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Resistance exercise lowers blood pressure and improves vascular endothelial function
in individuals with elevated blood pressure or stage | hypertension
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Running title: Resistance Training on Hypertension

NEW & NOTEWORTHY: This is among the first studies to investigate the effects of chronic
resistance exercise training on blood pressure (BP) and putative BP regulating mechanisms in
middle-aged and older adults with untreated elevated BP or stage 1 hypertension in a
randomized, non-exercise, controlled trial. Nine weeks of resistance exercise training elicits 4-8
mmHg improvements in systolic and diastolic BP alongside improvements in vascular
endothelial function and total peripheral resistance without influencing central arterial stiffness or

cardiovagal function.
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Abstract

Lifestyle modifications are the first-line treatment recommendation for elevated blood
pressure (BP) or stage 1 hypertension (E/S1H) and include resistance exercise training (RET).
The purpose of the current study was to examine the effect of a 9-week RET intervention in line
with the current exercise guidelines for individuals with E/S1H on resting peripheral and central
BP, vascular endothelial function, central arterial stiffness, autonomic function, and inflammation
in middle-aged and older adults (MA/O) with untreated E/S1H. Twenty-six MA/O adults (5416 v;
16F/10M) with E/S1H engaged in either 9 weeks of 3 days/week RET (n=13) or a non-exercise
control (CON; n=13). Pre- and post-intervention measures included peripheral and central
systolic (SBP and cSBP) and diastolic BP (DBP and cDBP), flow-mediated dilation (FMD),
carotid-femoral pulse wave velocity (cfPWV), cardiovagal baroreflex sensitivity (BRS), cardiac
output (CO), total peripheral resistance (TPR), heart rate variability (HRV), and c-reactive
protein (CRP). RET caused significant reductions in SBP (mean change+95%ClI = (-7.9 [-12.1, -
3.6] mmHg; p < 0.001), cSBP (6.8 [-10.8, -2.7] mmHg; p < 0.001), DBP (4.8 [-10.3, -1.2] mmHg;
p < 0.001), and cDBP (-5.1 [-8.9, -1.3] mmHg; p < 0.001), increases in FMD (+2.37 [0.61, 4.14]
%; p = 0.004) and CO (+1.21 [0.26, 2.15] L/min; p = 0.006) and a reduction in TPR (-398 [-778, -
19] mmHg-s/L; p = 0.028). RET had no effect on cfPWV, BRS, HRV, or CRP relative to CON
(p=0.20). These data suggest that RET reduces BP in MA/O adults with E/S1H alongside
increased peripheral vascular function and decreased TPR without affecting cardiovagal

function or central arterial stiffness.
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Introduction

It is estimated that roughly 1.39 billion people have hypertension worldwide and that
nearly 10 million deaths are attributed to hypertension-related complications annually (1, 2).
There are multiple categories that define a higher than optimal blood pressure (BP), including
elevated BP (systolic BP (SBP) of 120-129 mmHg and a diastolic BP (DBP) of less than 80
mmHg), stage 1 hypertension (SBP of 130-139 mmHg and/or a DBP of 80-89 mmHg), and
stage 2 hypertension (SBP over 140 mmHg or a DBP over 90 mmHg) (2). Lifestyle interventions
are the recommended first-line treatment for individuals who have elevated BP and stage 1
hypertension (E/S1H) in an attempt to prevent or delay the need for future pharmaceutical
intervention (3). Resistance exercise training (RET) effectively reduces BP and is one of the
recommended lifestyle interventions for individuals with E/S1H (4). Notably, however, the
majority of studies examining the impact of RET on BP include BP only as a secondary
outcome, and the mechanism by which RET lowers BP is unclear (5), particularly in middle-
aged (MA/O) adults with untreated E/S1H. Therefore, there is a clear and urgent need for high-
quality investigations examining the effects of RET on BP and putative BP-regulating
mechanisms in individuals with E/S1H (5).

The limited body of evidence available on the mechanism by which RET lowers BP
suggests improvements in peripheral vascular endothelial function may be a major contributing
factor (5, 6). However, the only study examining RET's impact on vascular function in untreated
MA/O adults with hypertension did not have a true non-exercise control group, utilized a short 4-
week RET program, did not measure FMD, and included individuals with stage 2 hypertension
under the updated BP categories (7). Additionally, while endothelial dysfunction and
hypertension are related, the directionality and causality of this association is less clear (8).
Interestingly, RET has been shown to worsen central arterial stiffness and cause alterations in
autonomic nervous system function that result in impaired BP control in some (7, 9-17), but not

all studies (18-24). These effects would be particularly worrisome in MA/O adults with E/S1H
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and would also seemingly be at odds with the potential beneficial effects of RET on BP.
However, the effects of RET on central arterial stiffness and autonomic function in this
population are, as of yet, not well-described.

Therefore, the purpose of the current study was to examine the effect of a 9-week RET
intervention in accordance with current exercise guidelines provided by the American College of
Sports Medicine (ACSM) for individuals with high BP (25) on resting peripheral and central BP,
vascular endothelial function, central arterial stiffness, cardiovagal function, and inflammation in

MA/O with E/S1H.

Methods

Participants

Thirty-six individuals completed a screening visit for the current study, however, six of
these individuals had BPs below the inclusion cutoff and thus were not eligible. Therefore, 30
physically inactive, male and female MA/O adults (aged 45—-64 y) were determined to be eligible
for the current study and were randomized into either a RET or a non-exercise control (CON)
group (Table 1). Out of the enrolled participants, there were 4 individuals in RET and 6
individuals in CON who met ES1H criteria based on their SBP alone, whereas the remaining
participants were classified as ES1H due to both their SBP and DBP. Following screening but
prior to the first experimental visit, two participants in CON and one in RET dropped out of the
study for the following reasons: scheduling conflicts (n=1), unrelated injury (n=1), and
unresponsiveness to study-related communication (n=1), whereas one participant in CON
dropped out following the first experimental visit due to scheduling conflicts. As a result, 26
participants completed this investigation (Table 1). To determine eligibility, participants arrived
at the laboratory for a screening visit after a 6-hour fast, abstaining from caffeine consumption
for at least 12 hours, and having not engaged in moderate-to-vigorous intensity exercise for at

least 24 hours. During the screening visit, participants completed an informed consent form,
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health history questionnaire, and the Physical Activity Readiness Questionnaire (PAR-Q+), had
their menopause status determined via STRAW-10 principal criteria (26), and had a resting
brachial BP measured. During the screening visit, BP was recorded as the average of duplicate
recordings following a 5-minute seated rest period with a 1-minute interval between
measurements. For all measurements, participants were seated with an appropriately sized cuff
placed on the upper right arm, which was supported and at heart level. The screening BP was
collected using an automatic oscillometric BP device (OMRON Platinum Model BP5450,
OMRON Healthcare Co., JPN) that has been validated for clinical accuracy that is on the US BP
Validated Device Listing. If the first and second SBP or DBP measurements differed by = 5
mmHg or =2 4 mmHg, respectively, a third measurement was completed, and the average of the
two closest measurements was recorded. To be eligible, participants must have been 45-64
years old, had a body mass index of 18.5-39.9 kg/m? have not been meeting the physical
activity guidelines for at least 6 months, have been determined to have no known
cardiovascular, metabolic, or musculoskeletal disease (excluding hypertension), nor to be taking
any medications treating such disease, according to self-reported health history, determined to
be ready to begin an exercise program according to the PAR-Q+, and had a SBP between 120—-
139 mmHg and/or DBP between 80-89 mmHg as measured during the in-person screening
visit. Participants were recruited using IRB-approved emails via the university mass email
system and by word of mouth. All study procedures and documents complied with the
Declaration of Helsinki, except for preregistration in a publicly accessible database, and were
approved by the University’s Institutional Review Board for the protection of human subjects
(IRB Approval #: 202201319). All participants consented to participate by signing an informed

consent form explaining the nature, benefits, and risks of the study before participation.
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Experimental Design

An overview of the experimental design can be viewed in Figure 1. All eligible
participants visited the laboratory for two experimental visits occurring 3—7 days prior to (TO)
and 5-7 days following (T1) the 9-week intervention period. For all experimental visits,
participants abstained from exercise for at least 5 days, caffeine for 12 hours, and food for 6
hours prior to arrival, and were studied at the same time of day during pre- and post-testing.
During the experimental visits, participants had their body composition measured before laying
supine for at least 10 minutes prior to a venipuncture. An additional 10-minute supine rest was
then provided before vascular endothelial function and central arterial stiffness were measured
via FMD and carotid-femoral pulse wave velocity (cfPWV), respectively. Participants then
transitioned into a seated position and sat quietly for 10 minutes prior to having their resting BP
collected and their beat-by-beat BP and heart rate recorded for 5 minutes. At the end of each
visit, participants engaged in strength testing, where their 10-repetition maximum (RM) was
determined using a cable-loaded bench press and plate-loaded hack squat machine. Prior to
strength testing, participants were provided with a 180-kcal hypoallergenic snack (Organic
Strawberry Crispy Squares, MadeGood Foods, USA). There were two premenopausal
participants in each group. Two premenopausal women had an IUD (RET, n =1; CON, n =1),
whereas the other two completed their experimental visits in the follicular phase (RET, n =1;

CON, n = 1) to control for changes in circulating sex hormones.

A Priori Sample Size Determination: The estimated sample size required to observe mixed-

factors interaction effect for changes in BP, cfPWV, and FMD, were determined in G*Power
(Autenzell, Germany). Collier et al. (7) observed an effect size of RET on BP and cfPWV of
d=0.65 and d=0.67, while Ramirez-Valez et al. (23) observed an effect size of RET on FMD of
0.51. Combining these effect sizes with a standard power (1-B) of 0.8, 2 groups (RET and

CON), and 2 measurements (TO versus T1) with a conservative correlation between
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measurements of 0.5, it was determined that 8, 8, and 10 participants would be needed per
group to achieve adequate power for BP, cfPWV, and FMD outcomes. Therefore, assuming a

20% dropout rate, we aimed to recruit at least 12 participants into each group.

Intervention Period

During the 9-week intervention period, individuals in the RET group came to the lab
every Monday, Wednesday, and Friday to complete a ~40-minute RET session. Each RET
session was led and supervised by one of three trained lab members and no more than four
participants trained in the same sessions in order to maintain adequate supervision while
allowing sufficient flexibility to accommodate participants’ schedules. During each RET session,
participants completed (in order) bench press, hack squat, latissimus dorsi pulldown, leg
extension, seated row, leg curl, and plank resistance exercises. Specific set and repetition
schemes for the RET program are shown in Figure 1. All exercises were cable-loaded except
for the hack squat, which was plate-loaded, and the plank, which was completed using only
body weight. The initial weight was estimated based on strength testing at the end of TO and
used for week 1. During weeks 2 and 3, participants were queried and monitored to determine if
they would have been able to complete 2 or more repetitions beyond the prescribed 12
repetitions on the final set of each lift. If this was the case, the weight was increased by 5-10%
for the following workout. From week 4 and onward, participants were instructed to complete as
many repetitions as possible on the final set of each lift (excluding plank) but were stopped if
they completed 3 repetitions more than the prescribed amount. Weight was then increased by
5-10% if participants completed more than the prescribed repetitions on the final set for two
workouts in a row for a particular lift. For planks, participants completed the same number of
sets as the other exercises, but did so for time instead of repetitions, with a prescription of 15
seconds for week 1 and 20 seconds for week 2, followed by a 5-second increase in time for

each workout thereafter. Participants rested for at least 1-minute, but not longer than 3-minutes,
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between sets and were instructed to allow sufficient rest in order to ensure lingering fatigue did
not affect subsequent set performance. All sets and repetitions were completed for a given
exercise before moving to the next exercise in the session during weeks 1—4. During weeks 5—
9, participants completed supersets with an upper and lower-body exercise paired (e.g., bench
press and hack squat). At the end of each session, participants were asked for their rating of
perceived exertion (RPE) between 0-10, with O representing no exertion (i.e., rest) and 10
representing maximal exertion. Those in CON were asked to maintain their current lifestyle and
dietary habits throughout the 9-week period and did not come to the laboratory outside of the

screening and experimental visits.

Conduit Artery Vascular Function

The brachial artery FMD technique was used to assess vascular endothelial function and
reactive hyperemia (RH) in accordance with the most recent guidelines (27). Prior to data
collection, participants laid in a supine position in a dark, temperature-controlled room for 10
minutes. With the participant's left arm laterally extended, a segmental cuff (TMC7, Hokanson,
USA) was placed just distal to the medial epicondyle of the humerus and a 12-MHz ultrasound
probe (12L-RS, General Electric, USA) was used to visualize the brachial artery and measure
blood flow, while a screen capture device (AV.io HD, Epiphan Systems, USA) was used to
record the ultrasound screen. Positioning of the segmental cuff distally to the ultrasound probe
was chosen because the increase in post-occlusive artery diameter is largely NO-mediated
using this technique (28). Blood flow velocity was collected using an insonation angle of 60° to
the axis of the vessel and a sample volume encompassing the entire width of the artery (29).
FMD testing included a 2-minute baseline period, a 5-minute cuff occlusion period at 240 mmHg
using a rapid cuff inflation system (E20, Hokanson, USA), and a 3-minute post-occlusive period.
A previously validated (30), continuous, semiautomated edge detection software (FMD Studio,

Quipu srl, Italy) was utilized to continuously measure brachial artery diameter and blood flow
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velocity throughout the protocol, which were used to calculate shear rate (4 - blood flow velocity
(cm/s) / brachial diameter (cm)) (27). Baseline diameter (Dpase) and shear rate (SRpase) Were
calculated as the average value during the 2-minute baseline period, while peak diameter, shear
rate (SRyeak), @and shear rate area under the curve (SRayc) were calculated following cuff release
up until peak diameter was observed using FMD Studio software, as previously described (31-
33). RH was calculated as the difference in AUC of blood flow between baseline (BF,.se) and
the first 90 seconds of the post-occlusive period. Relative and absolute FMD (FMD,s) was
calculated as relative (%) and absolute (mm) the change from Dy, to maximal diameter,
whereas FMD normalized to SR (FMDgsr) was calculated as FMD/SRayc. Probe location was
measured from the superior border of the antecubital fossa during pre-testing to ensure a similar

placement of the probe during post-testing.

Carotid-femoral Pulse Wave Velocity

Central arterial stiffness was assessed using cfPWV (SphygmoCor XCEL, AtCor
Medical, Inc. USA). While remaining in a supine position following the FMD test, participants
had their carotid pulse palpated and marked on the left side of the neck and had a cuff placed
on their upper left thigh to acquire the femoral pulse wave via volumetric displacement. The
pulse waves of the carotid and femoral arteries were then recorded simultaneously by a
tonometer and the femoral cuff, respectively. The distance between the site of the carotid and
femoral pulse was then divided by the difference in pulse wave transit time between the two
arteries (e.g., distance/time) to determine cfPWV. To correct for the known impact of distending
pressure on cfPWV and the hypothesized reduction in BP expected in the RET group, change in

mean arterial pressure (MAP) was added as a covariate in cfPWV analyses.

Resting Blood Pressure

During experimental visits, resting BP was collected in a seated position following a 10-

minute resting period in accordance with the American Heart Association guidelines (34) using a
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SphygmoCor XCEL cuff device (SphygmoCor XCEL, AtCor Medical, Inc. USA). SBP, DBP,
MAP, and pulse pressure (PP) were determined automatically by standard oscillometric brachial
BP measurement using an appropriately-sized BP cuff. Immediately after, the cuff was inflated
and held at a sub-diastolic pressure level for 5 seconds, during which cuff displacement
waveforms were measured and calibrated to the brachial SBP and DBP. Next, a generalized
transfer function was applied to estimate the central BP waveform, from which central SBP

(cSBP), and central DBP (cDBP) were determined using the device’s proprietary software (35).

Hemodynamic Monitoring

While seated, participants had a finger photoplethysmograph placed on the middle finger
of the right hand, which was utilized to collect beat-by-beat BP (NOVA Finometer, Finapres
Medical Systems, The Netherlands). The participants held their right hand over their heart
during all hemodynamic testing, with their arm supported. Modelflow technology was used to
calculate cardiac output (CO) and total peripheral resistance (TPR). Additionally, heart rate was
collected using a 3-lead electrocardiogram, and respiratory rate was collected using a
respiratory belt with participants instructed to breathe at a normal rate during all testing
(TN1132/ST; ADInstruments). Data was collected at 1000 Hz using a data acquisition system

(Powerlab Series 26; ADInstruments, USA) and stored offline.

Cardiovagal Baroreflex Sensitivity and Heart Rate Variability

Raw beat-by-beat BP waveforms and ECG data were uploaded to Ensemble-R
software, and the sequence method was utilized to assess cardiovagal BRS and HRV. BRSyscieq
was assessed by averaging the slope between three sequences of either increasing (BRS,;) or
decreasing (BRS4own) pulse waveform peak pressures with subsequent decreases or increases
in R-R interval length, respectively, with a minimum correlation of r = 0.8, increase in SBP of 1

mmHg, and an R-R interval length of 4 ms. The log-transformed root mean square of
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successive differences (INRMSSD), high-frequency power (InHF), and low-frequency power

(InLF), were calculated to represent both time and frequency domain HRV.

C-reactive Protein

Whole venous blood was collected in a lithium heparin plasma separator tube (BD
Vacutainer, Becton Dickinson, USA) before being spun for 15 minutes at 1000 g. Plasma was
then transferred to 1.7-mL microcentrifuge tubes for storage at -80°C. Samples were later
thawed, and high-sensitivity CRP was assessed using a commercially available enzyme-linked
immunosorbent assay (CRP ELISA, Immundiagnostik AG, Germany). The detection range of
the CRP ELISA kit was 1.8-150 ng/mL, with a sensitivity of 0.124 ng/ml, and an inter-assay
coefficient of variation of < 10%. All assays were performed in accordance with the
manufacturer’s instructions and read using a microplate photometer (Multiskan™ FC Microplate

Photometer, ThermoFisher Scientific™, USA).

Body Composition

At both experimental visits, participants’ body composition was assessed via BodPod

(COSMED, USA) to assess body fat percent (BF%), fat mass (FM), and fat-free mass (FFM).

Lifestyle Controls

All participants were asked to refrain from any other forms of exercise outside of the
study and maintain their current dietary habits throughout the study period. Calories, protein, fat,
and carbohydrate intake, along with physical activity in metabolic equivalent of task (MET)
minutes per week were collected via self-report using 3-day dietary food logs and the Short Last
7 Days International Physical Activity Questionnaire (IPAQ), which were completed during both

pre- and post-testing.
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Statistical Analysis

Residual normality was assessed using Shapiro-Wilk tests, while homoscedasticity was
assessed using Levene’s test. In the case of violation of either normality or homoscedasticity,
data was transformed with a natural logarithm before being reverted to their original scale for
reporting. Multiple independent two-way mixed linear models (group [RET vs. CON] x visit [pre-
vs. post-intervention]) were run to determine the impact of the intervention period on all resting
BP, vascular endothelial function, RH, cfPWV, HRV, BRS, dietary, and physical activity
variables with sex included as a covariate. cfPWV was analyzed using a two-way mixed linear
model with AMAP and sex included as covariates. To decompose significant group x visit
interactions, Tukey-adjusted post hoc comparisons were performed. Between-group effect sizes
were determined using Cohen’s d. Pearson’s product correlations (r) or Spearman rank
correlation coefficients (p) were used to explore the relationship between the changes in SBP,
DBP, CO, TPR, FMD, and selected secondary variables of interest where residuals were
normally or non-normally distributed. Partial correlations (ry,, or py..) were also performed to
remove the effect of sex and are reported in Figure 5. Within and between group differences are
reported in text as mean differences with [95% CI Lower Bound, 95% CI Upper Bound] unless
denoted otherwise. Confidence Intervals were adjusted using the Bonferroni method.
Significance was set at p < 0.05. Statistical analyses were performed using JASP (JASP Team
2020, v. 0.13.1) or jamovi (v. 2.3.21.0) and figures were created using GraphPad Prism (v.

9.5.1).

Results

Body Composition

There were no significant group x visit interactions, group main effects, or visit main

effects for weight, FFM, FM, or BF% (Table 2).
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Strength

There was a significant group x visit interaction for both squat 1RM and bench 1RM.
RET significantly increased both squat 1RM (+79.6 [64.1, 95.1] kg; p < 0.001) and bench 1RM
(+22.7 [18.8, 26.6] kg; p < 0.001) from TO to T1. Additionally, both squat 1RM (+79.7 [39.8,
119.5] kg; p < 0.001; d = 2.33) and bench 1RM (+30.9 [15.6, 46.2] kg; p < 0.001; d = 2.37) were
significantly greater at T1 in RET compared to CON. There were no significant changes in CON

from TO to T1 (p = 0.05) (Table 2).

Blood Pressure

There were significant group x visit interactions for SBP, DBP, cSBP, cDBP, MAP, and
PP (Figure 2). Specifically, RET experienced a significant reduction in SBP (-7.9 [-12.1, -3.6]
mmHg; p < 0.001), DBP (-4.8 [-10.3, -1.2] mmHg; p < 0.001), cSBP (-6.8 [-10.8, -2.7] mmHg; p
<0.001), cDBP (-5.1 [-8.9, -1.3] mmHg; p < 0.001), and MAP (-5.7 [-9.9, -2.0] mmHg; p < 0.001)
from TO to T1; however the decrease in PP from TO to T1 (-3.1 [-6.6, 0.5] mmHg; p = 0.089) in
RET was not significant. There were no significant changes in any BP variable from TO to T1 in
CON (p = 0.05). Accordingly, RET had significantly lower SBP (-9.8 [-17.3, -2.4] mmHg; p =
0.004; d = 1.52), cSBP (-9.7 [-17.0, -2.3] mmHg; p < 0.001; d = 1.52), and MAP (-6.1 [-11.9, -
0.4] mmHg; p = 0.026; d = 1.22) than CON at T1. While there were large effect size differences
between RET and CON at T1 for DBP (-4.5 [-10.3, 1.2] mmHg; p = 0.142; d = 0.90), cDBP (-4.3
[-10.1, 1.4] mmHg; p = 0.173; d = 0.86), and PP (-5.3 [-11.3, 0.7] mmHg; p = 0.081; d = 1.02),

these differences were not statistically significant.

Resting Hemodynamics

There were significant group x visit interactions for both CO and TPR (Figure 3). CO
significantly increased in RET (+1.21 [0.26, 2.15] L/min; p = 0.006), but there was no difference
in CO between RET and CON at T1 (+0.9 [-0.6, 2.3]; p = 0.33; d = 0.70). TPR significantly

decreased from TO to T1 in RET (-398 [-778, -19] mmHg-s/L; p = 0.028), and while there was a
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large effect size difference between RET and CON at T1 (-369 [-849, 110] mmHg-'s/L; p =
0.158; d = 0.87), this difference was not significant. There were no significant changes in CO or
TPR in CON from TO to T1 (p = 0.64) (Figure 3). There was no significant group x visit

interaction, group main effect, or visit main effect for RHR (Table 3).

Conduit Artery Vascular Function

There were significant group x visit interactions for FMD (p = 0.011; n,?= 0.25), cFMDsg
(p = 0.017; n,? = 0.22), FMD.ps (p = 0.006; n,? = 0.29), as well as BFyase (p = 0.023; n,% = 0.20).
There was no significant interaction for Dpase (p = 0.67; r]p2 = 0.14). RET experienced significant
increases from TO to T1 in FMD (+2.37 [0.61, 4.14] %; p = 0.004), cFMDgr (+1.25 [0.23, 2.27]
%; p = 0.009), and FMD,s (+0.09 [0.03, 0.16] mm; p = 0.002). There were no significant
changes in any of these variables from TO to T1 in CON (all p = 0.99). Consequently, AcCFMDgg
(+2.1 [0.04, 4.09] %; p = 0.035; d = 1.18) and FMDgs (+0.14 [0.005, 0.283] mm; p = 0.048; d =
1.12) were greater in RET than CON at T1, whereas there was a large, but non-significant
difference in FMD (+3.8 [-0.7, 8.4]%; p = 0.104; d = 0.98). RET also experienced significant
increases from TO to T1 in BF,ase (+28.6 [5.1, 52.1]; p = 0.009). While there was a large effect
size difference between RET and CON at T1 for BF e (+26.4 [-3.6, 56.4]; p = 0.085; d = 1.00),
this difference was not significantly different. There were no significant group x visit interactions,

group main effects, or visit main effects for RH, SRpase, SRpeak, OF SRauc (Figure 4 and Table 3).

Central Arterial Stiffness

There was no significant group x visit interaction, group main effect, or visit main effect

for cfPWV (Table 3).

Cardiovagal Baroreflex Sensitivity and Heart Rate Variability

An average of 26.9 + 10.7 valid sequences were acquired per participant at the pre- and

post-intervention visits. There was no significant group x visit interaction, group main effect, or
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visit main effect for BRSyo0ied, BRSyp, or BRS40wn (Table 3). There was also no significant group

x visit interaction, group main effect, or time main effect for InRMSSD, InLF, or InHF (Table 3).

C-reactive Protein

There was no significant group x visit interaction, group main effect, or time main effect

for CRP (Table 3).

Correlations

Relations among the changes in hemodynamic, vascular, cardiovagal, and body
composition variables are depicted in Figure 5. ASBP was significantly correlated with AFMD (r
=-0.48; p = 0.012), AcCFMDgg (r = -0.54; p = 0.005), ABFpase (r = -0.47; p = 0.016), and ADpgse (1
=-0.45; p = 0.021), as well as with Asquat (p = -0.52; p = 0.007), and Abench (r =-0.67; p <
0.001). ADBP was significantly correlated with Abench (r =-0.49; p = 0.012). ACO was
significantly correlated with AFFM (p = 0.58; p = 0.002), as well as with ATPR (r =-0.69, p <
0.001). ATPR was also significantly correlated with ADpase (r = -0.44; p = 0.023), ABRSgown (r = -
0.47; p=0.016). ATPR was not related to ASBP (r = 0.26; p = 0.20) or ADBP (r =0.30; p =

0.13). APP was significantly related to APWV (p =-0.51; p = 0.008).

Lifestyle Controls

The average total exercise session attendance was (mean £ SD) 96 + 6%. There were
no significant group x visit interactions, group main effects, or time main effects for physical
activity, nor the consumption of calories, fat, carbohydrates, or protein (Table 4).

Discussion

This was the first study to explore the putative vascular mechanisms driving RET-
induced improvements in BP in MA/O adults with untreated E/S1H. The main finding of the
current study was that a 9-week RET program reduced peripheral and central BP which was

accompanied by an increase in FMD and a decrease in TPR. Additionally, we reported



372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

397

increases in BFy,se and CO, with no changes in either RH or cfPWV. Lastly, the RET
intervention did not cause any changes in autonomic function as measured by cardiovagal BRS
or HRV, or changes in systemic inflammation as reflected by CRP. Further, our data indicate
that chronic RET does not positively or negatively affect central arterial stiffness, autonomic
function, or inflammation in MA/O adults with untreated E/S1H.

This is the first study to examine the impact of a RET intervention on BP in untreated
MA/O adults with untreated E/S1H. Our data indicate that RET is effective at reducing both
peripheral and central BP. RET reduced SBP and DBP by 8 and 5 mmHg, respectively, which is
similar to reductions reported following other RET interventions (20, 36-39), aerobic exercise
interventions (40), and slightly greater than the average pharmacological reductions reported
over 6 months (41). Thus, these reductions in BP are clinically relevant, and every 5-mmHg
reduction in SBP is associated with a 10% decrease in CVD risk (42). Collier et al., previously
reported a 4 and 4 mmHg reduction in SBP and DBP, respectively, following just 4 weeks of
RET in MA/O adults with hypertension (7). Additionally, middle-aged men with untreated stage 2
hypertension experienced 16 and 12 mmHg reductions in SBP and DBP, respectively, following
a 12-week RET program that was similar to the current study (39). In younger adults with
untreated E/S1H who engaged in an 8-week RET intervention, Beck et al. reported a 10 and 8
mmHg reduction in peripheral SBP and DBP, and 9 and 8 mmHg reductions in cSBP and cDBP
(20). Our data agree with and extend this previous work and indicate that RET lowered cSBP
and cDBP by 7 and 5 mmHg in MA/O with E/S1H. Further, RET promoted a 3 mmHg decrease
in PP, which provides important prognostic information above and beyond SBP and DBP (43-
45) and is largely determined by a mismatch of distal (e.g., conduit) to proximal (e.g., abdominal
aorta) arterial diameters (45). Overall, our data strengthen prior evidence regarding the effect of
RET on BP in MA/O with hypertension (7) by (i) experimentally isolating the effects of RET via
inclusion of a non-exercise control group, and also by (ii) specifically studying MA/O adults with

untreated E/S1H, for whom lifestyle interventions such as RET are explicitly recommended as a
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first line strategy for BP control. Accordingly, we build upon these prior studies and present
important evidence that supports RET as a viable lifestyle intervention to improve BP, showing
for the first time that just 9 weeks of RET in MA/O adults with untreated E/S1H exhibit
reductions that are slightly greater than those experienced following 6 months of
pharmacological treatment (41).

We further extended existing evidence by examining the effect of RET on putative BP-
regulating mechanisms in relation to RET-induced BP changes. BP is the product of CO and
TPR and in addition to lowering BP, RET increased CO and decreased TPR in the present
study. The measure that was most strongly correlated with ACO in the current study was AFFM
(r = 0.56; p = 0.003). Thus, while it is tempting to speculate that these relations may be
explained by a training-induced increase in blood flow demand to supply a greater volume of
metabolically active tissue and/or an increase in venous capacity or return (46-49), we did not
observe significant RET-induced changes in whole body FFM (50). However, we also observed
a 40% RET-induced increase in resting blood flow (e.g., BF,.se) and a non-significant 3.1%
(+0.11 mm) increase in brachial artery diameter (e.g., Dpase). Prior studies have suggested that
RET promotes increases in resting arterial lumen size in the conduit arteries feeding active
muscle beds (51), likely due to arterial remodeling and/or a decrease in resting arterial tone in
response to large, repeated, chronic increases in blood flow and the resultant arterial shear
stress (51, 52). Further, changes in conduit artery blood flow reflect changes in the tone of the
downstream resistance vessels, which are so named because they are the major arterial bed
that modulates vascular resistance. Hypertension is characterized by increased peripheral
resistance caused by decreased resistance vessel lumen diameters, decreased resistance
vessel density due to rarefaction, and/or reduced vasomotor function (53, 54). Thus, it is likely
that the increases in BF,.sc Observed herein reflect a decreased resistance to flow in the
resistance vessels, perhaps by reversal of microvascular rarefaction and decreased constrictor

tone (54, 55). Notably and in support of this hypothesis, both changes in resting brachial artery
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diameter and blood flow were inversely associated with changes in SBP in the present study
(Figure 5). In addition, it is also plausible that RET-induced increases in conduit artery diameter
contributed to decreases in PP by reducing the ratio between proximal and distal conduit artery
diameters (45), although this is highly speculative and will require future investigation.
Therefore, taken together, our data suggest that the BP-lowering effect of RET may be
explained by decreases in TPR secondary to changes in peripheral vascular tone. However,
due to the lack of significant relationships between TPR and both SBP and DBP, additional
mechanistic research is necessary to confirm this hypothesis.

Multiple indices of vascular endothelial function examined in the current study also
improved following the RET intervention. Our data indicated that RET elicited improvements in
both FMD and cFMDsg in MA/O with untreated E/S1H, a finding that is largely in agreement with
prior work in individuals with high BP (56-58). RET causes dramatic increases in blood flow to
the muscles active in each exercise (59), causing acute increases in shear stress on the
vascular endothelium (60). Notably, chronic exposure to repeated, transient increases in shear
stress derived from exercise promotes an endothelial phenotype that is characterized by
increased endothelial NO synthase (eNOS) expression and greater NO bioavailability (61).
Additionally, the observed significant improvements in both FMD and cFMDggr suggest that
increases in FMD were not caused by an increase in the shear stimulus on the vascular
endothelium, but rather improvements in endothelium-dependent function (28, 62). While
macrovascular function improved, we did not see any improvements in microvascular function
as measured by RH. Unlike FMD, which is endothelium-dependent (63), RH provides insight
into the dilation of the downstream resistance vessels and is minimally dependent on NO (29,
64). Our data disagree with those of Heffernan et al. and Collier et al., who have previously
reported that multi-week RET interventions improved RH. However, this difference could be due
to the use of strain-gauge plethysmography versus the use of Doppler ultrasound to measure

RH (7, 22), or due to a lack of power in the present study considering that RET improved RH in
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all but one participant. An improvement in RH may have been hypothesized given that TPR is
primarily regulated at the level of the resistance vessels, but changes in resting tone rather than
the response to ischemia are likely more important to resting blood pressure control.
Accordingly, and as previously described, BFp.se Was elevated following RET, potentially
suggesting greater dilation of downstream resistance vessels at rest, although we cannot rule
out the possibility that the increase in BFp.se Was caused by elevated CO. Still, it is noteworthy
that changes in SBP were inversely associated with increases in both FMD and BF,.s (Figures
5A, B, and D). Overall, these data indicate that RET improves vascular endothelial function and
resting peripheral blood flow that may contribute to RET-mediated improvements in BP, and
which are also likely to improve long-term cardiovascular risk in individuals with E/S1H.

While there is consistent cross-sectional evidence suggesting that individuals who
engage in RET have stiffer central arteries (65-68), the experimental evidence regarding the
influence of RET on arterial stiffness is less clear. Notably, RET had no effect on cfPWV in the
present study. Whereas the majority of studies do not report increases in central arterial
stiffness following RET (18, 20-24), there are multiple reports indicating RET may promote
increased stiffness (7, 9-11). A potential methodological explanation for this discrepancy is the
timing of post-test measurements, with all but one of the studies that have reported increases in
arterial stiffness following a RET intervention having completed post-testing within 24 hours of
the final exercise session (7, 9-11, 19). However, acute RET may increase central arterial
stiffness for up to three days alongside transiently increased SNS activity and inflammation, and
decreased parasympathetic nervous system activity (69-71). Therefore, it is plausible that the
increases in aortic stiffness reported in these studies are due to transient changes in response
to acute exercise, but do not reflect chronic maladaptive structural changes. It is also possible
that RT interventions lasting several weeks or months are either not long enough to persistently
alter the stiffness of the aorta, or other uncontrolled factors may be confounding the cross-

sectional findings. Nevertheless, our data, collected 5-7 days (133 £ 19 h) after the last bout of
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RET, indicate that short-term RET does not change central arterial stiffness as measured by
cfPWV among MA/O adults with E/S1H.

Our findings also indicate that RET had no adverse effects on cardiovagal function as
assessed by cardiovagal BRS and HRV. Prior evidence suggests that RET may reduce BRS in
MA/O with untreated hypertension (72), and either reduces (73) or does not influence BRS in
young healthy adults (74, 75). In the former study, Collier et al. reported that aerobic exercise
training and RET caused divergent changes in BRS in response to spontaneous decreases in
BP, as well as in the low- to high-frequency HRV ratio suggesting that aerobic and resistance
exercise ftraining may have different effects on sympathovagal balance in MA/O with
hypertension (72). The authors also reported increases in central arterial stiffness that may have
resulted in a decreased ability of the aorta to return to smaller diameters during periods of
decreasing BP, and thus smaller changes in baroreceptor firing and lower BRSgown (72).
However, it is important to highlight that because a non-exercise control group was not included
and because residual transient effects may have influenced the post-study measurements
which were performed 24—48 h after the final exercise session (72), central questions remained
regarding the effects of RET in this population. In the present study, RET did not result in
chronic changes in central arterial stiffness or vagal modulation, which may explain the lack of
change in cardiovagal BRS. It is also notable that while the slope of the association between
changes in BP and heart rate did not change, BP did, suggesting that some degree of
baroreceptor resetting to operate at lower arterial pressures may have occurred. Therefore, our
data indicate that a 9-week RET program does not adversely impact cardiovagal function in
MA/O with E/S1H.

The RET intervention in the current study significantly improved both squat and bench
press strength, but surprisingly did not significantly influence FFM, FM, or BF%. In contrast,
Moraes et al. reported that a 12-week RET intervention promoted a 3 kg increase in FFM, a 4

kg decrease in FM, and a 4% reduction in BF% among middle-aged men with untreated stage 2
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hypertension (39). On the other hand, Collier et al. report no changes in BF% following 4 weeks
of RET in middle-aged to older adults with elevated BP or hypertension (7). RET programs
typically result in immediate improvements in neuromuscular function during the first several
weeks of training, with changes in FFM becoming increasingly detectable with longer durations
of training (76, 77). In addition, it is likely that changes in FFM with RET are less robust among
aging individuals with sub-clinical or clinical vascular dysfunction, which is associated with
anabolic resistance (78). Thus, it is likely that neural adaptations explain the marked RET-
induced improvements in strength, whereas the current program was not long enough to
promote significant increases in FFM. However, this increase in strength without an increase in
FFM is likely still to be of benefit relative to improved functional capacity, and possibly also
given the independent relationship between strength and all-cause mortality (79). We also
observed no changes in circulating CRP concentrations, which is in contrast to prior studies
showing that chronic RET reduces CRP (80, 81) but may also be explained by the lack of
change in body composition in this study (82, 83). Future studies may wish to directly examine
whether E/S1H is associated with blunted skeletal muscle hypertrophy in response to RET in
MA/O adults.

There were several limitations to our study. First, we studied a mixed sample of males
and females which included both pre- and post-menopausal women. Men may be more
susceptible to potential RET-induced increases in central arterial stiffness than postmenopausal
women (84), and since the current study was not powered to detect sex differences and was
comprised of mostly females, we are unable to determine if this explained our lack of findings
regarding cfPWV. However, biological sex served as a covariate in all of our analyses. In
addition, the distribution of pre- and post-menopausal women was balanced between groups.
Second, the short nature of the study limits our ability to understand the long-term impact of
RET participation in this population. It is possible that the differences in cross-sectional and

intervention data regarding the impact of RET on central arterial stiffness may result from the
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progressive nature of changes in stiffness, and interventions longer than 9 weeks may be
necessary to induce changes. Additionally, participants did not have clinically diagnosed E/S1H
in the current study due to the lack of an in-office clinical measurement (85), and participants
were also not required to complete their screening visit at the same time as the first
experimental visit. However, it should be noted that all participants had a BP consistent with
E/S1H classification at both their screening and first experimental visit. There was also no
change from pre- to post-intervention among individuals in CON who all still had a BP consistent
with E/S1H classification at post-testing. Together, these serve to validate the E/S1H
classification of the individuals included in this study. Lastly, we did not conduct regular check-
ins with CON throughout the intervention period, which would have assisted with ensuring
protocol compliance. However, all participants in CON confirmed compliance at the end of the
study, and this is supported by a lack of significant changes from pre- to post-intervention in the
CON group in this study.

The current study indicates that 9 weeks of RET performed in accordance with the
current exercise guidelines for individuals with E/S1H is effective for lowering BP to a degree
consistent with the effects that may be expected by prescription of BP lowering medications
(41). These improvements were observed alongside a decrease in TPR and an increase in
vascular endothelial function, as measured by the FMD technique. Moreover, we observed no
effects of RET on central arterial stiffness or cardiovagal function. Therefore, our findings
suggest habitual RET lowers BP and improves vascular endothelial function among MA/O
adults with E/S1H. Future studies should continue to investigate the acute and long-term effects
of RET on BP and vascular function, as well as the influence of training status to better
understand the potential discrepancies in the literature regarding RET and central arterial

stiffening.
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FIGURE CAPTIONS

Figure 1. Overview of the experimental design. In week 1, load (10RM) for the prescribed
repetitions was determined based on baseline strength testing. During weeks 2 and 3, loads
(12RM) were initially determined by baseline strength testing and adjusted (+5—-10%) whenever
participants felt they could complete 2 repetitions more than prescribed on the final set of each
exercise. During weeks 4-9, participants completed as many repetitions as possible during their
final set of each exercise. Whenever a participant completed 2 or more repetitions than
prescribed for 2 consecutive training sessions, the load was increased 5-10% for the next
exercise training session (e.g., 2+2 rule). Created with BioRender.com.

Figure 2. Peripheral systolic blood pressure (SBP), peripheral diastolic blood pressure (DBP),
central SBP (cSBP), central DBP (cDBP), mean arterial pressure (MAP), and pulse pressure
(PP) collected prior to and following either 9 weeks of resistance exercise training (RET) or a
non-exercise control period (CON). All data are displayed as estimated marginal means (+ 95%
Cl). * = significant within-group decrease from TO to T1 (p < 0.05); 1 = significantly lower in RET
at T1 than in CON at TO; # = significantly lower in RET at T1 than in CON at T1 (p < 0.05).

Figure 3. Resting cardiac output (CO) and total peripheral resistance (TPR) collected prior to
and following either 9 weeks of resistance exercise training (RET) or a non-exercise control
period (CON). All data are displayed as estimated marginal means (x 95% CI). * = significant
within-group increase from TO to T1 (p < 0.05).

Figure 4. Percent flow-mediated dilation (FMD), FMD corrected to shear rate (cFMDgR),
reactive hyperemia (RH), and baseline blood flow (BF.se) collected prior to and following either
9 weeks of resistance exercise training (RET) or a non-exercise control period (CON). All data
are displayed as estimated marginal means (x 95% CI). * = significant within-group increase
from TO to T1 (p < 0.05); # = significant difference between RET and CON at T1 (p < 0.05).

Figure 5. Relations between the changes (A) in A: SBP and flow-mediated dilation (FMD); B:
SBP and FMD corrected for shear rate stimulus (cFMDgr); C: systolic blood pressure (SBP) and
resting brachial artery diameter (Dpase); D: SBP and resting blood flow (BFpase); E: total
peripheral resistance (TPR) and Dyse; F: TPR and cardiovagal baroreflex sensitivity down
(BRSgown); G: cardiac output (CO) and fat-free mass (FFM); and H: pulse wave velocity (PWV)
and pulse pressure (PP) following a 9-week RT program (RET; yellow filled circles) or non-
exercise control period (CON; dark grey filled circles). Note that relations between CO versus
FFM and PWV versus PP are depicted as rank correlations due to non-normality of residuals.
Inset text boxes also display partial correlation coefficients (ryy,, Or pyy,) for the relation with the
effect of sex removed.



Table 1. Baseline Participant Characteristics

RET CON
(n=13; 5M/8F) (n=13; 5M/8F)

Age (y) 52 (6) 55 (6)
Height (cm) 171.5 (10.5) 171.5(7.4)
Weight (kg) 84.6 (9.7) 81.3 (15.5)
BMI (kg/m?) 29.9 4.2) 28.0 (4.3)
Post-Menopausal (n) 6 6
Years Post-Menopause (y) 6 (7) 8 (4)
Race

White (n) 11 11

Asian (n) 1 1

Black (n) 1 1
Elevated Blood Pressure

Participants (n) 4 5

SBP (mmHg) 122 (1) 125 (3)

DBP (mmHg) 73 (9) 74 (9)
Stage 1 Hypertension

Participants (n) 9 8

SBP (mmHg) 130 (5) 133 (6)

DBP (mmHg) 84 (3) 85 (8)

All data are displayed as mean (SD); BMI = body mass index;
CON = control group; RET = resistance training group.




Table 2. The effect of resistance exercise versus control on body composition and muscle strength

RET (n=13; 8F/5M) CON (n=13; 8F/5M) Group x Visit Group Visit

10 T1 10 T1 p N” P N’ p Ny
Weight (kg) 86.3 (6.1) 87.0 (6.1) 83.0 (6.1) 82.9 (6.1) 0.21 0.07 0.37 0.03 0.99 <0.01
FFM (kg) 55.6 (3.2) 56.2 (3.2) 51.8 (3.2) 52.2 (3.2) 0.66 <0.02 0.08 0.13 0.65 <0.01
FM (kg) 30.6 (4.7) 30.8 (4.7) 31.1 (4.7) 30.7 (4.7) 0.41 0.03 0.95 <0.01 0.66 <0.01
BF (%) 35.6 (3.6) 37.4 (3.6) 37.4 (3.6) 36.9 (3.6) 0.61 0.01 051 002 039 0.03

Squat 1RM (kg) 175.3 (21)  255.2 (21)"™*  169.1 (21)  175.5(21) <0.001*  0.81 - - - -
Bench 1RM (kg)  34.2 (7.9) 56.4 (7.9) 25.2 (7.9) 25.5(7.9) <0.001* 0.85 : . : :

All data are displayed as estimated means (+ model 95% CI); *significant interaction effect (p < 0.05); *significant within-group
increase from TO to T1 (p < 0.05); Tsignificantly greater than in CON at TO (p < 0.05); isignificantly greater than in CON at T1 (p
< 0.05); CON = non-exercise control group, RET = resistance exercise training group, FFM = fat free mass, FM = fat mass, BF
= body fat, 1RM = estimated one repetition maximum.



Table 3. The effect of resistance exercise versus control on central arterial stiffness, vascular function and reactive hyperemia,

inflammation, and autonomic function

RET (n=13; 8F/5M) CON (n=13; 8F/5M) Group x Visit Group Visit

T0 T1 T0 T1 p No” P No” P No”
cfPWV (m/s) 7.0 (0.5) 6.8 (0.6) 7.3(0.6) 7.2 (0.5) 020 0.07 072 <0.01 023  0.07
Dpase (MM) 3.53 (0.2) 3.64 (0.2 3.76 (0.2) 3.73(02) 007 014 022 006 039 003
FMDaps (Mm) 0.24 (0.1)  0.33(0.1)*™  0.20(0.1) 0.21(0.1)  0.006* 0.29 - - - -
SRbpase (') 164.9 (40.2) 202.0 (40.2) 165.9 (40.2) 192.3(40.2) 073 <0.01 0.81 <0.01 071  <0.01
SRpeax (s 1044.8 (140) 1031.3 (140) 937.2 (140) 1003.9(140) 032 0.04 046 003 069  <0.01
SRauc (au-107) 2.04 (0.5) 2.17 (0.5) 2.11 (0.5) 211(0.5) 058 001 099 <001 093 <0.01
CRP (mg/L) 3.16 (1.4) 2.17 (1.3) 2.23(1.4) 225(1.3) 033 005 039 004 075 <0.01
BRSpo0ied (MS/MmHg) 5.83 (1.1) 5.87 (1.1) 5.22 (1.1) 514(1.1) 081 <001 037 003 012  0.10
BRS,, (Ms/mmHg) 5.67 (1.2) 5.60 (1.2) 4.72 (1.2) 524(1.2) 039 003 041 003 047 0.2
BRSgown (Ms/mmHg) 6.19 (1.2) 5.98 (1.2) 5.41 (1.2) 501(1.2) 078 <001 025 006 028  0.05
INRMSSD (ms) 3.18 (0.2) 3.09 (0.2) 3.08 (0.2) 297(02) 092 <001 043 003 022 007
InLF (ms?) 5.21 (0.7) 4.97 (0.7) 5.09 (0.7) 465(0.7) 063 001 060 001 037  0.04
INHF (ms?) 4.78 (0.6) 4.32 (0.6) 4.24 (0.6) 410(06) 032 0.04 028 005 0.11 0.11
RHR (bpm) 68.9 (5.1) 70.2 (5.1) 71.8 (5.1) 721(51) 0.65 <0.01 048 0.02 0.66  <0.01

All data are displayed as mean (+ 95% Cl); *significant interaction effect (p < 0.05); *significant within-group increase from TO to T1 (p <
0.05); Tsignificantly greater than in CON at TO (p < 0.05); *significantly greater than in CON at T1 (p < 0.05); AUC = area under the curve,
BRS = cardiovagal baroreflex sensitivity, CON = non-exercise control group, RET = resistance exercise training group, Dpase = baseline
diameter, Dmax = maximal diameter after cuff release, InRMSSD = log transformed root mean square of successive differences, InHF = log

transformed high frequency power, InLF = log transformed low frequency power, RHR = resting heart rate, SR = shear rate



Table 4. Dietary and physical activity control data pre- and post-intervention in the resistance exercise and control groups

RET (n=13; 8F/5M) CON (n=13; 8F/5M) Group x Visit Group Visit

T0 T1 T0 T1 p No- P n’ p No-
Physical Activity
(MET-min/week) 395.7 (148) 406.2 (148) 445.2(148) 4723(149) 058 0.01 065 <0.01 0.46 0.02
Calories (kcal) 2135.7 (272) 2161.8 (272) 1995.9 (272) 2027.5(272) 0.95 <0.01 045 0.03 0.62 0.01
Carbohydrate (g) 224.4 (34.3) 226.7 (34.3) 185.6(34.3) 198.3(34.3) 053 0.02 0.14 0.09 042 0.03
Protein (g) 101.5 (15.7) 98.8 (15.7) 97.6 (15.7) 104.0(15.7) 022 0.06 095 <0.01 0.35 0.04
Fat (g9) 92.6 (17.1) 96.1 (17.1) 97.6 (17.1) 945(171) 044 0.03 0.87 <0.01 0.67 <0.01

All data are displayed as estimated marginal mean (+ model 95% CI); CON = non-exercise control group, RET = resistance exercise

training group, MET = metabolic equivalent of task
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