1 2 3	Resistance exercise lowers blood pressure and improves vascular endothelial function in individuals with elevated blood pressure or stage I hypertension
4 5 6	Nile F. Banks ¹ , Emily M. Rogers ¹ , Anna E. Stanhewicz ¹ , Kara M. Whitaker ¹ , Nathaniel D.M. Jenkins ^{1,2,3} *
7 8 9 10 11 12	¹ Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, 52242 ² Abboud Cardiovascular Research Center, The University of Iowa, Iowa City, IA, 52242 ³ Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, 52242
13	
14	*Address for Correspondence:
15 16 17 18 19 20 21 22	Nathaniel D.M. Jenkins, Ph.D. Department of Health and Human Physiology The University of Iowa E118, Field House Building Iowa City, IA, 52242 Email: nathaniel-jenkins@uiowa.edu
23	Running title: Resistance Training on Hypertension
24	
25	NEW & NOTEWORTHY : This is among the first studies to investigate the effects of chronic
26	resistance exercise training on blood pressure (BP) and putative BP regulating mechanisms in
27	middle-aged and older adults with untreated elevated BP or stage 1 hypertension in a
28	randomized, non-exercise, controlled trial. Nine weeks of resistance exercise training elicits 4–8
29	mmHg improvements in systolic and diastolic BP alongside improvements in vascular
30	endothelial function and total peripheral resistance without influencing central arterial stiffness o
31	cardiovagal function.
32	

Abstract

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Lifestyle modifications are the first-line treatment recommendation for elevated blood pressure (BP) or stage 1 hypertension (E/S1H) and include resistance exercise training (RET). The purpose of the current study was to examine the effect of a 9-week RET intervention in line with the current exercise guidelines for individuals with E/S1H on resting peripheral and central BP, vascular endothelial function, central arterial stiffness, autonomic function, and inflammation in middle-aged and older adults (MA/O) with untreated E/S1H. Twenty-six MA/O adults (54±6 y; 16F/10M) with E/S1H engaged in either 9 weeks of 3 days/week RET (n=13) or a non-exercise control (CON; n=13). Pre- and post-intervention measures included peripheral and central systolic (SBP and cSBP) and diastolic BP (DBP and cDBP), flow-mediated dilation (FMD), carotid-femoral pulse wave velocity (cfPWV), cardiovagal baroreflex sensitivity (BRS), cardiac output (CO), total peripheral resistance (TPR), heart rate variability (HRV), and c-reactive protein (CRP). RET caused significant reductions in SBP (mean change±95%CI = (-7.9 [-12.1, -3.6] mmHg; p < 0.001), cSBP (6.8 [-10.8, -2.7] mmHg; p < 0.001), DBP (4.8 [-10.3, -1.2] mmHg; p < 0.001), and cDBP (-5.1 [-8.9, -1.3] mmHq; p < 0.001), increases in FMD (+2.37 [0.61, 4.14] %; p = 0.004) and CO (+1.21 [0.26, 2.15] L/min; p = 0.006) and a reduction in TPR (-398 [-778, -19] mmHg·s/L; p = 0.028). RET had no effect on cfPWV, BRS, HRV, or CRP relative to CON (p≥0.20). These data suggest that RET reduces BP in MA/O adults with E/S1H alongside increased peripheral vascular function and decreased TPR without affecting cardiovagal function or central arterial stiffness.

Introduction

It is estimated that roughly 1.39 billion people have hypertension worldwide and that nearly 10 million deaths are attributed to hypertension-related complications annually (1, 2). There are multiple categories that define a higher than optimal blood pressure (BP), including elevated BP (systolic BP (SBP) of 120–129 mmHg and a diastolic BP (DBP) of less than 80 mmHg), stage 1 hypertension (SBP of 130–139 mmHg and/or a DBP of 80–89 mmHg), and stage 2 hypertension (SBP over 140 mmHg or a DBP over 90 mmHg) (2). Lifestyle interventions are the recommended first-line treatment for individuals who have elevated BP and stage 1 hypertension (E/S1H) in an attempt to prevent or delay the need for future pharmaceutical intervention (3). Resistance exercise training (RET) effectively reduces BP and is one of the recommended lifestyle interventions for individuals with E/S1H (4). Notably, however, the majority of studies examining the impact of RET on BP include BP only as a secondary outcome, and the mechanism by which RET lowers BP is unclear (5), particularly in middle-aged (MA/O) adults with untreated E/S1H. Therefore, there is a clear and urgent need for high-quality investigations examining the effects of RET on BP and putative BP-regulating mechanisms in individuals with E/S1H (5).

The limited body of evidence available on the mechanism by which RET lowers BP suggests improvements in peripheral vascular endothelial function may be a major contributing factor (5, 6). However, the only study examining RET's impact on vascular function in untreated MA/O adults with hypertension did not have a true non-exercise control group, utilized a short 4-week RET program, did not measure FMD, and included individuals with stage 2 hypertension under the updated BP categories (7). Additionally, while endothelial dysfunction and hypertension are related, the directionality and causality of this association is less clear (8). Interestingly, RET has been shown to worsen central arterial stiffness and cause alterations in autonomic nervous system function that result in impaired BP control in some (7, 9-17), but not all studies (18-24). These effects would be particularly worrisome in MA/O adults with E/S1H

and would also seemingly be at odds with the potential beneficial effects of RET on BP. However, the effects of RET on central arterial stiffness and autonomic function in this population are, as of yet, not well-described.

Therefore, the purpose of the current study was to examine the effect of a 9-week RET intervention in accordance with current exercise guidelines provided by the American College of Sports Medicine (ACSM) for individuals with high BP (25) on resting peripheral and central BP, vascular endothelial function, central arterial stiffness, cardiovagal function, and inflammation in MA/O with E/S1H.

Methods

Participants

Thirty-six individuals completed a screening visit for the current study, however, six of these individuals had BPs below the inclusion cutoff and thus were not eligible. Therefore, 30 physically inactive, male and female MA/O adults (aged 45–64 y) were determined to be eligible for the current study and were randomized into either a RET or a non-exercise control (CON) group (Table 1). Out of the enrolled participants, there were 4 individuals in RET and 6 individuals in CON who met ES1H criteria based on their SBP alone, whereas the remaining participants were classified as ES1H due to both their SBP and DBP. Following screening but prior to the first experimental visit, two participants in CON and one in RET dropped out of the study for the following reasons: scheduling conflicts (n=1), unrelated injury (n=1), and unresponsiveness to study-related communication (n=1), whereas one participant in CON dropped out following the first experimental visit due to scheduling conflicts. As a result, 26 participants completed this investigation (Table 1). To determine eligibility, participants arrived at the laboratory for a screening visit after a 6-hour fast, abstaining from caffeine consumption for at least 12 hours, and having not engaged in moderate-to-vigorous intensity exercise for at least 24 hours. During the screening visit, participants completed an informed consent form,

health history questionnaire, and the Physical Activity Readiness Questionnaire (PAR-Q+), had their menopause status determined via STRAW-10 principal criteria (26), and had a resting brachial BP measured. During the screening visit, BP was recorded as the average of duplicate recordings following a 5-minute seated rest period with a 1-minute interval between measurements. For all measurements, participants were seated with an appropriately sized cuff placed on the upper right arm, which was supported and at heart level. The screening BP was collected using an automatic oscillometric BP device (OMRON Platinum Model BP5450, OMRON Healthcare Co., JPN) that has been validated for clinical accuracy that is on the US BP Validated Device Listing. If the first and second SBP or DBP measurements differed by ≥ 5 mmHg or ≥ 4 mmHg, respectively, a third measurement was completed, and the average of the two closest measurements was recorded. To be eligible, participants must have been 45-64 years old, had a body mass index of 18.5-39.9 kg/m², have not been meeting the physical activity guidelines for at least 6 months, have been determined to have no known cardiovascular, metabolic, or musculoskeletal disease (excluding hypertension), nor to be taking any medications treating such disease, according to self-reported health history, determined to be ready to begin an exercise program according to the PAR-Q+, and had a SBP between 120-139 mmHg and/or DBP between 80-89 mmHg as measured during the in-person screening visit. Participants were recruited using IRB-approved emails via the university mass email system and by word of mouth. All study procedures and documents complied with the Declaration of Helsinki, except for preregistration in a publicly accessible database, and were approved by the University's Institutional Review Board for the protection of human subjects (IRB Approval #: 202201319). All participants consented to participate by signing an informed consent form explaining the nature, benefits, and risks of the study before participation.

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Experimental Design

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

An overview of the experimental design can be viewed in Figure 1. All eligible participants visited the laboratory for two experimental visits occurring 3-7 days prior to (T0) and 5-7 days following (T1) the 9-week intervention period. For all experimental visits, participants abstained from exercise for at least 5 days, caffeine for 12 hours, and food for 6 hours prior to arrival, and were studied at the same time of day during pre- and post-testing. During the experimental visits, participants had their body composition measured before laying supine for at least 10 minutes prior to a venipuncture. An additional 10-minute supine rest was then provided before vascular endothelial function and central arterial stiffness were measured via FMD and carotid-femoral pulse wave velocity (cfPWV), respectively. Participants then transitioned into a seated position and sat quietly for 10 minutes prior to having their resting BP collected and their beat-by-beat BP and heart rate recorded for 5 minutes. At the end of each visit, participants engaged in strength testing, where their 10-repetition maximum (RM) was determined using a cable-loaded bench press and plate-loaded hack squat machine. Prior to strength testing, participants were provided with a 180-kcal hypoallergenic snack (Organic Strawberry Crispy Squares, MadeGood Foods, USA). There were two premenopausal participants in each group. Two premenopausal women had an IUD (RET, n =1; CON, n =1), whereas the other two completed their experimental visits in the follicular phase (RET, n =1; CON, n = 1) to control for changes in circulating sex hormones. A Priori Sample Size Determination: The estimated sample size required to observe mixedfactors interaction effect for changes in BP, cfPWV, and FMD, were determined in G*Power (Autenzell, Germany). Collier et al. (7) observed an effect size of RET on BP and cfPWV of d=0.65 and d=0.67, while Ramirez-Valez et al. (23) observed an effect size of RET on FMD of 0.51. Combining these effect sizes with a standard power (1-β) of 0.8, 2 groups (RET and CON), and 2 measurements (T0 versus T1) with a conservative correlation between

measurements of 0.5, it was determined that 8, 8, and 10 participants would be needed per group to achieve adequate power for BP, cfPWV, and FMD outcomes. Therefore, assuming a 20% dropout rate, we aimed to recruit at least 12 participants into each group.

Intervention Period

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

During the 9-week intervention period, individuals in the RET group came to the lab every Monday, Wednesday, and Friday to complete a ~40-minute RET session. Each RET session was led and supervised by one of three trained lab members and no more than four participants trained in the same sessions in order to maintain adequate supervision while allowing sufficient flexibility to accommodate participants' schedules. During each RET session, participants completed (in order) bench press, hack squat, latissimus dorsi pulldown, leg extension, seated row, leg curl, and plank resistance exercises. Specific set and repetition schemes for the RET program are shown in Figure 1. All exercises were cable-loaded except for the hack squat, which was plate-loaded, and the plank, which was completed using only body weight. The initial weight was estimated based on strength testing at the end of T0 and used for week 1. During weeks 2 and 3, participants were queried and monitored to determine if they would have been able to complete 2 or more repetitions beyond the prescribed 12 repetitions on the final set of each lift. If this was the case, the weight was increased by 5-10% for the following workout. From week 4 and onward, participants were instructed to complete as many repetitions as possible on the final set of each lift (excluding plank) but were stopped if they completed 3 repetitions more than the prescribed amount. Weight was then increased by 5-10% if participants completed more than the prescribed repetitions on the final set for two workouts in a row for a particular lift. For planks, participants completed the same number of sets as the other exercises, but did so for time instead of repetitions, with a prescription of 15 seconds for week 1 and 20 seconds for week 2, followed by a 5-second increase in time for each workout thereafter. Participants rested for at least 1-minute, but not longer than 3-minutes,

between sets and were instructed to allow sufficient rest in order to ensure lingering fatigue did not affect subsequent set performance. All sets and repetitions were completed for a given exercise before moving to the next exercise in the session during weeks 1–4. During weeks 5–9, participants completed supersets with an upper and lower-body exercise paired (e.g., bench press and hack squat). At the end of each session, participants were asked for their rating of perceived exertion (RPE) between 0–10, with 0 representing no exertion (i.e., rest) and 10 representing maximal exertion. Those in CON were asked to maintain their current lifestyle and dietary habits throughout the 9-week period and did not come to the laboratory outside of the screening and experimental visits.

Conduit Artery Vascular Function

The brachial artery FMD technique was used to assess vascular endothelial function and reactive hyperemia (RH) in accordance with the most recent guidelines (27). Prior to data collection, participants laid in a supine position in a dark, temperature-controlled room for 10 minutes. With the participant's left arm laterally extended, a segmental cuff (TMC7, Hokanson, USA) was placed just distal to the medial epicondyle of the humerus and a 12-MHz ultrasound probe (12L-RS, General Electric, USA) was used to visualize the brachial artery and measure blood flow, while a screen capture device (AV.io HD, Epiphan Systems, USA) was used to record the ultrasound screen. Positioning of the segmental cuff distally to the ultrasound probe was chosen because the increase in post-occlusive artery diameter is largely NO-mediated using this technique (28). Blood flow velocity was collected using an insonation angle of 60° to the axis of the vessel and a sample volume encompassing the entire width of the artery (29). FMD testing included a 2-minute baseline period, a 5-minute cuff occlusion period at 240 mmHg using a rapid cuff inflation system (E20, Hokanson, USA), and a 3-minute post-occlusive period. A previously validated (30), continuous, semiautomated edge detection software (FMD Studio, Quipu srl, Italy) was utilized to continuously measure brachial artery diameter and blood flow

velocity throughout the protocol, which were used to calculate shear rate ($4 \cdot blood$ flow velocity (cm/s) / brachial diameter (cm)) (27). Baseline diameter (D_{base}) and shear rate (SR_{base}) were calculated as the average value during the 2-minute baseline period, while peak diameter, shear rate (SR_{peak}), and shear rate area under the curve (SR_{AUC}) were calculated following cuff release up until peak diameter was observed using FMD Studio software, as previously described (31-33). RH was calculated as the difference in AUC of blood flow between baseline (BF_{base}) and the first 90 seconds of the post-occlusive period. Relative and absolute FMD (FMD_{abs}) was calculated as relative (%) and absolute (mm) the change from D_{base} to maximal diameter, whereas FMD normalized to SR (FMD_{SR}) was calculated as FMD/SR_{AUC} . Probe location was measured from the superior border of the antecubital fossa during pre-testing to ensure a similar placement of the probe during post-testing.

Carotid-femoral Pulse Wave Velocity

Central arterial stiffness was assessed using cfPWV (SphygmoCor XCEL, AtCor Medical, Inc. USA). While remaining in a supine position following the FMD test, participants had their carotid pulse palpated and marked on the left side of the neck and had a cuff placed on their upper left thigh to acquire the femoral pulse wave via volumetric displacement. The pulse waves of the carotid and femoral arteries were then recorded simultaneously by a tonometer and the femoral cuff, respectively. The distance between the site of the carotid and femoral pulse was then divided by the difference in pulse wave transit time between the two arteries (e.g., distance/time) to determine cfPWV. To correct for the known impact of distending pressure on cfPWV and the hypothesized reduction in BP expected in the RET group, change in mean arterial pressure (MAP) was added as a covariate in cfPWV analyses.

Resting Blood Pressure

During experimental visits, resting BP was collected in a seated position following a 10-minute resting period in accordance with the American Heart Association guidelines (34) using a

SphygmoCor XCEL cuff device (SphygmoCor XCEL, AtCor Medical, Inc. USA). SBP, DBP, MAP, and pulse pressure (PP) were determined automatically by standard oscillometric brachial BP measurement using an appropriately-sized BP cuff. Immediately after, the cuff was inflated and held at a sub-diastolic pressure level for 5 seconds, during which cuff displacement waveforms were measured and calibrated to the brachial SBP and DBP. Next, a generalized transfer function was applied to estimate the central BP waveform, from which central SBP (cSBP), and central DBP (cDBP) were determined using the device's proprietary software (35).

Hemodynamic Monitoring

While seated, participants had a finger photoplethysmograph placed on the middle finger of the right hand, which was utilized to collect beat-by-beat BP (NOVA Finometer, Finapres Medical Systems, The Netherlands). The participants held their right hand over their heart during all hemodynamic testing, with their arm supported. Modelflow technology was used to calculate cardiac output (CO) and total peripheral resistance (TPR). Additionally, heart rate was collected using a 3-lead electrocardiogram, and respiratory rate was collected using a respiratory belt with participants instructed to breathe at a normal rate during all testing (TN1132/ST; ADInstruments). Data was collected at 1000 Hz using a data acquisition system (Powerlab Series 26; ADInstruments, USA) and stored offline.

Cardiovagal Baroreflex Sensitivity and Heart Rate Variability

Raw beat-by-beat BP waveforms and ECG data were uploaded to Ensemble-R software, and the sequence method was utilized to assess cardiovagal BRS and HRV. BRS_{pooled} was assessed by averaging the slope between three sequences of either increasing (BRS_{up}) or decreasing (BRS_{down}) pulse waveform peak pressures with subsequent decreases or increases in R-R interval length, respectively, with a minimum correlation of r = 0.8, increase in SBP of 1 mmHg, and an R-R interval length of 4 ms. The log-transformed root mean square of

successive differences (InRMSSD), high-frequency power (InHF), and low-frequency power (InLF), were calculated to represent both time and frequency domain HRV.

C-reactive Protein

Whole venous blood was collected in a lithium heparin plasma separator tube (BD Vacutainer, Becton Dickinson, USA) before being spun for 15 minutes at 1000 g. Plasma was then transferred to 1.7-mL microcentrifuge tubes for storage at -80°C. Samples were later thawed, and high-sensitivity CRP was assessed using a commercially available enzyme-linked immunosorbent assay (CRP ELISA, Immundiagnostik AG, Germany). The detection range of the CRP ELISA kit was 1.8–150 ng/mL, with a sensitivity of 0.124 ng/ml, and an inter-assay coefficient of variation of < 10%. All assays were performed in accordance with the manufacturer's instructions and read using a microplate photometer (MultiskanTM FC Microplate Photometer, ThermoFisher ScientificTM, USA).

Body Composition

At both experimental visits, participants' body composition was assessed via BodPod (COSMED, USA) to assess body fat percent (BF%), fat mass (FM), and fat-free mass (FFM).

Lifestyle Controls

All participants were asked to refrain from any other forms of exercise outside of the study and maintain their current dietary habits throughout the study period. Calories, protein, fat, and carbohydrate intake, along with physical activity in metabolic equivalent of task (MET) minutes per week were collected via self-report using 3-day dietary food logs and the Short Last 7 Days International Physical Activity Questionnaire (IPAQ), which were completed during both pre- and post-testing.

Statistical Analysis

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

Residual normality was assessed using Shapiro-Wilk tests, while homoscedasticity was assessed using Levene's test. In the case of violation of either normality or homoscedasticity, data was transformed with a natural logarithm before being reverted to their original scale for reporting. Multiple independent two-way mixed linear models (group [RET vs. CON] × visit [prevs. post-intervention]) were run to determine the impact of the intervention period on all resting BP, vascular endothelial function, RH, cfPWV, HRV, BRS, dietary, and physical activity variables with sex included as a covariate. cfPWV was analyzed using a two-way mixed linear model with ΔMAP and sex included as covariates. To decompose significant group × visit interactions, Tukey-adjusted post hoc comparisons were performed. Between-group effect sizes were determined using Cohen's d. Pearson's product correlations (r) or Spearman rank correlation coefficients (p) were used to explore the relationship between the changes in SBP, DBP, CO, TPR, FMD, and selected secondary variables of interest where residuals were normally or non-normally distributed. Partial correlations $(r_{xv,z} \text{ or } \rho_{xv,z})$ were also performed to remove the effect of sex and are reported in Figure 5. Within and between group differences are reported in text as mean differences with [95% CI Lower Bound, 95% CI Upper Bound] unless denoted otherwise. Confidence Intervals were adjusted using the Bonferroni method. Significance was set at $p \le 0.05$. Statistical analyses were performed using JASP (JASP Team 2020, v. 0.13.1) or jamovi (v. 2.3.21.0) and figures were created using GraphPad Prism (v. 9.5.1).

Results

Body Composition

There were no significant group × visit interactions, group main effects, or visit main effects for weight, FFM, FM, or BF% (Table 2).

Strength

There was a significant group × visit interaction for both squat 1RM and bench 1RM. RET significantly increased both squat 1RM (+79.6 [64.1, 95.1] kg; p < 0.001) and bench 1RM (+22.7 [18.8, 26.6] kg; p < 0.001) from T0 to T1. Additionally, both squat 1RM (+79.7 [39.8, 119.5] kg; p < 0.001; d = 2.33) and bench 1RM (+30.9 [15.6, 46.2] kg; p < 0.001; d = 2.37) were significantly greater at T1 in RET compared to CON. There were no significant changes in CON from T0 to T1 (p ≥ 0.05) (Table 2).

Blood Pressure

There were significant group × visit interactions for SBP, DBP, cSBP, cDBP, MAP, and PP (Figure 2). Specifically, RET experienced a significant reduction in SBP (-7.9 [-12.1, -3.6] mmHg; ρ < 0.001), DBP (-4.8 [-10.3, -1.2] mmHg; ρ < 0.001), cSBP (-6.8 [-10.8, -2.7] mmHg; ρ < 0.001), cDBP (-5.1 [-8.9, -1.3] mmHg; ρ < 0.001), and MAP (-5.7 [-9.9, -2.0] mmHg; ρ < 0.001) from T0 to T1; however the decrease in PP from T0 to T1 (-3.1 [-6.6, 0.5] mmHg; ρ = 0.089) in RET was not significant. There were no significant changes in any BP variable from T0 to T1 in CON (ρ ≥ 0.05). Accordingly, RET had significantly lower SBP (-9.8 [-17.3, -2.4] mmHg; ρ = 0.004; d = 1.52), cSBP (-9.7 [-17.0, -2.3] mmHg; ρ < 0.001; d = 1.52), and MAP (-6.1 [-11.9, -0.4] mmHg; ρ = 0.026; d = 1.22) than CON at T1. While there were large effect size differences between RET and CON at T1 for DBP (-4.5 [-10.3, 1.2] mmHg; ρ = 0.142; d = 0.90), cDBP (-4.3 [-10.1, 1.4] mmHg; ρ = 0.173; d = 0.86), and PP (-5.3 [-11.3, 0.7] mmHg; ρ = 0.081; d = 1.02), these differences were not statistically significant.

Resting Hemodynamics

There were significant group × visit interactions for both CO and TPR (**Figure 3**). CO significantly increased in RET (+1.21 [0.26, 2.15] L/min; p = 0.006), but there was no difference in CO between RET and CON at T1 (+0.9 [-0.6, 2.3]; p = 0.33; d = 0.70). TPR significantly decreased from T0 to T1 in RET (-398 [-778, -19] mmHg·s/L; p = 0.028), and while there was a

large effect size difference between RET and CON at T1 (-369 [-849, 110] mmHg·s/L; p = 0.158; d = 0.87), this difference was not significant. There were no significant changes in CO or TPR in CON from T0 to T1 ($p \ge 0.64$) (Figure 3). There was no significant group × visit interaction, group main effect, or visit main effect for RHR (Table 3).

Conduit Artery Vascular Function

There were significant group × visit interactions for FMD (p = 0.011; η_p^2 = 0.25), cFMD_{SR} (p = 0.017; η_p^2 = 0.22), FMD_{abs} (p = 0.006; η_p^2 = 0.29), as well as BF_{base} (p = 0.023; η_p^2 = 0.20). There was no significant interaction for D_{base} (p = 0.67; η_p^2 = 0.14). RET experienced significant increases from T0 to T1 in FMD (+2.37 [0.61, 4.14] %; p = 0.004), cFMD_{SR} (+1.25 [0.23, 2.27] %; p = 0.009), and FMD_{abs} (+0.09 [0.03, 0.16] mm; p = 0.002). There were no significant changes in any of these variables from T0 to T1 in CON (all p ≥ 0.99). Consequently, Δ cFMD_{SR} (+2.1 [0.04, 4.09] %; p = 0.035; d = 1.18) and FMD_{abs} (+0.14 [0.005, 0.283] mm; p = 0.048; d = 1.12) were greater in RET than CON at T1, whereas there was a large, but non-significant difference in FMD (+3.8 [-0.7, 8.4]%; p = 0.104; d = 0.98). RET also experienced significant increases from T0 to T1 in BF_{base} (+28.6 [5.1, 52.1]; p = 0.009). While there was a large effect size difference between RET and CON at T1 for BF_{base} (+26.4 [-3.6, 56.4]; p = 0.085; d = 1.00), this difference was not significantly different. There were no significant group × visit interactions, group main effects, or visit main effects for RH, SR_{base}, SR_{beak}, or SR_{AUC} (Figure 4 and Table 3).

Central Arterial Stiffness

There was no significant group × visit interaction, group main effect, or visit main effect for cfPWV (Table 3).

Cardiovagal Baroreflex Sensitivity and Heart Rate Variability

An average of 26.9 \pm 10.7 valid sequences were acquired per participant at the pre- and post-intervention visits. There was no significant group \times visit interaction, group main effect, or

visit main effect for BRS_{pooled}, BRS_{up}, or BRS_{down} (**Table 3**). There was also no significant group × visit interaction, group main effect, or time main effect for InRMSSD, InLF, or InHF (Table 3).

C-reactive Protein

347

348

349

350

351

352

361

362

363

364

365

366

367 368

369

370

371

There was no significant group × visit interaction, group main effect, or time main effect for CRP (Table 3).

Correlations

353 Relations among the changes in hemodynamic, vascular, cardiovagal, and body 354 composition variables are depicted in **Figure 5**. \triangle SBP was significantly correlated with \triangle FMD (r = -0.48; p = 0.012), Δ cFMD_{SR} (r = -0.54; p = 0.005), Δ BF_{base} (r = -0.47; p = 0.016), and Δ D_{base} (r 355 356 = -0.45; p = 0.021), as well as with \triangle squat (p = -0.52; p = 0.007), and \triangle bench (r = -0.67; p < 0.007) 357 0.001). Δ DBP was significantly correlated with Δ bench (r = -0.49; p = 0.012). Δ CO was 358 significantly correlated with Δ FFM (ρ = 0.58; p = 0.002), as well as with Δ TPR (r = -0.69, p < 359 0.001). Δ TPR was also significantly correlated with ΔD_{base} (r = -0.44; p = 0.023), Δ BRS_{down} (r = -360 0.47; p = 0.016). Δ TPR was not related to Δ SBP (r = 0.26; p = 0.20) or Δ DBP (r = 0.30; p = 0.47). 0.13). $\triangle PP$ was significantly related to $\triangle PWV$ ($\rho = -0.51$; $\rho = 0.008$).

Lifestyle Controls

The average total exercise session attendance was (mean ± SD) 96 ± 6%. There were no significant group × visit interactions, group main effects, or time main effects for physical activity, nor the consumption of calories, fat, carbohydrates, or protein (Table 4).

Discussion

This was the first study to explore the putative vascular mechanisms driving RETinduced improvements in BP in MA/O adults with untreated E/S1H. The main finding of the current study was that a 9-week RET program reduced peripheral and central BP which was accompanied by an increase in FMD and a decrease in TPR. Additionally, we reported increases in BF_{base} and CO, with no changes in either RH or cfPWV. Lastly, the RET intervention did not cause any changes in autonomic function as measured by cardiovagal BRS or HRV, or changes in systemic inflammation as reflected by CRP. Further, our data indicate that chronic RET does not positively or negatively affect central arterial stiffness, autonomic function, or inflammation in MA/O adults with untreated E/S1H.

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

This is the first study to examine the impact of a RET intervention on BP in untreated MA/O adults with untreated E/S1H. Our data indicate that RET is effective at reducing both peripheral and central BP. RET reduced SBP and DBP by 8 and 5 mmHq, respectively, which is similar to reductions reported following other RET interventions (20, 36-39), aerobic exercise interventions (40), and slightly greater than the average pharmacological reductions reported over 6 months (41). Thus, these reductions in BP are clinically relevant, and every 5-mmHg reduction in SBP is associated with a 10% decrease in CVD risk (42). Collier et al., previously reported a 4 and 4 mmHg reduction in SBP and DBP, respectively, following just 4 weeks of RET in MA/O adults with hypertension (7). Additionally, middle-aged men with untreated stage 2 hypertension experienced 16 and 12 mmHg reductions in SBP and DBP, respectively, following a 12-week RET program that was similar to the current study (39). In younger adults with untreated E/S1H who engaged in an 8-week RET intervention, Beck et al. reported a 10 and 8 mmHg reduction in peripheral SBP and DBP, and 9 and 8 mmHg reductions in cSBP and cDBP (20). Our data agree with and extend this previous work and indicate that RET lowered cSBP and cDBP by 7 and 5 mmHg in MA/O with E/S1H. Further, RET promoted a 3 mmHg decrease in PP, which provides important prognostic information above and beyond SBP and DBP (43-45) and is largely determined by a mismatch of distal (e.g., conduit) to proximal (e.g., abdominal aorta) arterial diameters (45). Overall, our data strengthen prior evidence regarding the effect of RET on BP in MA/O with hypertension (7) by (i) experimentally isolating the effects of RET via inclusion of a non-exercise control group, and also by (ii) specifically studying MA/O adults with untreated E/S1H, for whom lifestyle interventions such as RET are explicitly recommended as a

first line strategy for BP control. Accordingly, we build upon these prior studies and present important evidence that supports RET as a viable lifestyle intervention to improve BP, showing for the first time that just 9 weeks of RET in MA/O adults with untreated E/S1H exhibit reductions that are slightly greater than those experienced following 6 months of pharmacological treatment (41).

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

We further extended existing evidence by examining the effect of RET on putative BPregulating mechanisms in relation to RET-induced BP changes. BP is the product of CO and TPR and in addition to lowering BP, RET increased CO and decreased TPR in the present study. The measure that was most strongly correlated with Δ CO in the current study was Δ FFM (r = 0.56; p = 0.003). Thus, while it is tempting to speculate that these relations may be explained by a training-induced increase in blood flow demand to supply a greater volume of metabolically active tissue and/or an increase in venous capacity or return (46-49), we did not observe significant RET-induced changes in whole body FFM (50). However, we also observed a 40% RET-induced increase in resting blood flow (e.g., BF_{base}) and a non-significant 3.1% (+0.11 mm) increase in brachial artery diameter (e.g., D_{base}). Prior studies have suggested that RET promotes increases in resting arterial lumen size in the conduit arteries feeding active muscle beds (51), likely due to arterial remodeling and/or a decrease in resting arterial tone in response to large, repeated, chronic increases in blood flow and the resultant arterial shear stress (51, 52). Further, changes in conduit artery blood flow reflect changes in the tone of the downstream resistance vessels, which are so named because they are the major arterial bed that modulates vascular resistance. Hypertension is characterized by increased peripheral resistance caused by decreased resistance vessel lumen diameters, decreased resistance vessel density due to rarefaction, and/or reduced vasomotor function (53, 54). Thus, it is likely that the increases in BF_{base} observed herein reflect a decreased resistance to flow in the resistance vessels, perhaps by reversal of microvascular rarefaction and decreased constrictor tone (54, 55). Notably and in support of this hypothesis, both changes in resting brachial artery diameter and blood flow were inversely associated with changes in SBP in the present study (Figure 5). In addition, it is also plausible that RET-induced increases in conduit artery diameter contributed to decreases in PP by reducing the ratio between proximal and distal conduit artery diameters (45), although this is highly speculative and will require future investigation. Therefore, taken together, our data suggest that the BP-lowering effect of RET may be explained by decreases in TPR secondary to changes in peripheral vascular tone. However, due to the lack of significant relationships between TPR and both SBP and DBP, additional mechanistic research is necessary to confirm this hypothesis.

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

Multiple indices of vascular endothelial function examined in the current study also improved following the RET intervention. Our data indicated that RET elicited improvements in both FMD and cFMD_{SR} in MA/O with untreated E/S1H, a finding that is largely in agreement with prior work in individuals with high BP (56-58). RET causes dramatic increases in blood flow to the muscles active in each exercise (59), causing acute increases in shear stress on the vascular endothelium (60). Notably, chronic exposure to repeated, transient increases in shear stress derived from exercise promotes an endothelial phenotype that is characterized by increased endothelial NO synthase (eNOS) expression and greater NO bioavailability (61). Additionally, the observed significant improvements in both FMD and cFMD_{SR} suggest that increases in FMD were not caused by an increase in the shear stimulus on the vascular endothelium, but rather improvements in endothelium-dependent function (28, 62). While macrovascular function improved, we did not see any improvements in microvascular function as measured by RH. Unlike FMD, which is endothelium-dependent (63), RH provides insight into the dilation of the downstream resistance vessels and is minimally dependent on NO (29, 64). Our data disagree with those of Heffernan et al. and Collier et al., who have previously reported that multi-week RET interventions improved RH. However, this difference could be due to the use of strain-gauge plethysmography versus the use of Doppler ultrasound to measure RH (7, 22), or due to a lack of power in the present study considering that RET improved RH in

all but one participant. An improvement in RH may have been hypothesized given that TPR is primarily regulated at the level of the resistance vessels, but changes in resting tone rather than the response to ischemia are likely more important to resting blood pressure control. Accordingly, and as previously described, BF_{base} was elevated following RET, potentially suggesting greater dilation of downstream resistance vessels at rest, although we cannot rule out the possibility that the increase in BF_{base} was caused by elevated CO. Still, it is noteworthy that changes in SBP were inversely associated with increases in both FMD and BF_{base} (Figures 5A, B, and D). Overall, these data indicate that RET improves vascular endothelial function and resting peripheral blood flow that may contribute to RET-mediated improvements in BP, and which are also likely to improve long-term cardiovascular risk in individuals with E/S1H.

While there is consistent cross-sectional evidence suggesting that individuals who engage in RET have stiffer central arteries (65-68), the experimental evidence regarding the influence of RET on arterial stiffness is less clear. Notably, RET had no effect on cfPWV in the present study. Whereas the majority of studies do not report increases in central arterial stiffness following RET (18, 20-24), there are multiple reports indicating RET may promote increased stiffness (7, 9-11). A potential methodological explanation for this discrepancy is the timing of post-test measurements, with all but one of the studies that have reported increases in arterial stiffness following a RET intervention having completed post-testing within 24 hours of the final exercise session (7, 9-11, 19). However, acute RET may increase central arterial stiffness for up to three days alongside transiently increased SNS activity and inflammation, and decreased parasympathetic nervous system activity (69-71). Therefore, it is plausible that the increases in aortic stiffness reported in these studies are due to transient changes in response to acute exercise, but do not reflect chronic maladaptive structural changes. It is also possible that RT interventions lasting several weeks or months are either not long enough to persistently alter the stiffness of the aorta, or other uncontrolled factors may be confounding the crosssectional findings. Nevertheless, our data, collected 5-7 days (133 ± 19 h) after the last bout of RET, indicate that short-term RET does not change central arterial stiffness as measured by cfPWV among MA/O adults with E/S1H.

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

Our findings also indicate that RET had no adverse effects on cardiovagal function as assessed by cardiovagal BRS and HRV. Prior evidence suggests that RET may reduce BRS in MA/O with untreated hypertension (72), and either reduces (73) or does not influence BRS in young healthy adults (74, 75). In the former study, Collier et al. reported that aerobic exercise training and RET caused divergent changes in BRS in response to spontaneous decreases in BP, as well as in the low- to high-frequency HRV ratio suggesting that aerobic and resistance exercise training may have different effects on sympathovagal balance in MA/O with hypertension (72). The authors also reported increases in central arterial stiffness that may have resulted in a decreased ability of the aorta to return to smaller diameters during periods of decreasing BP, and thus smaller changes in baroreceptor firing and lower BRS_{down} (72). However, it is important to highlight that because a non-exercise control group was not included and because residual transient effects may have influenced the post-study measurements which were performed 24-48 h after the final exercise session (72), central questions remained regarding the effects of RET in this population. In the present study, RET did not result in chronic changes in central arterial stiffness or vagal modulation, which may explain the lack of change in cardiovagal BRS. It is also notable that while the slope of the association between changes in BP and heart rate did not change, BP did, suggesting that some degree of baroreceptor resetting to operate at lower arterial pressures may have occurred. Therefore, our data indicate that a 9-week RET program does not adversely impact cardiovagal function in MA/O with E/S1H.

The RET intervention in the current study significantly improved both squat and bench press strength, but surprisingly did not significantly influence FFM, FM, or BF%. In contrast, Moraes *et al.* reported that a 12-week RET intervention promoted a 3 kg increase in FFM, a 4 kg decrease in FM, and a 4% reduction in BF% among middle-aged men with untreated stage 2

hypertension (39). On the other hand, Collier et al. report no changes in BF% following 4 weeks of RET in middle-aged to older adults with elevated BP or hypertension (7). RET programs typically result in immediate improvements in neuromuscular function during the first several weeks of training, with changes in FFM becoming increasingly detectable with longer durations of training (76, 77). In addition, it is likely that changes in FFM with RET are less robust among aging individuals with sub-clinical or clinical vascular dysfunction, which is associated with anabolic resistance (78). Thus, it is likely that neural adaptations explain the marked RETinduced improvements in strength, whereas the current program was not long enough to promote significant increases in FFM. However, this increase in strength without an increase in FFM is likely still to be of benefit relative to improved functional capacity, and possibly also given the independent relationship between strength and all-cause mortality (79). We also observed no changes in circulating CRP concentrations, which is in contrast to prior studies showing that chronic RET reduces CRP (80, 81) but may also be explained by the lack of change in body composition in this study (82, 83). Future studies may wish to directly examine whether E/S1H is associated with blunted skeletal muscle hypertrophy in response to RET in MA/O adults.

There were several limitations to our study. First, we studied a mixed sample of males and females which included both pre- and post-menopausal women. Men may be more susceptible to potential RET-induced increases in central arterial stiffness than postmenopausal women (84), and since the current study was not powered to detect sex differences and was comprised of mostly females, we are unable to determine if this explained our lack of findings regarding cfPWV. However, biological sex served as a covariate in all of our analyses. In addition, the distribution of pre- and post-menopausal women was balanced between groups. Second, the short nature of the study limits our ability to understand the long-term impact of RET participation in this population. It is possible that the differences in cross-sectional and intervention data regarding the impact of RET on central arterial stiffness may result from the

progressive nature of changes in stiffness, and interventions longer than 9 weeks may be necessary to induce changes. Additionally, participants did not have clinically diagnosed E/S1H in the current study due to the lack of an in-office clinical measurement (85), and participants were also not required to complete their screening visit at the same time as the first experimental visit. However, it should be noted that all participants had a BP consistent with E/S1H classification at both their screening and first experimental visit. There was also no change from pre- to post-intervention among individuals in CON who all still had a BP consistent with E/S1H classification at post-testing. Together, these serve to validate the E/S1H classification of the individuals included in this study. Lastly, we did not conduct regular checkins with CON throughout the intervention period, which would have assisted with ensuring protocol compliance. However, all participants in CON confirmed compliance at the end of the study, and this is supported by a lack of significant changes from pre- to post-intervention in the CON group in this study.

The current study indicates that 9 weeks of RET performed in accordance with the current exercise guidelines for individuals with E/S1H is effective for lowering BP to a degree consistent with the effects that may be expected by prescription of BP lowering medications (41). These improvements were observed alongside a decrease in TPR and an increase in vascular endothelial function, as measured by the FMD technique. Moreover, we observed no effects of RET on central arterial stiffness or cardiovagal function. Therefore, our findings suggest habitual RET lowers BP and improves vascular endothelial function among MA/O adults with E/S1H. Future studies should continue to investigate the acute and long-term effects of RET on BP and vascular function, as well as the influence of training status to better understand the potential discrepancies in the literature regarding RET and central arterial stiffening.

ACKNOWLEDGEMENTS

The authors would like to thank Xavier Faucon, Alexander Berry, Morgan Wolf, Emma Trachta for helping with data collection, data entry, and/or participant exercise training. We are very grateful to Drs. Darren Casey and Gary Pierce for their advice on study design and manuscript editing. Lastly, we are greatly appreciative of the participants who gave their time to this research study.

AUTHOR CONTRIBUTION STATEMENT

The study was conceptualized and planned by NFB, AES, KMW, and NDMJ. Data collection and entry was completed by NFB and EMR. Data analysis was performed by NFB, EMR, and NDMJ. NFB was the primary creator of all figures and tables. NFB and NDMJ completed original draft and all authors contributed to review and editing. NFB was responsible for project administration and NDMJ provided resources to complete the project. All authors approved the final version of the manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

CONFLICTS OF INTEREST

Within the last two years, NFB and EMR have received graduate assistant stipend funding from Woodbolt, LLC. NFB and NDMJ have received grant funding from the National Strength and Conditioning Association Foundation. EMR has received grant funding from the American College of Sports Medicine. NDMJ has received grant funding from the American Heart Association, the Center for Integrative Research on Childhood Adversity (Award P20GM109097 through the NIGMS), the Injury Prevention Research Center (Award R49 CE003095 through the NCIPC/CDC), the National Institutes of Aging through the Research Network on Animal Models

579	to Understand Social Dimensions of Aging, Woodbolt Distribution, LLC, and Applied Food
580	Sciences, Inc, and has been the recipient of an NIH Clinical Research Loan Repayment Award
581	The results of the study are presented clearly, honestly, and without fabrication, falsification, or
582	inappropriate data manipulation. AES and KMW declare no conflict of interest.

583 References

584

- 585 1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M,
- Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN,
- 587 Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner
- 588 C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B,
- 589 Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B,
- 590 Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT, Child JC,
- Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F,
- 592 Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali
- 593 SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM,
- 594 Flaxman S, Fowkes FG, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E,
- 595 Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW,
- Hogan A, Hosgood HD, 3rd, Hov D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn
- 597 GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang YH,
- 598 Khatibzadeh S, Khoo JP, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh
- 599 J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R,
- 600 Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S,
- Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Mohd Hanafiah K, Mokdad
- AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM,
- Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD,
- Parry CD, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D,
- Pope CA, 3rd, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP,
- Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A,
- Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S,
- 608 Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJ,
- 609 Steenland K, Stockl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, Van
- 610 Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman
- 611 MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W,
- Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJ, Ezzati M, AlMazroa
- 613 MA, and Memish ZA. A comparative risk assessment of burden of disease and injury
- attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic
- analysis for the Global Burden of Disease Study 2010. Lancet 380: 2224-2260, 2012.
- 616 2. Mills KT, Stefanescu A, and He J. The global epidemiology of hypertension. Nat Rev
- 617 Nephrol 16: 223-237, 2020.
- 618 3. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement
- 619 DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L,
- 620 Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R,
- Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V,
- Desormais I, and Authors/Task Force M. 2018 ESC/ESH Guidelines for the management of
- arterial hypertension: The Task Force for the management of arterial hypertension of the
- 624 European Society of Cardiology and the European Society of Hypertension: The Task Force for
- the management of arterial hypertension of the European Society of Cardiology and the
- 626 European Society of Hypertension. J Hypertens 36: 1953-2041, 2018.

- 627 4. Whelton PK, Carey RM, Aronow WS, Casey DE, Jr., Collins KJ, Dennison
- 628 Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ,
- Muntner P, Ovbiagele B, Smith SC, Jr., Spencer CC, Stafford RS, Taler SJ, Thomas RJ,
- 630 Williams KA, Sr., Williamson JD, and Wright JT, Jr. 2017
- 631 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the
- Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults:
- 633 Executive Summary: A Report of the American College of Cardiology/American Heart
- Association Task Force on Clinical Practice Guidelines. *Hypertension* 71: 1269-1324, 2018.
- 635 5. Fecchio RY, Brito LC, Pecanha T, and de Moraes Forjaz CL. Potential Mechanisms
- Behind the Blood Pressure-Lowering Effect of Dynamic Resistance Training. *Curr Hypertens*
- 637 Rep 23: 35, 2021.
- 638 6. Silva J, Meneses AL, Parmenter BJ, Ritti-Dias RM, and Farah BQ. Effects of
- resistance training on endothelial function: A systematic review and meta-analysis.
- 640 Atherosclerosis 333: 91-99, 2021.
- 641 7. Collier SR, Kanaley JA, Carhart R, Jr., Frechette V, Tobin MM, Hall AK,
- Luckenbaugh AN, and Fernhall B. Effect of 4 weeks of aerobic or resistance exercise training
- on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum
- 644 *Hypertens* 22: 678-686, 2008.
- 645 8. **Dharmashankar K, and Widlansky ME**. Vascular endothelial function and
- 646 hypertension: insights and directions. Curr Hypertens Rep 12: 448-455, 2010.
- 647 9. Kawano H, Tanaka H, and Miyachi M. Resistance training and arterial compliance:
- keeping the benefits while minimizing the stiffening. J Hypertens 24: 1753-1759, 2006.
- 649 10. Miyachi M, Kawano H, Sugawara J, Takahashi K, Hayashi K, Yamazaki K, Tabata
- 650 I, and Tanaka H. Unfavorable effects of resistance training on central arterial compliance: a
- randomized intervention study. Circulation 110: 2858-2863, 2004.
- Okamoto T, Masuhara M, and Ikuta K. Upper but not lower limb resistance training
- increases arterial stiffness in humans. Eur J Appl Physiol 107: 127-134, 2009.
- 654 12. Honzikova N, and Fiser B. Baroreflex sensitivity and essential hypertension in
- 655 adolescents. *Physiol Res* 58: 605-612, 2009.
- 13. Ziegler MG, Nelesen RA, Mills PJ, Ancoli-Israel S, Clausen JL, Watkins L, and
- Dimsdale JE. The effect of hypoxia on baroreflexes and pressor sensitivity in sleep apnea and
- 658 hypertension. Sleep 18: 859-865, 1995.
- 659 14. **Ducher M, Fauvel JP, and Cerutti C**. Risk profile in hypertension genesis: A five-year
- 660 follow-up study. *Am J Hypertens* 19: 775-780; discussion 781, 2006.
- 661 15. Singh JP, Larson MG, Tsuji H, Evans JC, O'Donnell CJ, and Levy D. Reduced heart
- rate variability and new-onset hypertension: insights into pathogenesis of hypertension: the
- Framingham Heart Study. *Hypertension* 32: 293-297, 1998.
- 16. Hoshi RA, Santos IS, Dantas EM, Andreao RV, Mill JG, Lotufo PA, and Bensenor
- 665 I. Reduced heart-rate variability and increased risk of hypertension-a prospective study of the
- 666 ELSA-Brasil. J Hum Hypertens 35: 1088-1097, 2021.
- 667 17. Chakko S, Mulingtapang RF, Huikuri HV, Kessler KM, Materson BJ, and
- Myerburg RJ. Alterations in heart rate variability and its circadian rhythm in hypertensive
- patients with left ventricular hypertrophy free of coronary artery disease. Am Heart J 126: 1364-
- 670 1372, 1993.

- 671 18. Au JS, Oikawa SY, Morton RW, Macdonald MJ, and Phillips SM. Arterial Stiffness
- Is Reduced Regardless of Resistance Training Load in Young Men. *Med Sci Sports Exerc* 49:
- 673 342-348, 2017.
- 674 19. Cortez-Cooper MY, DeVan AE, Anton MM, Farrar RP, Beckwith KA, Todd JS,
- and Tanaka H. Effects of high intensity resistance training on arterial stiffness and wave
- 676 reflection in women. *Am J Hypertens* 18: 930-934, 2005.
- 677 20. Beck DT, Martin JS, Casey DP, and Braith RW. Exercise training reduces peripheral
- arterial stiffness and myocardial oxygen demand in young prehypertensive subjects. Am J
- 679 *Hypertens* 26: 1093-1102, 2013.
- 680 21. Casey DP, Beck DT, and Braith RW. Progressive resistance training without volume
- increases does not alter arterial stiffness and aortic wave reflection. Exp Biol Med (Maywood)
- 682 232: 1228-1235, 2007.
- 683 22. Heffernan KS, Fahs CA, Iwamoto GA, Jae SY, Wilund KR, Woods JA, and
- 684 **Fernhall B.** Resistance exercise training reduces central blood pressure and improves
- microvascular function in African American and white men. Atherosclerosis 207: 220-226, 2009.
- Ramirez-Velez R, Castro-Astudillo K, Correa-Bautista JE, Gonzalez-Ruiz K,
- 687 Izquierdo M, Garcia-Hermoso A, Alvarez C, Ramirez-Campillo R, and Correa-Rodriguez
- 688 M. The Effect of 12 Weeks of Different Exercise Training Modalities or Nutritional Guidance on
- 689 Cardiometabolic Risk Factors, Vascular Parameters, and Physical Fitness in Overweight Adults:
- 690 Cardiometabolic High-Intensity Interval Training-Resistance Training Randomized Controlled
- 691 Study. J Strength Cond Res 34: 2178-2188, 2020.
- 692 24. Rossow LM, Fahs CA, Thiebaud RS, Loenneke JP, Kim D, Mouser JG, Shore EA,
- 693 Beck TW, Bemben DA, and Bemben MG. Arterial stiffness and blood flow adaptations
- 694 following eight weeks of resistance exercise training in young and older women. Exp Gerontol
- 695 53: 48-56, 2014.
- 696 25. **Medicine ACoS**. ACSM's Guidelines For Exercise Testing And Prescription.
- 697 Philadelphia: Wolters Kluwer: 2018.
- 698 26. Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, Sherman S, Sluss PM, de
- 699 Villiers TJ, and Group SC. Executive summary of the Stages of Reproductive Aging
- Workshop + 10: addressing the unfinished agenda of staging reproductive aging. *Menopause* 19:
- 701 387-395, 2012.
- 702 27. Thijssen DHJ, Bruno RM, van Mil A, Holder SM, Faita F, Greyling A, Zock PL,
- 703 Taddei S, Deanfield JE, Luscher T, Green DJ, and Ghiadoni L. Expert consensus and
- 704 evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur
- 705 *Heart J* 40: 2534-2547, 2019.
- 706 28. Doshi SN, Naka KK, Payne N, Jones CJ, Ashton M, Lewis MJ, and Goodfellow J.
- Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide. *Clin Sci (Lond)* 101: 629-635, 2001.
- 709 29. Limberg JK, Casey DP, Trinity JD, Nicholson WT, Wray DW, Tschakovsky ME,
- Green DJ, Hellsten Y, Fadel PJ, Joyner MJ, and Padilla J. Assessment of resistance vessel
- function in human skeletal muscle: guidelines for experimental design, Doppler ultrasound, and
- 712 pharmacology. *Am J Physiol Heart Circ Physiol* 318: H301-H325, 2020.
- 713 30. Faita F, Masi S, Loukogeorgakis S, Gemignani V, Okorie M, Bianchini E,
- 714 Charakida M. Demi M. Ghiadoni L. and Deanfield JE. Comparison of two automatic
- methods for the assessment of brachial artery flow-mediated dilation. J Hypertens 29: 85-90,
- 716 2011.

- 717 31. Gemignani V, Bianchini E, Faita F, Giannarelli C, Plantinga Y, Ghiadoni L, and
- 718 **Demi M**. Ultrasound measurement of the brachial artery flow-mediated dilation without ECG
- 719 gating. *Ultrasound Med Biol* 34: 385-391, 2008.
- 720 32. Ghiadoni L, Faita F, Salvetti M, Cordiano C, Biggi A, Puato M, Di Monaco A, De
- 721 Siati L, Volpe M, Ambrosio G, Gemignani V, Muiesan ML, Taddei S, Lanza GA, and
- 722 **Cosentino F.** Assessment of flow-mediated dilation reproducibility: a nationwide multicenter
- 723 study. *J Hypertens* 30: 1399-1405, 2012.
- 724 33. Jenkins NDM, Rogers EM, Banks NF, Tomko PM, Sciarrillo CM, Emerson SR,
- 725 Taylor A, and Teague TK. Childhood psychosocial stress is linked with impaired vascular
- endothelial function, lower SIRT1, and oxidative stress in young adulthood. Am J Physiol Heart
- 727 *Circ Physiol* 321: H532-H541, 2021.
- 728 34. Muntner P, Shimbo D, Carey RM, Charleston JB, Gaillard T, Misra S, Myers MG,
- Ogedegbe G, Schwartz JE, Townsend RR, Urbina EM, Viera AJ, White WB, and Wright
- 730 **JT, Jr.** Measurement of Blood Pressure in Humans: A Scientific Statement From the American
- Heart Association. *Hypertension* 73: e35-e66, 2019.
- 732 35. Hwang MH, Yoo JK, Kim HK, Hwang CL, Mackay K, Hemstreet O, Nichols WW,
- and Christou DD. Validity and reliability of aortic pulse wave velocity and augmentation index
- determined by the new cuff-based SphygmoCor Xcel. J Hum Hypertens 28: 475-481, 2014.
- 735 36. Damorim IR, Santos TM, Barros GWP, and Carvalho PRC. Kinetics of Hypotension
- during 50 Sessions of Resistance and Aerobic Training in Hypertensive Patients: a Randomized
- 737 Clinical Trial. *Arg Bras Cardiol* 108: 323-330, 2017.
- 738 37. Heffernan KS, Yoon ES, Sharman JE, Davies JE, Shih YT, Chen CH, Fernhall B,
- and Jae SY. Resistance exercise training reduces arterial reservoir pressure in older adults with
- prehypertension and hypertension. *Hypertens Res* 36: 422-427, 2013.
- 741 38. Moeini M, Salehi Z, Sadeghi M, Kargarfard M, and Salehi K. The effect of resistance
- exercise on mean blood pressure in the patients referring to cardiovascular research centre. *Iran J*
- 743 *Nurs Midwifery Res* 20: 431-435, 2015.
- 744 39. Moraes MR, Bacurau RF, Casarini DE, Jara ZP, Ronchi FA, Almeida SS, Higa EM,
- Pudo MA, Rosa TS, Haro AS, Barros CC, Pesquero JB, Wurtele M, and Araujo RC.
- 746 Chronic conventional resistance exercise reduces blood pressure in stage 1 hypertensive men. J
- 747 Strength Cond Res 26: 1122-1129, 2012.
- 748 40. Cornelissen VA, and Fagard RH. Effects of endurance training on blood pressure,
- blood pressure-regulating mechanisms, and cardiovascular risk factors. *Hypertension* 46: 667-
- 750 675, 2005.
- 751 41. Collaboration TBPLTT. Effect of antihypertensive drug treatment on long-term blood
- 752 pressure reduction: An individual patient-level data meta-analysis of 352,744 Participants from
- 753 51 large-scale randomised clinical trials. *medRxiv* 2021.2002.2019.21252066, 2021.
- 754 42. **Blood Pressure Lowering Treatment Trialists C.** Pharmacological blood pressure
- 755 lowering for primary and secondary prevention of cardiovascular disease across different levels
- of blood pressure: an individual participant-level data meta-analysis. *Lancet* 397: 1625-1636,
- 757 2021.
- 758 43. Franklin SS, Khan SA, Wong ND, Larson MG, and Levy D. Is pulse pressure useful
- 759 in predicting risk for coronary heart Disease? The Framingham heart study. *Circulation* 100:
- 760 354-360, 1999.

- 761 44. Franklin SS, Larson MG, Khan SA, Wong ND, Leip EP, Kannel WB, and Levy D.
- Does the relation of blood pressure to coronary heart disease risk change with aging? The
- 763 Framingham Heart Study. Circulation 103: 1245-1249, 2001.
- 764 45. Cecelja M, Jiang B, McNeill K, Kato B, Ritter J, Spector T, and Chowienczyk P.
- 765 Increased wave reflection rather than central arterial stiffness is the main determinant of raised
- pulse pressure in women and relates to mismatch in arterial dimensions: a twin study. *J Am Coll Cardiol* 54: 695-703, 2009.
- 768 46. Convertino VA, Doerr DF, Flores JF, Hoffler GW, and Buchanan P. Leg size and
- muscle functions associated with leg compliance. J Appl Physiol (1985) 64: 1017-1021, 1988.
- 770 47. Convertino VA, Doerr DF, and Stein SL. Changes in size and compliance of the calf
- 771 after 30 days of simulated microgravity. *J Appl Physiol* (1985) 66: 1509-1512, 1989.
- 772 48. Cordina RL, O'Meagher S, Karmali A, Rae CL, Liess C, Kemp GJ, Puranik R,
- 773 Singh N, and Celermajer DS. Resistance training improves cardiac output, exercise capacity
- and tolerance to positive airway pressure in Fontan physiology. *Int J Cardiol* 168: 780-788,
- 775 2013.
- 776 49. Thomas KN, Akerman AP, Gibbons TD, Campbell HA, Cotter JD, and van Rij AM.
- 777 The athlete's vein: venous adaptations in the lower limbs of endurance athletes. *Am J Physiol*
- 778 *Heart Circ Physiol* 325: H66-H76, 2023.
- 779 50. Tinsley GM, Harty PS, Stratton MT, Smith RW, Rodriguez C, and Siedler MR.
- 780 Tracking changes in body composition: comparison of methods and influence of pre-assessment
- 781 standardisation. *Br J Nutr* 127: 1656-1674, 2022.
- 51. Spence AL, Carter HH, Naylor LH, and Green DJ. A prospective randomized
- 783 longitudinal study involving 6 months of endurance or resistance exercise. Conduit artery
- 784 adaptation in humans. *J Physiol* 591: 1265-1275, 2013.
- 785 52. Miyachi M, Tanaka H, Yamamoto K, Yoshioka A, Takahashi K, and Onodera S.
- 786 Effects of one-legged endurance training on femoral arterial and venous size in healthy humans.
- 787 J Appl Physiol (1985) 90: 2439-2444, 2001.
- 788 53. Intengan HD, and Schiffrin EL. Structure and mechanical properties of resistance
- arteries in hypertension: role of adhesion molecules and extracellular matrix determinants.
- 790 *Hypertension* 36: 312-318, 2000.
- 791 54. **Schiffrin EL**. Reactivity of small blood vessels in hypertension: relation with structural
- 792 changes. State of the art lecture. *Hypertension* 19: II1-9, 1992.
- 793 55. Greene AS, Tonellato PJ, Lui J, Lombard JH, and Cowley AW, Jr. Microvascular
- rarefaction and tissue vascular resistance in hypertension. *Am J Physiol* 256: H126-131, 1989.
- 795 56. Beck DT, Casey DP, Martin JS, Emerson BD, and Braith RW. Exercise training
- improves endothelial function in young prehypertensives. Exp Biol Med (Maywood) 238: 433-
- 797 441, 2013.
- 798 57. Boeno FP, Ramis TR, Munhoz SV, Farinha JB, Moritz CEJ, Leal-Menezes R,
- 799 Ribeiro JL, Christou DD, and Reischak-Oliveira A. Effect of aerobic and resistance exercise
- training on inflammation, endothelial function and ambulatory blood pressure in middle-aged
- 801 hypertensive patients. *J Hypertens* 38: 2501-2509, 2020.
- 802 58. Pedralli ML, Marschner RA, Kollet DP, Neto SG, Eibel B, Tanaka H, and Lehnen
- 803 AM. Different exercise training modalities produce similar endothelial function improvements in
- individuals with prehypertension or hypertension: a randomized clinical trial Exercise,
- endothelium and blood pressure. Sci Rep 10: 7628, 2020.

- 806 59. Thomas KN, Kissling LS, Gibbons TD, Akerman AP, van Rij AM, and Cotter JD.
- The acute effect of resistance exercise on limb blood flow. *Exp Physiol* 105: 2099-2109, 2020.
- 808 60. Collier SR, Diggle MD, Heffernan KS, Kelly EE, Tobin MM, and Fernhall B.
- 809 Changes in arterial distensibility and flow-mediated dilation after acute resistance vs. aerobic
- 810 exercise. J Strength Cond Res 24: 2846-2852, 2010.
- 811 61. Tryfonos A, Rasoul D, Sadler D, Shelley J, Mills J, Green DJ, Dawson EA, and
- 812 Cocks M. Elevated shear rate-induced by exercise increases eNOS ser(1177) but not PECAM-1
- Tyr(713) phosphorylation in human conduit artery endothelial cells. Eur J Sport Sci 1-10, 2022.
- 814 62. **Pyke KE, and Tschakovsky ME**. Peak vs. total reactive hyperemia: which determines
- the magnitude of flow-mediated dilation? J Appl Physiol (1985) 102: 1510-1519, 2007.
- 816 63. Pohl U, Holtz J, Busse R, and Bassenge E. Crucial role of endothelium in the
- vasodilator response to increased flow in vivo. *Hypertension* 8: 37-44, 1986.
- 818 64. Crecelius AR, Richards JC, Luckasen GJ, Larson DG, and Dinenno FA. Reactive
- 819 hyperemia occurs via activation of inwardly rectifying potassium channels and Na+/K+-ATPase
- 820 in humans. Circ Res 113: 1023-1032, 2013.
- 821 65. Bertovic DA, Waddell TK, Gatzka CD, Cameron JD, Dart AM, and Kingwell BA.
- Muscular strength training is associated with low arterial compliance and high pulse pressure.
- 823 Hypertension 33: 1385-1391, 1999.
- 824 66. Miyachi M, Donato AJ, Yamamoto K, Takahashi K, Gates PE, Moreau KL, and
- 825 Tanaka H. Greater age-related reductions in central arterial compliance in resistance-trained
- 826 men. *Hypertension* 41: 130-135, 2003.
- 827 67. Nakamura N, and Muraoka I. Effects of Greater Central Arterial Stiffness on
- 828 Cardiovagal Baroreflex Sensitivity in Resistance-Trained Men. Sports Med Open 7: 77, 2021.
- 829 68. Otsuki T, Maeda S, Iemitsu M, Saito Y, Tanimura Y, Ajisaka R, and Miyauchi T.
- Vascular endothelium-derived factors and arterial stiffness in strength- and endurance-trained
- 831 men. *Am J Physiol Heart Circ Physiol* 292: H786-791, 2007.
- 832 69. Barnes JN, Trombold JR, Dhindsa M, Lin HF, and Tanaka H. Arterial stiffening
- following eccentric exercise-induced muscle damage. *J Appl Physiol* (1985) 109: 1102-1108,
- 834 2010.
- 835 70. Ihalainen JK, Ahtiainen JP, Walker S, Paulsen G, Selanne H, Hamalainen M,
- 836 Moilanen E, Peltonen H, and Mero AA. Resistance training status modifies inflammatory
- response to explosive and hypertrophic resistance exercise bouts. *J Physiol Biochem* 73: 595-
- 838 604, 2017.
- 839 71. Smith LL, Anwar A, Fragen M, Rananto C, Johnson R, and Holbert D. Cytokines
- and cell adhesion molecules associated with high-intensity eccentric exercise. Eur J Appl Physiol
- 841 82: 61-67, 2000.
- 842 72. Collier SR, Kanaley JA, Carhart R, Jr., Frechette V, Tobin MM, Bennett N,
- 843 Luckenbaugh AN, and Fernhall B. Cardiac autonomic function and baroreflex changes
- following 4 weeks of resistance versus aerobic training in individuals with pre-hypertension.
- 845 *Acta Physiol (Oxf)* 195: 339-348, 2009.
- 846 73. Banks NF, Rogers EM, Berry AC, and Jenkins NDM. Progressive Isoinertial
- Resistance Exercise Promotes More Favorable Cardiovascular Adaptations than Traditional
- Resistance Exercise in Young Adults. *American Journal of Physiology-Heart and Circulatory*
- 849 *Physiology* In Press: 2023.

- 850 74. Cooke WH, and Carter JR. Strength training does not affect vagal-cardiac control or
- cardiovagal baroreflex sensitivity in young healthy subjects. Eur J Appl Physiol 93: 719-725,
- 852 2005.
- Heffernan KS, Jae SY, Vieira VJ, Iwamoto GA, Wilund KR, Woods JA, and
- 854 **Fernhall B.** C-reactive protein and cardiac vagal activity following resistance exercise training
- in young African-American and white men. Am J Physiol Regul Integr Comp Physiol 296:
- 856 R1098-1105, 2009.
- 857 76. Balshaw TG, Massey GJ, Maden-Wilkinson TM, Lanza MB, and Folland JP. Neural
- adaptations after 4 years vs 12 weeks of resistance training vs untrained. Scand J Med Sci Sports
- 859 29: 348-359, 2019.
- 360 77. Jenkins NDM, Miramonti AA, Hill EC, Smith CM, Cochrane-Snyman KC, Housh
- TJ, and Cramer JT. Greater Neural Adaptations following High- vs. Low-Load Resistance
- 862 Training. Frontiers in Physiology 8: 2017.
- 863 78. Banks NF, Rogers EM, Church DD, Ferrando AA, and Jenkins NDM. The
- 864 contributory role of vascular health in age-related anabolic resistance. J Cachexia Sarcopenia
- 865 *Muscle* 13: 114-127, 2022.
- 866 79. Li R, Xia J, Zhang XI, Gathirua-Mwangi WG, Guo J, Li Y, McKenzie S, and Song
- Y. Associations of Muscle Mass and Strength with All-Cause Mortality among US Older Adults.
- 868 *Med Sci Sports Exerc* 50: 458-467, 2018.
- 869 80. Ribeiro AS, Tomeleri CM, Souza MF, Pina FL, Schoenfeld BJ, Nascimento MA,
- 870 Venturini D, Barbosa DS, and Cyrino ES. Effect of resistance training on C-reactive protein,
- blood glucose and lipid profile in older women with differing levels of RT experience. Age
- 872 (Dordr) 37: 109, 2015.
- 873 81. Gomez-Tomas C, Chulvi-Medrano I, Carrasco JJ, and Alakhdar Y. Effect of a 1-
- year elastic band resistance exercise program on cardiovascular risk profile in postmenopausal
- 875 women. *Menopause* 25: 1004-1010, 2018.
- 876 82. Friedenreich CM, Neilson HK, Woolcott CG, Wang Q, Stanczyk FZ, McTiernan A,
- 377 Jones CA, Irwin ML, Yasui Y, and Courneya KS. Inflammatory marker changes in a yearlong
- 878 randomized exercise intervention trial among postmenopausal women. Cancer Prev Res (Phila)
- 879 5: 98-108, 2012.
- 880 83. Selvin E, Paynter NP, and Erlinger TP. The effect of weight loss on C-reactive protein:
- a systematic review. Arch Intern Med 167: 31-39, 2007.
- 882 84. Collier SR, Frechette V, Sandberg K, Schafer P, Ji H, Smulyan H, and Fernhall B.
- Sex differences in resting hemodynamics and arterial stiffness following 4 weeks of resistance
- versus aerobic exercise training in individuals with pre-hypertension to stage 1 hypertension.
- 885 *Biol Sex Differ* 2: 9, 2011.
- 886 85. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, Ramirez
- A, Schlaich M, Stergiou GS, Tomaszewski M, Wainford RD, Williams B, and Schutte AE.
- 888 2020 International Society of Hypertension Global Hypertension Practice Guidelines.
- 889 *Hypertension* 75: 1334-1357, 2020.

890

894 895 896 897 898 899 FIGURE CAPTIONS 900 Figure 1. Overview of the experimental design. In week 1, load (10RM) for the prescribed 901 repetitions was determined based on baseline strength testing. During weeks 2 and 3, loads 902 (12RM) were initially determined by baseline strength testing and adjusted (+5–10%) whenever 903 participants felt they could complete 2 repetitions more than prescribed on the final set of each 904 exercise. During weeks 4-9, participants completed as many repetitions as possible during their 905 final set of each exercise. Whenever a participant completed 2 or more repetitions than 906 prescribed for 2 consecutive training sessions, the load was increased 5-10% for the next 907 exercise training session (e.g., 2+2 rule). Created with BioRender.com. 908 Figure 2. Peripheral systolic blood pressure (SBP), peripheral diastolic blood pressure (DBP), 909 central SBP (cSBP), central DBP (cDBP), mean arterial pressure (MAP), and pulse pressure 910 (PP) collected prior to and following either 9 weeks of resistance exercise training (RET) or a 911 non-exercise control period (CON). All data are displayed as estimated marginal means (± 95% 912 CI). * = significant within-group decrease from T0 to T1 (p \leq 0.05); † = significantly lower in RET at T1 than in CON at T0; # = significantly lower in RET at T1 than in CON at T1 ($p \le 0.05$). 913 914 Figure 3. Resting cardiac output (CO) and total peripheral resistance (TPR) collected prior to 915 and following either 9 weeks of resistance exercise training (RET) or a non-exercise control 916 period (CON). All data are displayed as estimated marginal means (± 95% CI). * = significant 917 within-group increase from T0 to T1 (p \leq 0.05). 918 Figure 4. Percent flow-mediated dilation (FMD), FMD corrected to shear rate (cFMD_{SR}), 919 reactive hyperemia (RH), and baseline blood flow (BF_{base}) collected prior to and following either 920 9 weeks of resistance exercise training (RET) or a non-exercise control period (CON). All data 921 are displayed as estimated marginal means (± 95% CI). * = significant within-group increase 922 from T0 to T1 (p \leq 0.05); # = significant difference between RET and CON at T1 (p \leq 0.05). 923 **Figure 5.** Relations between the changes (Δ) in **A**: SBP and flow-mediated dilation (FMD); **B**: 924 SBP and FMD corrected for shear rate stimulus (cFMD_{SR}); **C**: systolic blood pressure (SBP) and 925 resting brachial artery diameter (D_{base}); **D**: SBP and resting blood flow (BF_{base}); **E**: total 926 peripheral resistance (TPR) and D_{base}; **F**: TPR and cardiovagal baroreflex sensitivity down 927 (BRS_{down}); **G**: cardiac output (CO) and fat-free mass (FFM); and **H**: pulse wave velocity (PWV) 928 and pulse pressure (PP) following a 9-week RT program (RET; yellow filled circles) or non-929 exercise control period (CON; dark grey filled circles). Note that relations between CO versus 930 FFM and PWV versus PP are depicted as rank correlations due to non-normality of residuals. Inset text boxes also display partial correlation coefficients ($r_{xy,z}$ or $\rho_{xy,z}$) for the relation with the 931 932 effect of sex removed.

Table 1. Baseline Participant Characteristics

rubic 1. Buccinio i articipant characteriotico								
RET CON								
	(n=13; 5M/8F)	(n=13; 5M/8F)						
Age (y)	52 (6)	55 (6)						
Height (cm)	171.5 (10.5)	171.5 (7.4)						
Weight (kg)	84.6 (9.7)	81.3 (15.5)						
BMI (kg/m²)	29.9 (4.2)	28.0 (4.3)						
Post-Menopausal (n)	6	6						
Years Post-Menopause (y)	6 (7)	8 (4)						
Race								
White (n)	11	11						
Asian (n)	1	1						
Black (n)	1	1						
Elevated Blood Pressure								
Participants (n)	4	5						
SBP (mmHg)	122 (1)	125 (3)						
DBP (mmHg)	73 (9)	74 (9)						
Stage 1 Hypertension								
Participants (n)	9	8						
SBP (mmHg)	130 (5)	133 (6)						
DBP (mmHg)	84 (3)	85 (8)						
All data are displayed as mosn (SD); PMI = body mass index;								

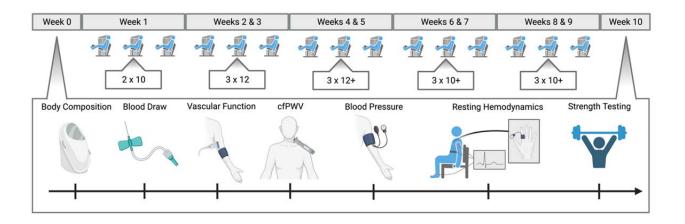
All data are displayed as mean (SD); BMI = body mass index; CON = control group; RET = resistance training group.

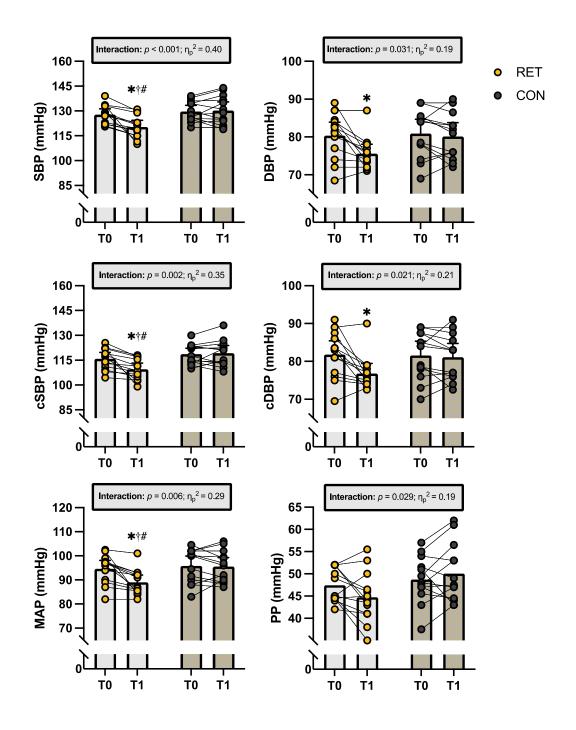
Table 2. The effect of resistance exercise versus control on body composition and muscle strength

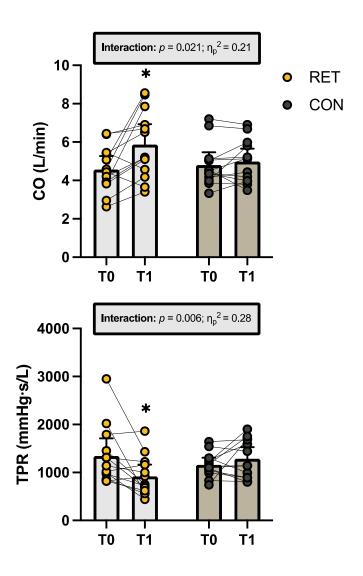
	RET (n=13; 8F/5M)		CON (n=1	CON (n=13; 8F/5M)		Group × Visit		Group		isit
•	T0	T1	T0	T1	р	η_p^2	р	η_p^2	р	η_p^2
Weight (kg)	86.3 (6.1)	87.0 (6.1)	83.0 (6.1)	82.9 (6.1)	0.21	0.07	0.37	0.03	0.99	<0.01
FFM (kg)	55.6 (3.2)	56.2 (3.2)	51.8 (3.2)	52.2 (3.2)	0.66	< 0.02	0.08	0.13	0.65	<0.01
FM (kg)	30.6 (4.7)	30.8 (4.7)	31.1 (4.7)	30.7 (4.7)	0.41	0.03	0.95	<0.01	0.66	<0.01
BF (%)	35.6 (3.6)	37.4 (3.6)	37.4 (3.6)	36.9 (3.6)	0.61	0.01	0.51	0.02	0.39	0.03
Squat 1RM (kg)	175.3 (21)	255.2 (21) ^{#†‡}	169.1 (21)	175.5 (21)	<0.001*	0.81	-	-	-	-
Bench 1RM (kg)	34.2 (7.9)	56.4 (7.9)	25.2 (7.9)	25.5 (7.9)	<0.001*	0.85	-	-	-	-

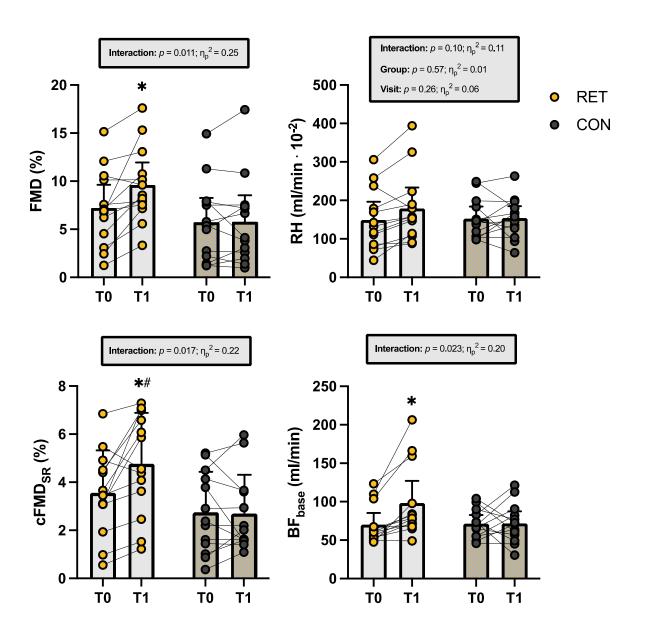
All data are displayed as estimated means (\pm model 95% CI); *significant interaction effect ($p \le 0.05$); *significant within-group increase from T0 to T1 ($p \le 0.05$); †significantly greater than in CON at T0 ($p \le 0.05$); \$\frac{1}{2}\$ significantly greater than in CON at T1 ($p \le 0.05$); CON = non-exercise control group, RET = resistance exercise training group, FFM = fat free mass, FM = fat mass, BF = body fat, 1RM = estimated one repetition maximum.

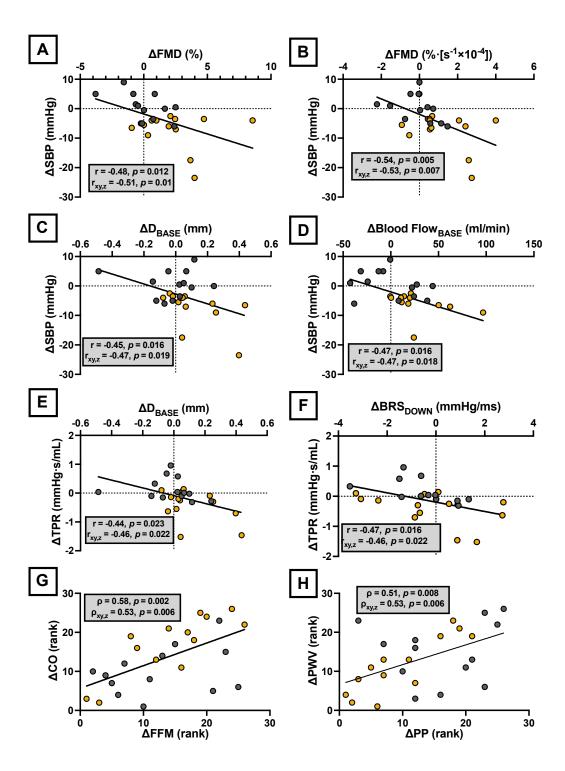
Table 3. The effect of resistance exercise versus control on central arterial stiffness, vascular function and reactive hyperemia, inflammation, and autonomic function


	RET (n=1	(n=13; 8F/5M) CON (n=1		13; 8F/5M)	Group × Visit		Group		Visit	
	T0	T1	T0	T1	р	η_{p}^{2}	р	η_{p}^{2}	р	η_p^2
cfPWV (m/s)	7.0 (0.5)	6.8 (0.6)	7.3 (0.6)	7.2 (0.5)	0.20	0.07	0.72	<0.01	0.23	0.07
D _{base} (mm)	3.53 (0.2)	3.64 (0.2)	3.76 (0.2)	3.73 (0.2)	0.07	0.14	0.22	0.06	0.39	0.03
FMD _{abs} (mm)	0.24 (0.1)	0.33 (0.1) ^{#†‡}	0.20 (0.1)	0.21 (0.1)	0.006*	0.29	-	-	-	-
SR _{base} (s ⁻¹)	164.9 (40.2)	202.0 (40.2)	165.9 (40.2)	192.3 (40.2)	0.73	< 0.01	0.81	<0.01	0.71	<0.01
SR _{peak} (s ⁻¹)	1044.8 (140)	1031.3 (140)	937.2 (140)	1003.9 (140)	0.32	0.04	0.46	0.03	0.69	<0.01
SR _{AUC} (au 10 ⁻³)	2.04 (0.5)	2.17 (0.5)	2.11 (0.5)	2.11 (0.5)	0.58	0.01	0.99	<0.01	0.93	<0.01
CRP (mg/L)	3.16 (1.4)	2.17 (1.3)	2.23 (1.4)	2.25 (1.3)	0.33	0.05	0.39	0.04	0.75	<0.01
BRS _{pooled} (ms/mmHg)	5.83 (1.1)	5.87 (1.1)	5.22 (1.1)	5.14 (1.1)	0.81	<0.01	0.37	0.03	0.12	0.10
BRS _{up} (ms/mmHg)	5.67 (1.2)	5.60 (1.2)	4.72 (1.2)	5.24 (1.2)	0.39	0.03	0.41	0.03	0.47	0.02
BRS _{down} (ms/mmHg)	6.19 (1.2)	5.98 (1.2)	5.41 (1.2)	5.01 (1.2)	0.78	<0.01	0.25	0.06	0.28	0.05
InRMSSD (ms)	3.18 (0.2)	3.09 (0.2)	3.08 (0.2)	2.97 (0.2)	0.92	<0.01	0.43	0.03	0.22	0.07
InLF (ms ²)	5.21 (0.7)	4.97 (0.7)	5.09 (0.7)	4.65 (0.7)	0.63	0.01	0.60	0.01	0.37	0.04
InHF (ms ²)	4.78 (0.6)	4.32 (0.6)	4.24 (0.6)	4.10 (0.6)	0.32	0.04	0.28	0.05	0.11	0.11
RHR (bpm)	68.9 (5.1)	70.2 (5.1)	71.8 (5.1)	72.1 (5.1)	0.65	<0.01	0.48	0.02	0.66	<0.01


All data are displayed as mean (\pm 95% CI); *significant interaction effect ($p \le 0.05$); *significant within-group increase from T0 to T1 ($p \le 0.05$); †significantly greater than in CON at T0 ($p \le 0.05$); \$\frac{1}{2}\$ significantly greater than in CON at T1 ($p \le 0.05$); AUC = area under the curve, BRS = cardiovagal baroreflex sensitivity, CON = non-exercise control group, RET = resistance exercise training group, D_{base} = baseline diameter, D_{max} = maximal diameter after cuff release, lnRMSSD = log transformed root mean square of successive differences, lnHF = log transformed high frequency power, lnLF = log transformed low frequency power, RHR = resting heart rate, SR = shear rate


Table 4. Dietary and physical activity control data pre- and post-intervention in the resistance exercise and control groups


	RET (n=13; 8F/5M)		CON (n=13; 8F/5M)		Group × Visit		Group		Visit	
	T0	T1	T0	T1	р	η_{p}^{2}	р	η_{p}^{2}	р	η_{p}^{2}
Physical Activity (MET·min/week)	395.7 (148)	406.2 (148)	445.2 (148)	472.3 (149)	0.58	0.01	0.65	<0.01	0.46	0.02
Calories (kcal)	2135.7 (272)	2161.8 (272)	1995.9 (272)	2027.5 (272)	0.95	<0.01	0.45	0.03	0.62	0.01
Carbohydrate (g)	224.4 (34.3)	226.7 (34.3)	185.6 (34.3)	198.3 (34.3)	0.53	0.02	0.14	0.09	0.42	0.03
Protein (g)	101.5 (15.7)	98.8 (15.7)	97.6 (15.7)	104.0 (15.7)	0.22	0.06	0.95	<0.01	0.35	0.04
Fat (g)	92.6 (17.1)	96.1 (17.1)	97.6 (17.1)	94.5 (17.1)	0.44	0.03	0.87	<0.01	0.67	<0.01


All data are displayed as estimated marginal mean (± model 95% CI); CON = non-exercise control group, RET = resistance exercise training group, MET = metabolic equivalent of task

