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Abstract—We consider a fully-distributed optimization prob-
lem involving multiple collaborative agents, where the global
objective is to minimize a sum of local cost functions. Agents
are part of a communication network and can only exchange
information with their neighbors. We introduce a novel optimiza-
tion algorithm called NEC-GIANT, which improves over both
GIANT, a popular federated learning algorithm, and Network-
GIANT, our previously proposed fully-distributed counterpart
of GIANT. NEC-GIANT extends GIANT to the fully-distributed
scenario, removing the need for a central server to orchestrate the
agents. Unlike the existing Network-GIANT, which suffers from
the inefficiency of standard asymptotic consensus, the novel NEC-
GIANT is based on finite-time distributed consensus and retains
all the convergence properties of the original GIANT. Numerical
simulations prove the efficiency and superiority of the proposed
algorithm in terms of both iterations and machine run-time.

Index Terms—distributed optimization, gradient tracking,
finite-time consensus, network learning, Newton-type algorithms

I. INTRODUCTION

D istributed optimization is attracting growing interest in
various fields, motivated by the limitations of centralized

optimization, the prevalence of data islands, the increasing pri-
vacy concerns, and the advances in communication technolo-
gies. Various sectors can benefit from distributed optimization,
such as the Internet of Things, autonomous decision making
and smart cities. In particular, considerable efforts have been
invested in the development of a specific distributed frame-
work called federated learning. In the latter, a central server
orchestrates interactions among nodes to facilitate iterative
algorithms, usually by aggregating and broadcasting data. Both
gradient-based federated optimization [1] and Hessian-based
federated optimization have been researched, with several
references proposing approximate Newton-type methods e.g.
DANE [2], GIANT [3], DANDA [4], FedNL [5], SHED [6].

Scenarios where a central server is not available require
resorting to network (also called fully-distributed) optimization
algorithms, where nodes communicate with each other in a
peer-to-peer fashion to establish consensus. A wide range of

This publication has emanated from research conducted with the financial
support of Science Foundation Ireland under Grant number 18/CRT/6049 and
Swedish Research Council (VR) Grant 2023-04232.

A. Maritan is supported by the industrial scholarship PNRR DM352-2022
partially funded by Maschio Gaspardo S.p.A.

communication protocols for achieving distributed consensus
can be found in the literature. For example, gossip-based algo-
rithms where nodes communicate with one or few randomly
chosen neighbors have been investigated in [7], [8]. Distributed
averaging based on linear iterations, with a suitable weighting
matrix, has been implemented in both fixed [9] and time-
varying network topologies [10]. Unlike traditional consensus
algorithms that only provide asymptotic convergence to the
average of the local variables, the finite-time consensus method
in [11] allows one to compute the exact average in a finite
number of steps. Similar results are achieved by the finite-
time gossip protocols in [12], [13]. References [14], [15]
investigate the finite-time consensus properties of some classes
of network topology, in some cases by decomposing static
graphs into sequences of graphs, and derive conditions under
which consensus is reached in log2(N) steps, where N is the
number of nodes. Finite-time consensus has been investigated
in gradient-based distributed optimization, for example, in
[16].

Fully-distributed gradient-based optimization algorithms has
been studied in a number of works, e.g. [17], [18], while
network versions of ADMM have been explored in [19],
[20]. To exploit the curvature of the objective function
and achieve faster convergence, several second-order fully-
distributed algorithms have been designed, such as NRC [21],
Newton Tracking [22], Network-DANE [23], ESOM [24] and
Network-GIANT [25]. Despite all such efforts, in general, the
convergence of fully distributed algorithms is much slower
than that of federated algorithms, which may rely on a central
server to calculate averages in a single step. In contrast, fully
distributed algorithms typically replace central aggregation
with asymptotic consensus protocols, which limit the overall
convergence rate to be at most linear.

Contributions: We introduce a novel fully-distributed op-
timization algorithm, that we call Network Exact Consensus-
GIANT (NEC-GIANT). In particular, we improve upon our
previously proposed Network-GIANT [25], which mimics the
behavior of the federated learning algorithm GIANT [3] in
the fully-distributed setting. The existing Network-GIANT
suffers from a convergence slowdown compared to GIANT,
and this is due to the use of standard asymptotic consensus. In
this paper, we overcome this limitation by leveraging finite-
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time distributed consensus, recovering the original iteration
complexity of GIANT. More in general, we retain all the
theoretical properties of GIANT, compensating the absence of
the central server with additional short-range communications
between neighbors. The proposed NEC-GIANT takes the
best of both worlds: the appealing convergence guarantees
of the federated GIANT, and the fully-distributed property
of Network-GIANT. We test the practical performance of
the proposed algorithm through numerical experiments using
standard datasets, providing evidence of its efficiency.

Organization: The remainder of the paper is organized
as follows. Section 2 provides a rigorous formulation of
the problem under consideration. Section 3 introduces the
preliminary concepts and theoretical tools underlying our
algorithm, presented in Section 4. Section 5 contains numerical
simulations on two standard datasets, followed by a final
summary in Section 6.

Notation: For a generic variable x, we use xk
i to denote

the local copy possessed by agent i at iteration k. ∥·∥ is the
Euclidean norm, I is the identity matrix and the superscript
T indicates the transpose of the argument. The d-dimensional
vector whose components are all equal to 1 is denoted by 1.

II. PROBLEM FORMULATION

Consider a communication network that can be modeled
by a connected and time-invariant graph G = (N , E), where
N = {1, 2, ..., N} denotes the set of nodes and E ⊆ N ×N
the set of bidirectional edges connecting the nodes. Nodes
can only directly communicate with their 1-hop neighbors.
The network can be equivalently described by a weight matrix
P ∈ RN×N , where the element pij is positive if there is an
edge (i, j) ∈ E and zero otherwise. The consensus matrix P
is chosen symmetric and doubly stochastic, which implies that
P1 = 1 and the eigenvalues of P lie in (−1, 1]. It is possible
to construct this matrix in a distributed way, for example using
the Metropolis algorithm [26].

In this setting, we consider a fully-distributed version of the
unconstrained optimization problem in [3]:

f(x⋆) = min
x∈Rd

{
f(x) =

1

N

N∑
i=1

fi(x)

}
, (1)

fi(x) =
1

m

m∑
j=1

lij(x
Taij) +

γ

2
∥x∥2 . (2)

Each node i ∈ N owns m data samples {aij} j ∈ {1, ...,m},
each associated with a convex, twice differentiable and smooth
loss function lij(·). The overall cost function at node i is given
by the sum of the local empirical error and a regularization
term, and is denoted by fi(x). The following assumption
provides a rigorous characterization of the objective functions.

Assumption 1. (a) The loss functions lij(·) are convex, twice
differentiable and smooth ∀i ∈ N , ∀j ∈ {1, ...,m}.

(b) The global objective f(·) is strongly convex and has
Lipschitz continuous Hessian, i.e. there exists a constant L
such that ∀x, x′ ∈ Rd

∥∥∇2f(x)−∇2f(x′)
∥∥
2
≤ L ∥x− x′∥.

The above assumption is customary within the realm of
machine learning and convex optimization. In particular, As-
sumption 1(a) is met by numerous conventional cost functions,
such as the least squares cost function used in linear regression
and the logistic regression loss. Assumption 1(b) guarantees
the uniqueness of the minimizer of (1) and is standard in
second-order optimization.

III. ALGORITHM DESCRIPTION

We first introduce some preliminary concepts, namely the
working principles behind the algorithms GIANT [3] and
Network-GIANT [25] and the finite-time distributed consensus
method [11]. Next, we show how to combine these ingredients
and design the novel NEC-GIANT algorithm.

A. GIANT and Network-GIANT

GIANT [3] is a popular optimization algorithm that solves
the convex optimization problem (1) in the federated setting,
where all nodes are connected in a star topology to a central
server. GIANT updates the decision vector by descending
along an approximate Newton direction, obtained by precon-
ditioning the exact global gradient with the inverse of the
harmonic mean of the local Hessian matrices:

xk+1 = xk − ϵ
1

N

N∑
i=1

[
∇2fi(x

k)−1

(
1

N

N∑
i=1

∇fi(x
k)

)]
.

(3)
Neglecting the selection of the stepsize ϵ, each iteration in-
volves the following steps: (i) the server broadcasts the current
xk, (ii) nodes transmit their local gradient ∇fi(x

k), (iii) the
server averages them and broadcasts the global gradient, (iv)
nodes transmit their local approximate Newton direction (the
term inside the square brackets), (v) the server aggregates
these directions and updates the decision vector. GIANT
enjoys a linear-quadratic convergence rate and was shown to
outperform most federated algorithms for convex optimization.

Network-GIANT [25] extends GIANT to the peer-to-peer
network setup, removing the need for a central server. To do
so, steps (ii) and (iii) are replaced with average consensus
tracking, introducing the auxiliary local variables wi and
performing the update below, which involves a consensus step:

wk+1
i =

N∑
j=1

pij
(
wk

j +∇fj(x
k
j )−∇fj(x

k−1
j )

)
. (4)

If the differences ∇fj(x
k
j )−∇fj(x

k−1
j ) are sufficiently small

compared to the consensus rate of the matrix P , then all wi

asymptotically converge to the global gradient. Steps from
(iv) to (i) are instead substituted with the following fully-
distributed update, which again involves a consensus step:

xk+1
i =

N∑
j=1

pij
(
xk
j − ϵ∇2fj(x

k
j )

−1wk+1
j

)
. (5)

The consensus protocol used in Network-GIANT only pro-
vides asymptotic convergence to the average of the local
variables, meaning that the exact average is never reached in
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practice, as this would require an infinite number of steps. To
alleviate this problem, a variant of Network-GIANT performs
K ≥ 1 consensus steps in (5). If K is not sufficiently large,
the estimated average may be very far from the actual one,
especially in the first iterations of the algorithm, introducing
errors and slowing down the overall convergence.

B. Finite-Time Distributed Consensus

We now introduce the finite-time distributed consensus
(FTDC) procedure in [11], which allows one to compute
the exact average of local variables with a finite number of
communication rounds between neighbors. At the end of the
protocol each node knows the exact average, similarly to what
happens in the federated setting but without the need of a
central server.

The requirements that a consensus matrix P must satisfy to
attain FTDC are the following: a) P has a simple eigenvalue at
1, and all other eigenvalues have magnitude strictly less than
1, b) The left and right eigenvectors of P corresponding to
the eigenvalue 1 are 1

N 1T and 1, respectively.
The theoretical concept underlying the protocol is the mini-

mum polynomial of the matrix P , defined as the unique monic
polynomial of smallest degree D + 1 ≤ N that satisfies

PD+1 + αDPD + · · ·+ α1P + α0I = 0. (6)

Assume that we want to calculate the average of a generic local
variable si in a distributed manner. Let s = [s1 · · · sN ]T be
the stack of the local variables, so that a single step of the
FTDC protocol can be written as s[t + 1] = Ps[t]. Since
s[D+1] = PD+1s[0], taking PD+1 from (6) and considering
a generic step t ∈ N we obtain the identity

si[t+D+1]+αDsi[t+D]+· · ·+α1si[t+1]+α0si[t] = 0. (7)

Equation (7) shows that the values taken by a local variable
in the last D + 1 consensus steps contain all the information
needed to compute all its future values, without the need
to actually perform further consensus steps. Taking the Z-
transform of (7) and applying the final value theorem gives
a closed-form expression of the average:

1

N
1T s[0] = lim

t→∞
si[t] =

[
si[D] si[D − 1] · · · si[0]

]
G[

1 1 · · · 1
]
G

,

where

G =


1

1 + αD

1 + αD−1 + αD

...
1 +

∑D
j=1 αj

 . (8)

C. NEC-GIANT

In this section, we propose a new algorithm called Network
Exact Consensus-GIANT, which extends the federated algo-
rithm GIANT [3] to the fully distributed scenario, keeping the
convergence properties and iteration complexity unchanged.

We first point out the weakness of the existing fully-
distributed counterpart of GIANT: Network-GIANT does not

use exact averages of local variables, but rather estimates
that may be very inaccurate, especially at the beginning of
the algorithm. In fact, in Network-GIANT the global gradi-
ent is estimated using average consensus tracking, and the
global approximate Newton direction is estimated indirectly
by performing one or few steps of standard consensus on
the updated decision variable. The consensus in (4) and (5)
is only asymptotically convergent and therefore constitutes a
performance bottleneck.

To overcome this problem, we propose an improved fully-
distributed version of GIANT based on the FTDC protocol in
[11]. The latter allows us to easily compute exact averages of
local quantities in the absence of a central server, preserving
the original properties of GIANT. In particular, we compute
the exact global gradient by performing FTDC directly on
local gradients. Unlike Network-GIANT, that relies on average
consensus tracking, we do not require auxiliary variables that
also entail additional computations and storage. Similarly, the
global approximate Newton direction is computed exactly with
a call to the FTDC subroutine, and is used to update the
decision vector locally in parallel. This results in a simple
and intuitive pseudocode, shown in Algorithm 2. Similarly
to Network-GIANT, when descending along the approximate
Newton direction, we allow for a stepsize ϵ > 0. In compari-
son, [3] proposes and analyses GIANT with unit stepsize, and
relies on backtracking line search for the numerical tests.

Algorithm 1 FTDC(si[0], G, P ) (seen from node i)

Input: initial value si[0] of node i, coefficient vector G ∈
RD+1, consensus matrix P ∈ RN×N .

for each step t = 0, . . . , D do
for each node i ∈ N in parallel do

si[t+ 1] =
∑N

j=1 pijsj [t]
end for

end for

FTDC(si[0], G, P ) =

[
si[D] si[D − 1] · · · si[0]

]
G[

1 1 · · · 1
]
G

Algorithm 2 NEC-GIANT

Initialize:
Arbitrary x0

i = x0
1 ∈ Rd ∀i ∈ N ,

stepsize ϵ > 0, consensus matrix P .

Compute the distinct eigenvalues {λ0, ..., λD} of P .
Compute the coefficients of the minimal polynomial∏D

i=0(p− λi) = pD+1 + αDpD + · · ·+ α1p+ α0.
Compute G as in (8).

for each iteration k = 0, 1, . . . do
for each node i ∈ N in parallel do

gki = FTDC
(
∇fi(x

k
i ), G, P

)
ηki = FTDC

(
∇2fi(x

k
i )

−1gki , G, P
)

xk+1
i = xk

i − ϵηki
end for

end for
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Algorithm 1 and the initialization in Algorithm 2 adapt the
FTDC protocol in [11] to our specific use case. Being symmet-
ric and doubly-stochastic, the weight matrix P automatically
satisfies the FTDC requirements in Section III-B and eases
the computation of the minimum polynomial. Each call to
the FTDC subroutine involves D + 1 communication rounds
between 1-hop neighboring nodes, where D+1 is the number
of distinct eigenvalues of P .

IV. THEORETICAL ANALYSIS

The key point in the associated convergence analysis is
that each iteration of NEC-GIANT is totally equivalent to one
of GIANT, and therefore the convergence trajectories of the
two algorithms are identical. The only difference between the
two algorithms is the way the averages are computed: while
GIANT requires a central aggregator server, NEC-GIANT
achieves the same result in a fully-distributed manner. This
is formalized by the following proposition.

Proposition 1. At the end of each iteration, the quantities
computed by NEC-GIANT and GIANT (the global gradient,
the global approximate Newton direction, and the updated
decision vector) are identical, provided that both algorithms
employ the same stepsize.

Proof sketch. The proof follows from the following facts:
(i) all nodes are initialized with the same arbitrary x0

i and
perform the same updates in parallel, (ii) NEC-GIANT follows
the same steps as GIANT, computing the same intermediate
quantities and applying the same update rule, (iii) the FTDC
protocol returns the exact average of the local quantities.

As a consequence, in Algorithm 2 it holds gki = gk1 , ηki =
ηk1 and xk

i = xk
1 for all nodes i ∈ N and for all iterations

k ∈ N. NEC-GIANT also retains the linear-quadratic local
convergence property of GIANT, in particular, for problem
(1), with a communication overhead given as follows:

Proposition 2. Each iteration of NEC-GIANT involves 2(D−
1) additional transmissions per node compared to GIANT,
where D + 1 ≤ N is the number of distinct eigenvalues of
the consensus matrix P .

The above result follows from the following facts: (i)
in GIANT, computing an average at the central server and
broadcasting the result involves two transmissions per node,
(ii) each call to the FTDC routine using the matrix P involves
D+1 transmissions per agent, (iii) two averages per iteration
are computed in both algorithms. We remark that the additional
communications are typically short-range as they cross a single
edge of the network, unlike in federated learning where all
clients have to reach a possibly far central server. When the
number of nodes N is large, D + 1 may also be quite large.
This potential disadvantage of the NEC-GIANT algorithm
can be circumvented by designing an appropriate sequence
of consensus matrices as done in [14], where only log(N)
consensus steps are needed. This research direction is left for
future work.

V. NUMERICAL ANALYSIS

This section reports the numerical experiments conducted
in order to empirically evaluate the convergence performance
of the proposed NEC-GIANT.

Our experiments focus on distributed binary classification
via regularized logistic regression, so that lij = log(1 +

e−bij(x
T aij)) in (2), where aij is the input feature vector

and bij is the corresponding target response. We use two
widely recognized datasets: Covertype [27] with d = 54,
and a compressed version of MNIST [28] where the feature
size is brought down to d = 300 using Principal Component
Analysis. We consider a network with N = 20 nodes and we
build the mixing matrix P using the Metropolis weights [26].

The proposed NEC-GIANT is compared with GIANT [3]
and Network-GIANT [25], and centralised Newton Method is
shown for reference. Each call to the FTDC protocol employed
by NEC-GIANT involves D+1 = 20 consensus steps. As for
Network-GIANT, we denote with k1 and k2 the number of
consensus steps performed in (4) and (5), respectively. For
simplicity, we use a constant step size ϵ for all algorithms.

Figures 1 and 2 show the results of our tests. The training
loss is

[
1
n

∑n
i=1 fi(xi)− f(x⋆)

]
/f(x⋆), where x⋆ denotes

the global minimum, and is plotted against the number of
iterations and the machine runtime. As expected, the con-
vergence trajectory of NEC-GIANT is identical to that of
GIANT up to numerical precision in terms of number of
iterations, and the additional communications due to FTDC
only increase the machine runtime to a limited extent. The
convergence rate of Network-GIANT is initially very similar
to that of GIANT and NEC-GIANT, but shows a slowdown
once a certain error is reached. The performance of NEC-
GIANT on the test dataset, omitted due to space limitations,
is similar to that of Network-GIANT, as reported in [25]. In
summary, NEC-GIANT efficiently circumvents the absence of
a central server and shows superior performance compared to
the existing Network-GIANT.

VI. CONCLUSIONS

This paper introduces the novel optimization algorithm
NEC-GIANT, that extends to the fully-distributed scenario
the federated algorithm GIANT. Unlike the existing Network-
GIANT, which is also a fully-distributed algorithm inspired by
GIANT, NEC-GIANT preserves GIANT’s convergence prop-
erties unchanged. The peculiarity of NEC-GIANT is the use of
finite-time distributed consensus, which allows the dependence
on the central server to be removed without any performance
degradation, effectively bridging the gap between federated
and fully distributed scenarios. Numerical tests confirm the
superior convergence performance of the proposed algorithm.
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