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Abstract Chaotic analog circuits are commonly used
to demonstrate the physical existence of chaotic sys-
tems and investigate the variety of possible applica-
tions. A notable disparity between the analog circuit
and the computer model of a chaotic system is usu-
ally observed, caused by circuit element imperfect-
ness and numerical errors in discrete simulation. In
order to show that the major component of observ-
able error originates from the circuit and to obtain its
accurate white-box model, we propose a novel tech-
nique for reconstructing ordinary differential equations
(ODEs) describing the circuit from data. To perform
this task, a special system reconstruction algorithm
based on iteratively reweighted least squares and a
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special synchronization-based technique for compar-
ing model accuracy are developed. We investigate an
example of a well-studied Rossler chaotic system. We
implement the circuit using two types of operational
amplifiers. Then, we reconstruct their ODEs from the
recorded data. Finally, we compare original ODEs,
SPICE models, and reconstructed equations showing
that the reconstructed ODEs have approximately 100
times lower mean synchronization error than the orig-
inal equations. The proposed identification technique
can be applied to an arbitrary nonlinear circuit in order
to obtain its accurate empirical model.

Keywords Chaos - Identification - Rossler circuit -
Numerical simulation

Mathematics Subject Classification 93B30 -
M34C28

1 Introduction

Chaotic systems have been studied for several decades,
and multiple techniques were introduced for their anal-
ysis. One of the most known techniques is analog sim-
ulation via circuit implementation. It is known that
ordinary differential equations (ODEs) describing the
chaotic system can be easily transformed into a circuit
with operational amplifiers, analog multipliers and pas-
sive electronic components [1,2]. An interest in chaotic
circuits raised significantly after L. Chua’s work on the
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circuit with double-scroll attractor [3] which was later
elegantly extended by M. Kennedy [4]. To be exact,
chaos had been observed in some earlier electronic cir-
cuits such as Van der Pol’s oscillator, but this type of
behavior was properly explained much later [5]. Nowa-
days, while powerful and precise digital computers are
widespread, many studies on chaos still involve cir-
cuit realizations [6—12], both in simulators and in real
hardware. It would not be an exaggeration to say that
circuit implementation became a “golden standard” in
scientific publications dedicated to chaotic systems.

Analog realization is often considered as a way of
demonstrating the physical existence of chaotic sys-
tems and a sort of transition from theory to practice
[13], but chaotic circuits themselves attract scholars
and engineers as well. A number of studies are dedi-
cated to creating efficient and precise electronic imple-
mentations of chaotic systems, including fractional-
order systems and systems with memristors [14-22].
A plethora of possible applications of analog chaotic
circuits is known: accurate sensing [23,24], measure-
ment [2,25] and secure communication [26,27].

There are several reasons why high correspondence
between the circuit and the model is important. From
the theoretical point of view, it allows substantiating
that the system is implemented correctly. On the other
hand, in practice, it is a way to better operate the circuit
by understanding the design flaws and resolving them.
In real-life applications, the lack of accuracy of analog
implementation is a bottleneck in the transition from
the mathematical model to the circuit, especially when
basic off-shelf electronic components are used.

The standard design procedure implies analog imple-
mentation as follows: First, an ODE of the chaotic sys-
tem is obtained, and the desired properties are con-
firmed using numerical ODE solvers. After that, a
SPICE model is designed and verified, and then a real
circuit is prototyped and tested. The limited correspon-
dence between the original ODE to be implemented
and the circuitis clear: The chaotic differential equation
does not take into account any implementation issues.
Butitisimportant to notice that the accuracy of a SPICE
model in chaotic systems simulation is also contro-
versial. The manufacturers often recommend verifying
SPICE computer models [28], and there exists a proven
problem with chaotic system simulation reproducibil-
ity [29]. One of the major reasons for SPICE models
inaccuracy is that only simplified models of many com-
plicated devices are available for SPICE simulation.
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Examples of such devices are operational amplifiers
and analog multipliers. Therefore, the accuracy of a
real circuit implementation can be addressed mostly
experimentally.

Another challenging question arises when consid-
ering the accuracy of the model. The problem is how
to estimate the error between the original chaotic sys-
tem and its analog implementation. One possible way
here is to compare some metrics like bifurcation points
[30]. Another approach is to synchronize a computer
model of the system with the circuit, and the syn-
chronization error will be proportional to distortions
introduced by the circuit. The latter is true if the com-
puter model is constructed using a high-order integra-
tion method, and the discretization time step is small
enough [31]. Applying the last approach to the Rossler
system revealed that besides parameter inaccuracy, dis-
cretization error and noise, there exists another source
of error causing disparity between the circuit and the
model, which has not been figured out exactly [31—
34]. The main hypothesis of the current study is that
these errors originate from unaccounted nonlinearities
of analog integrated circuits. To estimate these non-
linearities, one should establish the white-box model
which would accurately describe the dynamics of the
circuit.

The current study aims at proposing a novel
approach to reconstructing the mathematical model of
an analog chaotic circuit and establishing a reliable
way for its verification. The suggested procedure for
obtaining an empirical ODE from the circuit is based
on machine learning algorithms for nonlinear system
identification, which have significantly advanced in the
last decades [35—40]. Verification of the obtained ODE
is performed via synchronization with real data follow-
ing the improved procedure from [31].

The analog implementation of Rossler system was
chosen for investigation. It is a canonical example of a
chaotic attractor and has simple equations with single
nonlinearity. It can be implemented in many ways; the
most popular variant contains an analog multiplier [31,
33,41-43]. We compare two variants of the Rossler
analog circuit with various operational amplifiers and
ADG633JN multiplier.

The rest of the paper is organized as follows. In
Sect. 2, we describe numerical procedures of sys-
tem identification and model error estimation. We also
describe how the Rossler system is implemented in cir-
cuitry. Section 3 presents the experimental results. We
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compare the geometrical properties of obtained attrac-
tors and estimate errors of conventional and empirical
models. Section 4 gives discussion and conclusions.

2 Materials and methods

This section describes the theory behind the current
study. First, we describe how data obtained from the
circuit can be used for the mathematical model recon-
struction in the form of a polynomial ODE. Then, we
describe a technique for model accuracy estimation
using chaotic synchronization. Finally, we consider a
way how to implement the Rossler system as a circuit.

2.1 ODE reconstruction from data

Let us propose the method for ODE reconstruction
using experimental data. Consider the initial value
problem given by an ODE:

x(1) =1£(z, %), x(0) = xo, ey

where X = (x1, X2 ... X)) .

The problem of ODE reconstruction is finding the
unknown function f(z, X) when n observations on the
system are available. This problem is a special case of
regression.

Suppose observations contain full information on
system states X = {X1, X2, ... X,} and their derivatives
Y = {x1,X2,...X,} attimes t = {t1, 12, ...1,}.

We look for the function f(z, X) in the form of a
multivariate polynomial:

Ly
Zhlifli(t,x)

i=1

Ly
> hoitai(t, %)
fe,x)=| ‘= , 2

Ly
Z R Ti (2, X)

i=1
where m is the dimension of the system, x; (¢, X) is a
monomial composed of variables at different powers,
such as xlxzzx?%, and hy; is a scalar coefficient by the
monomial. The overall number of monomials in kth
entry is Lg.

Introduce a matrix of monomial values, calculated
on a set X:

Te1 (f1, X1) Tr2 (1, X1) - .

Tk1(f2, X2) Tr2(11,X2) - ..

TeL, (11, X1)
TeL, (11, X2)

3

Ey

Tk1 (B Xn) Tk2(tns Xp) - .. Tk Ly (tn, Xn)
The set of n derivatives of x; can be considered as
a vector:
X (t1)

Xk (t2)
Yk : ) 4)

X (tn)
and all coefficients by monomials in kth entry of (2)
also make up a vector:

hit

hio
he=| . |- )

hirL
Let us recall that each entry in the vector function (2)
is a weighted sum of nonlinear monomials, and each of
them is known. Therefore, since xx () = fr (¢, X), the

vector h; can be estimated as a solution of an overde-
termined equation

Vi = Exhg. (6)
The solution of (6) is found as follows:
by = (E{ E») " (E{ yo). (7)

This method for solving (6) is called ordinary least
squares (OLS). In practice, due to noise, not all observa-
tions are equally useful for reconstructing the equation.
Also, itis often preferred to set as many coefficients /y;
to zero as possible. Therefore, €| -regularized iteratively
reweighted least squares (IRLS) are preferred, which
solves the following minimization problem using any
applicable nonlinear optimization technique:

n

hy = ar min( w; || yki — Exih 2+ah>,
gmi ; Iy I? +alh)

where w; are weights, initially set to ones, and « is
the regularization parameter: Increasing ¢, one can set
more coefficients /y; to zero. The solution (7) is used
as a starting point for optimization. On each iteration,
weights are updated according to the formula

1

~ max (8, 1yki — ExihJ|)

, i =[l.n]. ®)

Wi
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The quantity § is arelatively small number that limits
wj, preventing division by zero in (8). A more detailed
description of IRLS can be found in [38].

Additional procedures are often needed to make the
ODE reconstruction more stable and sparse. First, one
should check whether any of the monomials 7x; van-
ishes on data , i.e., it is not equal to zero in all sample
points: { V(¢,x) € t x X| 1 (¢, x) = 0}. If any of the
monomials t; is vanishing, the least squares problem
becomes ill-posed and cannot be solved accurately. So,
vanishing monomials should be eliminated.

To do this, in the presence of noise in data X,
an approximate Buchberger—Moller (ABM) algorithm
can be used. It was first proposed in [44] and first
applied to ODE reconstruction in [35], so we refer the
reader to these works and omit its detailed description.
Briefly, the idea of ABM algorithm is as follows. We
iteratively add candidate monomials ti; into a feasi-
ble monomial set O. At each iteration, we estimate the
matrix Ej (3), calculate the matrix B, = EkT E; and
find its smallest eigenvalue Apin. If Apin < €, where &
is a given threshold, the candidate monomial is rejected
since it is likely to be vanishing; otherwise, it is added
to the set O.

Some other methods for eliminating vanishing
monomials are also known [45,46], but, in our opin-
ion, they are more complicated and hard to implement
than the ABM algorithm.

In order to reduce the number of monomials in
the regression, we propose using a special procedure
delMinorTerms, adopted from Kera and Hasegawa
[35]. The idea of delMinorTerms is following: After
estimating all entries of hy, an index i of a mono-
mial Ag;7; (¢, X) having the minimal norm on a set X
is determined and this monomial is excluded from the
regression, while the remaining coefficients hy; are
found once again using least squares. In practice, £1-
regularization is not always necessary, and if it is used,
small values of @ give more stable results [35].

The overall proposed ODE reconstruction method
is outlined in pseudocode in Algorithm 1. First,
deglexord(pmin, Pmax, M) procedure is used to gener-
ate a set of degree-lexicographically ordered monomi-
als o of powers from pmin t0 pmax, previously described
in the work [36]. Degree-lexicographic order is one
of several possible monomial orders which implies
that monomials are first graded by a total degree
and then by the alphabetic order of variables consti-
tuting them [47]. For example, in case of a three-
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dimensional system with variables x, y, z, degree-
lexicographic order for pmin = 0 and ppax = 2
is {1, x,y,z,x%, xy, xz, ¥%, yz, z*}. Then, an approxi-
mate Buchberger-Moller algorithm is applied to obtain
O — a set of nonvanishing monomials. After that, for
each dimension k of the original system, initial approx-
imation hy is found using (7). This value is a starting
point for optimization in del Minor T erms procedure,
which returns {hy;}, {tx;} for the current k. Two tol-
erances are involved in the algorithm: ¢ is used in the
ABM algorithm, and 7 controls minor term elimination
indelMinorT erms procedure. For simplicity, t is not
considered: It can be treated as an additional column in
Xin case the system is non-autonomous. The main dif-
ference between del Minor T erms variant used in our
code and previously published ones [35-37] is that it
uses IRLS instead of the other least squares. The most
detailed description of the algorithm can be found in
[35].

Algorithm 1: ODE reconstruction algorithm
Input: X, Y, t.
Output: {hg;}, {tki}, i = [1..L], k = [1..m].
Initialization:
o <« deglexord(Pmin, Pmax,m); // obtain all
possible monomials
O < ABM(X,¢e,0); // exclude vanishing
monomials
fork=1..mdo
hy = (ETE)""(ETyp); // initial
approximation of hy
{hii} {mei} <
delMinorTerms(X,Y, O,n, hg,«); // exclude
minor monomials

end

Thus, the obtained model of the system is uniquely
described by two sets {hx;}, {wi}, i = [1...L],
k =[1...m]used in (2) when solving the ODE. Fine-
tuning of the parameters « and 7 can reduce the number
of monomials in the model, in other words, improve
sparsity. But usually, there is an unavoidable trade-off
between accuracy and sparsity [48], and in general, if
the solution should be as accurate as possible, sparsity
should be sacrificed.
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2.2 Model error estimation through synchronization

Once a dataset of system states X = {x1,X2, ..., Xy}
and their derivatives Y = {Xi, X», ..., Xy} at times
t = {f1,n,...tn} is collected, and a model (2)
is obtained, the model accuracy should be tested.
For chaotic systems, a phenomenon of synchroniza-
tion provides an attractive framework for solving the
problem. It is known that trajectories of chaotic sys-
tems diverge exponentially in absence of any coupling
between them, even if systems are similar. But, if a cou-
pling is added, for example, in a form of a proportional
feedback controller, chaotic systems exhibit correlated
dynamics. Depending on the type of this correlation,
there can be complete synchronization, lag synchro-
nization, generalized synchronization, and so on [49].
The generalized synchronization is of special interest,
because it may happen between different systems. For
example, it is usually possible to synchronize analog
and computer models of a chaotic flow, but due to the
difference between these systems the synchronization
is not complete but generalized.

In our previous work [31], we substantiated a con-
jecture that the error between the system trajectories
vanishes if the discretization time step and the distance
between the synchronized systems in function space
tend to be zero; otherwise, there may exist a bounded
chaotic attractor of error between system trajectories.
The Li-volume of this attractor as well as its other
parameters is proportional to the disparity of the sys-
tems to each other. So, after the transient in the synchro-
nized computer model dies out, measuring the average
error norm between trajectories of the circuit and the
model provides a metric for the model accuracy esti-
mation. This metric is more qualitative than quanti-
tative since the average error norm is neither linearly
proportional to the identification error nor necessarily
a monotonic function of this error. Despite being as
arbitrary as, for example, the difference between bifur-
cation points, this tool is more convenient in practice
since it does not require collecting an amount of data
for the bifurcation diagram and is especially valuable in
case the parameters of the investigated system cannot
be changed.

Consider one-directional synchronization of the
ODE of the master system

X = £, Xpn),

and the ODE of the slave system:
XS = f(ta Xs) - K(Xs - Xm)»

where K is the matrix of synchronization coefficients.

Once the master system is implemented in analog, a
time series could be obtained X,;, = {x,,, (t9), X, (¢1), . ..
X, (ty)}, where N is the overall number of sam-
ple points. If the one-step numerical method is used
to implement the slave system, a discrete model is
obtained:

Xs.n+1 = Xgn + ¢h(xs,nv {Xm,j}),j €n,n+1].

The values {x,, ;} refer to the master system states
within the time interval 1 € [t,,, tn+1], and an index j
can be fractional, because one-step method may require
auxiliary intermediate sample points, for example, in
th+0.5 (as we will see further). The norm of the error
between experimental master data series and the slave
numerical system is calculated only in the main sample
points:

I AXl; = 1Xs,n — X, l-
It was shown in [31] that a generalized synchroniza-

tion is established between the master and the slave
systems, and the mean amplitude of the error norm

N
1
< |Ax|| >= — E | AX ]|,
N n=1

is a measure of how the slave system is close to the
master system. A useful metric is also a relative mean
synchronization error, defined as

< |Ax]|| >

max_ Xy, |l )
nel[l,N]

Let the slave system be implemented using the clas-
sical Runge—Kutta 4 method (further, an abbreviation
RK4 is used). The difference scheme for obtaining the
next value X ,41 from X; , is:

Ky = £(ty, Xs.0) — KXs,n — X (1))

u; = X;, + 0.50k,,

ky, =f(t, + 0.5h,u; — K(u; — x,,,(t, + 0.5h)),
u = X, + 0.5hky,

k3 = f(t, + 0.5h, up — K (W — X (tn + 0.5h)),
u3 = x; , + hks,

ky = £ty +h,u3 — K3 — X (1i41)),

h
Xsnt+l = Xy + E(kl + 2k; + 2Kk3 + Ky),
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where h = t,41 — t, is the time step. The values
X (t, + 0.5h) are unknown from the time series X,,,.
One possible way to find them is to downsample the
time series by a factor of 2, which is appropriate in
case the discretization time step is small enough. Notice
that this increases the truncation error of the method
2* = 16 times. Another solution is using multistep
methods for obtaining X ,+1, which is not always con-
venient for stability reasons. The proposed solution is
using four-point Lagrange polynomial:

X (ta + 0.5h) & L(ty + 0.5h), )
where
n+1 n+1 f—1
j=n—-2 k=n—2,k#j

To estimate error of this approximation, rewrite (9)
as

X (tn + 0.5h) = L(t, + 0.5h) + R(t),

where the remainder R(t) = O ((t,,+ 1 — tn_2)4) pro-
vides fourth order of accuracy of estimating x,, (t, +
0.5h). If another order of accuracy p is needed, for
example, when one uses another Runge—Kutta method
of order p, the p-point Lagrange polynomial should be
used.

Thus obtained scheme takes advantage of both one-
step and multistep approaches: high stability and no
need for downsampling. Its disadvantage is that the
synchronization error between two discrete models
has fourth order of accuracy, while the conventional
approach makes it tend to zero. This disadvantage is
negligible in the case of synchronization between the
real circuit and its model.

As an example, consider the synchronization of two
Rossler systems implemented as computer digital mod-
els. The master system is described with the following
differential equations:

Xm = —Ym — Zm,
)"m = Xm + aym, (10)
2m =b+Zm(xm_C)’
where x, y, z are state variables and a, b, ¢ are param-
eters, and the slave system is described by:
Xy = —ys — 25 — k(xg — xp),
Vs = X5 +ays, (11)
Zy =b+z5(xs —0),
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where the term —k(x; — Xx;;) provides coupling,
and k is the synchronization coefficient, which should
be selected sufficiently large to make effect but not
extremely high to preserve stability [50,51]. Here, we
use k = 1 and classical parameters of the Rossler sys-
tema =0.2,b=0.2,c =5.7.

Having implemented both systems with RK4 method
with a constant stepsize 4 = 107> and using Lagrange
polynomial for estimating points X, (f, + 0.54) in the
slave system, we obtain the results shown in Fig. 1.

The synchronization error rapidly reaches its steady
state with a median value 2.77 x 10~ This is relatively
high in comparison with ideal synchronization between
models when x,,, (z; +0.5h) are calculated in one solver,
allowing obtaining values close to machine epsilon, but
pretty enough for our further experiments, which cor-
responds to a relative error value about 10™4%.

2.3 Circuit implementation of the Rossler system

The Rossler system is described by equation (10). In
order to implement it as an analog circuit, we first define
the simulation time constant T = RyCo, where R and
Cy refer to parameters of elements in op-amp-based
integrators. We select Ry = 10 kQ and Cy = 10 nF, so
T=10""s.

Then, we select a scaling factor M, taking into
account that real voltage amplitudes should not go out
of the range from —10 V to 4-10 V. We chose the value
M = 4, making real amplitudes of phase variables
implemented as voltages four times smaller than in the
original attractor.

Using basic principles of circuit design, we designed
the circuit shown in Fig. 2.

The equations of this circuit are as follows:

s _ Y
Cri == — .
Cay = 35 + 7; (12)
. _ RgV Rpx _ RpVe
Cst = g+ s (5 - 540°)
where Rf = Ry = R; = R;; = Rz = Ry,
Ry = Ro/a, Rs = Rg (arbitrary values close to

Ro), Rg = MRy, Ri3 = Ro/10, Riop = Ro/M,
C1 = C = C3 = (. For the Rossler system parame-
tersa = 0.2, b = 0.2 and ¢ = 5.7 and a scaling factor
M = 4, we obtain circuit elements listed in Table 1,
see the column “Proposed value.”

The circuit includes an only configuration with
inverting operational amplifiers. The amplifier U
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%
4
1074 L
1070 L 4
10-8 L L L L L L L L L
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Fig.1 Numerical example of two Rossler systems synchroniza-
tion. Both systems are implemented using the RK4 method. The
master system intermediate points X, (#, +0.54) used for estimat-
ing the slave system states are found from data using the Lagrange
interpolation polynomials. Left panel shows the system attractor,

both trajectories visually coincide almost everywhere. The right
panel shows the synchronization error: It rapidly decays during
the initial transient process and then oscillates near a median
value 2.77 x 1073

c2 R5
Y R1 C1 X 5‘\1 1 m_Y N\~
AN I} 1ok 1 39kQ
10k 10nF (9.64kQ) O (38.7 k)
(9:60 k) (10.1 nF) (10.0 nF) R6
AN\
R4 39kQ
VWA = Y
5 R2 A 5 (38.2 kQ)
AW - X 41.5 kQ
10kQ Ut DN ( ) 'I|_+ il
(938 k@) j—f+ TLO72 / OPA2134 TLO72 / OPA2134
TLO72 / OPA2134
R12
A
10kQ
(9.99 kQ)
A1
X R10 v
2/\k/g?2 B A\ \ R13 C||3 z
U6 A
(2.21 kQ) | + B 1kQ 10II:F
0.IVN OV (0990kQ) (9.9 nF)
TLO72 / OPA2134 .
R11
V2 = -co——AM— RS
10kQ V1 = -bo AM >
(9.12 kQ) 40kQ US|
(38.2 kQ) +

Fig. 2 Rossler system circuit implementation. Real measured
values of components are given in brackets. Power supply volt-
ages are Vcc— = —10 V and Ve = 410 V. Additional offset

TLO72 / OPA2134

voltages V1 = —0.2 V and V1 = —5.7V are used for introduc-
ing parameters b and ¢
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Table 1 Proposed and real

measured values of the Element Proposed value Measured value Error Units

circui.t elements used in the R1 10 9.60 +0.12 kQ

experiment
R2 10 9.38 +0.12 kQ
R3 10 9.64 +0.12 kQ
R4 40 41.5 +0.5 kQ
RS 39 38.7 +0.5 kQ
R6 39 38.2 +0.5 kQ
R8 40 38.2 +0.5 kQ
R10 2.5 2.21 +0.03 kQ
R11 10 9.12 +0.12 kQ
R12 10 9.99 +0.12 kQ
R13 1 0.990 +0.013 kQ
Cl 10 10.1 +0.3 nF
c2 10 10.0 +0.3 nF
C3 10 9.9 +0.3 nF

refers to the first line of Eq. (12), the amplifiers U;
and Uj refer to the second line of (12): Uj is used for
summation and integration, and U3 inverses the sign of
y. The amplifier Ug performs summation and Uy sums
and integrates, implementing the third line of (12).

Two variants of low-distortion low-noise op-amp
ICs are used: OPA2134 and TLO72 (both manufactured
by Texas Instruments).

The multiplier AD633 has five signal inputs X1, X»,
Y1, Y2, Z, allowing performing the following opera-
tion:

W=X1— XY —Y)/10+ Z. (13)

It can be used for performing one addition, two subtrac-
tions, and one multiplication. Nevertheless, in order to
exclude any effect of its internal structure on summa-
tion and subtractions, we use it only for multiplication,
and addition is performed on an operational amplifier.

Parameters Vi = b and V, = c are set as DAC
outputs of the NI ELVIS III laboratory station.

Practical implementation of the circuit with non-
ideal components leads to a mismatch between pro-
posed and real values of circuit elements. Table 1 fig-
ures our real parameters of the resistors and capacitors,
measured with RLC-meter DT-9930, see the column
“Real value.” The instrumental error of the RLC-meter
is 1.2 and £3.0% for resistance and capacitance mea-
surements, respectively.
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Further, we refer to the model with exact param-
eters as the Rossler system with original parameters,
and to the model which takes into account non-ideal
parameters implementation as the Rossler system with
adjusted parameters. We will show that this parame-
ter adjustment cannot sufficiently improve the model
accuracy, as was predicted in [33].

3 Experimental results

This section describes the experimental results of the
study. First, we investigate geometric parameters of
the chaotic attractors for the real circuit, conventional
ODE system and a SPICE model developed in Multisim
14.2 software environment by National Instruments.
Further, the latter model will be called the Multisim
model for brevity. Solving ODE is carried out using
the Dormand-Prince 8(7) method, further referred to
as DOPRI78 after a well-known program [52]. Then,
we estimate the error the model obtained via the pro-
posed technique and compare it with the errors of the
conventional ODE and NI Multisim model. The exper-
iments confirm that the proposed technique provides
the most relevant model among the considered ones.
Finally, we present obtained models of two variants of
the circuit each containing 60 independent terms and
coefficients.
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Fig. 3 Attractor of the
Rossler circuit in NI
Multisim simulation
environment, solution of the
circuit ODE with adjusted
parameters and attractor of
the real circuit with TL072
op-amp and AD633JN
analog multiplier 6

3.1 Geometry of real and simulated attractors

Due to the imperfectness of real resistors and capaci-
tors, their values would necessarily possess a deviation
of the obtained attractor from the trajectories of the
original one as shown in Fig. la. Therefore, we will
use models with adjusted parameters in further exper-
iments.

All real-time series have length 0.1 sec. It is equiv-
alent to 1000 s of the original Rossler system (10) up
to a simulation time constant T = RyCo = 10™* sec,
defined in Sect. 2.3. Amplitude values are decreased by
a scaling factor M = 4 compared to the original sys-
tem (10) for reasons of feasibility, as was also defined
in Sect. 2.3.

The first comparison involves the solution of the
Eq. (12) with the DOPRI78 method using fixed step-
size h = 102, the model of the circuit shown in Fig.2
in NI Multisim 14.2 circuit simulation environment,
and the real circuit built on NI ELVIS III prototyping
board. Operational amplifiers TLO72 were used. The
corresponding three attractors are shown in Fig. 3. The
trajectory given in yellow is obtained via solving the
Rossler ODE with adjusted parameters. The trajectory

Rossler TL072 model
Rossler DOPRI78
Rossler TLO72 real data

given in black is obtained in NI Multisim 14.2 environ-
ment. One can see that these trajectories are close to
each other which confirms that these models are in good
correspondence. Nevertheless, the trajectory obtained
from the circuit given in red is sufficiently different.
While keeping an almost similar shape, it has lower
amplitudes in all variables.

The obtained results provide evidence that the real
analog system sufficiently differs from the ODE it was
intended to simulate. Besides, the internal structure of
active component models used in NI Multisim is fairly
simple, giving only a slight difference from ODE in the
resulting trajectory.

Cognate conclusions can be drawn from the com-
parison of the circuit with OPA2134 operational ampli-
fiers and two other models; see Fig. 4. The trajectory of
Eq. (12) solved with the DOPRI78 method is given in
blue, the trajectory of the NI Multisim model is given in
yellow, and the data from the circuit are plotted violet.

To provide a representative comparison of attrac-
tor geometry, we estimated the amplitudes of each
state variable Ax, Ay, Az and calculated volumes
of circumscribed parallelepipeds for the attractors
V = AxAyAz. The following models were stud-
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Fig. 4 Attractor of Rossler

ODE with adjusted

parameters, Multisim

simulation and real circuit,

OPA2134 op-amp and

ADG633IN analog multiplier 8
are used 7

ied: the adjusted Rossler model, the Multisim simula-
tion with TLO72 op-amp, the Multisim simulation with
OPA2134 op-amp, the circuit with TLO72 op-amp, and
the circuit with OPA2134 op-amp. These values are
given in Table 2. The difference in the variable z is the
most significant. The attractor volumes of real circuits
and models differ more than two times.

3.2 Model error estimation

Using the system identification technique outlined in
Sect. 2.1, we obtained the models for the following
systems: the Rossler circuit ODE with original parame-
ters, the Rossler circuit ODE with adjusted parameters,
the Multisim model with TLO72 op-amp, the Multi-
sim model with OPA2134 op-amp, the real circuit with
TLO72 op-amp, the real circuit with OPA2134 op-amp.
For brevity, we do not present the models except the
two most important ones: the models of the real cir-
cuits with TLO72 and OPA2134 op-amps. Coefficients
of right-hand side functions of the corresponding sys-
tem of ODEs are given in Table 3 in the following form:

@ Springer

Rossler OPA2134 model
Rossler DOPRI78
Rossler OPA2134 real data

f(xv y, Z) = hO +hx-x +hyy +hzZ +hx2.x2
+hoyxy + o xz + .. (14)

The monomials in f(x,y,z) are given in degree-
lexicographic order. With the powers of monomials
from O to 3, the function (14) contains 20 terms. The
parameters of the Algorithm 1 were 7 = 107> and
e=1077.

The synchronization-based approach described in
Sect. 2.2 was applied to estimate the accuracy of the
obtained models. For verifying that the obtained mod-
els are indeed more relevant than the Rossler ODEs
(original and with adjusted parameters), they were also
used in synchronization-based accuracy tests.

The results are summarized in two tables. Table 4
gives the results of 12 experiments carried out to esti-
mate the relevancy of the Rossler ODE to the real circuit
and its model. Median and mean absolute synchroniza-
tion errors are given, as well as a mean relative synchro-
nization error in percent. The lowest obtained errors
correspond to synchronization errors between similar
models in the form of ODE, as expected. The order of
relative error about 1074% is a theoretical minimum
for the RK4 method with Lagrange interpolation of the
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Table 2 Attractor geometric parameters: Ax, Ay, Az are difference between maximal and minimal values obtained in the experiment,
V is a volume of a circumscribed parallelepiped V = AxAyAz

System Ax Ay Az \%4
Rossler ODE (real components) 5.18 £0.03 4.74 +£0.03 7.66 £0.18 188 £ 6
Multisim, TLO72 5.18 +0.02 4.79 +0.04 7.61+0.14 18945
Multisim, OPA2134 5.1540.03 4.75 +0.03 7.31+0.15 179+ 6
Circuit, TLO72 4.26 £0.01 3.93 4+ 0.01 3.92 4 0.04 65.8 +0.6
Circuit, OPA2134 3.98 +0.01 3.70 + 0.01 2.89 4+ 0.05 424409
All confidence intervals are 95%
Table 3 Coefficients of the models obtained from the circuits with TLO72 and OPA2134 operational amplifiers
Coefficient ~ TLO72 OPA2134

% b z * b z
ho 1.9849 x 1072 —2.4084 x1073  6.2474 x1072 2.3157 x1072 5.0043 x1072 0.0514
Iy 1.7621 x 1072 1.0191 —7.6250 x1073 19581 x 1072 1.0210 —6.8586 x1073
hy —0.99030 0.17204 4.6164 x1073 —0.98931 0.17253 8.5437 x 1073
h, —1.4570 —6.8364 x1072  —5.6767 —1.4324 —8.0235 x1072  —5.5735
hy 1.0702 x1073 4.4290 x10™* 3.6258 x10~* —8.3903 x10™*  1.3080 x10~* —2.7385 x1073
By —1.7098 x1073  —4.0747 x107*  —1.8867 x1073  —2.3521 x1073  —2.2361 x107* —1.2921 x1073
By 0.18730 3.9947 x 1072 4.2853 0.21910 1.7422 x 1072 4.4341
hy —83531 x10™* 53668 x10™*  —2.9468 x107>  —1.7882 x107%  6.2991 x10™*  —2.9647 x10~?
hy; 4.8575 x1072 2.1055 x1072 —0.48176 3.2884 x 1072 1.9215 x 1072 —0.64099
hy —4.2236 X107 5.6370 x107 —0.39533 —2.0921 x1072  1.1762 x1072 —0.47623
hys 1.6788 x1073 —4.0500 103 2.3340 x10~* 1.0614 x1073 —3.5939 107> —29115 x1073
hay 17380 1073 —4.8882 1073 —8.0567 x10™*  —9.7620 x10~*  —4.8569 x10~3  —1.0696 x10~3
hyo, 6.9154 x1072 —9.1399 x1073  0.17589 6.1403 x 1072 2.9867 x1073 8.9730 x 1072
By —2.8329 x1073  —3.7991 x107%  —9.3897 x10™*  —4.1564 x10™3 23594 x1073  —1.5386 x10~?
Rxyz 2.4123 x1072 —9.8508 x1073  0.13015 1.6979 x 1072 —3.8066 x1073  0.13526
hy.2 — 13913 x1072  —8.2434 x10™*  —7.1060 x1073  —1.4069 x1072  —4.5071 x10~>  3.3169 x 1072
hys 26073 x1072 25179 x107*  —1.2808 x107®  1.7447 x107>  7.7572 x10™*  —1.2008 x10~3
hya, 84769 x1073  —1.0925 x1072  3.6443 x1072  3.1421 x1073 —33616 x1073  4.8279 x10~2
hy2 2.9241 x1072 —3.4983 x107%  9.4090 x 102 3.6882 x 1072 —2.2363 x107%  0.10730
hy3 6.7338 x1073 —4.1591 x107> 22279 x1072 1.1082 x 1072 —9.0613 x10™*  2.5367 x1072

middle point and the stepsize & = 107>, The errors
between ODEs and other systems are relatively large,
about 6-8% for the ODE with original parameters and
3-8% for the ODE with adjusted parameters.

Table 5 summarizes the results of 6 other experi-
ments with synchronization of the data obtained from
various systems and the models obtained via the pro-
posed approach. It is of interest that parameters of the
identification algorithm & = 5 = 107 lead to a similar
error between ODEs and real data from circuits. One

more interesting observation on that Multisim results
are not identified well, which originates from simula-
tion errors introduced in this software package by both
adaptive stepsize control algorithm and low accuracy
of the trapezoidal method used for simulation.

To visualize the results of synchronization experi-
ments, we present the error plots in logarithmic scale
in Fig. 5. Panel (a) shows the synchronization error
between the circuit with OPA2134 and its model
obtained via the proposed technique, panel (b) gives
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Table 4 Synchronization errors between real data and models based on original Rossler ODE

System Rossler ODE, original parameters Rossler ODE, adjusted parameters

Median Mean Mean, % Median Mean Mean, %
Rossler orig. ODE 25626 x107>  6.4179 x107> 27265 x10~*  0.25598 0.4448 7.5591
Rossler adjusted ODE  0.9263 1.5463 4.8483 1.0684 x1075  2.6749 x10~%  3.3547 x10~*
Multisim, TLO72 1.6127 1.8167 5.9581 0.4194 0.6190 8.121
Multisim, OPA2134 1.9420 1.6075 6.5933 0.3863 0.3891 5.2847
Circuit, TLO72 0.56914 1.0487 6.1491 0.14096 0.11889 3.3063
Circuit, OPA2134 0.88045 1.1895 8.9829 0.18727 0.20016 6.0461

Table 5 Synchronization errors between the data collected from various systems and the models reconstructed with the proposed

algorithm

System (data source) Median Mean Mean, %
Rossler orig. ODE 5.1217 x1073 9.4747 x1073 4.0250 x 1072
Rossler adjusted ODE 26192 x1073 6.6841 x 1073 8.3827 x 1072
Multisim, TLO72 6.9212 x1072 0.1249 1.6389
Multisim, OPA2134 3.0144 x1072 3.3475 x1072 0.4546
Circuit, TLO72 9.7622 x10~3 1.3091 x10~2 7.6764 x10~2
Circuit, OPA2134 7.7741 x1073 9.3596 x1073 7.0681 x10~2

the synchronization error between the same circuit and
ODE with adjusted parameters, the panels (c) and (d)
give the comparison of the model obtained by the pro-
posed technique and the conventional ODE for the cir-
cuit with TLO72. The behavior of the synchronization
error trajectory is not uniform, and the more accurate
model has larger dispersion but a lower average value.

The attractors of the real circuits and the obtained
models are shown in Fig. 6. One can see the visual dif-
ference between the attractors of the systems imple-
mented using different operational amplifiers. The
identified models replicate the shapes of the original
attractors, as can be seen in panels (a) and (c). Adding
synchronization allows one to obtain visually coincid-
ing fragments of trajectories, especially near z = 0
plane where the local divergence of trajectories is the
lowest.

4 Discussion and conclusions

Chaotic systems can be implemented in various ways,
one of which is a chaotic analog circuit. However, it is
known that real circuit behavior always deviates from
the simulated one. The discrepancy between the chaotic
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circuit and its model has been reported many times
in the literature, just a few examples can be found
in [31,33,34]. This discrepancy results in difficulties
with the design and operation of the chaotic circuits,
as well as in limiting the validity of transition from the
ODE to the circuit. To address the problem, we propose
finding an empirical ODE of the circuit using a special
system identification technique. Thus, obtained ODE
represents a white-box model, from which coefficient
distortion and additional nonlinearities emerging in the
circuit can be explicitly found, and the accuracy of the
desired system implementation can be estimated. In
practical applications, this ODE may be used instead
of the original ODE and the SPICE model.

As an experimental result of the study, we present
60-term models of two Rossler chaotic circuit imple-
mentations with TL0O72 and OPA2134 operational
amplifiers, respectively, which give notably different
attractors for similar parameters in the original ODE.
An elaborate study was carried out to verify that these
models are the most accurate models among all inves-
tigated ones including also conventional ODEs and
SPICE models in NI Multisim 14.2 software environ-
ment.
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Fig. 5 Synchronization errors of a the Rdssler circuit with
OPA2134 and its model obtained via the proposed technique,
b Rossler circuit with OPA2134 and its model in the form of
the adjusted Rossler ODE, ¢ the Rossler circuit with TL072 and

The theoretical contribution of our work is in estab-
lishing a way to simulate real circuit behavior more
accurately in terms of keeping the model trajectories in
the vicinity of the experimental trajectories. The impor-
tance of studying more accurate models is undoubted
in chaotic systems. While in the investigated case of the
Rossler system the difference between the conventional
computer models and the circuit was only quantitative,
the nature of chaos prompts us that there could be a
more notable disparity in other cases. For example,
coexisting and hidden attractors observed in analyti-
cal ODE could not be observed in a circuit, or chaotic

0.08 0.1

10° . . . .

1071 I u

2
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1079 L L L L
0 0.02 0.04 0.06 0.08
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0.1

0.04 0.06 0.08 0.1
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(d)

its model obtained via the proposed technique, d Rossler circuit
with TLO72 and its model in the form of the adjusted Rossler
ODE. All figures are of the same scale

behavior in an ODE could correspond to non-chaotic
behavior in the circuit for the same set of parameters.
The practical relevance of the reported study is that
the accurate models obtained via the proposed tech-
nique can be used to generate a signal similar to the
output of areal circuit, which results in accurate analog-
to-digital synchronization that was explicitly shown in
this study. Accurate analog-to-digital synchronization
can be used in many possible applications, where the
fundamental property of chaotic synchronization is uti-
lized. Examples of such applications are chaotic sens-
ing and chaotic communication systems. The reported
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Experimental
Simulation

Experimental
Simulation

Fig. 6 Attractors of a the Rossler circuit with OPA2134 (Exper-
imental) and its identified model (Simulation), b the Rossler cir-
cuit with OPA2134 (Experimental) and its model synchronized
with real data (Simulation with synchronization), ¢ the Rossler

identification algorithm can also be used for time series
reconstruction and a cryptographic attack on chaos-
based encryption systems. Another interesting branch
of research is connected with studies on how the pro-

@ Springer

Experimental
Simulation with synchronization

Experimental
Simulation with synchronization

circuit with TLO72 (Experimental) and its model (Simulation),
d the Rossler circuit with TLO72 (Experimental) and its model
synchronized with real data (Simulation with synchronization)

posed models can reproduce the sensitivity of the cir-
cuit to noise inherent to real circuits, which can suffi-
ciently affect the system behavior, as shown in several
recent works, e.g., [24,53,54]. Our future work will
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be dedicated to some of these phenomena and applica-
tions.
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