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ABSTRACT
The aim of this study was to examine the acute effects of a non- 
caloric energy drink (C4E) compared to a traditional sugar-contain
ing energy drink (MED) and non-caloric placebo (PLA) on exercise 
performance and cardiovascular safety. Thirty healthy, physically 
active males (25 ± 4 y) completed three experimental visits under 
semi-fasted conditions (5–10 h) and in randomized order, during 
which they consumed C4E, MED, or PLA matched for volume, 
appearance, taste, and mouthfeel. One hour after drink consump
tion, participants completed a maximal, graded exercise test (GXT) 
with measurement of pulmonary gases, an isometric leg extension 
fatigue test (ISOFTG), and had their cardiac electrical activity (ECG), 
leg blood flow (LBF), and blood pressure (BP) measured throughout 
the visit. Neither MED nor C4E had an ergogenic effect on maximal 
oxygen consumption, time to exhaustion, or peak power during the 
GXT (p > 0.05). Compared to PLA, MED reduced fat oxidation 
(respiratory exchange ratio (RER) +0.030 ± 0.01; p = 0.026) during 
the GXT and did not influence ISOFTG performance. Compared to 
PLA, C4E did not alter RER (p = 0.94) and improved impulse during 
the ISOFTG (+0.658 ± 0.25 V·s; p = 0.032). Relative to MED, C4E did 
not significantly improve gas exchange threshold (p = 0.05–0.07). 
Both MED and C4E increased systolic BP at rest (+7.1 ± 1.2 mmHg; p  
< 0.001 and + 5.7 ± 1.0 mmHg; p < 0.001, respectively), C4E 
increased SBP post-GXT (+13.3 ± 3.8 mmHg; p < 0.001), and MED 
increased SBP during recovery (+3.2 ± 1.1 mmHg; p < 0.001). 
Neither MED nor C4E influenced ECG measures (p ≥ 0.08) or LBF 
(p = 0.37) compared to PLA. C4E may be more efficacious for 
improving performance in resistance-type tasks without altering 
fat oxidation under semi-fasted conditions during fatiguing exer
cise bouts, but promotes similar changes in BP and HR to MED.
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1. Introduction

Caffeine-based energy drink consumption has increased dramatically over the last two 
decades, partially driven by new marketing strategies highlighting their claimed ergo
genicity related to exercise performance [1]. Energy drinks are often marketed toward 
young adults who may be most interested in these benefits [2]. Many commercially 
available energy drinks contain a blend of ingredients that include taurine, glucurono
lactone, and B vitamins, with many containing ≥3.3 g of added sugar per fluid ounce. 
However, sugar-free energy drink formulations that contain negligible kilocalories and 
include sport supplements such as beta-alanine and L-citrulline are becoming increas
ingly popular, particularly due to their purported physical performance benefits.

It has been reported that traditional caffeine-based energy drinks improve time trial 
performance [3,4], submaximal aerobic performance [5], and potentially muscular 
strength and endurance [6–8], but not maximal exhaustive exercise [9]. The limited data 
on the effects of non-caloric energy drink consumption on exercise performance suggest 
that these drinks may be less effective than high-sugar containing energy drinks [10–12]. 
Alternatively, Souza et al. [13] reported that improvements in exercise performance 
following acute consumption of sugar-containing energy drinks is associated with the 
product’s taurine dosage. Further, it is not clear how the addition of ingredients such as 
beta-alanine and L-citrulline to novel non-caloric energy drink formulations influences 
efficacy. However, there is reason to hypothesize that these formulations may provide 
performance benefits more similar to high-sugar containing energy drinks. For example, 
although the greatest performance benefits of ingredients such as beta-alanine and L- 
citrulline require habitual supplementation due to their primary mechanism(s) of action 
(e.g. augmenting carnosine [14] and endothelial nitric oxide bioavailability [15,16]), there 
is also some evidence that acute dosing of these ingredients may promote exercise 
performance. For example, acute beta-alanine consumption has been shown to reduce 
perceived exertion during repeated Wingate cycling tests [17], and the limit time at 
maximum aerobic velocity [18] and the distance run during 6-min run tests in endurance 
athletes [19]. Together, these data suggest that the efficacy of energy drinks cannot be 
ascertained based on their caffeine-content (or any single ingredient) alone, but instead 
should be studied as finished products in order to accurately gauge efficacy as used by 
the consumer.

Given the rise in caffeine-based energy drink consumption, there is also a great need to 
understand their impact on cardiovascular health. Multiple studies have now indicated 
that consumption of traditional caffeine-based energy drinks may cause prolongation of 
the QTc interval [20,21], which primarily measures ventricular repolarization. Prolongation 
of the QTc interval is an important safety concern because small perturbations can trigger 
malignant arrhythmias [22]. Further, traditional caffeine-based energy drink consumption 
has been consistently shown to cause elevations in resting systolic and diastolic blood 
pressure (SBP and DBP) [20,21,23,24], although it is unclear if energy drink consumption 
amplifies exercise-associated increases in blood pressure, heart rate (HR), or myocardial 
oxygen demand. Caffeine alone has also been shown to interfere with post-exercise 
autonomic recovery via increased sympathetic activity [25], and thus energy drink con
sumption may impede cardiovascular recovery following exhaustive exercise. Finally, 
while the caffeine content of energy drinks is likely largely responsible for these

54 N. F. BANKS ET AL.



cardiovascular effects with the most pronounced effects occurring with high volume 
consumption (e.g. ≥750 mL with ≥240 mg caffeine) [20,21], it appears that there is a 
synergistic effect of common energy drink ingredients on parameters such as the QTc 
interval, SBP, and DBP [21]. Thus, it is critical that studies examine the acute effects of 
energy drink consumption on cardiovascular safety profiles at rest and following exercise 
to understand the potential cardiovascular risks associated with their consumption, 
particularly if used to improve exercise performance.

Therefore, we compared the effects of acute consumption of commercially available 
sugar-free (C4 Energy™) versus traditional (Monster Energy™) energy drinks versus pla
cebo on (1; Primary Outcome) maximal exercise performance during graded exercise to 
volitional exhaustion (2; Primary Outcome) the ventilatory threshold and fuel utilization 
during graded exercise (3; Primary Outcome) performance as demarcated by the total 
impulse (force �time) completed during submaximal isometric exercise to volitional 
exhaustion, and (4; Secondary Outcome) cardiovascular safety parameters (e.g. blood 
pressure, heart rate, rate pressure product, and QTc interval length) at rest, following 
exercise, and in post-exercise recovery. Other secondary outcomes included leg blood 
flow and mood, while perceived effort during the testing sessions, blinding efficacy, and 
adverse events were included as tertiary outcomes.

2. Methods

2.1. Experimental design

This study employed a randomized, double-blind, placebo-controlled, crossover design 
where each subject completed three identical 2.5-hour experimental visits. The only 
difference between visits was the drink consumed, where either a non-caloric energy 
drink containing a novel ingredient blend including caffeine (C4E), a traditional energy 
drink that included caffeine and sugar (MED), or a PLA which was non-caloric and 
contained no caffeine or active ingredients was consumed. Each of these visits were 
performed at the same time of day (±90 min) and were separated by 7 ± 3 days. Before 
attending the first experimental visit, participants completed a familiarization visit to 
become acquainted with each of the tests performed.

Prior to each experimental visit, participants abstained from exercise, caffeine, and 
alcohol for 24 h, and arrived at the laboratory following a 5–10 h fast. At the beginning of 
the experimental visits, participants provided a urine sample which was analyzed for 
urine-specific gravity using handheld refractometry (Fisherbrand, Pittsburgh, PA) to 
ensure they were euhydrated. The study visit commenced only if the participant’s urine- 
specific gravity was between 1.005 and 1.030. Participants then laid down on a padded 
examination table in a semi-recumbent position and rested quietly for 10 min. After 10 
min, femoral artery blood flow (LBF) was measured, an electrocardiogram (ECG) recording 
was obtained, and resting blood pressure and oxygen saturation levels were measured. 
Prior to drink consumption, participants completed the POMS-SF to assess mood. 
Participants then consumed the assigned drink in under 5 min. Both the participants 
and the researchers collecting data were blinded to the drink being consumed. 
Participants then immediately performed two maximum voluntary isometric contractions 
(MVIC) to assess maximal voluntary force (MVF) of the knee extensors before the active
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ingredients in the drinks had time to be metabolized. Participants were allowed to rest for 
30 min, before laying back down in a semi-recumbent position on the padded examina
tion table and resting quietly for 10 min. At 40-min post-drink consumption, femoral 
artery LBF, blood pressure, and oxygen saturation were measured, and another ECG 
recording was obtained. Participants then performed a graded maximal exercise test 
(GXT) on a cycle ergometer, immediately followed by another MVIC. They were then 
given a 5-min rest before performing 2 more MVICs, followed by an isometric fatigue test 
1 min after the second MVIC. After participants finished the isometric fatigue test, they 
performed one last MVIC and then were promptly moved back to the padded examina
tion table for a final assessment of femoral artery LBF. Participants were then allowed to 
rest quietly for 5 min while completing post-exercise surveys, including the POMS-SF and 
an adverse events questionnaire. After this, their blood pressure and oxygen saturation 
were measured and their ECG was recorded for the final time. At the end of the final visit, 
participants also completed a questionnaire to assess blinding efficacy. An overview of 
the experimental design and each experimental visit is shown in Figure 1. This trial is 
registered at ClinicalTrials.gov (NCT05559372).

2.2. Participants

Thirty healthy, physically active, young adult males completed this study. An overview of 
participant flow from initial eligibility to data analysis is provided in Figure 2. Prior to 
enrollment, participants completed an informed consent form and health history ques
tionnaire. To be eligible, participants must have been aged 20–35 years, been exercising 
at least 3 days per week, not been consuming more than 21 servings of caffeine per week, 
had a body mass index of 18.5–34.9 kg/m2, and been healthy according to self-reported 
health history. Participants were recruited through approved e-mails using the university 
mass-e-mail system, flyers placed across campus, and by word of mouth. All study 
procedures and documents complied with the Declaration of Helsinki and were approved

Figure 1. Detailed overview of the experimental design and visits. The time scale for experimental 
visits is depicted relative to the time of drink consumption (time = 0). *These tests were performed 
immediately following the preceding exercise test. Thus, timing varied slightly between participants 
and within visits depending on the time to exhaustion during the graded exercise test and time to 
fatigue during the isometric fatigue protocol. EMG = Electromyography; ISOFTG = isometric fatigue 
protocol; MVIC = maximal voluntary isometric contraction; C4E = C4 energy drink; PLA = Placebo; 
MED = monster energy caffeine drink. Figure created with BioRender.com.
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by the University’s Institutional Review Board for the Protection of Human Subjects (IRB 
Approval #: 202107364). All participants consented to participation by signing an 
informed consent form prior to participation.

2.3. Drink composition and Blinding

Beverages were matched for volume (16 fl oz), appearance, aroma, taste, and texture. The 
high-calorie, high-sugar treatment beverage (MED; Monster Energy®, Monster Energy 
Company, Corona, CA) was purchased in case packs from a big box retailer in Iowa City, 
IA, placed in refrigeration, and unopened until immediately before subject consumption.

Figure 2. CONSORT flow diagram depicting the flow of participants through the study from initial 
screening to data analysis. Figure created with BioRender.com.
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A researcher or graduate student un-involved in data collection or analysis who was 
unblinded to the MED beverage was responsible for pouring all subject treatment 
beverages into drinking cups. This process occurred within a separate storage room so 
that other researchers and participants remained double-blinded across all randomized, 
crossover treatments.

The non-caloric, no sugar treatment beverage (C4E; C4 Energy™, Nutrabolt®, Austin, TX) 
and PLA were additionally double-blinded for final packaging and formulation adjusted to 
organoleptically match the MED beverage. MED supplied 230 kcals, 58 g Total 
Carbohydrate (54 g added sugars), and included the active ingredients: Sugar, Glucose 
[D-glucose (Dextrose) or DL-glucose form undisclosed], Taurine, Carnitine (as L-Carnitine 
L-Tartrate), 160 mg Caffeine, Niacin (30 mg as Niacinamide), Inositol, Vitamin B6 (3.8 mg as 
Pyridoxine HCl), Maltodextrin, Vitamin B12 (12 mcg as Cyanocobalamin), and Vitamin B2 
(3.3 mcg). C4E and PLA contained equivalent energy, acidulants, and inactive ingredients. 
C4E and PLA supplied < 5 kcals, 0 g Total Carbohydrate (0 g added sugars), and C4E 
included the active ingredients: Beta-Alanine (CarnoSyn®, Natural Alternatives 
International, Inc., Carlsbad, CA), L-Citrulline, Betaine (as anhydrous BetaPower®, 
International Flavors & Fragrances Inc., New York, NY), 200 mg Caffeine (as anhydrous), 
Tyrosine (as N-Acetyl-L-Tyrosine), Niacin (30 mg as Niacinamide), and Vitamin B12 (6 mcg 
as Cyanocobalamin). Nutrition Facts panels and ingredients (in order of highest to lowest 
concentration) for C4E and MED are provided in Supplemental Table 1.

Finished products were independently confirmed by DYAD Labs (Salt Lake City, UT) for 
nutrition facts, physical properties, organoleptics, and specification identity, composition, 
potency, and purity using validated analytical methods. The absence of the World Anti- 
Doping Agency (WADA) banned substances was independently confirmed by LGC Science, 
Inc. (Informed Sport; Lexington, KY). Sample quantities for analytical laboratory testing were 
calculated using square root of n + 2, and all samples were randomly selected and then 
shipped using next day delivery to the respective analytical laboratories. DYAD Labs analytical 
results for MED utilized LOT # J2101G–0442, and LGC Sciences results for MED were analyzed 
against LOT # J2100G–0441. All analytical results were reviewed by CML prior to the beverages 
being approved for use in the present study. Both C4E and PLA beverages were manufactured 
at a US FDA cGMP-compliant facility. The third-party manufacturer, grant donor, and CML 
formulated and maintained blinding of groups, and each beverage was randomly assigned an 
item number by the manufacturer. Blinding was maintained until data collection and statis
tical analysis was completed. CML was not involved in data collection or statistical analysis.

2.4. Graded, maximal aerobic exercise test

Sixty-two ±8 min after drink consumption, participants completed an incremental, maximal, 
GXT on a cycle ergometer (Monark 939E; Monark Exercise AB, Vansbro, SWE) at a pedal 
cadence of 70 revolutions per minute (rpm). Following a 2-min warm up at 25 W, the power 
output increased to 50 W for 2 min, and then by 30 W every 2 min thereafter until the 
participant could no longer maintain ≥ 65 rpm cadence. Prior to each GXT, participants were 
reminded of the instructions of the test and were strongly encouraged to provide a maximal 
effort, but no verbal encouragement was provided during the GXT to ensure a consistent 
external environment between visits. During the GXT, all participants wore a nose clip and 
breathed through a two-way valve (2700, Hans Rudolph, Kansas City, MO). Expired pulmonary
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gases were collected and analyzed using a calibrated metabolic cart (TrueOne 2400, Parvo 
Medics, Sandy, UT). Twenty-second rolling-average filters were applied to the raw breath-by- 
breath, expired O2 and CO2 data, and then used to determine the highest relative (ml·kg
−1·min−1) oxygen uptake ( _VO2peak) and both peak and average respiratory exchange ratio 
(RER) achieved during the test. Time to exhaustion (GXTTTE) was determined as the point at 
which the participant could no longer maintain ≥ 90% of the assigned workload. Maximal fat 
oxidation (MFO; g/min) is the highest fat oxidation rate achieved during the GXT. To deter
mine MFO, fat oxidation rate was calculated using the stoichiometric equation [26– 
28]; 1:695� _VO2ðL=minÞÞ � ð1:701� _VCO2ðL=minÞ, and then a 3rd degree polynomial curve 
was fit to the relationship between fat oxidation rate (g/min) and percentage of maximal 
oxygen uptake (% _VO2peak) to generate a fat oxidation versus exercise intensity curve. Only 
data between the start of exercise at 50 W and when participants reached 80% of their 
_VO2peak were used in the construction of the fat oxidation curve [29]. The peak fat oxidation 
rate was determined as the MFO. Determination of _VO2peak, RER, GXTTTE, and MFO were 
performed using custom-written LabVIEW software (v. 21, National Instruments Corp, Austin, 
TX). In addition, the gas exchange threshold (GET) was determined using the parametric 
global optimization method that determined the GET as the average threshold using the 
excess CO2 [30] and V-slope [31] methods to enhance optimize GET determination and 
subsequently the validity and reliability [32,33]. GET analyses were performed using the 
custom MATLAB script (R2020a, The MathWorks, Inc., Natick, MA) described by Kim et al. 
[33], which was further modified to express GET in absolute and relative time (min), _VO2 (L/ 
min and ml·kg−1·min−1), HR (bpm), and power (W).

2.5. Electromyography

A wireless surface electromyographic (EMG) sensor (Delsys Trigno; Delsys Inc., Nantic, MA) 
was placed on the vastus laterals (VL) to quantify EMG amplitude during the isometric 
fatigue test (ISOFTG). EMG sensors were placed as we have previously described [34,35]. All 
EMG signals were sampled simultaneously at 2 kHz using PowerLab data acquisition hard
ware (AD Instruments, Colorado Springs, CO). Sampled signals were then recorded to a 
desktop computer and processed offline using custom-written LabVIEW software (National 
Instruments, Austin, TX). EMG signals were amplified using the built-in sensor amplifier with 
a gain of 10 VN ±1%, a common-mode rejection ratio of −80 DB, and an input impedance of  
> 101 5Ω//0.2 pF. EMG signals were then zero-meaned and bandpass filtered offline (10– 
499 Hz) using a zero-phase shift, 4th-order Butterworth filter before analyses.

2.6. Isometric fatigue test

Participants completed an isometric, constant force fatigue test at 40% of the highest 
MVF recorded during the two MVIC attempts completed 5 min after completion of 
the GXT. A force trajectory and real-time force feedback was provided on an external 
computer monitor placed in front of the participant throughout the test. Time to 
fatigue (TTFISO) was determined objectively as the difference in time between initially 
achieving 95% of the target force and when force output fell below 95% of target 
torque. Impulse was calculated as the product of force and time during the
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maintenance of target force (Vs). EMG amplitudes (EMGAMP) were calculated as the 
root mean square (RMS) amplitudes (mV) during 10% epochs (e.g. 0–10%, 10–20%, 
20–30%, etc.) of the TTFISO, and normalized to the maximal EMGAMP obtained during 
the preceding MVIC attempts.

2.7. Leg blood flow

All LBF measurements were obtained while participants laid supine in a semi-recumbent 
position with the trunk position at a ~ 35° angle in a temperature-controlled (20–22°C) 
quiet room. The first two LBF measurements were obtained after 10 min of quiet rest, 
whereas the post-exercise LBF measurement was obtained as quickly as possible follow
ing exercise cessation. A high-resolution duplex ultrasound (Logiq P9 R2.5, GE Healthcare, 
MA) and 12-MHz linear array transducer were used to visualize the superficial femoral 
artery and measure blood velocity, and a 3-min video was recorded. These videos were 
analyzed offline using semi-automated, continuous wall-tracking software (FMD Studio, 
Quipu, Pisa, Italy). Blood velocity was measured by selecting a region of the Doppler 
waveform and the trace of the velocity-time integral was then used to calculate mean 
blood velocity [36]. The following formula was then used to calculate mean femoral artery 
blood flow at each of the 3 measurement timepoints per visit: 

Mean Blood Velocity ðcm=sÞ � artery cross sectional area cm2� �� �
�60 

2.8. Electrocardiogram

A 12-lead ECG (CardioTech SE-12 Series, Edan Instruments, Pingshan District, P.R. China) 
was used to examine cardiac electrical activity. Following stabilization of the ECG signal, a 
continuous 10-s ECG recording was collected and used for analysis. Corrected QT interval 
(QTc, ms) was the main outcome of interest from the ECG recordings. PR interval (ms), QRS 
interval (ms), and P-R-T-axes (degrees) were all secondary outcomes derived from the ECG 
recordings.

2.9. Blood pressure and heart rate

Blood pressure was recorded using an automated blood pressure device (OMRON Model 
BP5450, OMRON Healthcare Co., Kyoto JPN) in either a semi-recumbent position, or while 
seated on the bike and isometric dynamometer during the GXT and ISOFTG protocols 
Figure 1. Wherever possible, blood pressure was collected in accordance with the 
American Heart Association guidelines [37]. During each blood pressure recording, SBP, 
DBP, and HR were recorded, and rate pressure product (RPP) was derived from the 
product of SBP and HR at each timepoint.

2.10. Mood and session RPE

Mood was assessed using the POMS-SF, a 35-item 5-point Likert scale survey which 
assesses Total Mood Disturbance and the following six sub-scales: Fatigue-Inertia, Vigor-
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Activity, Tension-Anxiety, Depression-Dejection, Anger-Hostility, and Confusion- 
Bewilderment [38]. Session RPE was used to assess the overall intensity of effort during 
each visit. Specifically, following each visit, participants were asked to report how hard 
they felt each visit was on a 0–10 scale, with 0 representing rest and 10 representing 
maximal effort [39].

2.11. Lifestyle controls

During the 7 ± 3 day period before each experimental visit, participants were asked 
to fill out the Sleep Foundation Sleep Log [40] to assess sleep quantity (h/day), 
quality (1–5 scale), and fragmentation (awakenings/night). The Centers for Disease 
Control Physical Activity Diary [41] was used to assess physical activity levels and 
reported as minutes of daily physical activity in metabolic equivalents of task 
(MET·min/day). A 3-day dietary log was used to assess dietary intake, and total 
daily average energy consumption (kcals), as well as carbohydrate (g), fat (g), and 
protein (g) intake were quantified using ESHA’s Food Processor® nutrition analysis 
Software (https://www.esha.com, ESHA Research, Oak Brook, Il, USA), across the 3 
days before each experimental visit. Subjects were provided with a copy of their 24-h 
pre-testing nutrition log and asked to repeat their 24-h pre-testing dietary intake 
prior to each subsequent crossover visit.

2.12. Adverse events

Immediately following each experimental visit, participants completed an adverse events 
survey regarding their experience following test beverage consumption for that particular 
visit. Participants selected either “yes” or “no” to questions asking if they experienced each 
of the following: nausea, vomiting, headache, stomachache/bloating/gas, diarrhea, con
stipation, itching, fatigue, heart palpations, or other. If “yes” was selected, participants 
were then asked to mark how likely it was that the adverse event/symptom was caused by 
the treatment beverage from the following selections: possible, likely, or very likely.

2.13. Blinding efficacy

Immediately after completion of the final visit, participants were told that the 3 beverages 
they consumed were MED, C4E, and PLA, and were asked to indicate in which visit they 
believed they had consumed each test beverage to the best of their ability.

2.14. Statistical analysis

Data that violated sphericity were corrected using the Greenhouse–Geisser correction. The 
effects of the MED, C4E, and PLA on _VO2peak, GXTTTF, peak HR, GXT peak power, GET, MFO, 
average RER, mean force, TTFISO, and impulse were analyzed using independent, one-way 
repeated measures ANOVAs or, where data points were missing, using repeated measures 
mixed-effects models. Repeated measures mixed-effects models were used to analyze 
changes in EMGAMP during the ISOFTG protocol (condition (MED vs. C4E vs. PLA) x time (0– 
10%, 10–20%, 20–30%, … 90–100%)) and for MVIC data (condition (MED vs. C4E vs. PLA) x
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time (Pre-Drink, Post-GXT, Pre-ISOFTG, Post-ISOFTG)). Follow-up analyses for the EMGAMP 

versus normalized time relationships during ISOFTG included linear regression analyses 
with comparisons of the slopes and intercepts among conditions (MED vs. C4E vs. PLA). 
One-way ANOVAs or, where any data points were missing, repeated measures mixed-effects 
models were also used to examine if there were differences in sleep, physical activity, or diet 
leading up to each condition. Data are reported as mean difference ± SE of difference unless 
denoted otherwise and the significance was set at p ≤ 0.05. Statistical analyses were 
performed and figures were created using GraphPad Prism for macOS (v. 8.4.3).

3. Results

Baseline participant characteristics are presented in Table 1. Due to technical issues, data 
were missing at random from 4 ISOFTG tests, 1 MVIC test, and 3 blood pressure tests were not 
available for analyses, in which case repeated-measures mixed-effects models were used.

3.1. Lifestyle controls

There were no differences in total energy (kcals), fat, carbohydrate, or protein intake, nor in 
caffeine consumption during the 3 days leading up to each condition (all p ≥0.14). Further, 
no differences in physical activity, sleep duration, sleep quality, or sleep fragmentation were 
observed prior to any condition (all p ≥ 0.40). Lifestyle control data are presented in Table 2.

Table 1. Participant characteristics (n = 30).

Characteristic Mean ± SD

Age (y) 24.8 ± 4.4
Height (m) 1.8 ± 0.1

Weight (kg) 
BMI (kg/m2)

83.9 ± 14.7 
26.0 ± 3.6

SBP* (mmHg) 123.7 ± 7.7
DBP* (mmHg) 72.3 ± 6.7

BMI = body mass index; SBP = systolic blood pressure; DBP = diasto
lic blood pressure; * = measurements obtained while participant 
was in a semi-recumbent position.

Table 2. Lifestyle control data during the days prior to completion of each condition.

PLA MED C4E p-value

Kcal 2156 ± 538 2126 ± 525 2232 ± 795 0.70
Fat (g) 88 ± 23 81 ± 26 78 ± 29 0.14

Protein (g) 104 ± 43 106 ± 36 107 ± 43 0.95
Carbohydrates (g) 236 ± 82 231 ± 72 258 ± 1 0.21

Caffeine (mg) 87 ± 102 91 ± 115 95 ± 104 0.88
Physical Activity (MET·min) 1788 ± 1984 1580 ± 1420 1344 ± 1006 0.38

Sleep Duration (h) 7.45 ± .84 7.27 ± 0.75 7.33 ± 0.90 0.41
Sleep Quality (a.u.) 3.69 ± .62 3.72 ± 0.63 3.92 ± 0.64 0.13
Sleep Fragmentation (awakenings/night) 0.76 ± .67 0.76 ± 0.76 0.73 ± 0.77 0.86

All data are presented here as mean ± SD. PLA = Placebo; MED = Monster Energy Caffeine Drink; C4E = C4 Energy Drink; 
MET = metabolic equivalent of task.
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3.2. Blinding efficacy

Participants correctly determined that they had consumed PLA, MED, and C4E 67, 47, and 
50% of the time, respectively.

3.3. Adverse events

Adverse events indicated by participants are reported in Table 3.

3.4. Gxt

There were no significant differences among conditions for _VO2peak (p = 0.21), GXTTTE (p =  
0.21), peak HR (p = 0.36), or peak power (p = 0.83; Figure 3). However, RER was significantly 
different among conditions (F(2, 58) = 4.25, p = 0.019). Specifically, RER was greater following 
MED than PLA (+0.030 ± 0.01; p = 0.026), whereas no significant differences were observed 
between MED and C4E (+0.027 ± 0.01; p = 0.05) or between C4E and PLA (+0.004 ± 0.01; p =  
0.94; Figure 3e). MFO was also significantly different among conditions (F(1.499, 43.48) = 6.02, p  
= 0.009, Figure 3f). The MFO was significantly lower following MED compared to both PLA 
(−0.108 ± 0.02 g/min; p < 0.001) and C4E (−0.099 ± 0.04 g/min; p = 0.020). There were no 
differences among conditions for GET when expressed relative to maximal heart rate (% 
MHR; p = 0.36) or as the absolute time (min; p = 0.48), and while GET tended to be different 
among conditions when expressed as absolute (p = 0.07) and relative _VO2 (p = 0.06), when 
expressed relative to _VO2peak (p = 0.06), and when expressed relative to the maximal power 
output (p = 0.07) during the GXT, these differences were also not significant (Figure 4).

3.5. ISOFTG test

There were no significant differences in TTFISO and mean force among conditions for 
either outcome (p = 0.16 and 0.11, respectively; Figures 5a,b). However, impulse was 

Table 3. Adverse events and self-assessed relationship to beverage consumption.

Adverse Event
PLA n (%) 
Reported

PLA Average 
Likelihood

MED n (%) 
Reported

MED Average 
Likelihood

C4E n (%) 
Reported

C4E Average 
Likelihood

Nausea 1 (3.3%) 1.0 1 (3.3%) 2.0 2 (6.7%) 1.5
Vomiting 0 (0%) - 0 (0%) - 0 (0%) -

Headache 4 (13.3%) 1.0 2 (6.7%) 1.0 3 (10%) 1.7
SA/B/G 0 (0%) - 2 (6.7%) 2.0 2 (6.7%) 1.0

Diarrhea 0 (0%) - 0 (0%) - 1 (3.3%) 3.0
Constipation 0 (0%) - 1 (3.3%) 2.0 0 (0%) -

Itching/Paresthesia 1 (3.3%) 3.0 3 (10%) 1.0 9 (30%) 2.0
Fatigue 8 (26.7%) 1.1 6 (20%) 1.2 7 (23.3%) 1.3
Heart Palpitations 0 (0%) - 0 (0%) - 0 (0%) -

Other 1 (3.3%) 1.0 2 (6.7%) 1.5 4 (13.3%) 1.5

The total number and % of participants who reported an adverse event in each of the respective categories after each 
condition are displayed here as n and %, respectively. Average likelihood that the adverse event was caused by the 
beverage consumed was calculated as the mean of survey response options “Possible,” “Likely,” and “Very Likely,” which 
were scored 1, 2, and 3, respectively. SA/B/G = stomachache/bloating/gas; PLA = Placebo; MED = Monster Energy 
Caffeine Drink; C4E = C4 Energy Drink.
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significantly different among conditions (F(2, 54) = 3.4, p = 0.041, Figure 5c). Impulse was 
greater for C4E than PLA (+0.658 ± 0.25 V·s; p = 0.032).

The MVF condition × time interaction did not reach significance (p = 0.054) and forced 
post-hoc tests revealed no significant differences among conditions (all p ≥ 0.08). There
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Figure 3. Effects of energy drink consumption maximal performance markers during graded exercise 
testing. The (a) time to exhaustion (TTE), (b) peak heart rate, (c) peak power, (d) _VO2peak, (e) average 
respiratory exchange ratio (RER), and (f) maximal fat oxidation (MFO) during the graded exercise test 
(GXT) following consumption of 16 oz placebo (PLA), monster energy drink (MED), and C4 energy 
drink (C4E). F-statistics and p-values for the one-way ANOVAs used to analyze between condition 
differences are shown within the boxes in each panel. Where the ANOVA was significant, p-values are 
shown for the between condition Tukey-corrected post-hoc tests. Data are expressed as mean ± SE.
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was also no condition main effect (p = 0.34), but there was a significant main effect for 
time (F(3, 87) = 23.5, p < 0.0001). MVF decreased from baseline to post GXT (−51.6 ± 4.4 N; p  
< 0.0001), increased from post GXT to pre ISOFTG (+33.0 ± 4.4 N; p < 0.0001) but was still
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Figure 4. Effects of energy drink consumption on the gas exchange threshold. The gas exchange 
threshold (GET) expressed in (a) L/min, (b) percent of max heart rate (%MHR), (c) ml/kg/min, (d) 
percent of max power output (%Max power), (e) percent of _VO2peak (% _VO2peak), and (f) time in minutes 
during the graded exercise test (GXT) following consumption of 16 oz placebo (PLA), monster energy 
drink (MED), and C4 energy drink (C4E). F-statistics and p-values for the one-way ANOVAs used to 
analyze between condition differences are shown within the boxes in each panel. Where the ANOVA 
p-value was ≤ 0.10, p-values are shown for the between condition Tukey-corrected post-hoc tests. 
Data are expressed as mean ± SE.
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Figure 5. Submaximal isometric fatigue test performance. The (a) time to fatigue (TTF), (b) mean force, 
and (c) impulse during the isometric fatigue (ISOFTG) test following consumption of 16 oz placebo 
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depressed relative to baseline (−18.7 ± 4.4 N; p = 0.0001), and then decreased again from 
pre ISOFTG to post ISOFTG (−18.0 ± 4.4 N; p < 0.0001) such that it was depressed relative to 
baseline (−36.6 ± 4.4 N; p < 0.0001).

Finally, the condition × time interaction for EMGAMP during the ISOFTG test was not 
significant (p = 0.22), but there were significant main effects for time (F(1.908, 55.34) = 19.22, 
p < 0.0001) and condition (F(1.923, 55.75) = 5.65, p = 0.006). Follow-up linear regression 
analyses confirmed that the slopes of the EMGAMP versus normalized time relationships 
were similar among conditions, indicating that EMGAMP increased similarly across time for 
all conditions. However, the y-intercepts of the EMGAMP versus normalized time relation
ships were different and indicated that EMGAMP was greater in the C4E (39 ± 5%) and MED 
(46 ± 6%) conditions than in PLA (33 ± 2%) independent of time (Figure 6).

3.6. Leg blood flow

No significant condition × time interaction was observed for LBF (p = 0.37), artery cross- 
sectional area (p = 0.85), or mean blood flow velocity (p = 0.27). There were also no 
significant main effects for condition for any of these measures (p = 0.98, 0.36, and 0.84, 
respectively). However, there were main effects for time for LBF (F(1.474, 42.75) = 93.28, p <  
0.0001), artery cross-sectional area (F(1.837, 52.28) = 13.09, p < 0.0001), and mean blood flow 
velocity (F(1.443, 41.84) = 75.74, p < 0.0001). The means ± SD for each timepoint independent 
of condition are presented in Table 4.

3.7. Blood pressure and heart rate

There was a significant condition × time interaction for HR (F(5.376, 154.3) = 2.4, p = 0.037). 
There was no difference in HR at baseline across conditions, but post-drink HR was 
significantly higher in the MED versus both the PLA (+3.9 ± 1.5 bpm; p = 0.035) and the 
C4E (+4.0 ± 1.2 bpm; p = 0.010) conditions. Pre-ISOFTG HR was significantly higher in the 
MED versus the PLA condition (+6.7 ± 2.6 bpm; p = 0.034) but was not different in the C4E 
versus PLA condition (+4.4 ± 2.0 bpm; p = 0.09). Post-ISOFTG HR was significantly higher in 
the C4E versus the PLA condition (+7.3 ± 2.2 bpm; p = 0.007), whereas the difference in HR 
between MED and PLA was not significant (+5.8 ± 2.4 bpm; p = 0.05). Finally, at recovery, 
HR was significantly higher in the MED (+6.5 ± 1.5 bpm; p < 0.001) and C4E (+5.7 ± 1.9  
bpm; p = 0.015) conditions relative to PLA. There was also a significant condition × time 
interaction for SBP (F(4.095, 117.5) = 2.7, p = 0.033). Post hoc tests revealed that SBP did not 
differ at baseline, pre-ISOFTG, or post-ISOFTG among conditions. However, SBP was sig
nificantly greater in the MED (+7.1 ± 1.2 mmHg; p < 0.001) and C4E (+5.7 ± 1.0 mmHg; p <  
0.001) versus the PLA conditions post-drink consumption. Post-GXT, SBP was greater in 
the C4E versus the PLA condition (+13.3 ± 3.8 mmHg; p < 0.001), but there was no

(PLA), monster energy drink (MED), and C4 energy drink (C4E). F-statistics and p-values for the one- 
way ANOVAs used to analyze between condition differences are shown within the boxes in each 
panel. Where the ANOVA was significant, p-values are shown for the between condition Tukey- 
corrected post-hoc tests. Data are expressed as mean ± SE.
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difference in SBP between MED and PLA (p = 0.35). During recovery, SBP was significantly 
greater in the MED versus PLA condition (+3.2 ± 1.1 mmHg; p = 0.014), and there was no 
difference between C4E and PLA (p = 0.08). No significant condition × time interaction 
was observed for DBP (p = 0.45). However, there were main effects for condition (F(1.982, 

57.46) = 7.3, p = 0.002) and time (F(2.06, 59.83) = 23.4, p < 0.0001). Independent of time, DBP 
was significantly higher in the MED (+2.50 ± 0.71 mmHg; p = 0.004) and C4E (+2.24 ± 0.73  
mmHg; p = 0.012) versus the PLA conditions. Independent of condition, DBP increased 
from baseline to post-drink, from post-drink to post-GXT, and then remained elevated 
through post-ISOFTG before decreasing in recovery whilst remaining elevated relative to 
baseline. All post-hoc comparisons can be seen in Figure 7c.

Table 4. Profile of mood states and session RPE following beverage consumption.

PLA MED C4E p-value

Total Mood Disturbance −.03 ± 1.33 0.57 ± 1.21 0.17 ± 1.52 0.94
Anger-Hostility 0.27 ± .13 0.23 ± 0.09 0.23 ± 0.09 0.96

Confusion-Bewilderment 0.63 ± .21 0.70 ± 0.20 0.87 ± 0.27 0.63
Depression-Dejection 0.10 ± .07 0.40 ± 0.17 0.37 ± 0.21 0.22

Fatigue-Inertia 7.07 ± .62 6.83 ± 0.62 7.17 ± 0.73 0.86
Tension-Anxiety 1.20 ± .30 1.10 ± 0.30 1.07 ± 0.31 0.88

Vigor-Activity 8.90 ± .72 8.70 ± 0.74 9.53 ± 0.76 0.21
Friendliness 9.90 ± .76 10.33 ± 0.89 10.50 ± 0.92 0.40
Session RPE 7.7 ± 1.9 7.0 ± 2.4 7.4 ± 2.1 0.09

All data are presented as mean ± SE. RPE = rating of perceived exertion; PLA = Placebo; MED = Monster Energy Caffeine 
Drink; C4E = C4 Energy Drink.

Figure 6. Effects of energy drink consumption on the EMG amplitude versus time. F-statistics and p- 
values of the tests for between condition differences in slopes and y-intercepts are shown.
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No significant condition × time interaction was observed for RPP (p = 0.08). However, 
there were main effects for condition (F(1.631, 47.29) = 12.21, p = 0.0001) and time (F(2.353, 68.24)  

= 658.5, p < 0.0001). Independent of time, RPP was significantly higher in the MED (+882.9 ±  
262.1 mmHg*bpm; p=0.006) and C4E (+857.0 ± 159.6 mmHg*bpm; p < 0.0001) versus the 
PLA conditions Figure 7f. Independent of condition, RPP did not change from baseline to 
post-drink but then increased post-GXT, decreased to pre-ISOFTG while remaining elevated 
relative to baseline, increased to post-ISOFTG, and then decreased again in recovery while 
remaining elevated relative to baseline. All post-hoc comparisons are depicted in Figure 7d.

3.8. Electrocardiogram

There were no significant condition × time interactions, nor condition or time main effects 
for QTc, R, or T axis (all p ≥0.08) (Figure 8). There was a significant condition � time 
interaction for QRS duration (F(4, 115) = 2.79, p = 0.03; Figure 8b). Post hoc tests revealed 
that QRS duration was significantly longer in MED (+2.67 ± 1.06 ms; p = 0.03) post-drink 
consumption compared to C4E, but was not significantly different in any other comparison. 
There was no condition × time interaction for PR interval duration (p = 0.59) or P axis (p =  
0.17), but there was a main effect for time for both (F(2, 58) = 22.66, p < 0.001 and F(2, 58) =  
14.9, p < 0.001; Figure 8c,d, respectively). PR interval duration was shorter at recovery 
compared to both baseline (−9.87 ± 1.28 ms; p < 0.001 and post-drink consumption 
(−8.78 ± 1.38 ms; p < 0.001). The P axis was greater in recovery than at baseline (6.13 ±  
1.35°; p < 0.001) or post-drink (9.1 ± 1.55°; p < 0.001).

3.9. Mood

There were no differences in Total Mood Disturbance, Fatigue-Inertia, Vigor-Activity, 
Tension-Anxiety, Depression-Dejection, Anger-Hostility, or Confusion-Bewilderment 
scores observed among conditions (all p ≥0.21). There was also no difference in session 
RPE observed among conditions (p = 0.09). Data are presented in Table 4.

4. Discussion

We investigated the acute effects of a novel, non-caloric caffeinated energy drink (C4E) 
relative to a traditional, high-sugar caffeinated energy drink (MED) and PLA control on 
exercise performance, leg blood flow, and cardiovascular safety. In the present study, we 
demonstrated that acute MED consumption increased exercising RER and decreased MFO 
relative to PLA, but did not influence exercise performance. In contrast, C4E did not alter 
RER or MFO relative to PLA. Further, C4E improved impulse during a sub-maximal 
isometric fatigue test by 9.9% relative to PLA. Neither MED nor C4E influenced resting 
or post-exercise leg blood flow. Finally, both C4E and MED caused resting SBP, DBP, and 
HR to increase, while C4E elicited an increased SBP immediately following exercise 
compared to PLA but not MED. Except for an increase in QRS duration in MED compared 
to C4E, there were no effects of acute C4E or MED consumption on QTc interval length, 
nor on any other ECG characteristics, mood, or perceived effort during the testing session. 
Together, these results suggest that C4E may improve semi-fasted resistance exercise 
performance in prolonged, exhaustive exercise bouts without disrupting fuel utilization.

JOURNAL OF THE INTERNATIONAL SOCIETY OF SPORTS NUTRITION 69



Figure 7. Cardiovascular hemodynamic responses to energy drink consumption. (a) Systolic blood 
pressure, (b) heart rate, (c) diastolic blood pressure, (d) rate pressure product, (e) diastolic blood 
pressure condition main effect, and (f) rate pressure product condition main effect readings were 
taken 6 times at each experimental visit. At each visit, participants consumed 16 oz of either placebo 
(PLA), monster energy drink (MED), or C4 energy (C4E). Heart rate and blood pressure was taken before 
drink consumption (baseline), 40 minutes after drink consumption (post drink), immediately before 
and immediately after an isometric fatigue test (pre ISOFTG and post ISOFTG, respectively), and 10  
minutes after an isometric fatigue test (recovery). Peak heart rate values observed during a maximal 
graded exercise test are also presented (peak GXT), while blood pressure was taken immediately after 
a GXT (post GXT). * = significant difference between PLA and MED; # = significant difference between 
PLA and C4E; $ = significant difference between timepoints collapsed across condition. Data are 
expressed as mean ± SE.
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4.1. Exercise performance and blood flow

Our results indicate that neither C4E nor MED influence maximal exercise outcomes 
during a GXT to volitional exhaustion, including peak heart rate, peak power, TTE, and 
_VO2peak. Few studies have examined the effects of low-calorie, caffeine-containing energy

Figure 8. Effects of energy drink consumption on electrocardiogram (ECG) characteristics. The (a) 
corrected QT interval (QTc) (b) QRS interval, (c) PR interval, (d) P axis, (e) R axis, and (f) T axis are 
displayed above. F-statistics and p-values for the one-way ANOVAs used to analyze between condition 
differences are shown within the boxes in each panel. Where the ANOVA was significant, p-values are 
shown for the between condition Tukey-corrected post-hoc tests. & = significant difference between 
MED and C4 energy (C4E); $ = significant difference between timepoints collapsed across condition. 
Data are expressed as mean ± SE.
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drinks on GXT performance [13,42]. Similarly, few studies have examined the effects of 
caloric, caffeinated energy drinks on GXT performance and, similar to the present study, 
Al-Fares et al. reported no effects on peak HR, TTE or, _VO2peak [43]. Interestingly, several 
prior studies have instead indicated that caffeinated energy drinks are efficacious for 
improving endurance exercise performance when performed at sub-maximal work rates 
or during time-trials [3–5]. Thus, together, our data in combination with these previous 
studies suggest that, in young, adult men under semi-fasted conditions, neither caloric, 
nor non-caloric caffeinated energy drinks differentially affect maximal endurance exercise 
performance during graded exercise tests performed to volitional exhaustion. However, 
additional studies are needed to understand the effects of caloric versus non-caloric 
energy drink consumption on time trial and sub-maximal endurance exercise perfor
mance. It would also be important to understand how energy drink consumption 
would influence exercise performance in the face of various dietary or behavioral stres
sors, such as following prolonged fasting or after sleep restriction/deficiency.

Despite observing that C4E and MED had no effects on maximal endurance perfor
mance parameters, MED consumption reduced MFO during the GXT compared to both 
C4E and PLA, which was accompanied with an average RER that was greater than PLA 
(+3.1%, p = 0.03) but not C4E (+2.7%, p = 0.057). At submaximal exercise intensities, 
energy demands are primarily met via the oxidation of lipids with a lesser contribution 
of carbohydrates. However, as the exercise intensity increases, the contribution from 
lipids decreases while the contributions from carbohydrate increase [44]. There are few 
data available regarding the impact of acute energy drink consumption and fuel utiliza
tion during exercise, but carbohydrate consumption prior to exercise has a suppressive 
effect on fat oxidation and MFO. In support, Achten et al. reported a 28% decrease (0.46 vs 
0.33 g/min) in MFO during a maximal GXT 45 min after the consuming 75 g of carbohy
drates versus placebo [29]. Nelson et al. provided a MED at the volume necessary to 
provide 2 mg/kg of caffeine to 15 healthy recreationally active male and female partici
pants 30-min prior to a maximal exercise test at 100% ventilatory threshold, and also 
reported higher RERs compared to placebo [45]. Nienhueser et al. provided three different 
commercial energy drinks containing 27–31 g of sugar to 10 healthy male participants 45 
min before a 15-min treadmill run at 50% _VO2 and reported a 10–15% increase in RER 
compared to placebo [46]. In the current study, unlike PLA and C4E, MED contained 58 g 
of carbohydrates, which likely impacted fuel utilization by promoting a greater contribu
tion of carbohydrates to meet energy demands [47], thus driving RER up and attenuating 
MFO. Interestingly, however, the increased availability of carbohydrates from MED did not 
positively impact markers of exercise performance under semi-fasted conditions.

There is limited prior work examining the efficacy of caffeinated energy drink con
sumption on the GET. Interestingly, GET (expressed relative to absolute and relative peak 
oxygen consumption) was 12–13% greater (p = 0.047–0.06) following C4E than MED 
consumption, but not different from PLA in the present study. It should be noted, 
however, that these differences were observed in forced post-hoc tests as the main 
effects for condition did not reach significance (p = 0.06–0.07). While there is a paucity 
of data regarding the acute effects of energy drinks on anaerobic thresholds, caffeine 
consumption alone reportedly does not have a strong influence [9,48,49]. There are also 
little data available regarding the effects of carbohydrate consumption on GET using
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pulmonary gas analyses as in this study, but there are data regarding the effects on lactate 
threshold. A 3-day high-carbohydrate diet has been shown to reduce the _VO2 at the onset 
of blood lactate accumulation [50]. It has also been shown that when free fatty acid 
concentrations are elevated, lactate threshold is increased [51]. Yet, acute pre-exercise 
carbohydrate consumption has been shown to have no effect on lactate threshold [52,53]. 
Therefore, our data generally agree and extend the current body of literature to suggest 
that acute energy drink consumption does not strongly influence the GET, and any 
potential differences in GET in this study are likely due to the aforementioned differences 
in substrate availability and utilization, and subsequently greater CO2 production follow
ing MED consumption. This is further supported by our data indicating that neither C4E 
nor MED augmented leg blood flow, and thus were not likely to have influenced blood 
supply and oxygen delivery [54]. Given the mechanism of action for several of the active 
ingredients in C4E that may require chronic supplementation, it would be beneficial for 
future studies to examine the efficacy of sub-chronic or chronic C4E consumption on GET.

In the present study, C4E improved impulse – a surrogate of total work capacity during 
isometric muscle actions – relative to PLA during the fatiguing submaximal, isometric leg 
extension exercise bout completed after the GXT. In contrast, MED had no effect on 
impulse. These effects on impulse were realized despite C4E having no significant impacts 
on either MVF or TTF. In other words, the subtle improvements in MVF and TTF associated 
with C4E consumption were not statistically significant, but were substantial enough to 
improve total impulse, which is the product of MVF and TTF. Prior studies examining the 
efficacy of energy drink consumption on muscular strength and endurance have been 
inconsistent, with some reporting energy drink-related improvements [6–8], and others 
reporting no effects [11,12,55]. Chtourou et al. reported a significantly greater handgrip 
force (58.2 vs. 55.5 kg) following consumption of Red Bull in 19 physically active young 
men [56]. Similarly, Astley et al. [8] reported an increase in handgrip strength following 
energy drink consumption (53.7 vs. 47.7 kg). While no studies have examined isometric 
leg extension fatiguability following energy drink consumption, Astley et al. [8] reported 
that energy drink consumption promoted the completion of more repetitions to failure 
(11.5 vs. 9.5 reps) during leg extension exercise at 80% of one repetition maximum. Unlike 
the present study, the aforementioned studies utilized energy drinks that contained 
moderate calories and substantial added sugars, whereas the present study examined 
the effects of a sugar-free energy drink on isometric leg extension performance. Notably, 
our data show that while C4E promoted improved leg extension fatiguability, MED did 
not. Thus, acute C4E consumption may improve force-generating capacity and total 
impulse (work) in resistance-type tasks in the midst of exhaustive exercise bouts.

4.2. Cardiovascular safety

The current study showed that C4E and MED both increased SBP, while MED increased 
QRS interval length compared to C4E. Furthermore, neither drink altered QTc, PR interval, 
P axis, R axis, or T axis compared to PLA. While DBP and RPP were greater in the C4E and 
MED conditions than during PLA, these effects were independent of time. Whereas this 
may suggest that the increased DBP and RPP in C4E and MED were not caused by C4E and 
MED consumption per se, it is worth noting that there were no differences in DBP or RPP 
among conditions (p = 0.96 and 0.39) at baseline. Therefore, combined with the effect on
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SBP, our interpretation is that this condition main effect was driven by the effects of C4E 
and MED consumption. In a 2016 meta-analysis, Shah et al. [57] reported that energy 
drinks containing ≥200 mg of caffeine promote 6.4 mmHg (95% CI = 4.6–8.3) increases in 
resting SBP, while those containing <200 mg caffeine promote 3.7 (95% CI = 1.7–5.8) 
mmHg increases. In the present study, C4E (200 mg caffeine) produced a resting increase 
in SBP of 5.7 mmHg, whereas MED (160 mg caffeine) produced a resting increase of 7.1  
mmHg. Consequently, the increase in resting SBP following C4E consumption was as 
expected given the dose of caffeine provided, whereas the increase in resting SBP 
following MED was greater than expected. Prior studies have demonstrated that the 
combination of ingredients in traditional energy drinks (e.g. caffeine, taurine, glucurono
lactone) have cardiovascular effects that are different from the ingredients in isolation 
[21]. Thus, it is plausible that the greater than expected effect of MED on resting SBP was 
due to the combined effects of the active ingredients in MED. Still, our study showed no 
influence of MED or C4E consumption on the QTc interval, suggesting that acute con
sumption of a standard, 16 oz energy drink with ≤200 mg of caffeine produces no adverse 
effects on ventricular repolarization.

Uniquely, our study design also provided the opportunity to examine the influence of 
C4E and MED consumption on hemodynamic and ECG parameters following exhaustive 
exercise and during passive recovery. C4E consumption increased SBP following the GXT, 
and increased HR after the isometric exercise bout and in recovery. MED consumption 
increased SBP in recovery and produced increases in HR before the start of isometric 
exercise and in recovery. Thus, both C4E and MED generally promoted increases in BP and 
HR following exercise that persisted into recovery. These findings are consistent with prior 
studies showing that caffeine consumption alone can disrupt post-exercise autonomic 
recovery because of increased sympathetic activity [25].

4.3. Limitations

There are several limitations to our study. First, the study population included men alone 
and as such the results are not generalizable to women. The decision to proceed with men 
alone was based primarily on existing evidence that caffeine metabolism is affected by 
menstrual cycle phase {1483492}. Whereas the repeated-measures crossover design was a 
notable strength, it also introduced logistical difficulties whereby controlling for men
strual cycle phase would have required prolonged washout periods between treatments. 
In addition, the relative dosing of study ingredients would have been different, on 
average, for men versus women. Future studies will be necessary to examine the meta
bolic, cardiovascular, and neuromuscular effects of novel energy drink formulations in 
women. These studies may wish to similarly use cross-over designs but test irrespective of 
menstrual cycle phase, with the assumption that randomization will necessarily control 
for this effect. However, it is also possible that this will increase variability between 
repeated measures and thus may require larger sample sizes than those used herein. In 
addition, if sex-differences are of interest, it will be necessary to match ingredient dosing 
relative to bodyweight or attempt to match males and females for bodyweight and body 
composition. As previously mentioned, several of the primary ingredients in C4S exert 
their greatest effects following short- (e.g. ≥1 week for L-citrulline) to longer-term supple
mentation (e.g. ≥4 weeks for beta-alanine). Thus, future studies may wish to examine the
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effects of habitual C4S consumption on exercise performance. Further, whereas the acute 
effects of high-dose energy drink consumption on cardiovascular safety have been 
described, the effects of chronic consumption on cardiovascular and cardiometabolic 
health are unclear. Future studies may choose to examine the effects of chronic novel, 
non-caloric versus caloric energy drink consumption on cardiovascular and cardiometa
bolic health.

5. Conclusions

In conclusion, our data indicate that acute MED consumption increases RER and attenu
ates MFO and has no influence on the anaerobic threshold, _VO2peak, or performance 
during a fatiguing isometric work bout. In contrast, C4E consumption did not disrupt 
semi-fasted RER or MFO but enhanced impulse relative to PLA during the fatiguing 
isometric work bout. Neither MED nor C4E influenced mood or leg blood flow. 
Furthermore, both MED and C4E elicited increases in resting SBP and heart rate, likely 
increased DBP and RPP, but had no effect on ventricular repolarization or on other 
indicators of cardiac electrical activity. Consequently, our data suggest that acute C4E 
consumption enhances force-generating capacity in the context of semi-fasted, exhaus
tive exercise bouts without disrupting fuel utilization. Finally, energy drinks such as C4E 
contain multiple ingredients that likely improve exercise performance when consumed 
habitually (e.g. beta-alanine and L-citrulline). However, it is still unclear how habitual 
consumption of sugar-free or traditional energy drinks such as C4E or MED may, respec
tively, influence cardiovascular or metabolic health. Therefore, future studies should 
examine the efficacy of chronic energy drink consumption on exercise performance 
while considering cardiovascular and metabolic health outcomes.
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