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Abstract

Sleep deficiency is a ubiquitous phenomenon among Americans. In fact, in the
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including insulin resistance and disrupted nutrient metabolism, dysregulation of
hunger and satiety, and potentially increased body weight and adiposity. Conse-
quently, inadequate sleep is related to an increased risk of various cardiometabolic
diseases, including obesity, diabetes, and heart disease. Exercise has the potential to
be an effective therapeutic to counteract the deleterious effects of sleep disruption
listed above, whereas chronic psychosocial stress may causally promote sleep
disruption and cardiometabolic risk. Here, we provide a narrative review of the
current evidence on the consequences of short sleep duration and poor sleep
quality on substrate metabolism, circulating appetite hormones, hunger and satiety,
and weight gain. Secondly, we provide a brief overview of chronic psychosocial
stress and its impact on sleep and metabolic health. Finally, we summarise the
current evidence regarding the ability of exercise to counteract the adverse
metabolic health effects of sleep disruption. Throughout the review, we highlight

areas where additional interrogation and future exploration are necessary.
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1 | INTRODUCTION

t.22

than 7 h per nigh Alarmingly, Americans sleep an average of 6 h

and 31 min during the work week and over 35% of Americans report

The United States (U.S.) National Sleep Foundation (NSF) recom-
mends that adults get between 7 and 9 h sleep per night.! Greater
incidence of obesity, heart disease, stroke, diabetes, chronic kidney
disease, and depression are observed among those who sleep less

sleeping fewer than 7 h per night."* Both habitual short sleep
duration and experimentally induced reductions in sleep duration
have been associated with lower whole body insulin sensitivity,

impaired nutrient metabolism, increased subjective hunger, increased
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caloric intake, and weight gain.®° Based on this robust emerging
evidence, sleep is becoming recognised as a key behavioural deter-
minant of cardiometabolic health. Accordingly, the American Heart
Association has recently added sleep health to its list of essential,
modifiable factors for improving and maintaining cardiovascular
health (i.e., Life's Essential 8),* and the American Diabetes Associa-
tion has recognised sleep as an important behaviour for the man-
agement of hyperglycemia in individuals with Type 2 Diabetes
(T2D).2

Given the ease with which it is measured and experimentally
manipulated, sleep duration is the most well-studied sleep dimension
and is therefore the dimension for which the strongest body of evi-
dence exists. However, sleep is multi-dimensional, and both sleep
quality and consistency are likely unique contributors to car-
diometabolic health. Notably, there has been a worldwide decline in
sleep quality over the last several decades.®> The NSF defines sleep
quality as a combination of sleep continuity and sleep architecture
and suggests that the ideal sleep architecture consists of spending
<5% of time in stage 1 sleep, <81% in stage 2 sleep, 16%-20% in
slow wave sleep (SWS), and 21%-30% in rapid eye movement (REM)
sleep.* Reductions in sleep quality (ie., reduced SWS) may also
negatively impact whole body insulin sensitivity and impair substrate
metabolism.>¢ Similarly, disruption to natural sleep patterns or
increased sleep variability can cause chronobiological misalignment,
promoting cardiometabolic risk.® For example, shift work, which is
characterised by variable day and night shifts and constantly
changing circadian alignments, has been shown to be an independent
risk factor for the development of T2D,” and shift workers have a
40% increased risk of T2D compared with non-shift workers.”
Furthermore, a small but emerging body of evidence indicates that
less extreme variability in sleep patterns, such as variability in bed-
times or bedtime delays, may promote cardiometabolic disruption as
evidenced by insulin resistance® and increased adiposity.” However,
given the emerging nature of this evidence, we chose not to conduct
an in-depth review of the effect of sleep variability on metabolic
health herein, which has very recently been reviewed elsewhere.'®

The purpose of this review is to evaluate the existing epide-
miological and experimental evidence linking short sleep duration
and poor sleep quality with altered substrate metabolism, hunger
and satiety, and body weight regulation, while highlighting current
gaps and limitations with recommendations for future studies. We
also briefly highlight the potential roles of psychosocial stress and
physical exercise in the association of sleep with cardiometabolic
health.

2 | INSULIN AND GLUCOSE METABOLISM
2.1 | Epidemiologic evidence on sleep disruption
Data from both small and large cohort studies suggest that short

sleep duration is associated with impaired insulin sensitivity and

glucose metabolism (Table 1). For example, Rafalson et al. reported

that those who sleep fewer than 6 h per night are 3 times more
likely to have impaired fasting glucose compared with those who
sleep 6-8 h per night.!* Among 276 adults, Chaput et al.'? reported
that individuals who sleep <6 h per night had a 2.8-fold greater
probability (relative risk = 2.78 [1.61-4.12]) and those who slept
>9 h per night had 2.54-times greater probability of developing type
2 diabetes or impaired glucose tolerance over ~6 years compared
with those who slept 7-8 h per night. The inclusion of waist
circumference, BMI, or relative body fat attenuated the relative risk
ratios, suggesting that adiposity may partially mediate the associa-
tion of sleep disruption with impaired insulin sensitivity and glucose
metabolism. Importantly, however, the data from these studies were
derived from primarily White, non-Hispanic cohorts and sleep du-
rations were obtained from retrospective, self-report. Wong et al.
reported that the association of self-reported short sleep duration
with lower insulin sensitivity was only significant in White in-
dividuals and additional sex stratification indicated that this rela-
tionship persisted only for white men and not white women.®
However, this study was also conducted in primarily (89%) White,
non-Hispanic adults. Thus, it is highly plausible that null findings
among non-White individuals were due to small sample size and
limited by retrospective, self-reported assessments of sleep dura-
tion. Accordingly, these findings should be interpreted with caution,
especially in light of well-documented racial disparities in sleep
health.1>21

Among a more diverse samples (43% non-White) of adolescents,
actigraphy-measured short sleep duration was associated with in-
sulin resistance even after adjustment for age, sex, race, and activity
levels.!* This association was attenuated but still significant
following adjustment for adiposity. Similarly, among 426 individuals
from the Midlife in the United States Cohort Study, actigraphy-
measured sleep time explained 41% of the difference in composite
cardiometabolic risk (which included insulin resistance and glucose
control [e.g., HbA1c]) between White and Black adults.’® In a cross-
sectional cohort study of Chinese twins, self-reported short sleep
duration was associated with greater insulin resistance in women
but not in men, an effect that was partially mediated by visceral
adiposity.® Finally, in the large (n = 70,026), prospective Nurse's
Health Study, self-reported sleep durations <5 h per day were
associated with a 1.57-fold increase in risk of diabetes diagnosis
among women, an effect that was mediated by body mass index
(BMI).Y

Taken together, there is strong evidence that short sleep dura-
tion is associated with greater insulin resistance and disrupted
glucose metabolism. Further, whereas it has been suggested that the
effects of short sleep duration on insulin and glucose metabolism are
strongest in White men,?? such findings are limited and likely influ-
enced by a lack of representation of understudied minoritised racial/
ethnic groups and small sample sizes. Studies with greater repre-
sentation of minoritised racial/ethnic groups instead suggest that
short sleep duration may partially explain racial differences in
metabolic health,*® while findings from large cohorts composed only

of women indicate that short sleep duration also negatively impacts
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women's cardiometabolic health.r” Furthermore, it appears that the
effect of short sleep duration on impaired insulin and glucose
metabolism may be mediated by increased central adiposity. The
directionality of this association is not clear at present, but as we
discuss below, experimental sleep disruption causes insulin resis-
tance and negatively impacts hunger, satiety, and body weight
regulation. Finally, these epidemiologic and cohort studies are limited
in so much that they primarily rely on fasting assessments of insulin
sensitivity and glucose metabolism, such as fasting insulin and fasting
glucose, or the homoeostatic model assessment of insulin resistance
(HOMA-IR) method and mostly self-reported sleep duration. How-
ever, as discussed below, these findings are bolstered by studies
examining the effect of experimental sleep restriction on insulin
sensitivity and glucose metabolism and also by robust evidence
indicating that individuals with short sleep durations (<6-7 h/night)
are at 30% greater risk for developing T2D.2324

Although the data are less robust, epidemiologic evidence also
shows that poor sleep quality promotes impairments in insulin and
glucose metabolism. For example, cross-sectional evidence in a
sample subset from the Midlife Development in the United States Il
study indicated that actigraphy-measured sleep onset latency was
linked with greater insulin resistance among men and women in
univariate analyses.’® When this relationship was explored in men
and women separately, the association persisted for women but not
men and was robust to inclusion of additional covariates such as
inflammatory markers, BMI, and depression.'® Among post-
menopausal women both with and without metabolic syndrome,
greater self-reported sleep onset latencies and more restless sleep
have been associated with greater insulin resistance by HOMA-IR.Y?
Similarly, among individuals with obesity or who are overweight,
sleep quality and sleep onset latency—assessed using the Pittsburgh
Sleep Quality Index—were associated with 1.33- and 1.23-fold
increased risk of insulin resistance defined as a HOMA-IR >3.4.7

Interestingly, evidence also exists to suggest that the strength of
the association between poor sleep quality and insulin resistance is
dependent on chronotype, such that individuals with an evening
chronotype may be at greatest risk.?° Importantly, the evening
chronotype has been linked to greater risk of depression and anxi-
ety,? greater dietary energy density,?® as well as reduced physical
activity and lower cardiorespiratory fitness,?” which all may act to
amplify cardiometabolic risk. Finally, in the aforementioned study
examining the contributions of habitual sleep to racial differences in
cardiometabolic health, Curtis et al. reported that low sleep effi-
ciency (sleep duration relative to the time spent in bed), explained an
astonishing 58% of the difference in composite cardiometabolic risk
between Black and White American adults.'® As we discuss below in
Section 6, it is plausible that heightened psychosocial stress exposure
due to factors subsequent of structural racism may explain racial
disparities in sleep health, which may causally promote racial dis-
parities in cardiometabolic health. These hypotheses warrant further
investigation with studies on effective interventions and policies ul-

timately needed.

2.2 | Experimental sleep manipulation

Several randomised controlled trials have been conducted to
establish whether short sleep duration and poor sleep quality are
causally associated with cardiometabolic health impairments as
evidenced by the growing body of epidemiological evidence.
Experimental manipulation of sleep duration is relatively straight-
forward and is most often accomplished by restricting the amount
of time in bed (TIB) available to sleep, mimicking short sleep dura-
tion and referred to herein as sleep restriction. Complementing the
epidemiological data, Spiegel et al. reported that 6 nights of 4-h TIB
increased postprandial glucose concentrations following breakfast
consumption without effecting postprandial insulin responses in
young men, suggesting reduced insulin sensitivity.?® In another
study examining the metabolic effects of a mild 1.5-h reduction in
habitual sleep duration, Robertson et al. reported that 3 weeks of
sleep restriction decreased insulin sensitivity in young, healthy men
assessed using a hyperinsulinemic-euglycemic clamp.?’ It has also
been shown that 14 days of ~2 h of sleep reduction reduces glucose
tolerance and reduces insulin sensitivity when overlaid on a West-
ern lifestyle (high sedentarism and ad libitum food intake).>° In the
first study examining the effect of sleep restriction on insulin
sensitivity in post-menopausal women, Singh et al.*! observed that
4-day of sleep restriction (40% reduction in habitual sleep duration;
~5-h TIB) caused reduced whole-body insulin sensitivity as indicated
by an increase in glucose infusion rate during a hyperinsulinemic-

132 examined the effects of

euglycemic clamp. Broussard et a
4 days of 4.5-h versus 8.5-h TIB on insulin sensitivity of adipocytes
collected from subcutaneous fat biopsies in healthy young adult men
and women. To do so, adipocytes were exposed to increasing con-
centrations of insulin, and phosphorylation of Akt—a critical early
step in the insulin signalling cascade—was measured during in vitro
experiments. The findings indicated that adipocyte insulin sensitivity
was markedly reduced (~30%) by experimental sleep restriction. As
we discuss below in Section 5.2, there is also evidence that sleep
restriction impairs insulin sensitivity in other tissues such as skeletal
muscle,3® together indicating that sleep has effects specific to pe-
ripheral tissues that may contribute to or exacerbate metabolic
disorders.%? Finally, while all of the aforementioned studies have
used multiple days (e.g., >4 days) of sleep restriction, the deleterious
effects of short sleep on insulin sensitivity have been shown to
begin after just 1 night of sleep restriction (4-h TIB) in healthy
subjects.®*35

Experimental manipulation of sleep quality is not as straight
forward as employing sleep restriction to modify sleep duration.
Studies that have manipulated sleep quality typically do so by sup-
pressing stage 3 non-REM sleep, also known as SWS. SWS is asso-
ciated with neural, hormonal, and metabolic changes that influence
glucose homoeostasis, such as growth hormone release, decreased
corticotropic activity, decreased sympathetic nervous system activ-
ity, and increased vagal tone.® In an elegantly designed study, Tasali
et al.® demonstrated that 3 nights of SWS suppression, by careful
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delivery of varying acoustic stimuli, elicited a 25% decrease in insulin
sensitivity that reached levels associated with heightened T2D risk.
This decrease in insulin sensitivity was strongly correlated (r = 0.89)
with the magnitude of SWS suppression. Notably, whereas a
decrease in insulin sensitivity should be compensated by increased
insulin release from beta cells, this did not occur, and mirrors the
decrease in beta-cell function observed before T2D onset.*® Simi-
larly, Herzog et al. showed that reducing SWS, but not REM sleep, for
one night via acoustic tone delivery promoted a 15% decrease in
insulin sensitivity compared to normal sleep, and the degree of sleep
fragmentation during SWS was correlated with insulin sensitivity in
the SWS-suppression condition.”> Thus, these experimental findings
indicate that reduced SWS has a particularly potent and unique
adverse effect on glucose metabolism, while the disruption of REM
sleep may be less noxious. Given the strong effect of SWS suppres-
sion, future studies may seek to understand if the effects of sleep
restriction on glucose metabolism are driven by, or are independent
of, an overall decrease in SWS, although this may be a difficult
question to address experimentally.

Together, these experimental sleep restriction studies support
the robust body of epidemiological evidence suggesting that short
sleep durations promote insulin resistance. Furthermore, experi-
mental manipulation of sleep quality by SWS suppression has robust
effects on insulin sensitivity, supporting the evidence linking poor

quality with insulin resistance in various cohorts.

3 | LIPID METABOLISM
3.1 | Epidemiologic evidence on sleep disruption

Impairments or alterations in both fasting and postprandial lipids
and lipoproteins predict cardiometabolic risk.3’~3? However, in
comparison to glucose metabolism, data on the associations be-
tween sleep and lipid metabolism are scarce. Aho et al. sought to
address this gap by analysing blood transcriptome and serum
metabolome data in two independent epidemiological cohorts
(DILGOM and Young Finns Study [YFS]; total n = 2739) in whom
self-reported sleep insufficiency was also quantified.*® Participants
who had shorter self-reported sleep durations had fewer large HDL-
C particles in circulation in both cohorts, and this effect was inde-
pendent of age and gender. In addition, gene expression data from
the DILGOM study indicated that sleep restriction was associated
with reduced cholesterol and sterol transporter expression (e.g.,
ABCG1) independent of BMI, which was replicated in the YFS
cohort.*® Together, these findings show that short sleep duration
suppresses cholesterol transport, particularly from peripheral mac-
rophages to HDL particles. A 2017 systematic review and meta-
analysis of prospective studies indicated that the available evi-
dence does not support a significant association of short sleep with

1 although there may be meaningful associations be-

dyslipidemia,*
tween short sleep and low HDL-C and elevated total cholesterol to

HDL-C ratio. However, these conclusions were drawn based on a

small available body of evidence that, as described by the authors, is
insufficient to inform public health policy.** Further, given the
apparent importance of particle-size and the particle-size specific

40 it may not be sufficient (or sufficiently

effects of short sleep,
sensitive) to simply measure traditional lipid and lipoprotein profiles
to understand the effects of short sleep duration on lipid
metabolism.

Apolipoproteins, including apolipoprotein B (ApoB), are core
structural proteins of cholesterol particles and subendothelial trap-
ping of ApoB is a primary mechanism for the development of
atherosclerosis.*?> Notably, circulating ApoB concentrations reflect
on 1:1 based on the total number of atherogenic particles in circu-
lation*? and thus examination of ApoB concentrations may be a more
sensitive approach to understand the relationship between sleep
duration and atherogenic risk. Among 3918 Chinese women, those
who self-reported short sleep duration (<6 h/night) were 2.6-times
more likely (Odds Ratio [OR] = 2.64 [1.74-4.02]) to have elevated
ApoB (>1.18 g/L) than those who self-reported sleeping 7-8 h each
night, and this association was robust to adjustment for potential
confounders (OR = 1.75 [1.12-2.72]).** Among 3403 Chinese men in
this same study,*> short sleep was also associated with increased
odds (OR = ~1.34 [1.1-1.56]) of elevated ApoB (>1.17 g/L), but it is
not clear if it was robust to adjustment because this was not re-
ported. Similarly, among 4149 Chinese adults with overweight/
obesity, ApoB concentrations were elevated among those who self-
reported sleeping <6 h each night, and this association was stron-
gest among individuals with a ‘metabolically unhealthy’ phenotype
(e.g., presence of >2 metabolic syndrome components) and among
adults <45 years.** In contrast, among a sample of 644 children and
992 adults, actigraphy-measured sleep duration was not significantly
associated with ApoB levels (B = —0.50 in children, B = —0.05 in
adults) where sleep duration was modelled continuously.*® Clearly,
additional work is needed with careful consideration of lipoprotein
sizes, such as can be provided by metabolomic analyses or by specific
interrogation of ApoB to understand the influence of short sleep
duration on lipid metabolism and atherogenic risk.

Very few data are available quantifying the effects of sleep quality
on lipid metabolism. However, poor sleep quality has also been iden-
tified as a risk factor for cardiometabolic disease.*® A secondary
analysis of the FIT-AGEING study indicated that neither actigraphy-
measured sleep efficiency nor wake after sleep onset was associated
with resting whole-body fat oxidation rate among 70 middle-aged
sedentary adults, although PSQI global score was (R? = 0.225-
0.391). In 812 middle-aged and older adults from the community-
based Heart Strategies Concentrating on Risk Evaluation study, loud
snoring was associated with an increased risk of low HDL-C, perhaps
by snoring related sleep fragmentation or via a sleep disordered
breathing-related mechanism.*” Among ~6500 40 to 60-year-old
Finnish adults, frequent insomnia symptoms, such as difficulty in
initiating and maintaining sleep and having non-restorative sleep,
were associated with a 59% increase in the likelihood that dyslipide-
mia medication would be prescribed during 5 years of follow-up,

suggesting a link between poor sleep quality and dyslipidemia. Overall,
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the size and quality of the current body of evidence make it difficult to
draw concrete conclusions regarding the association of poor sleep
quality with altered lipid metabolism/dyslipidemia.

3.2 | Experimental sleep manipulation

In our search, we found only one study that directly examined the
effects of experimental sleep restriction on postprandial lipaemic
responses to a high-fat meal,*® while one other reported the effects
of experimental sleep restriction on fasting serum lipids and lipo-
protein profiles as well as the activity of lipid transfer proteins.*° In
the former study, Ness et al. examined postprandial lipaemic re-
sponses following 4 consecutive nights of sleep restriction versus
control (5-h vs. 10-h TIB) in 15 young healthy men. While an increase
in postprandial lipaemia may have been expected, sleep restriction
instead suppressed the postprandial triglyceride (TG) area-under-
the-curve and non-esterified fatty acid (NEFA) levels compared
with control. However, while the provided meal was high in fat (49 g),
it was also high in carbohydrate (111 g) and elicited a robust post-
prandial insulin response. Importantly, the insulin response to the
meal was greater following sleep restriction.*® Therefore, it is
reasonable to speculate that this augmented insulin response resul-
ted in enhanced TG clearance by insulin-stimulated lipoprotein lipase
translocation; however, this should be investigated in future studies.
Aho et al. reported that 5 consecutive nights of sleep restriction (4-h
vs. 8-h TIB) promoted a decrease in the number of small, medium,
and large LDL-C particles, as well as VLDL-C in circulation without
impacting HDL-C levels, again a seemingly counterintuitive finding
that does not entirely agree with the aforementioned epidemiological
evidence. However, sleep restriction also promoted the down-
regulation of genes involved in intracellular lipid, cholesterol, and
sterol transport and homoeostasis.*® In contrast to the findings of
Aho et al., O’Keeffe et al. reported that 5 consecutive nights of sleep
restriction (4-h vs. 9-h TIB) had no effect on 24-h TG profiles or on
LDL-C or HDL-C.*’ However, it is plausible that O’Keeffe et al. did
not observe the effect of sleep restriction on lipoprotein levels
because the traditional spectrophotometric-based quantification of
lipoprotein levels used in this study cannot provide an indication of
particle size. As previously described, it will be necessary for future
studies to consider lipoprotein particle size to fully understand the
effects of sleep disruption on lipid metabolism.

Insulin resistance affects both peripheral tissues such as skeletal
muscle and the liver, where it manifests as decreased insulin-
stimulated glucose disposal and elevated endogenous glucose pro-
duction, respectively. Notably, insulin resistance is also associated with
a decreased ability to suppress lipolysis in adipose tissue and altered
fatty acid oxidation.”’>°! Thus, a few studies have also determined the
effects of experimental sleep restriction on indicators of postprandial
lipid metabolism in response to either glucose tolerance tests or
hyperinsulinemic-euglycemic clamps.®® Rao et al. reported that a 4-h
versus 8-h TIB induced a modest increase in cortisol and catechol-

amines, a 62% increase in fasting NEFA levels, and a decrease in the

respiratory quotient indicating an increase in whole body fat oxidation
that was coincident with a 24% decrease in fasting TG levels, but no
effect on total or LDL-cholesterol. Importantly, these effects were
observed alongside a 25% decrease in whole-body insulin sensitivity
and a 29% decrease in peripheral insulin sensitivity.>® However, there
was no effect on hepatic insulin sensitivity as evidenced by a lack of
change in endogenous glucose production (due to a modest increase

).2% These findings

gluconeogenesis and a decrease in glycogenolysis
led the authors to speculate that sleep restriction impacts lipid meta-
bolism by (1) causing stress-hormone induced lipolysis, which elevates
circulating NEFA levels that promote peripheral insulin resistance by
decreasing skeletal muscle glucose uptake and (2) by decreasing de
novo lipogenic flux.3® These findings demonstrate that it may be
difficult to separate the effects of sleep restriction on glucose versus
lipid metabolism, which are instead intricately linked. Interestingly,
however, Ness et al. reported that, whereas 5 nights of 5-h TIB reduced
insulin sensitivity and suppressed the rebound in NEFAs observed
following glucose clearance from plasma during an intravenous
glucose tolerance test, two nights of subsequent sleep recovery
restored NEFA kinetics to baseline but did not recover insulin sensi-
tivity.>? These findings suggest a dissociation between the recovery of
NEFA and glucose metabolism during sleep recovery (i.e., extending
sleep duration to sufficient durations following restriction) that seems
to be counter to the linked effects of sleep restriction on NEFA and
glucose metabolism. Additional mechanistic studies utilising tracers
are necessary to better understand these inter-relationships to
determine tissue-specific (e.g., peripheral vs. hepatic) metabolic
changes in response to acute and chronic sleep restriction as well as in
response to sleep recovery. Finally, to our knowledge, little or no work
has been done to understand sex- or age-specific effects, with many of
the aforementioned studies completed primarily or only in young
healthy men.

Overall, it appears that the effects of acute (e.g., experimental)
sleep restriction on lipid metabolism are opposite to what may be
expected in light of the extant epidemiological evidence. It has been
hypothesised that this may be subsequent to the acute phase in-
flammatory response that is induced by sleep restriction.”® Sleep
restriction may also impair adipocyte function while increasing
sympathetic tone and stress hormone production, thus augmenting
intracellular lipolysis and altering NEFA metabolism.32335254
Importantly, it appears that elevated circulating NEFAs are at least
partially responsible for decreased peripheral insulin sensitivity
caused by experimental sleep restriction.>® Experimental studies will
be necessary to understand how and if sleep fragmentation or SWS

suppression impair lipid metabolism.

4 | HUNGER AND SATIETY HORMONES

Two of the primary hormones that have major regulatory roles in
energy balance are leptin and ghrelin. Leptin is satiety promoting
hormone produced and secreted primarily by adipose tissue that

helps to regulate energy balance by reducing food intake and
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increasing energy expenditure via activation of hypothalamic cir-
cuits.>®®” Circulating leptin changes rapidly in response to acute
caloric intake or restriction, assisting in the control of short-term
feeding via mechanisms such as augmentation of the anorectic ef-

fects of cholecystokinin,®”~>?

and is thought to be an important
mediator of long-term energy balance regulation.’” Ghrelin is
commonly referred to as the hunger hormone and is produced pri-
marily in the oxyntic glands of the gastric fundus and stomach.
Ghrelin has potent orexigenic (or appetite stimulating) and gastric
emptying effects and acts on hypothalamic receptors.?® Typically,
ghrelin rapidly decreases postprandially and then returns to baseline
levels in the late postprandial and inter-digestive periods in a pattern
that is reciprocal of insulin.®* Both leptin and ghrelin release also
display diurnal rhythms that are in phase with each other, falling
throughout the night until reaching a nadir between 0800 and
1000.%! Data also exist suggesting that the release of these hor-
mones may be influenced by the autonomic nervous system, with
cholinergic (vagal) activity suppressing ghrelin secretion and sympa-
thetic activity decreasing leptin production.6?>¢® Thus, sleep disrup-
tion has the potential to disrupt leptin and ghrelin metabolism via

circadian disruption or altered vagal and sympathetic activity.

4.1 | Epidemiologic evidence on sleep disruption

In a study of 1024 participants enroled in the Wisconsin Sleep
Cohort Study, Taheri et al.®* measured total sleep time from
nocturnal polysomnography and average sleep duration from a 6-
day sleep diary, and quantified fasting leptin and ghrelin levels
from a serum sample obtained soon after awakening. Ghrelin con-
centrations were strongly and inversely associated with total sleep
time (B = —0.69, p = 0.008), and leptin concentrations were posi-
tively associated with average sleep duration (8 = 0.11, p = 0.01). In
addition, wakefulness after sleep onset, an indicator of sleep quality,
was positively associated with ghrelin (8 = 0.81, p = 0.05) but not
with leptin concentrations (B = —0.04, p = 0.40). Similarly, in a

cohort of 769 postmenopausal women, Stern et al.®

reported that
fasting and morning leptin concentrations were positively associated
with self-reported sleep duration, such that women reporting <6 h
of sleep had lower leptin concentrations than those reporting >8 h
of sleep. Among children, it has been reported that short sleep is
associated with lower leptin concentrations at age 7 in girls and
during adolescence in boys, suggesting potential sex-specific asso-
ciations that should be explored more carefully.®® Notably, a recent
meta-analysis also demonstrated that short sleep duration is asso-
ciated with increased ghrelin levels among cross-sectional studies.®”
Among men with primary insomnia who have reduced stage 2 and
REM sleep, lower sleep efficiency, and greater stage 1 sleep,
nocturnal ghrelin levels were reduced compared to control partici-
pants; however, no differences were observed in leptin concentra-
tion.® Finally, among 95 adults with obesity, it was reported that
self-reported sleep efficiency was associated with lower post-

prandial cholecystokinin, and lower subjective sleep quality was

linked with increased basal and postprandial active ghrelin in men
only.%?

These data provide initial epidemiological evidence that short
sleep duration is associated with altered circulating concentrations
of ghrelin and leptin that may promote increased appetite. Both
measured (i.e., WASO) and self-reported indicators of sleep quality
appear to indicate that poor sleep quality may be associated with
increased circulating ghrelin; however, the overall body of evidence
is currently weak and future studies should be powered to examine
potential sex-differences. Although there is preclinical’® and cross-
sectional evidence®* suggesting that low sleep quality (ie., high
sleep fragmentation) may be associated with impaired leptin
metabolism, it appears that these associations may be weaker than
for sleep duration. However, additional work is needed to replicate
and better understand these links before firm conclusions can be

made.

4.2 | Experimental sleep manipulation

In 11 healthy men, Speigel et al. assessed 24-h leptin levels at the end
of three different conditions with varying sleep durations performed
across a consecutive 16-night period: 3 nights of 8-h TIB, 6 nights of
4-h TIB, and 7 nights with 12-h TIB. Leptin levels decreased in a
stepwise fashion across the 4-h, 8-h, and 12-h TIB conditions.
Accordingly, mean, maximal, and rhythm amplitude leptin levels were
19%, 26%, and 20% lower, respectively, during the 4-h TIB condition
compared to the 12-h TIB condition.”* Similarly, another study by
Speigel et al. examined the effect of 4-h versus 10-h TIB on leptin and
ghrelin levels as well as on subjective hunger and appetite across a
12-h period from 0900 to 2100 during which a constant intravenous
infusion of glucose (5 g/kg) was provided.”? Notably, sleep restriction
promoted 18% lower leptin and 28% greater ghrelin across the day.
These hormonal differences were accompanied by a 24% increase in
hunger and a 23% increase in appetite ratings for all food categories,
which tended to be greatest for sweet, salty, and starchy foods (33%-
45%). St. Onge et al. observed that 4-h TIB sleep restriction pro-
moted an increase in fasting ghrelin concentrations among men but
not women when compared to 9-h TIB habitual sleep. Interestingly,
there was no effect of sleep restriction on fasting leptin in this study,
although 24-h leptin concentrations were also lower in men but not
women.”®

Subsequent studies have found mixed results regarding leptin,
with some showing elevations as opposed to decreases in leptin

levels following sleep restriction”*””

and others showing no
changes.””’® This discrepancy may be partially explained by the
caloric intake of the participants during the study period. If partici-
pants were allowed to overeat or if they gained weight, an increase in
leptin levels would be expected. Indeed, Markwald et al. reported
increased 24-h leptin levels following sleep restriction that were
accompanied by both greater caloric intake and significant weight
gain.”® In a study that controlled for diet and maintained body

weight, Hanlon et al. observed a significant decrease in diurnal leptin

85U8017 SUOLILLIOD BAea1D 3edldde aup Aq pauienob ase e YO ‘SN JO s3I0y ARiqiT8uljuO AB|IAN UO (SUONIPUOD-PUR-SLLIBIALIOD" A3 |IM A0 Ul UO//SANY) SUORIPUOD PUe SWLB | 8L 885 *[6202/0T/22] Uo Ariqiauliuo A8|Im ‘Wewdopreq B yosesssd 9SH AQ 299€"1IWP/Z00T OT/I0p/wod"A8| 1M ARiqpul|uoy//sdny wouy pepeojumod ‘2 %202 ‘0952025T



ROGERS ET AL

WILEY__|__ %%

variation amplitude.”? Similarly, in a study performed by Reynolds
et al. in 2012, leptin levels were significantly reduced following 5
nights of 4-h TIB compared with 2 nights of 10-h TIB.2° In the only
study to our knowledge that has experimentally examined the effect
of sleep fragmentation on 24-h leptin and ghrelin concentrations,
Gonnissen et al. reported that sleep fragmentation did not influence
leptin or ghrelin, although they did note lower glucagon-like peptide
1 and self-reported fullness.2! Notably, the fragmentation protocol
used in this study—alarms at varying frequencies and intensities
every 90 min during sleep—reduced REM sleep but had no influence
on SWS. It is possible that selective SWS suppression may have more
substantial effects, but this hypothesis remains to be tested.
Collectively, these findings suggest that sleep restriction may
affect leptin's ability to accurately signal energy balance and promote
an increase in ghrelin, ultimately promoting increases in hunger. It is
plausible that these effects may be important in the short term to
compensate for an increased caloric need caused by increased
wakefulness,® but chronically these effects may have a significant
impact on the ability to regulate bodyweight. Additional studies uti-
lising experimental manipulation of sleep quality, and in particular
SWS suppression, are needed to better understand how sleep quality

impacts appetite hormone regulation.

5 | BODYWEIGHT REGULATION
5.1 | Epidemiologic evidence on sleep disruption

In light of the previously described effects of sleep disruption on
leptin and ghrelin, it would follow that sleep disruption would also
promote body weight gain and increased risk of obesity. Indeed, a
2008 meta-analysis of epidemiological studies on the association of
self-reported sleep duration and obesity risk by Cappuccio et al. re-
ported that, across 604,509 adults, a 1-h increase in sleep duration
was associated with a 0.35 kg/m? reduction in BMI.82 This same
meta-analysis also reported that children (1.89 [Cl = 1.46-2.43]) and
adults (1.55 [1.43-1.68]) were more likely to be obese (BMI > 30 kg/
m?) if they were short sleepers. Several high-quality narrative re-
views of the existing epidemiological evidence have similarly
concluded that short sleep duration is undoubtedly associated with,
and perhaps causally linked with, increased susceptibility to
obesity.8385 However, given the cross-sectional nature of much of
this epidemiologic evidence, it is hard to determine the directionality
of these associations.

Among those studies that longitudinally observed weight change
in individuals with short versus optimal sleep durations, weight gain
may be greater among those with short sleep duration (see Table 2
for study summaries). However, among adults, this association is
inconsistent. Furthermore, in studies where the association is pre-
sent, the size of this effect is rather modest, with ~2 kg greater
weight gain noted across a 6-year period in Canadian adults®® and
0.7-1.14 kg greater weight gain across a 16-year period noted in
those with short sleep (<5-6 h/night) in the Nurses' Health Study.”?

In a 5-year study of African Americans and Hispanic Americans
adults, individuals 40 years and younger who self-reported sleeping
<5-h per night had a 1.8 kg/m? greater change in BMI than those
reporting 6-7 h of sleep per night.®” In contrast, using data from the
NHANES | studies, Gangwisch et al.®8 reported that while individuals
between 32-49 years of age who self-reported sleeping less than 7 h
per night had greater BMls than individuals who slept 7 h or more
each night in cross-sectional analysis at baseline and follow-up ex-
aminations, sleep duration was not significantly associated with 8-
10 years longitudinal change in BMI (8 = —0.053, p = 0.27). Similarly,
Lauderdale et al®’ reported that whereas actigraphy-measured
sleep duration was inversely associated with BMI (B = —1.61,
p < 0.001) in cross-sectional analysis, there was no association of
sleep duration with 5-year changes in BMI (B = —0.02, p = 0.86)
among adults (mean age ~ 45 years) in the Coronary Artery Risk
Development in Young Adults Sleep Study. Thus, overall, whereas
there appears to be a consistent cross-sectional association of sleep
duration with body weight and/or body mass index in adults, longi-
tudinal associations are much weaker, making it difficult to infer
causality. However, one hypothesis put forward is that weight gain is
not linear among those with short sleep.’%® That is, short sleep may
cause initial, relatively dramatic weight gain, but this effect is
tempered as weight increases.

It is also possible that the effect of short sleep on weight gain is
attenuated over time with advancing age or development. Notably,
among children, the longitudinal association between short sleep and
weight gain appears to be stronger and more consistent!®” (Table 2),
suggesting strong developmental origins. Future longitudinal pro-
spective cohort studies beginning in early life and continuing into
adulthood will be necessary to more clearly understand the causal
links between short sleep duration and body weight gain across the
lifespan. It is also important to point out that while body weight is a
commonly used end point, it may not accurately reflect adiposity. As
such, the measurement of body composition and particularly of
visceral adiposity, will continue to be important in future studies such
as these. We also note that the association of sleep duration with
bodyweight appears to be best described by a U-shape, where long
sleep durations may also be associated with increased body-
weight.'® Finally, it has been cautioned that the longitudinal asso-
ciation of sleep duration with changes in BMI may be upwardly
biased by unobserved and/or unmeasured time-invariant con-
founders, and also that confounding, mediating, or moderating fac-
tors such as psychosocial or mental health-related factors may
influence the sleep and BMI association but have not always been

well characterised in prior studies.'®®

5.2 | Experimental sleep manipulation

In support of these epidemiological data, Markwald et al. reported that
5 days of insufficient sleep led to a significant 0.82 kg increase in body
weight in a clinical, experimental study.”® It is unclear whether this

increase in weight was due to body fat gain or to some other cause. For
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example, it is plausible that increased fluid retention or compartmental
shifts could explain this weight gain via alterations in autonomic and
renin-angiotensin system activity. Indeed, plasma renin activity and
aldosterone oscillate rhythmically during sleep coincident with non-
REM and REM periods and changes in vagal tone,*° and disruption
could plausibly promote changes in hydromineral balance. However,
current evidence suggests that acute sleep deprivation decreases
activated renin, aldosterone, and angiotensin Il, which is accompanied
by increased natriuresis and osmotic diuresis.''*112 Alternatively,
there is evidence that body fat regulation may be disrupted by periods
of sleep restriction. While not examining the influence of sleep re-
striction on body weight gain, Wang et al. observed lower fat mass loss
in a group of individuals undergoing 8-week of hypocaloric weight loss
with just 1 h of sleep restriction on 5 nights per week.**® Covassin

etal.}™*

reported that 21-day of experimental sleep restriction using a
4-h sleep opportunity promoted the consumption of an additional
~310kcals per day and an 11% increase in abdominal visceral adiposity
and a 0.5 kg increase in body weight when compared to the control 9-h
sleep opportunity condition in healthy young adults. Accordingly, it has
also been reported that a single night of 4 versus 8 h of sleep resulted in
increased pre-prandial hunger and resulted in 22% greater
(+559 kcals) ad libitum food intake in men.'*> Similarly, Ness et al.
reported reduced satiety in response to a standardised high-fat mixed-
meal after a 4-day sleep restriction period compared with a normal
sleep control period.*® Therefore, not only does sleep restriction alter
hunger hormone concentrations, but these effects appear to also be
born out in actual changes in hunger and satiety levels that decrease
the ability to regulate bodyweight. Together, this evidence suggests
that sleep restriction may represent an important causal risk factor
contributing to body weight dysregulation and increased risk of
obesity, particularly by promoting central adiposity. However, addi-
tional work is necessary to bolster the strength of this evidence.

6 | THE ROLE OF PSYCHOSOCIAL STRESS IN THE
ASSOCIATION OF POOR SLEEP WITH
CARDIOMETABOLIC DYSFUNCTION

Psychosocial stress is increasingly being recognised as an important
determinant of cardiometabolic health. Psychosocial stressors are
characterised by both a psychological and social component. Ex-
amples include interpersonal stress, harassment, abuse or neglect,
lack of access to resources or social support, community-level
adversity, and discrimination and systemic racism.**¢"12° Acutely,
the neural response to psychosocial stress includes activation of the
limbic system (e.g., the hippocampus, amygdala, and hypothalamus)
and subsequently the hypothalamic-pituitary-adrenal (HPA) and
sympathetic-adrenal-medullary (SAM) axes.*?! The acute down-
stream effects of HPA and SAM axis activation include increased
peripheral resistance, parasympathetic withdrawal, increased sym-
pathetic nervous system activity (SNA), increased release of stress
hormones such as norepinephrine and cortisol, and immune system

activation.’®?> These effects act to increase peripheral resistance,

cardiac output, heart rate, blood pressure, circulating inflammatory
cytokines, and thrombotic factors, as well as to increase the avail-
ability of metabolic substrates, including glucose and free fatty
acids, by enhancing lipolysis and gluconeogenesis and decreasing
insulin sensitivity.*>® Furthermore, acute psychosocial stress expo-
sure appears to alter circulating levels of centrally acting appetite-

regulating hormones, including leptin12412° 126-128

and ghrelin.
While these responses are typically adaptive and transient, they
may instead synergistically act to promote cardiometabolic disease
when psychosocial stressors are frequent and recurrent, 27129130
This hypothesis is supported by several bodies of literature illus-
trating that chronic psychosocial stress exposure, including expo-
sure to adverse childhood experiences (ACEs) or social or
socioeconomic stress, promotes increased lifetime risk of car-

D,131_133 134,135

diometabolic diseases such as T2 and car-

119,131,136

obesity,
diovascular disease.

The effects of chronic psychosocial stress exposure on meta-
bolism likely also explain cardiometabolic health disparities, such as
racial differences in T2D prevalence. In a recent analysis of biomarker
datafrom 1170 adults (20% Black, 56% women) enrolled in the Midlife
in the United States Study, Fuller-Rowell et al. examined whether
ACEs and adult psychosocial stress—including discriminatory and
socioeconomic stressors—mediated race differences in insulin resis-
tance.r®” Notably, ACEs and adult stress together mediated 65% of
the difference in HOMA-IR between Black and White adults in the
United States.’®” In a prospective, longitudinal study of 342 Black
individuals (59% women) from the southeastern US, Barton et al.*3®
assessed childhood socioeconomic status (years living in poverty)
using the income-to-needs ratio based on family size at ages 11-
18 years and quantified insulin resistance in young adulthood at ages
25, 27, and 29 years using the updated HOMA-IR method. Childhood
socioeconomic status predicted insulin resistance in young adulthood,
such that every additional year living in poverty in childhood was
associated with a 1.04-unit increase in HOMA-IR.'3® Perceived life
chances partially mediated this association, suggesting that a more
hopeful outlook may provide resilience to the adverse effect of psy-
chosocial stress on glucose metabolism.'®® Together, these data sup-
port that a life course psychosocial perspective should be taken
to understand and reduce the risk of cardiometabolic disease
development.

Notably, via the disruption of stress regulatory systems that also
play an important role in the homoeostatic regulation of sleep, psy-
chosocial stress is associated with sleep disturbance. For example,
stress promotes activation of the HPA and SAM axes, which may
promote heightened arousal and impair sleep (Figure 1). ACEs have
recently been linked with reduced medial prefrontal cortex activa-
tion, which is an area of the brain important to normal sleep physi-
ology and thought to play a role in initiating slow wave (stage N3)
sleep.1®%14% Two recent population studies indicate that there is a
dose-response relationship between the degree of exposure to ACEs
and sleep disturbance.?*%4? Using self-report sleep duration data
from the 2011 Behavioural Risk Factor Surveillance System (BRFSS),

Sullivan et al.*** reported that each ACE exposure is independently
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FIGURE 1 Plausible pathways link psychosocial stress
exposure with sleep disruption and altered metabolism. Note that
these pathways are likely bidirectional and co-reinforcing. HPA,
hypothalamic-pituitary-adrenal; SAM, sympathetic-adrenal
medullary. Created using BioRender.com.

associated with a 22% increased risk of short sleep duration in adults
(mean age 47 years), and exposure to 5 or more ACEs is associated
with a 3.5-fold increase in odds of short sleep duration when
compared to individuals with no ACEs.'*! Similarly, a graded-
association has been observed between ACE exposure and poor
sleep quality among adults aged 20-54 years, such that individuals
with 3 or more ACEs have 3.6-fold increased likelihood of reporting
poor sleep quality compared to individuals with no ACEs.**? Notably,
this risk persisted with adjustment for employment status, smoking
and alcohol use, and recent stressful life events. The relationship also
persisted after adjustment for the use of psychotropic drugs such as
anti-depressants, anti-anxiety drugs, and sleep aids, although it was
attenuated (OR = 2.6 [2.3-3.0]).1? In support of these findings,
Jenkins et al. recently reported that young adult women with a his-
tory of moderate-to-severe (4+) exposure to ACEs self-report poorer
sleep and display reduced circadian variability in salivary cortisol.***
However, it should be noted that all of these findings rely on self-
reported sleep measures that may be vulnerable to bias, and
studies are needed to confirm and better understand the sleep dis-
turbances experienced by individuals with ACE exposure. Using a
unique, within person prospective study design, Fuller-Rowell
et al.¥** recently reported that on days when African American col-
lege students experienced greater discrimination, they also had
poorer sleep quality. Moreover, internalised racism, or the degree to
which African American students internalised negative racial ste-
reotypes, moderated this relationship such that those with

greater internalisation experienced greater sleep disruption.2**

These findings show that psychosocial stressors such as childhood
adversities and racism play a causal role in adult sleep disturbance.

Together, this body of evidence suggests that disrupted sleep is a
downstream effect of chronic psychosocial stress that could plausibly
mediate or moderate the association of psychosocial stress with
cardiometabolic risk. However, both prospective cohort and experi-
mental studies will be necessary to carefully untangle the role of
sleep in this association. Given the bidirectional relationships be-

145,146

tween sleep and stress and because peripheral metabolic sig-

147,148 it is also

nals may also influence biological stress responses,
possible that intervening to improve sleep could reduce the physio-
logical stress response to psychosocial stress*”14%1%0 and thus
reduce cardiometabolic risk. Again, longer-term experimental studies
will be necessary to test this hypothesis. Finally, it is evident that
chronic psychosocial stress does not influence health outcomes
equally across individuals. High levels of social and emotional sup-
port, access to social resources, greater psychological coping (e.g.,
control, self-efficacy, resilience, hope) and lower negative effect have
all been suggested to provide a measure of resilience to the effects of
psychosocial stress.*2%%>* Work will also be needed to understand
how these factors moderate the association of psychosocial stress

with disrupted sleep and cardiometabolic health.

7 | THE ROLE OF PHYSICAL EXERCISE IN THE
ASSOCIATION OF POOR SLEEP WITH
CARDIOMETABOLIC DYSFUNCTION

Exercise is a primary zeitgeber, or an external stimulus that regulates
circadian rhythms by regulating molecular clocks.'*>1>% Because
circadian disruption is one potential consequence of disrupted sleep,
the implementation of exercise may theoretically ameliorate the
negative impacts of sleep disruption. Although research in this area is
still in relative infancy, the current evidence is promising. Saner et al.
conducted a study in 2021 showing that the incorporation of 3 high
intensity interval training (HIIT) sessions during a 5-day period of
sleep restriction (4-h TIB) mitigate the negative effects that sleep loss
has on circadian rhythmicity, glucose tolerance, skeletal muscle
mitochondrial function, and sarcoplasmic protein synthesis in young
healthy men aged 18-40 years.'>* Similarly, de Souza et al. reported
that 6 HIIT sessions during the 2 weeks prior to a 24-h sleep re-
striction period was an effective strategy to reduce the basal and
postprandial glycaemic and insulinemic responses, and basal free
fatty acid levels induced by 24 h of sleep deprivation in healthy young
adult men.*>> Similarly, Sweeney et al. showed that exercise miti-
gated the late-phase insulin response during OGTT following 4-h TIB
sleep restriction when compared to sleep restriction alone in healthy
men.>® Porter et al. assessed the effects of 5 nights of sleep re-
striction (6-h vs. 8-h TIB) with and without daily exercise (45 min at
65% VO,max) in individuals with obesity (7 men, 6 women).'>” Sleep
restriction increased the peak glucose response but not 3-h glucose
AUC during a meal tolerance test, elevated fasting NEFA, and

increased fat oxidation and perceived stress. However, exercise did
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not normalise any of these outcomes. Thus, Porter et al. concluded
that exercise is not an optimal strategy for ameliorating the negative
effects of sleep restriction in individuals with obesity.*>” Of note, this
was the first sleep restriction and exercise study completed in in-
dividuals with obesity, it appears to be the only one to date to also
include women. Premenopausal women have previously been shown
to be protected against other insulin resistance-inducing behaviours,
namely consuming sugar sweetened beverages and reducing the daily
physical activity over 10 days, compared to men.*®® Thus, future
studies should specifically explore whether there are sex differences
in the metabolic responses to sleep restriction and sleep restriction
with exercise. It is also plausible that an un-measured attribute
strongly related to obesity such as low cardiorespiratory fitness may
explain the inability of exercise to rescue the cardiometabolic im-
pairments caused by sleep restriction in individuals with obesity. In
partial support of this hypothesis, there is evidence that habitual
moderate intensity physical activity has a strong effect on the rela-
tionship between sleep quality and insulin concentrations, whereas
light intensity activity does not.*>? Similarly, a very recent study in-
dicates that performing a high volume of physical activity attenuates
associations of short sleep duration with all causes and CVD mor-
tality compared with performing low volumes of physical activity.¢°
It can be hypothesised that these individuals, that is, those per-
forming higher-intensity physical activity, would have greater
cardiorespiratory fitness. Thus, it is plausible that cardiorespiratory
fitness may moderate the adverse cardiometabolic effects of
impaired sleep, but to our knowledge, there is no direct evidence that
this is the case. Thus, future experimental studies will be needed to
understand if and how fitness may interact with sleep to promote
cardiometabolic health.

Lin et al. posited that skeletal muscle transcriptomic alterations
may contribute to improvements in insulin sensitivity commonly
observed in response to exercise.'¢11¢* Sleep deprivation alters the
skeletal muscle transcriptome, increasing mRNA expression of in-
flammatory pathways, decreasing expression of oxidative phosphor-
ylation and muscle protein synthesis pathways, and altering
transcription of circadian clock genes.'®® As exercise alters these
same pathways in opposite directions, Lin et al. hypothesised that
exercise may be able to mitigate the adverse alterations in these
transcriptional pathways caused by sleep restriction. To test their
hypothesis, 20 young men completed one of three separate 5-night
conditions: control (8-h TIB, n = 6), sleep restriction (4-h TIB
n = 7), or sleep restriction + exercise (4-h TIB with 3 HIIT sessions,
n = 7). In partial accordance with their hypothesis, gene set enrich-
ment analyses revealed increased enrichment of immune response
and inflammatory pathways, and decreased the enrichment of gene
pathways associated with mitochondrial function following sleep
restriction, but exercise counteracted this pattern of gene set
enrichment.®® It should be noted that the degree of enrichment was
much smaller than in prior studies that used total sleep deprivation,
suggesting that moderate sleep restriction is not as detrimental as
total sleep deprivation. It should also be noted that these findings

were observed alongside reduced skeletal muscle mitochondrial

function and impaired glucose tolerance following sleep restriction
that were also counteracted by exercise.?>* A very recent study using
accelerometer data from the UK Biobank provides additional evi-
dence supporting the protective effect of physical activity for coun-
teracting the negative effects of disturbed sleep.®® Liang et al.2¢°
demonstrated that, among ~92,000 middle-aged and older adults
(mean age 62 + 8 years), meeting the recommended weekly dose of
moderate-to-vigorous physical activity (MVPA) reduced the inci-
dence of all-cause and CVD-related mortality by 2.3-2.5-fold among
those with short sleep duration (<6 h/day) compared to those who
did not meet MVPA guidelines. Thus, these findings support that
exercise (or physical activity) may be able to offset the metabolic
impairments induced by short-term sleep restriction, but additional
work is necessary to understand if these effects extend to pop-

ulations other than young healthy men.

8 | CONCLUSIONS

Overall, sleep should be considered an important modifiable risk
factor whenever seeking to improve metabolic health in all pop-
ulations, with both sleep duration and sleep quality considered.
Collectively, the body of evidence demonstrates that short sleep
duration and poor sleep quality are associated with, and causally
promote, decreased peripheral insulin sensitivity. Evidence regarding
the impact of sleep disruption on lipid metabolism is not as strong but
also suggests that short sleep durations may causally promote im-
pairments in lipid metabolism, although more work is needed to
understand the effects of sleep quality (i.e., SWS suppression). Finally,
there is evidence to suggest that sleep disruption alters leptin and
ghrelin metabolism, hunger and satiety, and thus impairs the ability
to regulate bodyweight. Notably, most studies examining the asso-
ciation of sleep disruption with bodyweight have done so using self-
reported sleep with BMI as the primary endpoint. However, evidence
exists to suggest that sleep disruption could alter body composition
and perhaps where body fat is deposited (i.e., viscerally). Future
studies should consider this and use a more specific endpoint (i.e.,
waist circumference) to better define the cardiometabolic impacts of
long-term sleep disruption. Additional work is needed to better un-
derstand if there are sex-specific metabolic effects of sleep disrup-
tion, especially in experimental restriction studies, given that the vast
majority of evidence currently exists using male-only subject pop-
ulations. As we have shown, psychosocial stress represents an
important and overlooked risk factor for cardiometabolic risk and
poor sleep that can also explain extant racial disparities in car-
diometabolic and sleep health. However, additional work is needed to
carefully untangle the interplay between psychosocial stress, sleep
disruption, and cardiometabolic risk. Finally, the assumption of
reverse causality represents a major current weakness in the sleep
and cardiometabolic health literature. That is, experimental evidence
shows that disrupting sleep causes impairments to cardiometabolic
health. However, very few data exist to show that improving sleep

(duration or quality) in individuals with disrupted sleep causes
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improvements in cardiometabolic health; existing studies are limited
by small sample sizes and inconsistent outcome assessments.'®”
Therefore, larger, sufficiently powered randomised controlled trials
will be necessary to advance our understanding of the benefits of

sleep intervention(s) on cardiometabolic health.
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