the optimum
network sizes. Simulation results also indicate that the
sequential learning ADAC, which can be regarded as
a fully autonomous controller, out performs the fixed
topology ADAC. Future work will look at
implementing this technique on real applications such
as laboratory-scale process control applications.
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Topology Mean of Mean of ec
Comp. 

Time (secs)

MLP 1.009 x 10-5 38.999 x 10-4 160.86
ADAC 0.264 x 10-5 0.001 x 10-4 924.00

Table 1: Algorithm efficiency comparison based on 
typical single successful run
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