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Abstract

Missing data is a pervasive challenge in statistical modelling, particularly in multivari-
ate response settings where partial missingness leads to complex, overlapping missingness
patterns. Standard methods often rely on strong and unrealistic ignorability assumptions,
such as missing completely at random (MCAR) or missing at random (MAR), typically
employing complete-case analysis or imputation, leading to inefficiencies and biases. This
thesis introduces three novel Bayesian joint models, integrating the selection model frame-
work with Bayesian additive regression trees (BART) to provide a flexible, non-parametric
solution for handling non-ignorable partial missingness in multivariate data.

The motivation for these models arises from limitations of standard missing data tech-
niques, as exemplified by the global Amaz dataset which exhibits substantial, overlapping
missingness in the response variables. Original methods applied to this dataset implicitly
assume ignorability, leading to biased inferences and loss of information. To address this,
our novel models jointly estimate both the response and missingness processes, enabling
the recovery of non-ignorable missing not at random (MNAR) mechanisms, in addition to
MCAR and MAR. These models also extend to settings with partially observed covariates
with ignorable missingness.

By leveraging BART’s ability to flexibly model complex, non-linear relationships, we
adopt a multivariate BART framework to capture dependencies across responses while
maintaining predictive flexibility. For the missingness mechanism, we explore both para-
metric and non-parametric Bayesian approaches. The probit regression model allows for
the incorporation of prior information on the missingness mechanism, offering greater
interpretability when domain knowledge is available. In contrast, the probit extension
of BART allows for automatic variable selection and flexibly models complex interac-
tions. Additionally, we adopt a seemingly unrelated framework to model dependencies
across responses while allowing dynamic response-covariate relationships. These meth-
ods are evaluated through extensive simulations and applied to the global Amaz dataset,
demonstrating strong performance in identifying non-ignorable missingness structures and

recovering unobserved values.
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Introduction

Missing data presents a significant challenge in statistical modelling, particularly in mul-
tivariate response settings where missingness patterns can be complex due to overlap,
and response variables may be interdependent. Section 1.1 of this chapter introduces
the motivation behind this research, highlighting the limitations of existing missing data
methods in the presence of non-ignorable missingness and the need for more flexible ap-
proaches. Section 1.2 provides an overview of the thesis structure, summarising the aims

and content of each chapter.

1.1 Motivation

Missing data is a pervasive challenge in statistical modelling, often compromising the reli-
ability and robustness of inferential and predictive analyses. This issue is particularly pro-
nounced in multivariate response settings, where missingness in one response may depend
on the values of other responses, which themselves may be partially observed. Moreover,
missingness patterns can vary across observations, making traditional approaches—such
as complete-case analysis or standard imputation techniques—potentially inadequate.
Addressing missing data appropriately is essential for drawing valid conclusions, yet many
analyses either fail to account for missingness explicitly or rely on strong, often unverified
assumptions about the missing data mechanism.

The global Amazx dataset, originally analysed in Maire et al. [2015], presents a com-
pelling example of these challenges. The study examined how 20 soil and 26 climate
variables influence five key leaf photosynthetic traits: specific leaf area (SLA), leaf pho-
tosynthetic rate per area (Aarea), leaf nitrogen content (Narea), leaf phosphorus content
(Parea), and stomatal conductance (Gs). Despite having fully observed covariates, the
dataset exhibits substantial missingness in the response variables, with only 217 out of
2368 observations being fully complete. The missing data patterns vary considerably
across traits, with Aarea being nearly complete, while Gs and Parea exhibit high miss-

ingness rates of 57.1% and 77.5%, respectively.




1.1. MOTIVATION

While Maire et al. [2015] conducted several analyses, including separate regressions,
redundancy analysis, and path analysis, the study provided little to no discussion on how
missing data was handled. The only explicit mention was the exclusion of Parea from the
redundancy analysis due to its small sample size, implying a reliance on complete-case
analysis. This approach implicitly assumes the data are missing completely at random
(MCAR), where missingness is independent of both observed and unobserved values.
However, MCAR is a highly restrictive assumption which is rarely realistic in real-world
datasets [Pigott, 2001, Baraldi and Enders, 2010, Van Buuren, 2018]. Even if data are
MCAR, complete-case analysis still leads to a substantial loss of information and biased
estimates, especially when the proportion of missingness is large [Pigott, 2001, Eekhout
et al., 2012, Van Buuren, 2018].

A more flexible assumption is missing at random (MAR), where missingness depends
on the observed data but not the unobserved values themselves. Most modern missing
data techniques, including multiple imputation and likelihood-based approaches, rely on
the MAR assumption [Little, 1993, Van Buuren, 2018]. While such approaches leverage
information from observed values to make informed imputations and inferences, they
generally do not extend to MNAR scenarios where missingness depends on unobserved
values. When data are MNAR, ignoring the missingness process leads to severe biases and
invalid inferences [Little, 1995, Tierney et al., 2015]. Unlike MCAR and MAR, MNAR
requires explicit modelling of the missingness mechanism, as standard techniques do not
fully account for the missingness-induced structure [Kaciroti and Raghunathan, 2014,
Van Buuren, 2018, Linero and Yang, 2018, Little and Rubin, 2019, Linero, 2024].

Despite the existence of various missing data methods, including complete-case anal-
ysis, single imputation, and multiple imputation approaches, most have only been proven
to be valid for MCAR and MAR settings [Eekhout et al., 2012]. While some methods
can accommodate MNAR data, they typically require prior knowledge that the data fol-
low an MNAR mechanism, which is rarely known in practice [Baraldi and Enders, 2010,
Tierney et al., 2015]. Furthermore, sensitivity analyses are typically necessary to assess
the validity of missing data mechanism assumptions, adding an extra step to the analysis
process [Kenward and Molenberghs, 1999, Little, 2008, Kaciroti and Raghunathan, 2014,
Linero and Yang, 2018].

The aim of this thesis is to develop novel joint modelling approaches for analysing data
with multivariate missing responses based on the selection model framework [Heckman,
1976] without ignoring the missingness or imposing strict assumptions on the underlying
missing data mechanism. The original framework of Heckman [1976] was developed as
a ‘two-step’ procedure to correct for sample selection bias in univariate response data,
where the missingness process is first modelled to estimate the probability of missingness,

and these estimates are then incorporated as covariates into the response model. How-




1.1. MOTIVATION

ever, a fully joint modelling approach that simultaneously estimates both the response
and missingness process has been shown to be preferable and more efficient in likelihood-
based inferences [Puhani, 2000, Bushway et al., 2007, Galimard et al., 2018]. Our models
operate in the Bayesian paradigm extend this framework by introducing a multivariate
response structure, enabling the handling of data with missingness in multiple responses,
such as in the global Amax dataset, while addressing key limitations of existing methods.
By adopting a fully joint Bayesian modelling approach, our methods ensure that missing
data is handled without requiring strong or unverifiable assumptions about its underlying
structure. This allows for direct accommodation of all missing data mechanisms, eliminat-
ing the need for explicitly specifying the missingness mechanism or conducting separate
sensitivity analyses. Additionally, missing responses are imputed simultaneously within
the joint model, rather than requiring imputation as a separate pre-processing step.

To ensure flexibility and robustness, our models leverage Bayesian additive regression
trees (BART), a non-parametric Bayesian approach developed by Chipman et al. [2010]
which is well-suited for capturing non-linear relationships and complex interactions be-
tween covariates. Unlike traditional parametric models, BART does not require explicit
specification of interactions, as it automatically identifies and models them [Tan and Roy,
2019]. Moreover, BART is highly robust to hyperparameter selection, meaning that little
to no tuning is required, and default settings are generally sufficient for strong predictive
performance [Chipman et al., 2010, Roc¢kova and Saha, 2019].

To model multiple responses, we utilise the multivariate version of BART [Hahn et al.,
2020, Um et al., 2023, McJames et al., 2024], which extends the standard BART frame-
work to simultaneously model multiple correlated responses. While standard BART is
designed for univariate outcomes and typically requires separate models for each response,
multivariate BART enables information sharing across responses, allowing dependencies
between outcomes to be captured naturally. In addition to multivariate BART, we also
employ seemingly unrelated BART (suBART) [Chakraborty, 2016, Esser et al., 2024],
which consists of separate sets of univariate BART models for each response while explic-
itly modelling correlations between responses. Unlike multivariate BART, which imposes
shared predictor-response relationships, suBART allows each response to maintain dis-
tinct associations with covariates, providing greater flexibility in accommodating complex
covariate-response structures. This additional flexibility ensures that response-specific
patterns are preserved while still leveraging cross-response dependencies, making it par-
ticularly useful when responses exhibit heterogeneous relationships with predictors.

In terms of the missingness model, we consider three approaches. First, we propose
the parametric probit regression model for multivariate outcomes [Chib and Greenberg,
1998] which allows users to incorporate prior knowledge about the missingness mechanism

when such information is available. Second, we propose a non-parametric alternative us-
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ing multivariate probit BART, which performs automatic variable selection and requires
minimal prior specification. This makes it particularly useful in scenarios where little
is known about the missingness mechanism, allowing the model to learn relationships
directly from the data. Finally, another non-parametric approach using seemingly unre-
lated BART supports response-wise modelling, enabling missingness mechanisms to be
modelled separately for each response, as opposed to being shared across all responses as
in multivariate BART.

By integrating these features, our methods offer a robust, flexible, and principled
approach to handling missing data in multivariate response settings. Unlike standard
methods that assume a fixed missingness mechanism or rely on separate imputation pro-
cedures, our models provide a unified framework for inference and prediction, ensuring

that missing data is addressed appropriately and efficiently.

1.2 Thesis outline

The remainder of this thesis is structured as follows: Chapter 2 provides a background on
the standard BART model, including its mathematical formulation, prior settings, and
posterior computations. Additionally, we discuss probit BART, which extends BART
to binary response data using a latent variable framework. We then introduce key con-
cepts in missing data analysis, presenting missing data mechanisms both conceptually
and within a mathematical framework. This is followed by a review of common meth-
ods for handling missing data and the distinction between ignorable and non-ignorable
missingness in likelihood-based approaches. In particular, we describe the formulation
of the selection model for MNAR data, which serves as the foundation for the methods
developed in this thesis. Finally, we provide background information on the real dataset,
global Amaz, used throughout this thesis. This includes details from Maire et al. [2015] on
data collection, compilation, and analysis, as well as their key findings. We also describe
the missingness patterns observed in the response variables and discuss the challenges
they pose for analysis.

Chapter 3 presents two novel joint models, ‘missBART1’ and ‘missBART?2’, which
integrate Bayesian additive regression trees and the selection model framework to han-
dle multivariate data with missing responses, such as those found in global Amaz. Both
models jointly model the data using multivariate BART, which captures complex, non-
linear relationships among variables while introducing flexibility in the data model. The
missingness mechanism is then modelled using either multivariate probit regression (miss-
BART1) or multivariate probit BART (missBART2), allowing for a data-driven approach
without imposing strong assumptions about the missing data process. By incorporating

a fully Bayesian framework, they allow for the simultaneous recovery of MCAR, MAR,
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and MNAR data, while also imputing missing values within the MCMC setup. While the
models are designed to handle data with missingness in the response which are potentially
non-ignorable, they are also capable of accounting for ignorable missingness in the covari-
ates. The chapter begins with an overview of the models, followed by an outline of the
selection model framework and how it is adapted for missBART1 and missBART2. We
then introduce the Bayesian probit regression model for both univariate and multivariate
settings, which serves as the foundation for modelling missingness in missBART1. Next,
we formulate multivariate BART, which is used as the data model in both missBART1
and missBART2, detailing its prior specifications and model settings. We also describe
the probit counterpart of multivariate BART for binary responses, which is used as the
missingness modelling approach in missBART2. Finally, we outline both joint models,
providing a comprehensive description of their posterior sampling procedures and infer-
ence strategies for handling multivariate data with missing responses.

Chapter 4 evaluates the performance of missBART1 and missBART?2 through a series
of simulation studies, covering various missing data scenarios, and through application
to the global Amazx data. The simulation experiments include univariate response data
with non-linear MNAR missingness, bivariate data with MAR or MNAR missingness
under both linear and non-linear missingness mechanisms, and multivariate data with
MNAR missingness in the responses and ignorable missingness in the covariates. The
proposed models are compared against alternative BART-based missing data methods,
including complete-case analysis with multivariate or univariate BART as well as imputa-
tion followed by model fitting with multivariate or univariate BART. Model performance
is assessed using various error and calibration metrics, along with an evaluation of im-
putation accuracy. The challenges in assessing model performance in real-world missing
data scenarios, where the true values of missing observations remain unknown, are high-
lighted here. Finally, we apply missBART1 and missBART2 to the global Amaz dataset,
gaining insights into the underlying missingness mechanisms through posterior inferences
and variable importance analyses. The results are also compared with those from Maire
et al. [2015], highlighting key differences and improvements.

Chapter 5 extends the joint modelling framework by introducing missSUBART, a
novel approach that combines the flexibility of seemingly unrelated regression with BART,
while accounting for non-ignorable missingness in the responses. The model allows each
response to be modelled with its own set of predictors while simultaneously capturing cor-
relations between responses. Unlike missBART1 and missBART2, which impose a shared
tree structure across responses, missSUBART offers greater flexibility in scenarios where
correlated responses exhibit distinct predictive relationships by allowing separate tree
structures for each response while still modelling dependencies. We describe the seem-

ingly unrelated BART structure, detailing its prior specifications and probit extension.
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Following this, we formally introduce the missSUBART formulation, along with its pos-
terior computation details. The performance of missSUBART is then evaluated against
missBART1, missBART2, and seemingly unrelated BART using both complete cases and
imputed data. This evaluation is first conducted in a new simulated scenario, where data
and missingness mechanisms exhibit distinct outcome-predictor dependencies. We then
extend the comparison to two simulation settings from Chapter 4, further assessing the ro-
bustness and adaptability of missSUBART across different missing data structures. Next,
missSUBART is applied to the global Amaz dataset, uncovering additional insights into
both the data structure and the underlying missingness mechanisms. While missSUB-
ART introduces added flexibility, it also presents certain limitations, which are discussed
alongside potential future improvements to enhance its applicability.

Finally, in Chapter 6, we provide discussions and conclusions on the work carried out
in this thesis, offering a comprehensive reflection. The chapter begins by summarising
the key contributions, including the development of novel joint modelling approaches for
handling multivariate missing data using BART. It then discusses the theoretical and
practical implications of these methods, highlighting their advantages over traditional
missing data techniques. The chapter also addresses limitations and discusses possible

extensions for future work.




Background

This chapter gives a background on Bayesian additive regression trees (BART), miss-
ing data, and the global Amazx dataset. In Section 2.1, we introduce BART, which is a
flexible, non-parametric Bayesian regression method for capturing complex relationships
without strict functional assumptions. BART’s sum-of-trees model, Bayesian framework,
and backfitting MCMC algorithm are outlined, along with its extension to probit regres-
sion for binary outcomes. Next, Section 2.2 discusses missing data, covering the MCAR,
MAR, and MNAR frameworks as well as various handling methods. In Section 2.3, the
global Amax dataset is introduced, highlighting its plant trait, soil, and climate variables.
The dataset exhibits high missingness, particularly in the response variables, raising con-
cerns about prior analyses relying on complete-case methods. This motivates the need
for advanced missing data techniques, setting the stage for the next chapter. Finally,
Section 2.4 summarises the key takeaways from this chapter, laying the groundwork for
the development of our joint models that handle multivariate responses while accounting

for complex missingness structures.

2.1 Bayesian Additive Regression Trees

Bayesian additive regression trees (BART) is a flexible, non-parametric Bayesian regres-
sion approach introduced by Chipman et al. [2010] to model complex relationships using
an ensemble of trees. Inspired by ensemble learning methods and boosting algorithms
[Freund and Schapire, 1997, Friedman, 2001], BART approximates functions through a
sum-of-trees model, where each individual tree contributes a small portion to the overall
fit. This additive structure allows BART to capture intricate non-linear relationships and
higher-order interactions without requiring explicit specification from researchers [Spara-
pani et al., 2016, Tan and Roy, 2019]. Unlike traditional parametric regression models,
which impose rigid functional forms, BART adapts to the data, making it particularly ef-
fective in non-linear settings. Additionally, BART operates within the Bayesian paradigm,

providing full posterior distributions that allow for natural uncertainty quantification and
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more interpretable inferences than many frequentist and deterministic machine learning
methods. In its standard formulation, BART is designed for univariate response variables,
where a single outcome is modelled as a function of predictor variables. We extend this
approach to multivariate response settings in Chapter 3.

BART builds upon Bayesian CART [Chipman et al., 1998, Denison et al., 1998], a
Bayesian extension of classification and regression trees [Breiman et al., 1984], where
regularisation is achieved through a prior rather than pruning [Roc¢kova and Saha, 2019].
While Bayesian CART relies on a single tree, BART extends this approach by employing
an ensemble of weak learners, with each tree contributing only a small portion to the
overall fit. This structure prevents any single tree from dominating the model, enhancing
robustness and reducing overfitting.

Each tree in BART represents a simple stepwise function. When combined, they
approximate smooth, non-linear functions with minimal user intervention. This ability
to automatically detect interactions and complex patterns makes BART especially use-
ful when the underlying relationships between predictors and outcomes are unknown or
difficult to model explicitly. The model is invariant to monotone transformations of pre-
dictor variables, eliminating the need for extensive data preprocessing [Chipman et al.,
2010]. Furthermore, BART is robust to hyperparameter selection, requiring minimal tun-
ing compared to many machine learning algorithms [Roc¢kova and Saha, 2019]. BART
is implemented through a Bayesian backfitting Markov chain Monte Carlo (MCMC) al-
gorithm [Hastie and Tibshirani, 2000], efficiently estimating the posterior distribution of
the regression function while accounting for prediction uncertainty. The methodology
is widely accessible through R-package implementations, such as BART [Sparapani et al.,
2021b] and dbarts [Dorie, 2024], which facilitate its application across various fields.

Since its introduction, BART has demonstrated remarkable success across diverse ap-
plications. Empirical studies highlight its effectiveness in various domains: Chipman et al.
[2010] introduced BART and showed its superiority over traditional methods in handling
complex, non-linear regression problems; Hill [2011] applied BART to causal inference,
demonstrating robust treatment effect estimation compared to propensity score matching
and other approaches; Bleich et al. [2014] used BART for gene regulation analysis, where
it outperformed lasso regression in identifying key predictors; Sparapani et al. [2016] ex-
tended BART to survival analysis, outperforming the Cox proportional hazards model
by flexibly modelling hazard functions; Linero and Yang [2018] introduced a version of
BART with sparsity-inducing soft decision trees, where decision rules within the trees are
treated as probabilistic; Prado et al. [2021] developed local linear predictors at BART’s
terminal nodes, reducing the number of trees needed without sacrificing performance;
and Murray [2021] applied BART to count and categorical data, where it outperformed

generalised linear models in cases where parametric assumptions were violated.
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Beyond its empirical success, BART’s theoretical foundation has been rigorously stud-
ied. Rockova and Van der Pas [2020] established posterior convergence guarantees, rein-
forcing BART’s reliability in predictive modelling. Additional theoretical advancements
have also been made by Linero and Yang [2018], and Rockova and Saha [2019], who ex-
plored various aspects of BART, including Bayesian regularisation, theoretical properties
of tree ensembles, and posterior contraction rates. In Tan and Roy [2019], a comprehensive
tutorial on BART’s theoretical underpinnings and practical implementation is provided.
This work also introduced a generalised BART framework, which discussed several ex-
tensions, including semi-parametric models, methods for handling clustered data with
repeated measurements, and statistical matching problems, further expanding BART’s

scope.

2.1.1 BART Model Setup and Priors

From Chipman et al. [2010], given a fully observed dataset with n observations, suppose

the relationship between a univariate outcome Y and covariates X can be represented by

K ..
= X oK Qo) v« RN (0,771,
where i = 1,...,n, K is the total number of decision trees used in the ensemble, T is the

kM decision tree, Qy, is the set of terminal node parameters in tree k, 7 is the residual
precision parameter, and g(-) is the function which assigns the parameters from Qj to
X;. In other words, g(-) represents the contribution of a single tree towards the overall
sum-of-trees model. We note that in the original work from Chipman et al. [2010], a
residual standard deviation o is specified instead of the residual precision 7.

The posterior distribution of the BART model, given the data Y, takes the form

p((,Tlan)a"'v(TfﬁQK)vT|Y) O(ﬁp(Y;| (ﬂle)a""(TKaQK)7T)

i=1

Hpﬁ (Qk | T) | x p(1).

The prior for each tree Ty, p(7Tx), is fundamental to ensuring regularisation and pre-
venting overfitting. It directly influences both tree depth and the probability of variable
selection at each split. Following the specifications of Chipman et al. [2010] and the re-
finements from Tan and Roy [2019], the tree prior p (7y) consists of three key components:
the probability of a node being non-terminal, the selection of a covariate for splitting, and

the choice of a split value given the selected covariate.
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First, the probability that a node at depth d will split is given by
pspLiT(d) = a(l +d) 77,

where o € [0, 1] governs the overall likelihood of node splits, and 5 > 0 controls tree
depth. Larger values of 5 discourage deep trees by penalising excessive splitting, thereby
promoting regularisation and improving model convergence. By default, Chipman et al.
[2010] use a default of @ = 0.95 and § = 2. The resulting tree structure for tree 7 has
probability

[Tol+d) P T] [1—a(t+d) 7],

i l
where £ is the terminal node index and ¢’ is the non-terminal node index within tree k.

Secondly, for each node selected for splitting, a covariate must be chosen to define the
split. By default, this selection follows a discrete uniform prior, where each covariate is
chosen with equal probability from the set of available covariates, ensuring that no single
variable is inherently favoured over others. However, in some cases, adaptive priors can
be introduced to promote more informative predictors [Bleich et al., 2014, Linero, 2018].
Finally, once a covariate has been selected, a split point must be determined to partition
the data. The split value is typically chosen uniformly from the set of unique observed
values for the selected covariate.

Within each tree 7, each terminal node contains a parameter g, € Q. A normal
prior pre | T ~ N(ptp, 77 1) is assigned to s and the hyperparameters p,, and 7, are
calibrated based on the data. More specifically, Chipman et al. [2010] describe the strategy
of eliciting this prior by first scaling and then shifting the data Y such that each response
falls in the range [—0.5,0.5]. It is then reasonable to set y,, = 0. The prior precision 7,
is calibrated based on some prior probability p,, that E(Y; | X;) falls inside this rescaled

interval and is thus obtained through solving

K
—o7 Y (p,) =05, p,€(0,1].

Ty

The default setting used by Chipman et al. [2010] is p, = 0.95.

For the residual precision parameter 7, a conjugate gamma prior with the shape and
v VA
2072
on the shape of the prior curve. Chipman et al. [2010] explored a range of values and

rate parameterisation is assigned, i.e. 7 ~ Ga( ). A value for v is first chosen based
selected a default value of 3. Next, a rough data-based under-estimate 7 is obtained,
either via the sample precision or the estimated residual precision from a least squares
linear regression model, with the latter being our default. With the assumption that the

BART model estimates a residual precision 7 at least as large as the rough estimate 7
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with prior probability p,, the hyperparameter A can be obtained from

P(r>7)=p;, prel0,1],

after selecting appropriate values for v and p,. The default setting for p,; from Chipman
et al. [2010] is 0.9.

2.1.2 Posterior Computation

One of the important features implemented in BART for posterior sampling and inference
is the Bayesian backfitting MCMC algorithm from Hastie and Tibshirani [2000]. The full
conditional distribution of (7%, Q%) takes the form

(7767 Qk) ‘ 72—]&')7 Q(—k) » T Ya

where T(_y) and Q_y) are the sets of K —1 trees and terminal node parameters obtained

by excluding the k*" tree. By computing the partial residuals

=Y - g(X;T,Q:),
v

it is only necessary to make draws of (T, Q) from (T, Qk) | rr, 7 followed by a draw
of 7 from 7| (T1,Q1),- .., (Tk,QK), Y. This implies that the trees can be fit iteratively,
updating the structure of the k*" tree independently of all other K — 1 trees.

To update each tree structure 7k, a Metropolis-within-Gibbs sampler [Hastings, 1970,
Geman and Geman, 1984] is employed. Given the current tree T;_; j, a new tree Ty is

proposed by applying one of the following moves:
« GROW: Splitting a terminal node into two child nodes.
« PRUNE: Removing a split, merging two child nodes back into a terminal node.
e CHANGE: Modifying an internal split rule while maintaining the tree structure.
e SWAP: Exchanging the positions of two split rules within the tree.

The proposed tree T;j is accepted with probability given by the Metropolis-Hastings

acceptance ratio

p(Teg | vr,7)q (Tew = Tim1 k)
P (T—1k |t 7) @ (Ti—1.6 — Tik)

where p (T | ri, 7) = p(Tk) [ (k| Tk, Qk, T)D(Qk | T )dQy.. Further details on this and the

computation of the transition probabilities can be found in Kapelner and Bleich [2016].
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Next, independent draws of ugs can be obtained, where the posterior distributions
follow a normal form due to the conjugate prior. Similarly, posterior draws of 7 are

sampled from a gamma distribution, also arising from conjugacy.

2.1.3 Probit BART

The original work by Chipman et al. [2010] also introduced the BART model for binary
outcomes by incorporating the data augmentation scheme for Bayesian probit regression
from Albert and Chib [1993], which we discuss in more detail in Chapter 3. The key idea

is to introduce a latent continuous variable Y*, which is modelled as
K "
k=1

The observed binary outcome Y; is then obtained via

i =

0 ifY*<0
1 ify >0.

This formulation mirrors the classical probit regression model, where the probability that

Y; = 1 follows a standard normal cumulative distribution function

Pr ( _1‘X7,7TQ (ngla,]?ka))

k=1

where (T, Q) is the collection of K trees and all corresponding terminal node parameters.

While the prior settings for p(7x) remain unchanged, a few minor modifications allow
posterior computation to closely resemble that of the continuous outcome version. In the
standard BART regression model, Chipman et al. [2010] scaled the continuous response to
the range [—0.5,0.5] and adjusted the prior mean and precision on p(pge | 7x) accordingly
(Equation ) However, in the probit BART setting, the latent variables Y* are
assumed to mostly fall within the range [—3,3]. Thus, while p,, remains fixed at 0, 7, can
be calibrated using the same approach as in Equation , replacing 0.5 with 3.

Unlike in the standard continuous response BART model, the sampling of 7 is no
longer required as it is assumed to be known and fixed at 1. Next, the partial residuals
for the k' tree are calculated as Y* — D4k Y (X;T:, Q). Each latent variable is sampled

from a truncated normal distribution:

}/l*‘}/l)TaQNTN (Z XZ)E?Q/C 1 71)7
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where the truncation points ; are determined by Y; such that v; = [0,00) if ¥; = 1 and
vi = (—00,0] if ¥; = 0.

2.2 Missing Data

Missing data is a fundamental challenge in statistical analysis and predictive modelling,
occurring across diverse disciplines, including clinical research, economics, social sciences,
and environmental studies. It can arise for various reasons, such as non-response in
surveys, dropout in longitudinal studies, instrument failures in experimental research, or
data entry errors in administrative records.

Traditionally, many statistical methods assume that missing data occurs completely
at random or follows a predictable pattern that can be inferred from observed data. How-
ever, these assumptions are often unrealistic, and failing to account for the missingness
mechanism itself can introduce bias and lead to misleading conclusions.

To formally define missing data mechanisms and the challenges they present, partic-
ularly in a regression context, we introduce the following notation. Let Y denote the
partially observed response variable(s), with missing values occurring in some entries.
The missing data indicator is represented by M and equals 1 if the response is observed
and 0 if the response is missing. Additionally, let X be a set covariates used to predict Y.
We assume here that X is fully observed. Finally, 8 and v represent model parameters

for Y and M, respectively.

2.2.1 Missing Data Mechanisms

The concept of missing data mechanisms was originally introduced by Rubin [1976], pro-
viding a formal framework for understanding the relationship between missing data pat-
terns and measured variables. This framework is essential in determining the validity
of statistical analyses and guiding the selection of appropriate missing data handling
techniques. Incorrect assumptions about the missingness mechanism can lead to biased
estimates and misleading inferences [Van Buuren, 2018].

Rubin’s classification distinguishes between three fundamental types of missing data
mechanisms: missing completely at random (MCAR), missing at random (MAR), and
missing not at random (MNAR). Data are said to be missing completely at random
(MCAR) if the probability of missingness is entirely independent of both observed and

unobserved data. This can be expressed as
PM|X,Y,4)=PM| ).

Under MCAR, missingness occurs purely by chance, and the observed data can be con-
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sidered a random subsample of the full dataset [Baraldi and Enders, 2010]. A common
example of MCAR is when missingness results from random technical failures, for instance,
if a weighing scale runs out of battery, causing measurements to be missing [Van Buuren,
2018]. If data are MCAR, the probability of data being missing is uniform across all
cases, signifying that missingness is entirely independent of the observed data. While this
assumption is conceptually straightforward, it often proves to be overly simplistic and
unrealistic in real-world scenarios.

Under the missing at random (MAR) mechanism, the probability of missingness de-

pends only on observed variables but not on the missing values themselves:
PM|X,Y) = P(M|X, ).

This assumption allows missingness to be explained by fully observed covariates, making
MAR less restrictive than MCAR and more realistic in many practical settings. An
example of MAR is found in survey research. Consider a study where participants are
asked their age and how often they smoke cigarettes. As teenagers may be more likely
to withhold their smoking habits due to fear of repercussions, missingness in the smoking
variable is explained by the observed age variable. Since missingness is not directly related
to the smoking variable itself, this scenario satisfies the MAR assumption [Marcelino et al.,
2022]. MAR is a more realistic representation of many practical situations and serves as
the underlying assumption for the majority of methods designed to address missing data.
Acknowledging the potential relationship between missingness and the observed data,
MAR allows for more nuanced strategies in handling and imputing missing values.

Finally, data are missing not at random (MNAR) when the probability of missingness
depends on the missing values themselves, even after conditioning on observed data. In
other words, missingness is directly related to unobserved information, and ignoring the
missingness mechanism can lead to severe bias [Little and Rubin, 2019]. A classic example
of MNAR occurs in medical research, where individuals may decline to take an HIV test
due to concerns about potential stigma, particularly among those who suspect they might
test positive [Marra et al., 2017].

2.2.2 Existing Methods for Handling Missing Data

A variety of methods exist for handling missing data, with the choice of approach largely
depending on the assumed missingness mechanism. Some key resources that provide
comprehensive overviews of these methods include Baraldi and Enders [2010], Van Buuren
[2018], Little and Rubin [2019], and Marcelino et al. [2022].

Before selecting an appropriate missing data method, it is often useful to identify

and explore missing data patterns. R packages such as naniar [Tierney and Cook, 2023]
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and VIM [Kowarik and Templ, 2016] offer comprehensive visualisation tools, including
histograms, heatmaps, and shadow matrices (which create an auxiliary binary represen-
tation of the dataset indicating observed and missing values). mice [Van Buuren and
Groothuis-Oudshoorn, 2011] and mi [Gelman and Hill, 2011] provide functions for sum-
marising missingness distributions and assessing imputation diagnostics, while ggmice
[Oberman et al., 2022] enhances mice by generating visualisations tailored to its work-
flows.

The MCAR assumption, though rare in practice, allows for relatively simple methods
such as complete-case analysis, where only observations with no missing values are used
in the analysis. While straightforward, this approach often leads to a loss of efficiency due
to reduced sample size, a problem that is particularly pronounced in multivariate settings,
where differing missingness patterns across variables can result in the removal of many
observations even when some variables remain observed. An alternative is available-case
analysis, which utilises all available data for each variable, although this can result in
inconsistencies if different sample sizes are used across analyses. Another approach under
the MCAR assumption is mean imputation, where missing values are replaced with the
mean of the observed values for that variable, though this method can distort variance and
underestimate uncertainty. More sophisticated approaches include hot-deck imputation,
in which missing values are replaced by observed values from similar units in the dataset,
maintaining some level of variability in the imputed data.

When the MCAR assumption is violated but MAR is reasonable, the expectation-
maximisation [EM; Dempster et al., 1977] algorithm is a well-known classical approach for
handling MAR data, using an iterative process to compute maximum-likelihood estimates.
More recently, imputation strategies such as model-based imputation, regression impu-
tation, multiple imputation [Van Buuren, 2018|, and multivariate imputation by chained
equations [MICE; Azur et al., 2011, Van Buuren and Groothuis-Oudshoorn, 2011, Little
and Rubin, 2019] are commonly used, leveraging available data to make educated guesses
about the missing values. A variety of single and multiple imputation methods are avail-
able in R. For example, the mice package implements MICE, simputation [van der Loo,
2022] provides a flexible interface for various model-based and regression-based imputa-
tion techniques, and VIM includes several classical imputation methods. Another notable
method is missForest [Stekhoven and Biihlmann, 2012}, which is a non-parametric miss-
ing value imputation technique using random forests [Breiman, 2001] to impute datasets
containing variables of mixed type.

As well as imputation strategies, advanced modelling techniques offer alternative ap-
proaches for handling missing data without explicit imputation. CART models [Breiman
et al., 1984] address missing values through surrogate splits, where a correlated variable

is used as a substitute when a splitting variable is missing. In Tierney et al. [2015],
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boosted regression trees [Elith et al., 2008] and CART models were used to explore miss-
ingness patterns, identifying influential variables in the missingness model to understand
the missingness structure.

Additionally, methods such as BARTm [Kapelner and Bleich, 2015] and XGBoost [Chen
and Guestrin, 2016] can accommodate missing values—albeit only in the covariates, and
only with univariate responses—without requiring pre-processing steps to fill in missing
data. During model training, BARTm utilises available cases while incorporating missing
covariates directly into the tree-splitting rules. Similarly, XGBoost leverages available
data for model training and treats missing covariates as a distinct category during split
decisions within its boosting framework.

While methods designed for MAR have been effective in handling MCAR data, there
is little evidence to suggest that they can adequately address MNAR mechanisms. Al-
though multiple imputation can still be applied in MNAR settings (see Galimard et al.
[2016, 2018]), its effectiveness depends on correctly specifying the missingness mechanism,
though this is rarely undertaken in practice [Tierney et al., 2015]. When the missing data
mechanism is misrepresented, standard imputation approaches may introduce bias rather
than mitigate it. Handling MNAR data requires careful consideration and often involves
more complex modelling techniques, as the probability of missingness depends directly
on unobserved values. Unlike MCAR and MAR, where missingness is either random
or conditionally independent of missing values given observed data, MNAR introduces
a systematic relationship between missingness and the unobserved information. Conse-
quently, failing to account for the missingness mechanism can result in biased estimates
and misleading conclusions.

When obtaining additional data to reduce the extent of MNAR missingness is infea-
sible, model-based approaches that explicitly account for the missingness process become
necessary. Two of the most widely used frameworks for addressing MNAR are the pattern-
mixture model [Glynn et al., 1986, Little, 1993] and the selection model [Heckman, 1976],
as outlined in Little and Rubin [2019]. These methods differ in how they factorise the joint
distribution of the partially observed responses and their missingness indicators, denoted
as p(Y,M| X, 6, 1). A comprehensive review of methods for handling MNAR-type data
is provided in Tang and Ju [2018].

In the pattern-mixture model, the joint distribution is factorised into
p(Y.M|X,0,9) = p(Y | M,X,0)p(M| X, ).

The data are first stratified based on their missingness patterns, and then the response
is modelled based on the specific missingness patterns. This method is advantageous for

investigating differences in the response distributions across distinct missing data pat-
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terns, and may be insightful for exploring the sensitivity of inferences to different missing
mechanism assumptions [Michiels et al., 1999]. However, pattern-mixture models often
encounter under-identifiability issues, necessitating the imposition of model restrictions
or the incorporation of prior information [Little, 1993, Thijs et al., 2002, Little, 2008].

In contrast, the selection model factorises the joint distribution into
p(Y,M|X,0,9) =p(Y | X, 0)p(M|X, Y, ¢),

formulating the response model separately from the missingness mechanism, followed
by modelling the missingness probabilities given the response. This approach directly
estimates parameters related to the full population of interest and reflects the natural
order of events where the response occurs before missingness is introduced [Little, 2008].

Originally introduced by Heckman [1976], the selection model framework has been
widely used in various applications. A notable example is the ‘Heckit’ model, which spec-
ifies a parametric linear regression for modelling a univariate response while the missing-

ness indicator is modelled using probit regression. This can be formulated as

Vi|X,0=b'X;+e, ~NO7T
Pr(M; = 1| X, Y;, ) = (6 + 04X + 6y Vi),

where b represents the vector of parameters in the linear data model, 7 is the residual
precision, and (dg, dx,dy) are probit regression coefficient parameters for the intercept,
the covariates and the response, respectively.

Equation represents the probability that the i*" value of the response is observed,
i,e. M; = 1. When dx = 0 and dy = 0, the missingness probability only depends on
do and not on the observed or missing data, characterising an MCAR scenario. When
0y = 0, the probability of the response being missing does not depend on its own value
but may still be related to the observed covariates, thus representing a MAR scenario.
However, if 8y # 0, the missingness of the i value of the response depends on its own
(potentially missing) value, leading to an MNAR, mechanism.

The selection model is not limited to univariate responses, nor is it limited to these
parametric forms. In principle, any appropriate model can be employed for both the
response and missingness mechanism. Next, while the Heckit model was originally im-
plemented using a ‘two-step’ process, a joint modelling approach which simultaneously
estimates the response and missingness has been shown to be preferable in many cases
[Puhani, 2000, Bushway et al., 2007, Galimard et al., 2018].

Furthermore, as demonstrated earlier, the selection model explicitly incorporates the

missingness mechanism as a function of both the observed and missing data. In likelihood-
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based inference, when the missing data mechanism is MCAR or MAR, the missingness
process is ignorable, meaning that the missingness model does not need to be explicitly
modelled since it is independent of the partially observed responses. Conversely, when
the data are MNAR, the missingness mechanism is non-ignorable, as inferences about the
missing values depend directly on the missingness model and failing to account for this
dependence leads to biased results.

However, while assuming ignorable missingness simplifies inference, recent work by
Linero [2024] highlights challenges in fully ignoring the missingness process, particularly in
high-dimensional and non-parametric Bayesian models. This reinforces the need for joint
modelling techniques that account for selection bias while avoiding restrictive assumptions

about ignorability.

2.3 global Amax Data

The global Amax dataset, originating from Maire et al. [2015], is a comprehensive collec-
tion of data that links plant traits, soil properties, and climate variables from multiple
sources to analyse their effects on leaf photosynthetic traits and rates. It builds upon
the ‘Glopnet’ dataset from Wright et al. [2004] and expands it by integrating additional
datasets to provide a global perspective on how environmental factors shape photosyn-
thetic capacity across diverse ecosystems.

Following pre-processing, the final dataset analysed by Maire et al. [2015] consists
of 46 fully observed covariates and five response variables, which exhibit high levels of
missingness with varying missingness patterns. Notably, fewer than 10% of observations
are complete cases, making missing data a significant challenge. Despite this, the original
study did not provide much details on how missing data were handled, apart from briefly
mentioning the exclusion of a response variable, suggesting a reliance on complete-case
analysis.

As discussed previously, even under the MCAR, assumption, complete-case analysis
leads to substantial information loss, particularly in this case, where over 90% of the
data may be discarded due to overlapping missingness patterns. Moreover, the response
variables are likely to be correlated, and non-linear relationships may exist, thus high-
lighting the need for robust joint modelling approaches that can account for multivariate
dependencies, capture non-linearity, and handle missing data flexibly without imposing
strong, unverifiable assumptions about the missingness mechanism. Here, we describe the
compositions and characteristics of the global Amax dataset based on information from
Maire et al. [2015], summarise key findings from the original analysis, and finally examine
the missingness patterns in the response variables, highlighting the challenges posed by

their complexity.
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2.3.1 Dataset Composition and Characteristics

The dataset consists of 2400 species-site combinations, covering 288 sampled sites and
1509 species from 165 plant families. It includes a wide range of plant types, such as
trees, shrubs, herbs, grasses, ferns, and vines, with varying physiological and pheno-
logical traits. The dataset compiles observations from numerous studies, harmonising
measurement protocols to ensure comparability. However, given the scale of integration,
some standardisation challenges remain, particularly in reconciling differences in sampling
methods across sources.

Three main components define the dataset: trait data, soil data, and climate data.
The trait data primarily come from Glopnet, supplemented by additional georeferenced
observations. The key measured traits include photosynthetic capacity (Aarea), stomatal
conductance (Gs), leaf nitrogen and phosphorus content (Narea and Parea), and specific
leaf area (SLA). These traits provide a mechanistic link between photosynthetic efficiency,
nutrient investment, and environmental adaptation in plants. The soil data include 20
soil variables related to soil structure, texture, ion exchange capacity, and macronutrient
content. These were extracted from SoilGrids [ISRIC, 2013], the Harmonized World Soil
Database [FAO et al., 2012], and the ISRIC-WISE dataset [Batjes, 2012], covering param-
eters such as organic matter content, pH, cation exchange capacity, nitrogen content, and
available phosphorus. The climate data comprise 26 variables, including temperature,
precipitation, sunshine duration, relative humidity, and aridity, primarily derived from
the Climatic Research Unit (CRU) dataset [New et al., 2002]. Additionally, various bio-
climatic indices such as global radiation, total annual incident radiation, and equilibrium
evapotranspiration were calculated. Aridity was quantified using the soil moisture index,
which represents the ratio between precipitation and potential evapotranspiration.

Despite its extensive coverage, the dataset has some limitations. Certain ecosys-
tems, such as high-latitude boreal forests, extreme deserts, and alpine regions, are under-
represented, potentially limiting its applicability in those regions. Furthermore, while
soil data were primarily derived from interpolated global datasets, rather than direct
measurements at every site, certain soil variables (e.g., phosphorus availability) required
conversion factors to harmonise extraction methods, potentially introducing minor errors.
Similarly, climate data for many sites were interpolated from CRU gridded datasets, which
may not fully capture fine-scale microclimatic variation. These limitations underscore the

need for expanded field measurements and enhanced spatial resolution in future research.

2.3.2 Previous Analysis and Findings

In Maire et al. [2015], the final global Amaz dataset was analysed by treating variables in

the leaf trait dataset, i.e. SLA, Aarea, Narea, Parea, and Gs, as response variables, while
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soil and climate properties served as model predictors. The responses and covariates
are listed along with their descriptions and measurement units in Tables 2.1 and 2.2
respectively. A log-transformation was applied to the responses to account for right-
skewness. The analysis aimed to disentangle the relative contributions of soil and climate

factors to plant photosynthetic traits.

Responses | Description Unit

SLA Specific leaf area cm? g

Aarea Light-saturated photosynthetic carbon assimilation | pmol m=2 s=!
per unit leaf area

Narea Leaf nitrogen content per unit leaf area gN m™

Parea Leaf phosphorus content per unit leaf area gP m™2

Gs Stomatal conductance to water vapour mmol m™? st

Table 2.1: List of response variables included in the global Amax dataset along with descriptions and
measurement units.

Covariates | Description Unit

ALU Exchangeable aluminium percentage % of ECEC

AWHC Available water holding capacity (-33 to -1500 kPa; | mm m™!
USDA standard)

BULK Bulk density kg dm™

CARB Calcium carbonate content g kgt

CECC Cation exchange capacity of clay size fraction, cor- | cmolt kgt
rected from contribution of organic matter

CECS Cation exchange capacity cmolc kg™

CLAY Clay content Yowt

CN CN ratio gC gN-!

Corg Organic carbon content gC kgt

DEPTH Depth to the parent rock cm

GRAVEL Gravel content %owt

MIF Moisture index (MIF = PPTmean / PETF) mm mm-*

MIQ Moisture index (MIQ = PPTmean / PETQ) mm mm-*

Ntot Total nitrogen content gN kgt

PAR Cumulative photosynthetically active radiation with | W m™
daily temperature above 0 °C (PARO) or 5°C (PARS5)
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Pavail

PETF

PETQ
pH

PPTev
PPTmax
PPTmean
PPTmin
PPTseason
RAD

RH

SALT

SAND
SBA
SILT
SODIUM

SUNmax
SUNmean
SUNmin
SUNrange
TBA
TMPgs
TMPiso
TMPmax
TMPmean
TMPmin
TMPnb

TMPrange

Available soil phosphate content

Potential evapotranspiration (Penman Monteith

equation)

Equilibrium evapotranspiration (Prentice equation)
Soil pH measured in HoO solution

Coefficient of variation of monthly precipitation
Maximum monthly precipitation

Mean annual precipitation

Minimum monthly precipitation

Seasonality of precipitation

Global radiation

Relative humidity

Salinity measured by the electrical conductivity of
the soil

Sand content
Base saturation as percentage of CECS
Silt content

Sodicity measured by the exchangeable sodium per-

centage

Maximum monthly fractional sunshine duration
Mean annual fractional sunshine duration

Mean monthly fractional sunshine duration
Range of monthly fractional sunshine duration
Total exchangeable bases

Cumulative daily temperature above 0°C or 5°C
Isothermality

Maximal monthly temperature

Mean annual temperature

Minimal monthly temperature

Number of days with daily temperature above 0°C
or 5°C

Mean diurnal temperature range

mgP,0;5 kgt

mm month!

mm month!

0-14

0-1

W m™
%

dS m™!

Yowt

%

Yowt

% of ECEC

%
%
%
%
cmol kgt
°C
°C
°C
°C
#

°C

Table 2.2: List of covariates in global Amaz along with descriptions and measurement units.
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The original analysis began with defining key dimensions of soil fertility and quantify-
ing their relationships with leaf traits using mixed regression models. Both quadratic and
linear models were fitted, with site and species included as random intercepts to account
for the hierarchical structure of the data. Next, stepwise multiple mixed regression models
were applied to identify the most influential soil and climate variables for each trait. From
an initial set of 26 climate and 20 soil variables, up to four key predictors were selected
based on the Akaike information criterion to optimise model simplicity while maintaining
predictive accuracy.

To distinguish unique and joint effects of soil and climate, variation partitioning and
Venn diagrams were used. This method decomposed trait variation into components
uniquely explained by soil, uniquely explained by climate, or jointly influenced by both.
The unique effect of each factor was quantified by comparing adjusted 72 values between
full and partial models. Additionally, redundancy analysis was performed to assess how
well the matrix of leaf traits could be explained by soil and climate variables. However,
due to its smaller sample size, Parea was excluded from this step. Finally, path analysis
was conducted to disentangle the direct and indirect effects of soil, climate, and leaf
traits on photosynthetic capacity. This technique modelled causal relationships among
Aarea, Gs, Narea, SLA, and key environmental drivers, helping to clarify the underlying
mechanisms governing trait—environment interactions.

The analysis yielded several key findings. Apart from SLA, soil properties were found
to have more significant influence on leaf traits as compared to climate properties. No-
tably, Aarea, Narea, and Parea increased with pH and decreased with increasing Mig,
whereas Gs declined with increasing Pavail. The study revealed that joint effects of soil
and climate were dominant for Narea and Parea, while soil alone was the primary driver
of Aarea and Gs. Three key environmental variables emerged as the most influential
for photosynthetic rates: pH, Pavail, and Mig. These insights contribute significantly to
understanding how plant photosynthesis varies globally in response to soil fertility and
climate constraints.

The scatterplots and LOESS curves in Figure 2.1 show the key relationships identified
in Maire et al. [2015] between the covariates and some of the log-transformed observed re-
sponses, specifically pH and log(Narea) in Figure 2.1a, Miq and log(Parea) in Figure 2.1b,
and the log-transformed Pawvail and log( Narea) in Figure 2.1c. Note that the log transfor-
mation of Pavail is applied here for visualisation purposes only, but is not necessary in our
analyses. While Narea appears to increase with pH and Gs decreases as Pavail increases,
the LOESS curves suggest a degree of non-linearity in these relationships. Additionally,
despite the limited number of observed Parea values, a non-linear trend emerges as Mig
increases in Figure 2.1b. These observations suggest that the analysis of the global Amax

dataset may benefit from models capable of capturing non-linear relationships.
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log(Narea)

log(Parea)

(a) Scatterplot and LOESS curve of the observed
log(Narea) values against pH showing a potential non-

linear trend.

Miq

(b) Scatterplot and LOESS curve of the observed
log(Parea) values against Mig showing a potential non-

linear trend.

0.0 2.5

Iog(i:’avail)

5.0

(c) Scatterplot and LOESS curve of the observed
log(Gs) values against log(Pavail), showing a non-linear
decreasing trend.

Figure 2.1: Scatterplots and LOESS curves showing the relationships between observed values of some
log-transformed response variables and key variables identified in Maire et al. [2015]. Potential non-linear
trends can be observed, especially in the relationship between Parea and Migq.

2.3.3 Missing Data in global Amax

While the covariates in global Amaz were completely observed, the response variables

exhibit substantial levels of missingness, with only 217 complete cases among 2368 ob-

servations (= 9.16% completeness). The missing data patterns vary considerably across

traits, as illustrated in Figure 2.2. Among the five response variables, Aarea is mostly
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complete, with only 12 missing cases (= 0.5%), while SLA and Narea show moderate
missingness levels, with 433 (&~ 18.29%) and 652 (=~ 27.53%) missing cases, respectively.
In contrast, Gs and Parea exhibit the highest missingness, with 1353 (~ 57.14%) and
1836 (= 77.5%) missing cases, respectively.

Parea

3 3
5 3 3
< " z

Gs

5

12 433 652 1353 1836 4286

Figure 2.2: Missingness patterns for the global Amaz response variables with blue boxes indicating ‘ob-
served’ and red boxes indicating ‘missing’. Missingness is present in the 5 response variables, while the
46 covariates are fully observed. Column labels at the top show the response variables. Row labels on
the left show the number of cases exhibiting the unique missingness patterns. Row labels on the right
indicate the total number of missing variables within that pattern. Column labels on the bottom depict
the number of cases where each variable is missing.

Despite the significant proportion of missing responses, Maire et al. [2015] provided
limited details on how missingness was handled in their analyses. The redundancy anal-
ysis performed in their study briefly noted the exclusion of Parea due to its small sample
size. This suggests that their approach primarily relied on complete-case analysis. How-
ever, even with Parea excluded, the number of complete cases would still amount to 780

observations, which is only 33% of the total dataset.
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The high degree of missingness in Parea as well as Gs is likely a consequence of the
compilation process of the global Amaz dataset. Since Aarea is a key photosynthetic
trait, it is often prioritised in the data collection process, leading to its relatively low
missingness. Traits such as SLA and Narea are frequently quantified in conjunction with
Aarea, resulting in their relatively low missingness. In contrast, Parea and Gs may be
less frequently measured due to their more complex or less standardised measurement
protocols, contributing to their higher missingness levels.

Since missingness in the responses is likely influenced by data collection priorities
and measurement complexities, the MCAR, assumption is unrealistic. While assuming
MAR may be reasonable, it requires that missingness in each response variable is solely
explained by the observed covariates and that missingness in one response is independent
of the values of other responses. This assumption is appealing, as it allows for the use of
numerous MAR-based methods, but if the true missingness mechanism is MNAR, such
methods can lead to biased estimates and misleading conclusions.

Figure 2.3 presents violin plots illustrating how the missingness of one response vari-
able relates to the observed values of another. These relationships highlight the impacts
of partial missingness, whereby some responses are observed when others are not, and
behave differently depending on the missingness of other responses. In Figure 2.3b, when
SLA is missing, Parea—the response with the highest missingness—tends to be observed
at higher values. Similarly, in Figure 2.3a, Gs tends to be lower when Parea is observed,

whereas higher values of Gs are more frequently observed when Parea is missing.

-24

log(Parea)
log(Gs)

—44

Mislsing Obselrved Mislsing Obsérved
M(SLA) M(Parea)

(a) When SLA is missing, Parea—the response with the (b) Gs tends to be lower when Parea is observed, whereas

highest missingness—tends to be observed at higher val- higher values of Gs are more frequently observed when
ues. Parea is missing.

Figure 2.3: Violin plots showing the observed values of responses against the missingness others.
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This is further illustrated in Figure 2.4, which presents scatterplots of the overlapping
observed values for the log-transformed SLA—Narea and Aarea—Gs pairs. Rug plots are
included, depicting values that are present but excluded from the scatterplot due to
missingness in the opposing response variable. In Figure 2.4a, roughly 70.8% of the
observed cases between SLA and Narea overlap. When SLA is missing, higher values
of Narea are still present but are not included in the scatterplot. In Figure 2.4b, only
a single Gs value was removed from the scatterplot due to missing Aarea. However,
because G's has high levels of missingness, the resulting scatterplot contains significantly
fewer observed values of Aarea. Consequently, a substantial portion of Aarea values are
missing across the entire range, including lower values that fall below those displayed in
the scatterplot (i.e., log(Aarea) < 0).

Furthermore, Figure 2.4 also shows strong correlations between response pairs. SLA
and Narea appear to be negatively correlated, while Aarea and Gs exhibit a strong positive
correlation, suggesting that modelling responses independently could overlook important
dependencies, potentially leading to a loss of information. A joint modelling approach
that simultaneously accounts for multivariate responses and missingness can better cap-
ture these correlations while remaining flexible to different missingness mechanisms. By
jointly modelling both the responses and the missingness process, such models can improve
inference, enhance imputation accuracy, and potentially uncover additional relationships,

providing insights that would be lost if missingness were ignored.

log(Narea)
log(Gs)

3 4 5 6 -1 0 1 2 3 4
log(SLA) log(Aarea)

(a) Scatterplot of Narea against SLA. 1677 points (= (b) Scatterplot of Gs against Aarea. 1014 points (=
70.8%) are shown here. These responses appear to be 42.8%) are shown here. These responses appear to have
negatively correlated. strong positive correlation.

Figure 2.4: Scatterplots of observed pairs of log-transformed responses showing strong positive and neg-
ative correlations. Rug plots depict values that are available but excluded from the scatterplot due to
missingness in the opposing response variable.
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2.4 Discussion

This chapter provided a foundational background on Bayesian additive regression trees
(BART), missing data mechanisms, and the global Amaz dataset, all of which are central
to the development of the methods introduced in later chapters. We first reviewed and
characterised BART as a flexible, non-parametric Bayesian approach for regression and
binary classification, highlighting its ability to model complex relationships without re-
quiring explicit functional form specifications. We also discussed key prior settings, the
Bayesian backfitting MCMC algorithm, and extensions such as probit BART for binary
outcomes.

Following this, we explored fundamental concepts of missing data, categorising them
into MCAR, MAR, and MNAR mechanisms, and examining their impact on statistical in-
ference. A review of existing missing data handling techniques was presented, noting their
strengths and limitations, particularly in cases where missingness may be non-ignorable
(MNAR). Particular attention was paid to the selection model framework, on which our
methods are based. Finally, the global Amax dataset was introduced as a motivating
example, illustrating the challenges posed by high levels of missingness in the response
variables and underscoring the need for advanced modelling techniques beyond standard
complete-case analysis or imputation methods.

By integrating BART with the selection model framework for non-ignorable missing
data, we aim to develop joint models capable of handling multivariate responses, capturing
complex missingness structures, and improving inference without making strict assump-
tions about the missingness mechanism. The next chapters build upon this foundation by
introducing our proposed joint models, detailing their formulations, and exploring their

implementations.
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Joint Models for Handling Non-Ignorable Missing

Data using Bayesian Additive Regression Trees

3.1 Introduction

In this chapter, we focus on a novel selection model framework — outlined later in Equa-
tion — to address the challenges posed by MNAR missing data in the context of
predictive data analysis with multivariate outcomes. More specifically, we present two
multivariate response predictive models arising from the selection model factorisation to
analyse the global Amaz data without restrictive assumptions on the missing data mech-
anism. In both approaches, which we refer to as ‘missBART1’ and ‘missBART2’, we
specify a multivariate Bayesian additive regression trees [BART; Chipman et al., 2010,
Um et al., 2023, McJames et al., 2024] model for the partially-observed responses. The
key distinction between the two models lies in their approaches to modelling the missing
data mechanisms.

In missBART1, we propose a multivariate probit regression model for the missingness.
Probit regression was originally introduced in Bliss [1934]; a full Bayesian model was later
described in Albert and Chib [1993] and the multivariate extension was developed in
Chib and Greenberg [1998]. One benefit of the probit regression model is its parametric
nature, which enables the characterisation of different missing data mechanisms based on
interpretable model parameters. Through prior specifications within the probit regression
model, we introduce additional flexibility by enabling the incorporation of prior beliefs
regarding the underlying missing data mechanism, as well as allowing for efficient Gibbs
sampling of the missing responses within the Bayesian framework.

In the probit regression model, the underlying latent structure is inherently linear,
making it less suitable in cases where missingness depends on other variables in a non-
linear fashion. To address this limitation, missBART?2 adopts an alternative approach to
modelling missingness via the specification of a multivariate probit BART model. This

fully non-parametric joint model leverages BART’s ability to capture complex, non-linear
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relationships within both the data and missingness sub-models. Although missBART2
lacks the interpretable coefficients provided by the probit regression model in missBART'1
and also requires a Metropolis-Hastings step to sample missing responses, BART’s vari-
able selection feature mitigates the need for making prior assumptions about the missing
data mechanism. This is particularly advantageous when limited information on the
missingness mechanism is available.

Figure 3.1 shows a schematic diagram of both joint models. While both models are
designed to handle missingness in the responses, they can also accommodate missing co-
variates, with the constraint that covariates are missing under the ignorability assumption.
Due to the parametric nature of the probit regression function, missBART1 requires prior
imputation on the covariates. For missBART2, the BARTm approach for handling missing

covariates can be incorporated, thereby obviating the need for covariate imputation.
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Figure 3.1: Schematic diagram of missBART1 and missBART2 using a toy dataset with three response
variables (Y(l), . ,Y(B)) and five covariates (X(1>, RN X(5>). The responses have missing entries, de-
noted by Y;* with row index i and column index j. Each M is the resulting missing data indicator
for Y(j), where M;; = 0 if Y;; is missing and wvice versa. Both joint models fit a BART model to the
responses, using X in the splitting rules of the trees. In missBART1, a probit regression model is jointly
fitted to model the missing data indicators M, where X and Y are used as the missing model covariates.
In missBART2, a probit BART model is fitted to M, with X and Y used in the splitting rules of the
trees. While the goal is to account for unobserved responses, both models are also capable of handling
covariate missingness, either via prior covariate imputation (missBART1) or incorporating missingness
into the splitting rules of the trees (missBART2).
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The remainder of this chapter is structured as follows: Section 3.2 outlines the se-
lection model in the context of handling multivariate missing response data. Section
3.3 describes the probit regression model from a univariate and multivariate standpoint
within the Bayesian framework. Section 3.4 outlines the multivariate BART model and its
probit counterpart, giving mathematical formulations and prior specifications. Section 3.5
explains our two novel models ‘missBART1’ and ‘missBART?2’ in detail, formulating the
full conditional distributions for posterior sampling along with their sampling algorithms.
Following this, in Chapter 4, we present the results from several simulation studies, re-
sults from applying ‘missBART1’ and ‘missBART?2’ to the global Amax data, along with

a discussion on future work.

3.2 Selection Models for Non-Ignorable Missing Data

We now give a brief outline of the selection model used for modelling partially-observed
data such as the global Amazx data without restrictive ignorability assumptions. We re-
strict the missingness to the multivariate response variables and assume that all covariates
are fully observed, as is the case with the global Amazx data. However, scenarios with ig-
norable covariate missingness are discussed in Sections 3.5 and 4.2.

Given a dataset with partially-observed responses Y and a fully observed set of co-
variates X, let M; (i = 1,...,n observations) be the p-dimensional vector of missing data

indicators such that for each j =1,...,p,
0 if Yj; is missing
ij =
1 if Y;; is observed.

Under the selection model, the joint distribution is factorised as

p(Y,M|X,0,%)=p(Y|X,0) xp(M|X,Y,),

data model missingness model

where 0 and 1 are sets of parameters in the data and missingness distributions, respec-
tively. This selection model framework first came to prominence in Heckman [1976].

A particularly common specification of a selection model is the so-called ‘Heckit’
model, wherein a univariate response is modelled via parametric linear regression and
the missingness indicator is modelled via probit regression. However, in principle, any
model could be used to model the conditional distributions of the data and missingness
indicators, so long as both distributions are modelled jointly to account for non-ignorable
missingness. As the global Amaz data consists of five continuous response variables, the

multivariate BART model adapted from Um et al. [2023] is considered for the underlying
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data model in both missBART1 and missBART2. Further details on the multivariate
BART model are provided in Section 3.4.

The second part of the selection model factorisation from Equation represents
the conditional distribution of the missingness mechanism. If the assumption of MCAR
holds, the conditional distribution of M depends only on % and is fully independent
of the data. Similarly for MAR, only % and the fully observed set of covariates X are
required. These two scenarios negate the need to specify explicit missingness models
for likelihood inferences [Little, 2008]. In the context of predictive analysis, it is often
sufficient to fit the predictive model on the available cases and impute missing responses
from their predictive distribution. However, if the missing data mechanism is MNAR, a
full specification of the missingness model is required. In practice, it is often challenging to
make definitive assumptions about the underlying missingness mechanisms in real-world
data. The joint model approach used in missBART1 and missBART?2 allows for the
recovery of all three types of missingness mechanism, offering flexibility and robustness
even when the missingness mechanism is unknown, as is often the case.

As mentioned previously, we consider two binary models for the conditional distribu-
tion of M. The first model, implemented in ‘missBART1’, is the probit regression model.
In Albert and Chib [1993], the univariate probit regression model is described from a
fully Bayesian viewpoint and allows for posterior inference via Gibbs sampling. Chib
and Greenberg [1998] extended this to the multivariate framework by constraining the
covariance matrix to a correlation matrix to ensure identifiability. However, computing
posteriors for correlation matrices poses significant challenges due to the lack of conjugate
priors. To address this, Talhouk et al. [2012] introduced a parameter-expanded data aug-
mentation strategy, building upon the framework proposed by Liu and Wu [1999], which
facilitates posterior inference for all parameters in the multivariate probit model within
the Gibbs sampling framework. Thus, we incorporate this technique into ‘missBART1’
for modelling the multivariate missing data mechanism.

The univariate BART model was also modified in Chipman et al. [2010] to handle bi-
nary classification tasks, leveraging principles from the probit regression model described
in Albert and Chib [1993]. Combining concepts from the multivariate probit regression
model and the multivariate BART model facilitates the extension of the probit BART
model to multiple dimensions. In comparison to the probit regression model, integrat-
ing the multivariate probit BART approach into our second joint model, ‘missBART2’,
consequently enables us to harness the advantages of the BART model, particularly its
ability to capture complex interactions between covariates as well as recover any non-linear
patterns of missingness in the data.

Before describing our joint models in detail in Section 3.5, we first review the univariate

and multivariate Bayesian probit regression models in Section 3.3, followed by a recap
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of the univariate BART model, details on the multivariate BART model, and the probit

equivalents of both in Section 3.4.

3.3 Bayesian Probit Regression

From Albert and Chib [1993], M; is binary with probability
Pr(M; = 1| Z;,b) = ® (Z/b),

where Z; is an r-dimensional vector containing r — 1 model predictors and the intercept,
b is an r-dimensional vector of model parameters, and ®(-) is the standard normal cu-
mulative distribution function. To enable posterior sampling entirely within the Gibbs
framework, a data augmentation scheme is adopted where n latent variables M7y, ..., M}

are introduced such that

M =Z]b+e, o= N(©1),
0 if M <0

M; =
1 if M > 0.

The joint posterior density of M* = (M7,..., M) and b is then

p(M*,b | M) x 7 (b) ﬂ {o(M;2]5,1) [1(MF > 0) L(M; = 1) + L(M; < 0) 1(M; = 0)]} ,
=1

where ¢(z; i1, o) is the p.d.f of z ~ N (1, 0?). By assigning a conjugate prior to b, poste-
rior samples of b can be drawn from a multivariate normal distribution, while posterior
samples of M* are obtained from a truncated normal distribution.

The multivariate probit regression model from Chib and Greenberg [1998] generalises
the univariate probit model from Albert and Chib [1993] and assumes a correlated struc-
ture between the multivariate binary outcomes. Given a p-dimensional set of binary out-
comes M; = (M;1, ..., M;,), the probability of observing some combination of M; = m,,

conditional on a set of r covariates Z; and model parameters (B, R), is given by
Pr(Mi:mi|Zi,B,R):/ / ¢p (u;0,R) du,
Aip Al

where B is an r x p matrix of regression coefficients and ¢,(X; p, 3) is a p-variate normal
density with mean vector g and p X p covariance matrix . As specified in Chib and
Greenberg [1998], R is restricted to the properties of a correlation matrix and A;; is

constrained via
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(—OO, BTZZ> if Mij =0

Aij N [BTZZ‘, OO) if Mij =1.

Similar to the univariate probit model, a data augmentation scheme can be applied by

introducing the p-dimensional latent variables M7, ..., M} such that
M; = BTZZ‘ +€, € i~ Np (0,R),
0 if M5 <0
ij =
1 it M5 > 0.

Due to the challenging nature of specifying a prior distribution for correlation matrices,
we use the parameter-expansion strategy from Talhouk et al. [2012] to sample B and R.

First, a marginally uniform prior from Barnard et al. [2000] is specified for R, given
by

_ptl
p(p—1) P :
p(R)oc Rz | [[IRypl
j=1

where Ry;;) represents the 4*" principal sub-matrix of R. A conjugate prior is assigned
to B such that

B‘RNMNTXp(Oa‘I’7R)7

where MN;xp (0, ®,R) is a matrix-normal distribution with an r x p mean matrix of
zeros, r X r positive-definite scale matrix of dispersion hyperparameters ¥, and p X p
positive-definite correlation matrix R.

Following this, M can be sampled from a multivariate truncated normal distribu-
tion from Damien and Walker [2001] with mean vector B'Z;, covariance matrix R, and
truncation points (—oo, 0] if M;; = 0 and [0, 00) if M;; = 1. Next, expansion parameters
D = diag(dy,...,dp),d; > 0, are introduced, followed by a transformation of the probit
regression latent variables such that W = M*D. Each d; | R is assumed to be i.i.d.,

RrR7!
and can be sampled via d? |R ~ ZG (p;l, 1 ), where ZG denotes the inverse gamma

2
distribution. This specification leads to ¥ = DRD ~ ZW(2,1,), where ZWW denotes the
inverse Wishart distribution from Dawid and Lauritzen [1993]. Defining further 2 = BD,
we can sample 3| W ~ IW((2+n, WIW + I, —TTAT) and E| W, Z ~ N, (T, A, X),
where A= = XX + ¥ ! and T' = AX'W. Finally, compute R = D-!¥D~! and
B = D! where D = diag (%1%, /7).
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3.4 Multivariate BART

BART is a Bayesian sum-of-trees regression model that has earned substantial recognition
since its development due to its flexibility and robustness while making accurate proba-
bilistic predictions. Since its development, BART has been extended in various ways to
handle multivariate responses. Um et al. [2023] developed a multivariate version of BART
to handle multivariate skewed responses, McJames et al. [2024] extended the Bayesian
causal forests [BCF; Hahn et al., 2020] model to analyse multivariate response data for
causal inference, and Esser et al. [2024] proposed a method of incorporating seemingly
unrelated regression [SUR; Zellner, 1962] into the multivariate BART framework.

In the multivariate framework, where there are p > 1 outcome variables, the multi-

variate BART model can be formulated as

K
Y=Y g(Xi; T Qi) + €, € S Np (0, Q_l) ;
k=1
where N, denotes the p-variate normal distribution, € represents the p x p residual
precision matrix, and Qj now contains the p-dimensional node-specific vectors pre =
(H1ks - - - 5 Hpe)-

We calibrate the priors of the multivariate BART model by extending the calibration
techniques adopted in the univariate framework to the multivariate setting, using the
same prior settings as specified in Chipman et al. [2010]. The prior for p, is assigned a
p-variate normal distribution, e ~ N,(0, 9;1) with Q, = 7,1,, where I, denotes the
p-dimensional identity matrix and 7, is chosen as in the univariate setting. Although
the prior on €2, assumes no covariance between the components of pe, the posterior
distribution of €2, is expected to be non-diagonal when there is information to be shared
across response variables. A conjugate Wishart prior is assigned to € such that € ~
W, (v, V). Given that the Wishart distribution is a multivariate extension of the gamma
distribution, we calibrate the Wishart hyperparameters v and V by first choosing a value
for v and a vector of p probabilities p; = (pr1,. .., prp) Where p-; € [0,1]Vj=1,...,pas
in the univariate BART case. The rough data-based estimates 71, ..., 7, are then obtained
for each univariate column of the outcome Y. The scale matrix of the Wishart prior is
then given by V = (vA)71I,, where A = (A1,...,),), and each ), is calculated as in the
univariate case. As before, posterior draws of (7x, Q) can be obtained by computing the

multivariate form of the partial residuals

n=Y-> g(X;T, Q).
oy
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Following the same data augmentation scheme adopted in the probit regression model
from Albert and Chib [1993] and described in Section 3.3, the univariate BART model

in Chipman et al. [2010] also extends to binary classification settings. Assuming that

the univariate outcome variable Y is binary, n latent variables Y, ..., Y," are introduced
where
=Y 9(Xi T, Q)+, e ~TN(0,1),
k=1
1, fY* >0
P =
0, otherwise.

The prior calibration for 7, and pj are similar to that specified previously in Section
2.1.1, with the exception that E(Y™ | X) is expected to fall inside the range [—3, 3]. This
corresponds to assigning a prior probability of 0.95 to the event {Pr(Y; = 1| X;) €
[®(—3),P(3)] = [0.0013,0.9987]}, which is reasonable for many applications since ex-
tremely small or large probabilities are uncommon.

Extending the probit BART model to the multivariate framework follows a similar

approach. The vector of latent variables Y} now takes the form
Z (Xi; 1, Qr) + €, € =" N, (0,R). 3.10

As with the multivariate probit regression model, R is constrained to be a correlation

matrix.

3.5 Joint Models for Multivariate MNAR Missing Data

We now describe our two joint models, missBART1 and missBART?2, developed under
the selection model framework from Equation to handle data with missing responses
under the non-ignorable assumption. In the presence of missing values, we define the

partially-observed responses Y as an n X p matrix such that

. Yehs if My =1
Fy=gw 3.11
Y7 otherwise.
Here, Y% = {Yj;: M;; = 1} refers to the set of observed responses, which are fixed

and known, and Y™ = {Y;;: M;; = 0} refers to the set of missing responses which are
estimated as part of the model updates. Of key importance in these models is that X
is used as the covariates in the BART data model, and the set (X,Y) is used as the

predictors in the missingness model.
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While both models assign the multivariate BART function from Equation to the
data model Y | X, 0, missBART1 assigns a multivariate probit regression model from
Section 3.3 to the missingness model M | X,Y, 1. By contrast missBART2 assigns the
multivariate probit BART model from Section 3.4 as the missingness model instead.
Details of both models are given in the framework of multivariate responses below, though

it is straightforward to reduce both models to their univariate equivalents.

3.5.1 missBART1

In this model, the joint distribution of Y and M is obtained by combining Equation

and Equation while setting Z; = (1,X;,Y;)" in Equation such that the

complete data likelihood is:

p(Y.M|X,T,Q.Q,BR)=p(Y|X,T,Q,9) xp(M|ZB,R). 3.12

probit regression
missingness model

BART regression model

This specification, which includes X and Y as predictors in the missingness model as well
as an intercept term, accounts for the three different types of missing data mechanism. To
illustrate this, assume for simplicity that we have a partially-observed univariate response
and only one covariate, which is fully observed. Then, from Equation , the probability
of Y; being observed is equal to Pr(M; = 1| X;,Y;,b) = ®(bg+b1 X;+b2Y;). If by = by =0,
the probability of observing Y; is constant for all ¢ = 1,...,n and only depends on the
intercept bg, representing an MCAR mechanism. If by # 0 while b = 0, the MAR
mechanism is present since the detection probability depends on the value of the observed
X;. If by # 0, the probability of Y; being observed depends on the value of Y; itself,
implying an MNAR missingness mechanism, regardless of the values of by and b;. In the
multivariate setting, the matrix of coefficients B has dimensions r x p where r = 1+p+gq,
i.e. the total number of columns in Z. Define BU) = (Byj,...,B,;) as the j*® column
of B. Each element of B represents the degree to which each predictor influences the
missingness of response j.

Under the data augmentation scheme from Equation , the joint posterior distri-

bution of the model takes the form
p(T.Q,2,M" B.R, ¥, Y™ |X,Y""  M). 3.13

By assigning the multivariate BART priors specified in previous sections, posterior sam-
pling for T is carried out via Metropolis-Hastings, while @ and € are sampled through

Gibbs updates, where posterior derivations follow closely from the univariate model. Ad-
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ditionally, M*, B and R are also sampled within Gibbs through the incorporation of work
by Talhouk et al. [2012], previously outlined in Section 3.3. This allows for posterior in-
ferences to be made on B, where posterior intervals of BY) — to the extent that they
include or exclude 0 — can give insights into the underlying missing data mechanism of
the partially-observed data.

While the multivariate probit regression model from Talhouk et al. [2012] assumes that
¥ in Equation is known, we propose a modification which allows the incorporation
of prior beliefs about the missing data mechanism. We note that small values on the
diagonal of ¥ correspond to probit regression coefficients that are close to zero, and thus
have little effect on the missingness. Since our covariates for the missingness model consist
of X and Y, we can tailor the prior distribution to favour MAR (coefficients associated
with Y close to zero) or MNAR structures (coefficients associated with Y are not zero).

To structure this prior distribution, we first set ! = diag(7p,, 75y 14, 7By 1), Where
1, and 1, are ¢ and p-dimensional vectors of ones, respectively. Next, we assign separate
gamma priors to Tg,, 7By, and 7z, with shape and rate parameters (o, fo), (ax,Bx)

and (ay, By ), respectively. Following this, the full conditional distribution is

_p 1 _ _ o
P(TBy, TBx» TBy | *) X | ¥ gexp{—Q tr(R IBTw 1B)} X TBS 1exp{—ﬁoﬁgo}

X Tg§_1 exp{—BxTBy} X ng:_l exp{—Py7By } -

By using the trace property tr(R™!BT¥~!'B) = tr(T'BR™'B") and letting A =
BR !BT, we obtain

tr(\Il_lA) = tr ((TBOAl, TBXAQ, RN TBXAl—i-q, TBYAQ_H], . ,TBYAT)T)

=Ty A1 + TBx A2z + ... + TBx A(119)(14q) T TBy A24q)24q) T+ -+ T TBy Arr,y

where A;,i =1,...,r, is the i row of the matrix A, and A;; is the i*" diagonal entry of

A. From here, we have

1+q r
L 1
P(TBos TBx» TBy | ) X (TBO X Th X T§Y> *exp {—2 (TBOAH +78y > Aii+TBy Y An-) }
i=2 i=2+q

apg—1

x 70 exp {—Pota, } X THX T exp{—PxTey } X T exp {—By T, },

from which we can easily see that

2 1 _
p (1B, | -) Téo exp {—QTBOAH} ng 1 exp {—So7B, }

B -1 1
o Té(j_ao exp {— (2A11 + ﬂo) TBO}
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% 1 - ax—1
p(TBy | ) THy €XP —ETBX g A;; Ty exp{—OxTBy }
=2

m+ax—1 1 1+q
X Tg, expy — |5 Z A+ Bx | TBy
i=2

2 1 r .
p(TBy | ) < 75, exp —5TBy > ATl exp{—PByTay}
i=24q

2 T
2 tay—1 1
O(TBQY ay exp{ (2 Z A“+ﬁy) TBY}-
i=24q

Finally, the posterior distributions are

A
TBO|-NGa(]29+a0,2H+ﬁo>
1+qA..
By |- ~ Ga <pzq + ax, 721:22 L BX) 3.15
2 i—2+q Aii
TBy |-~ Ga <p + ay, 721_%(] + ﬂy) . 3.16

2 2

By carefully tuning these prior parameters, we can articulate any prior beliefs re-
garding the missingness mechanisms. As a default, we set (ag, 5o) = (2,1), (ax,Sx) =
(14¢,1) and (o, By) = (1 +p+ q,1). Scaling the prior mean of 75, with the number
of covariates and responses ensures that it remains larger than the prior mean of 75,
increasing the likelihood that the model is a priori MAR. This also helps keep the values
in B small as the number of covariates and responses increases, and vice versa.

Finally, to sample Y% we make draws from

p (Y™ | X, Y, T,Q,0,M* B,R) o p (Y"* | X, Y™, T,Q,Q) p (M"| X, Y,B,R).

N—

The sampling distribution takes the form
Y7 X YT, Q,9,M), B, R ~ A, ([1v] v, > [Bv]aan,) 3.17

where M; = {j | M;; = 0} is the set of column indices where Y, is missing, p; is equal to

the number of elements in M;,
1 =
Yy = (Q + BYR*IB;) . py =3y [QYi +ByR™! (Mz* - B(TY)Z(Y)i)] ;

[y] M, is the p;-dimensional subset of py obtained by extracting the M; elements from
py, and [Xy|am, m, is the p; x p; submatrix of 3y obtained in a similar fashion. Addi-

tionally, we have that
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b1 bip
bo1 bap
By :
B - |Bm _
By Bx| = | ba+gr - Doy |
By br—prn1 - br—prip
b by |

where By is the p X p submatrix of B obtained by removing the first 1+ g rows of B, and
B(y) = {Bo, Bx} is the complementary (1 + ¢) x p submatrix with probit regression pa-
rameters associated with the intercept and covariates X. Zy-); denotes the vector of probit
predictors which contain only the intercept term and X;, i.e. Zxy); = (1, Xi1,. .. , Xig)
With efficient sampling of Y within Gibbs, imputations for missing responses can be
obtained via computing the posterior mean of Y™, along with uncertainty quantification.

The steps for posterior sampling in missBART1 are outlined below:

(1) For all K trees, propose a new tree via a grow, prune, change, or swap move* and
accept or reject using a Metropolis-Hastings step. For notational simplicity, we drop

the tree index k and thus the tree posterior takes the form
p(Tr, @) o< (T)[[p(ee| T, ),
l

where 7(7) is the tree prior from Chipman et al. [2010] and r; denotes the partial
residuals from Equation assigned to terminal node /¢ in tree k. Note that

p(relT,Q):/p(rz\T,uz,ﬂ)W(w)duz

n P n 1
= (2m)"% 710 7 (2,5 exp {—2

ng

po (1u1p) po — p)! =7 e + ZPZQP&‘] } ;
i=1

where p, = X, [QX1, ry) + (L) pol, =7 = ne§2 + 7,1, and n, denotes the

total number of observations which fall under terminal node #.

(2) For each terminal node ¢ in tree k, once again dropping the tree index k, make a

draw of py € Q from
127 ’ rfa7—79 NNp (p’uaz,u)v

where p, = X, Q> ry and X, = (nQ + Tqu)_l

*See Kapelner and Bleich [2016] for details on these tree-proposal moves.
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(3) After carrying out steps 1 and 2 for all K trees, sample € from
QT7.Q.Y ~W,(n+v,Vq),

where V' = 37, (YZ - Sc{'z) (Yl - @Z)T +V~!and SQ{'Z =S5 9(Xi; Tr, Qi)

(4) The posterior distribution of M} follows a multivariate truncated normal distribu-
tion [Damien and Walker, 2001]

M| X;, Y, B,M; ~ TN ,(B"Z;, R, ~,),

where Z; = (1,X,~,Y,~)—r and «; denotes the p-dimensional vector of truncation
points such that ~;; = [0, 00) if M;; =1 and ~;; = (—o0, 0] if M;; = 0.

(5) Sample W' = diag(7s,, 7By 1¢, 7B, 1,) using Equations [3.14], [3.15], and [3.16].

(6) Sample (B, R) using the methods from Talhouk et al. [2012], outlined in Section
3.3.

(7) Sample Y™* from Equation (3.17).

3.5.2 missBART2

Due to its inherent linear structure, the probit regression model may prove inadequate
when the true underlying relationship in the missing data model is non-linear. Addition-
ally, the missing data model specification in missBART1 excludes any interaction terms
between the model predictors. Consequently, to account for potential non-linearity and
predictor interactions, we propose a more flexible, fully non-parametric selection model by
applying the multivariate probit BART model outlined in Section 3.4 to the missingness
mechanism model. Thus, the model effectively amounts to replacing the probit regression
missingness model for p(M|Z, B, R) in Equation with a multivariate probit BART
model such that the complete data likelihood for missBART?2 is

p(YMIX,TY,Q" T™,Q"QR) =p(Y|X,T,Q",Q) xp(M|Z,T",Q",R).

probit BART
missingness model

Overall, the model uses two distinct sets of trees with corresponding terminal node
parameters, denoted by (7Y,QY) = ((’le, QY),..., (TI?y, Q%y)) for the regression on Y

and (7™, QM) = (( moQmM), ... ( ﬁm,QﬁmD for M, where K, and K,, are the total

number of trees in each respective BART model.

BART regression model
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In Esser et al. [2024], a parameter-expanded data augmentation technique from Zhang
[2020] is adopted for estimating R. Given the flexibility of tree structures in the missing
data model to capture the underlying signal, we find it sufficient to fix R = I,. This
choice also reduces the computational burden of estimating the correlation structure via
additional data augmentation techniques. Furthermore, our simulation studies show that
even when the missing data model is simulated using a non-diagonal correlation matrix,
missBART?2 still performs well despite this simplification.

By including both X and Y as predictors available to be used in the splitting rules
of T™, we can account for different missingness mechanisms. While missBART1 has
the flexibility of incorporating prior knowledge of the missing data mechanisms via the
prior calibration of B, the probit BART model in missBART2 can perform automatic
variable selection without needing to pre-specify the functional form of the probit model.
Although missBART?2 does not have the luxury of being able to examine interpretable
probit regression parameters, identifying which variables in X and Y are most commonly
used to construct splitting rules in the missingness model’s set of trees can nonetheless
provide an indication of whether the missingness mechanism depends only on observed
quantities (i.e., MAR) or unobserved quantities (i.e., MNAR). Simulation studies from
Chipman et al. [2010] on BART variable selection show that, as the number of trees
increases, the frequency with which each variable is used in the tree-splitting rules becomes
more uniform. Conversely, if there are fewer trees, important and influential variables are
more likely to be included in the splitting rules of the trees. However, too few trees can
hinder convergence and compromise overall model fit. Thus, care should be taken when
defining the number of trees to be used in the missingness model, particularly when the
recovery of different missing data mechanisms is of interest.

An additional advantage comes from incorporating the BARTm methodology introduced
in Kapelner and Bleich [2015] to missBART?2 such that it can effectively handle missing
values in X. This approach seamlessly integrates covariate missingness into the tree-
splitting rules, enabling splits based on the available X values as well as their missingness
status. In contrast, the parametric constraints of the probit regression model necessitate
prior covariate imputation in missBART1 when faced with missing values in X.

Following the latent variable transformation of M to M* as in Equation , the

joint posterior distribution takes the form
p(Ty,Qy,Tm,Qm,Q,M*,Ym“ yX,YObS,M). 319

The sampling algorithm for missBART?2 is similar to that outlined in Section 3.5.1 with a
few exceptions. First, posterior sampling for both sets of trees 7Y and T are carried out
via Metropolis-Hastings steps. Next, QY,Q, M*, and Q™ are updated via Gibbs steps.
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It is notable that, unlike step (6) of the algorithm for missBART1 in Section 3.5.1, it is
not necessary to sample (B, R) under missBART?2, since the matrix of probit regression
coefficients B is irrelevant for missBART2 and we fix R = I,. Thus, the parameter-
expansion techniques of Talhouk et al. [2012] or Zhang [2020] are not required.

Defining the regression model parameters 8 = {7Y,QY,Q} and missing model pa-
rameters 1 = {7, Q™}, the full conditional distribution of Y™ is

P (Ymis ‘ Yobs’ 1\/[*7 07 ,d}) x p (Yobs?Ymis ‘ 0) p (M* | Yobs7 vais7 ¢> ,

where no known distributional form is available, necessitating the implementation of a
Metropolis-Hastings step. For each missing entry in iteration ¢, we propose a new value
Y% from a random-walk proposal distribution N'(Y;™ ;,0%.). Given that the observed
data are scaled to the range [—0.5,0.5], we set oy = 0.5/p to ensure that proposed values
of Y™ do not go too far outside this range. This tuning choice has demonstrated good
empirical performance in simulations.

Overall, the sampling algorithm for missBART2 is given by
(1) Repeat Steps 1 and 2 from Section 3.5.1 for all K, trees.
(2) Repeat Steps 1 and 2 from Section 3.5.1 for all K, trees.
(3) Repeat Step 3 from Section 3.5.1 for sampling 2.

(4) The posterior distribution of M} again follows a multivariate truncated normal
distribution such that

M: | X’iaYi7 TTI’L, Qm7 Ml ~ TNp(M?,Ip,’Yi),

where l\A/Ij =2k 9(Xy, Y T, Q) ) and ~; is as defined in Step 4 of Section
3.5.1.

(5) For every missing entry, first propose a new value Y;7% from N (Y75, ., 0%). Next,

calculate the acceptance probability

P (Y'g:;zs ’ Y;)bs7 9) P (M:' | *Y’;')bs7 YZliis7 ¢> q(Y?}is — Y?iziz)
p (Y, [ Y, 0) p (M: | Yo, Yiis ) a(Y55, — Y7i)

WY, Y ) =
and accept or reject the proposed Y7*** with probability min (1, w(Yﬁis ,Yﬁfﬂ)

Finally, we note that an R implementation of both missBART1 and missBART?2 is
available on GitHubP.

Phttps:/ /github.com/yongchengoh/missBART.
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missBART1 and missBART2: Simulation Studies
and Application to Real Data

4.1 Introduction

We apply ‘missBART1’ and ‘missBART?2’ to simulated data and the global Amax data. In
Section 4.2, results from several simulation studies are discussed, along with comparisons
made between other methods for handling missing data to showcase the benefits and
importance of appropriately handling MNAR missing data via joint models. Examples
with missingness in the covariates are also included. In Section 4.3, we describe the
global Amax data in detail and show results obtained from applying ‘missBART1’ and
‘missBART?2’ to the data. The chapter ends in Section 4.4 with concluding statements
and discussions on limitations and future work.

Evaluating predictive performance in the presence of MNAR responses requires careful
consideration, as models that ignore missingness may perform well on observed values but
struggle with making accurate imputations for the unobserved. In real data applications,
the “true” missing values remain unknown, presenting a significant challenge for assessing
the accuracy of imputations. Nonetheless, we address this in our simulation studies in
Section 4.2 when comparing our joint models to other approaches, such as complete case
analysis and imputation followed by model fitting.

Using simulated data with fully generated responses and induced missingness, the out-
of-sample root mean squared error (RMSE) is calculated in two ways: (1) across different
simulated detection probability thresholds and (2) separately for the observed responses,
the imputed missing responses, and the combined dataset comprising both observed and
imputed responses. The first approach illustrates each model’s performance on subsets of
data with detection probabilities below specific thresholds, where models ignoring miss-
ingness perform worse on data which are more likely to be missing. The second method
reiterates this by separating the RMSEs for observed, missing, and combined responses,

offering a comprehensive assessment of model performance with respect to missingness.
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To provide a more comprehensive evaluation, we also compute the continuous ranked
probability scores [CRPS; Gneiting and Raftery, 2007], which assesses both calibration
and accuracy of the predicted distributions. The CRPS complements the RMSE by
evaluating the entire predictive distribution rather than just point estimates, offering
deeper insights into how well models capture uncertainty in the presence of missing data.
Additionally, for the combined dataset, we calculate the Frobenius norm, which serves as
an overall measure of model performance.

In the real data application presented in Section 4.3, we apply ‘missBART1’ and
‘missBART?2’ to the global Amaz dataset. Unlike in simulation studies, where the true
values of missing responses are known, real datasets do not provide a direct means of
evaluating imputation accuracy. Consequently, standard performance metrics such as
RMSE and CRPS cannot be used to assess the quality of the imputations. Instead,
we evaluate model performance using a combination of visual diagnostics and posterior

inference, while also comparing our findings with those of Maire et al. [2015].

4.2 Simulation Study

We present the results from our simulation studies aimed at demonstrating the advan-
tages of missBART1 and missBART2 for performing predictive tasks in the presence of
non-ignorable missingness®. First, we illustrate two univariate response cases featuring
non-linear patterns of MNAR missingness where the detection probabilities of the re-
sponse vary non-linearly with the values of the responses themselves. We refer to these
two examples as the ‘u-shape’ and ‘n-shape’ missingness. For both scenarios, a complete
dataset is first simulated from the Friedman function [Friedman, 1991]; this is followed by
inducing missingness from a single tree structure. We present the posterior imputations
for the missing cases and predictions made on the observed cases obtained by both mod-
els. This example reveals insights into the challenges encountered by missBART1, which
assumes a monotonic missingness pattern, compared to missBART2, which can capture
non-linear patterns.

Through 4-fold cross-validation, we make comparisons between the performances of
our joint models with two alternative methods: applying a standard BART model to
complete cases (‘BART cc’) and applying a standard BART model on the dataset im-
puted by the missForest package in R [Stekhoven and Bithlmann, 2012] (‘BART _imp’).
Particularly when data are MNAR, the complete cases model may perform significantly
better on the observed data as it is both trained and evaluated solely on these cases, while
performing poorly on the unobserved due to the failure to account for missingness. In

contrast, the joint models or the model trained on imputed data — assuming accurate

#All simulated data can be accessed via the missBART GitHub repository.
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imputations were made — should excel on cases which are less likely to be observed,
in other words those with lower detection probabilities. To highlight this, we compute
the out-of-sample RMSEs for subsets of the data based on increasing detection probabil-
ity thresholds and make comparisons between the different methods. We note that this
evaluation technique is not applicable when dealing with real data as the “true” missing
values are unobtainable.

Next, we demonstrate the performance of our joint models in the bivariate setting.
Specifically, we simulate bivariate data from a multivariate BART model, followed by
four different scenarios where the missingness is either MAR or MNAR and arises from a
multivariate probit regression model or a multivariate probit BART model. For each sce-
nario, we compare the multivariate versions of missBART1 and missBART2 with 6 other
methods: multivariate BART on complete cases (‘mvBART _cc’), multivariate BART on
the missForest imputed dataset (‘mvBART _imp’), univariate BART on the complete
cases of each response variable (‘uniBART _cc’), univariate BART on each missForest
imputed response (‘uniBART _imp’), as well as univariate missBART1 and missBART2
on each partially missing response variable (‘uni_missBART1’, ‘uni_missBART?2).

After carrying out 4-fold cross-validation, we compute the RMSE and CRPS of each
univariate response for the missing, observed, and combined responses. Additionally, the
Frobenius norms on the full dataset are also calculated and shown for all methods, provid-
ing a single scalar measure that captures the overall predictive performance of the model.
To ensure that the joint models can accurately detect the true underlying missingness
mechanisms, we provide posterior intervals for the probit regression parameters B from
missBART1 and calculate the variable importance of the missingness trees in missBART2.

Finally, we conclude the section with three multivariate examples where the covari-
ates are either completely observed, missing under the MAR mechanism with a simple
missingness pattern, or MAR with more complex missingness. Five responses are simu-
lated from the multivariate version of the Friedman function, and MNAR missingness is
induced in the response using the multivariate probit regression model. The missingness
in X is introduced using the ampute function [Schouten et al., 2018] implemented in the
mice package. Given the high dimensionality of the response variables and the presence
of missingness in both the response and covariates — resulting in complex and varied
patterns of missingness across all variables — we use 8-fold cross-validation to compare
the nine methods. Apart from missBART1 and uni_missBART1 which require covariate
imputation prior to model fitting, all other models used in the previous examples include
the implementation of the BARTm strategy for handling partially-observed covariates in
the tree-splitting rules. Additionally, “missBART2_impX” fits a missBART2 model with
imputed covariates. For consistency, covariate imputations, where necessary, are made

using missForest.
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We run all models for 5000 burn-in and 5000 post-burn-in iterations. The number
of trees in the data model is fixed at 100. In the non-linear and bivariate examples,
20 probit BART trees are used in the missBART2 missing model. In the multivariate
examples, however, more response variables and covariates are present in the missingness
model, as well as induced missingness in the covariates. Given the more challenging
simulation setup, we increase the number of missingness trees to 50 to allow for better
model convergence without sacrificing the variable selection capabilities of the probit
BART trees.

4.2.1 Univariate Examples: Non-Linear Missing Data

In both non-linear missing data examples, we first generate a complete dataset with

n = 2000 i.i.d. samples using the Friedman function [Friedman, 1991]
Y; = 10sin (7Xi1 Xi2) + 20(Xs3 — 0.5)2 + 10X + 5Xi5 + e, & < N(0,1),

where each X, . .., X®) is simulated independently from a continuous Unif(0, 1) distri-
bution. Missingness is then induced through a single tree.

Figure 4.1 shows the missing tree structures of the u-shape and n-shape missing sce-
narios and their resulting simulated detection probabilities, Pr(M; = 1|Y;), against the
true Y values. All observations with detection probabilities below 0.5 are designated as
missing and vice versa. In the first example, roughly 55.1% of the data remained observed,
with missing values of Y occurring more frequently around the mid-range of the data. In
the second scenario, 50.2% of the data were observed, and missing values predominantly

occurred at the extreme ends of the data range.
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—0. . —~0.75-
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0.84 = 0.18 =
& 025 O 0251
0.00% T v 0.00+ . v
0.84 0.31 0 10 20 0.31 0.82 0 10 20
Y Y
Missing - Observed Missing - Observed

(a) u-shape: Most of the data between [13.11, 20.66] are (b) n-shape: Most of the data outside the range
missing. [10.72,20.24] are missing.

Figure 4.1: Missingness trees with detection probabilities in the terminal nodes (left) and plots of detection
probabilities against true Y values (right) for the u-shape (top) and n-shape (bottom) missing examples.

Figure 4.2 shows the out-of-sample predictions for the observed cases and posterior

imputations for the missing cases against their true simulated values obtained from both
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models, along with their 95% prediction and posterior intervals. In the case of u-shape
missingness, both models perform well in fitting the observed values as well as making ac-
curate posterior imputations for the missing values. However, in the n-shape missingness
scenario, while missBART2 maintains accuracy, missBART1 struggles to capture the tail
ends of the missing data, particularly in the upper tail where no values are observed. This
underlines the limitations of missBART1 in capturing complex non-linear structures while

also highlighting the strong capabilities of missBART?2 in addressing these challenges.

Missing

Predicted Y
Predicted Y

»  Observed

10 20
True Y True Y
(a) Out-of-sample predictions and imputations from missBART1 for the u-shape missingness pattern (left) and

n-shape pattern (right). The model struggles to capture the upper end of the missing data in the n-shape scenario.
30 304

N
=]
v

20+

Missing
Observed

Predicted Y

Predicted Y

0 10 20 0
True Y True Y

(b) Out-of-sample predictions and imputations from missBART2 for the u-shape missingness pattern (left) and
n-shape pattern (right). The model performs well in both scenarios, closely matching the true simulated values.

Figure 4.2: Out-of-sample predictions and posterior imputations from missBART1 (a) and missBART2
(b) in the u-shape and n-shape non-linear missing data examples. The left subfigures show performance
on the u-shape missingness pattern, while the right subfigures show performance on the n-shape pattern.
In general, missBART2 performs well in both cases, while missBART1 struggles with predicting the upper

range of the missing data in the n-shape scenario. Vertical lines depict the 95% prediction and posterior
intervals.

Next, we compare the performances of four different approaches for handling miss-
ing data in the context of predictive data analysis, namely missBART1, missBART2,

BART _cc and BART _imp. For each scenario, a 4-fold cross-validation approach was em-
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ployed by randomly partitioning the dataset into train and test sets such that n.qin =
1500 and nges: = 500 for each fold. We calculate the out-of-sample RMSEs for observations
based on varying levels of detection probability thresholds, p;, i.e. Pr(M; =11Y;) < py,
where p; = {0.25,0.5,0.75,1}. The results are shown in Figure 4.3.

2.10
1.80 A
—o— missBARTL1
%)
S 1501 —o— missBART2
o —e— BART cc
BART im
1.20 ____E L ----I-{_f___lli ~'mp
0.90 T T T T
0.25 0.5 0.75 1
Pt

(a) Out-of-sample RMSE for u-shaped missingness across varying detection probabilities p;. The performance of
missBART1, missBART2, BART cc, and BART _imp are shown, with BART _imp demonstrating poor performance
across all levels of p;.
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1.40 I I\ ~ o missBART2
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BART _imp
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(b) Out-of-sample RMSE for n-shaped missingness across varying detection probabilities p;. missBART2 outper-
forms others, while BART _imp is excluded due to poor performance.

Figure 4.3: Out-of-sample RMSE values from 4-fold cross-validation for data with detection probabilities
below thresholds p;. Results for BART _imp are excluded from (b) due to poor performance.
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From Figure 4.3a, we note that BART _imp, which imputes the data using missForest
prior to fitting a BART model, consistently underperforms across all detection probability
thresholds in both scenarios. In Figure 4.3b, the RMSE values from BART _imp are
omitted due to poor performance (between 2.39 and 3.53). This is most likely explained
by the inaccurate initial imputations produced by missForest, resulting in the BART
model being trained on incorrect values, compromising the overall model fit.

In the u-shape scenario, missBART1, missBART2, and BART _cc perform similarly
across all thresholds, implying little difference in the out-of-sample prediction and im-
putation accuracy, regardless of the detection probabilities. In contrast, missBART2
dominates the other models in the n-shape scenario, while missBART1 has slightly worse
performance compared to BART_cc. We observe that, as p; increases, the RMSE de-
creases, indicating that the models perform better on data which are more likely to be
observed. This is unsurprising, as most missing values lie further away from the observed
values, making it exceptionally challenging for inappropriate models to capture the data’s

true extremes.

4.2.2 Bivariate Examples: Missingness Under MAR and MNAR

We now demonstrate the performance of missBART1 and missBART2 on simulated bi-
variate data under MAR and MNAR scenarios. We simulate n = 2000 i.i.d. bivariate
observations from a multivariate BART model with 5 covariates. Using the same complete
dataset, we create four different missing scenarios by varying the missing data mechanism
— MAR or MNAR — and the underlying missing data model — multivariate probit
regression or multivariate probit BART. In MAR scenarios, only X is used to simulate
missingness. In contrast, for MNAR scenarios, the missingness probabilities only depend

on Y. A summary of the simulation details is shown in Table 4.1 below.

MAR 1 MAR 2 MNAR 1 MNAR 2
n 2000 (nrain = 1500, ngess = 500)
P 2
Data Model

q 5

# Data trees 8

Model Probit regression Probit BART Probit regression Probit BART
Missingness Model Model covariates X only X only Y only Y only
# Missing trees 3 5
Observed proportions of Y1, Y | (57.10%, 78.05%) | (86.50%, 56.10%) | (66.00%, 50.45%) | (58.05%, 75.15%)

Table 4.1: Simulation recipes for the bivariate simulation studies. The complete dataset is consistent
across all 4 scenarios, while the missingness model follows a multivariate probit regression or probit
BART model. The final row shows the proportions of observed cases per response variable (Y<1>, Y(2))
under each scenario.
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We make comparisons between the eight models through 4-fold cross-validation. For
mvBART_imp and uniBART _imp, missing Y imputations were first obtained by passing
the whole dataset (X,Y) to the missForest function before splitting Y into train/test
sets. The default settings of missForest were used.

To evaluate imputation accuracy, prediction accuracy, and overall performance, we
separately compute the RMSE values of the missing responses, the observed responses,
and the combined dataset. Under MAR missingness, we expect the joint models to per-
form at least as well as the complete-case or missForest-imputed models for both missing
and observed responses as the missing data mechanism can be ignored and only the regres-
sion model is required. In the MNAR case, we anticipate a greater disparity between these
models, particularly for the missing responses, as complete-case and missForest-imputed
models fail to account for any relationship between the responses and their corresponding
missingness status. In addition to the RMSE, we also calculate the Frobenius norms of
the multivariate dataset as an overall performance evaluation metric.

The results for the MAR and MNAR examples are presented in Figures 4.4 and 4.5
respectively. In each case, the first two panels show the out-of-sample RMSEs for the
missing, observed and combined responses for Y () (j = 1,2), while the last panel shows
the Frobenius norms obtained across the multivariate responses. In Figure 4.5b, some
results of mvBART _cc, mvBART _imp, and uniBART_imp were omitted due to overly
high RMSEs.

To assess the calibration and accuracy of the predicted distributions, we also compute
and compare the CRPS values of the 8 models. Similar to the RMSE, we report the CRPS
values for the j™ response, separately for the missing responses, the observed responses,
and the combined dataset. Under MAR missingness, we expect the joint models to
perform at least as well as the complete-case or missForest-imputed models for both
missing and observed responses. In the MNAR case, we expect the joint models to
perform better, particularly for the missing responses, as complete-case and missForest-
imputed models fail to account for any relationship between the responses and their
corresponding missingness status. The results, shown in Figures 4.6 and 4.7, align with

these expectations.

50




4.2. SIMULATION STUDY

1.804
1.40 4
1.30 1 i
1.604
w L - L8 I - - ——=H -
= i
= “ o 1.20
1.404 =- éﬁ
& =
. 1.101
1.20 !ll * * 1.00 A
missing observed all missing o?served al
j=1 j=1
0.56
0.52 4
0.52+ 0.501
1) w
(2] (2]
= =
i o
0.48 4
0.48
0.454 _
0.44 4
missing observed all missing observed all
j=2 j=
36.00
32.00 4
35.00
£ £
] ]
=z =z
%) @ 31.00+
.2 34.00+ 2
= C
38 8
S S
[ L
33.00 - 30.004
32.00
29.00 1
B3 missBART1 B missBART2 EE mvBART cc EJ mvBART_imp - missBART1 - missBART2 mvBART _cc - mvBART_imp
ES uni_missBART1 ES uni_missBART2 ES uniBART cc Bl uniBART_imp EJ uni_missBART1 EJ uni_missBART2 ‘ uniBART_cc Bl uniBART_imp
(a) MAR 1 (b) MAR 2

Figure 4.4: RMSEs (top 2 panels) and Frobenius norms (bottom panels) comparing 8 different models in
MAR 1 (a) and MAR 2 (b) scenarios. RMSEs are calculated for missing, observed, and all data points,
while Frobenius norms provide a single measure of overall model performance. Dashed lines in the top 2
panels represent the true simulated residual standard deviations.
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Figure 4.5: RMSEs (top 2 panels) and Frobenius norms (bottom panels) comparing 8 different models
in MNAR 1 (a) and MNAR 2 (b) scenarios. RMSEs are calculated for missing, observed, and all data
points, while Frobenius norms provide a single measure of overall model performance. Some results of
mvBART _cc, mvBART _imp, and uniBART _imp were omitted due to their poor performance in terms of
RMSE.
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Figure 4.6: CRPS for 8 different models in MAR 1 (a) and MAR 2 (b) scenarios. CRPS values are
calculated for missing, observed, and all data points.
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Figure 4.7: CRPS for 8 different models in MNAR 1 (a) and MNAR 2 (b) scenarios. CRPS values are

calculated for missing, observed, and all data points.

54




4.2. SIMULATION STUDY

The results obtained from this simulation study were mostly as anticipated. Similar to
the non-linear examples, the missForest imputed models demonstrate poor performances
across MAR 1, MNAR 1, and MNAR 2, which can again be attributed to the inaccu-
rate imputations obtained prior to model fitting, leading to erroneous results. Overall,
missBART?2 demonstrated superior performances in both the MAR and MNAR scenarios,
particularly in making accurate posterior imputations for the missing responses.

In terms of recovering the underlying missing mechanism, we look at the posterior
intervals of B from missBART1. Figure 4.8 shows the 95% posterior intervals obtained
from missBART1 for MAR 1 and MNAR 1. Each panel shows the intervals for coefficients
of the intercept, five covariates, and two responses within the probit regression model.
We observe that the error bars representing coefficients in By overlap with 0 when the
data are MAR, correctly indicating the absence of a relationship between missingness
and the response variables. In contrast, the intervals do not overlap with 0 in the MNAR

scenario, successfully capturing the non-ignorable missing data mechanism.
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(a) MAR 1: The posterior intervals of By overlap with (b) MNAR 1: The posterior intervals of By do not con-
0, capturing the true MAR mechanism. tain 0, capturing the true MNAR mechanism.

Figure 4.8: 95% posterior intervals of B from missBART1 for MAR 1 and MNAR 1. In both scenarios,
missBART1 accurately captured the true underlying missingness mechanism. Posterior intervals of By
overlapped with 0 when the true missing mechanism was MAR and did not contain 0 in the MNAR case.

To assess the recovery of the missing data mechanism from missBART2, we investigate
the variable importance of the missingness trees, calculated as the average number of
uses of each variable in the splitting rules of the missingness trees over 5000 post-burn-in
iterations. Variable importance for MAR 2 is shown in Figure 4.9a and in Figure 4.9b
for MNAR 2. For MNAR 2, most splits are made on Y and Y, while only a small
proportion of splits are made on the covariates. In MAR 2, X®) is most frequently used,
followed by X4,
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Figure 4.9: Variable importance from missingness trees in missBART2 for MAR 2 (a) and MNAR 2 (b).
In MAR 2, the covariates X® and X® were frequently used in the splitting rules of the missingness trees.
In MNAR 2, there is a clear distinction between the importance of response variables and covariates.

4.2.3 Multivariate Examples: MNAR Response, MAR Covariates

While there are no missing covariates in the global Amax dataset, we present three
simulated scenarios — MNAR_amp0O, MNAR_ampl, and MNAR_amp2 — with MNAR
missingness in the multivariate responses and different missingness in the covariates to
demonstrate the performance of missBART1 and missBART?2 in the presence of ignorable
missing covariates and non-ignorable missing outcomes.

Similar to the bivariate examples, we use the same dataset for all three examples,
this time keeping the missingness in Y consistent across all examples while varying the
missingness in X. We first create a dataset of n = 2000 i.i.d. observations with p = 5

responses from the multivariate version of the Friedman function:
. jid.
Y, =& sin (TrXilXig) + €2(Xi3 — 0.5)2 + &3 X + &4 Xi5 + €, € ERS Np(O, 26)

where &1, ..., &4 are p-dimensional vectors of coefficients simulated from N, (0, X¢). While
the Friedman function only requires five covariates, we include five extra non-informative
ones. Each covariate is indepndently drawn from a continuous Unif(0, 1) distribution.

In the previous sections, missingness either depended strictly on X for the MAR cases
or Y for MNAR. Here, the missing model follows a multivariate probit regression model
with non-zero coefficients for (X,Y), i.e. missingness in Y depends on both the observed

and unobserved variables. However, to ensure that the data are MNAR, we enforce

56




4.2. SIMULATION STUDY

a stronger relationship between the missingness probabilities and Y while keeping the
coeflicients of X close but not equal to 0.

As a baseline, the complete set of covariates is used in the first example, MNAR_amp0,
so missingness is only present in the responses. For MNAR_ampl and MNAR _amp2,
MAR missingness is introduced into X using the function ampute [Schouten et al., 2018]
from the mice package, which allows the specification of the underlying missing data
mechanism, the overall proportion of missingness in X, as well as the missing data pattern
[Van Buuren, 2018]. For both examples, we use the default setting of "MAR" for the missing
data mechanism in the covariates and 0.5 for the associated proportion of missingness. By
default, the missing data pattern is diagonal such that only one variable is missing in each
row X;. We use this setting in MNAR _ampl, keeping the missingness proportion across
each covariate relatively consistent (between 4.35% and 5.65% missing). In MNAR_amp?2,
we allow for more complicated patterns of covariate missingness with varying proportions
of missingness (between 5.70% and 39.65%). The missingness patterns for MNAR_ampl
and MNAR _amp2 are shown in Figure 4.10a and Figure 4.10b below.

x10 x9 x2 x3 xl1 x8 x6 x7 x4 x5 x2 x9 x7 x8 x10 x6 xl1 x3 x5 x4
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87 91 94 100 101 101 106 109 111 113 1013 114 185 286 304 316 423 448 513 573 793 3955

(a) Missingness patterns in X for MNAR_ampl. The (b) Missingness patterns in X for MNAR_amp2. The
MAR missingness is diagonal such that only one variable patterns are more complicated and missingness propor-
is missing in each row of the covariates. tions vary between 5.70% and 39.65%.

Figure 4.10: Missingness patterns in the MAR covariates, X, for MNAR_ampl and MNAR_amp2. Only
one covariate is missing for each X; in MNAR_amp]1, while MNAR _amp2 has more varied and complicated
missingness patterns.

We use 8-fold cross-validation to make comparisons between the models described in
Section 4.2.2 and an additional model missBART2_impX, the missBART2 model with
prior covariate imputation. For MNAR _amp0, since the covariates are fully observed and
no covariate imputation is necessary, missBART2_impX is equivalent to missBART2 and
thus excluded from the study. Note that, while missBART1, missBART2_impX, and

uni_missBART1 are trained and tested on the missForest imputed covariates, all other
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models include the BARTm method for handling missing covariates within the BART trees.

The out-of-sample Frobenius norms of the three examples are shown in Figure 4.11 below.
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Figure 4.11: Out-of-sample Frobenius norms for MNAR_amp0 (left), MNAR_ampl (middle), and
MNAR_amp?2 (right).

The out-of-sample RMSEs for MNAR_amp0, MNAR_ampl, and MNAR_amp2 are
shown in Figure 4.12, separately for the missing, observed, and combined univariate re-
sponses. The joint models once again demonstrate robust performance when dealing with
multivariate non-ignorable response data, both in the presence and absence of missing
covariates. When the covariates are fully observed, missBART1 and missBART?2 yield
comparable results, outperforming all other methods. However, the introduction of miss-
ingness in the covariates generally leads to a decline in model performance.

In the MNAR_amp]1 scenario with diagonal missing covariates, both missBART1 and
missBART?2 show increased Frobenius norms compared to the fully observed case, with
missBART1 slightly outperforming missBART2. However, when covariate imputation
is applied prior to model fitting, missBART2_ impX emerges with the strongest overall
performance. In the more complex MNAR_amp2 scenario, the disparity in performance
between missBART1, missBART2, and missBART2_impX becomes more distinct, yet
missBART2_impX maintains the best overall performance.

While missBART2 with covariate imputations demonstrated the strongest overall per-
formance, it is important to note that, as shown in Kapelner and Bleich [2015], different
missing covariate scenarios can lead to varying comparative performances between BARTm
and BART or random forests with missForest covariate imputations. Additionally, miss-
BART2_impX is essentially a two-step process that requires covariate imputations followed
by model fitting, whereas missBART2 with the incorporation of the BARTm technique offers

a more straightforward approach to handling missing covariates.
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Figure 4.12: RMSEs for multivariate simulated scenarios with missingness in the covariates.
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In the simulation studies, convergence of the MCMC sampler was assessed through vi-
sual inspection of trace plots. However, as the number of parameters in both missBART'1
and missBART2 may scale with the number of responses, covariates, and the amount
of missingness, it is not always feasible to monitor all sampled quantities. Instead, we
focused on certain key parameters, such as the diagonal entries of the precision matrix
Q and selected entries of the missing responses Y™, Across all simulation settings, we
used a default choice of 5000 burn-in iterations followed by 5000 post-burn-in samples,
with 100 regression trees and either 20 or 50 missingness trees, depending on the num-
ber of missing responses and the complexity of the missingness structure. These settings
yielded satisfactory convergence in the investigated scenarios. However, convergence may
vary depending on several factors, such as the number of covariates, responses, missing-
ness proportions, and overall sample size. Therefore, we recommend that practitioners
assess convergence using standard MCMC diagnostics and consider adjusting the number
of iterations, the number of regression and/or missingness trees, as well as other tuning

parameters based on the complexity of the application.

4.3 Application: global Amax

The global Amaz data comprises a rich set of environmental covariates, including 20
soil and 26 climate variables, alongside 5 continuous responses reflecting various leaf
photosynthetic traits and rates: light-saturated photosynthetic rate (Aarea), stomatal
conductance (Gs), leaf nitrogen (Narea), leaf phosphorus (Parea), and specific leaf area
(SLA).

Originating from Maire et al. [2015], the authors employed various linear and paramet-
ric methods such as mixed-effects regression models, variation partitioning, redundancy
analysis, and path analysis to quantify the influence of climate and soil properties on each
individual leaf photosynthetic trait. The study identified key environmental variables,
particularly soil pH (pH), moisture index (Mig), and available soil phosphate content
(Pavail), as major influences on photosynthetic traits.

However, the methods employed by Maire et al. [2015] lack the flexibility of non-
parametric BART models in capturing non-linear relationships, and do not address the
partially overlapping nature of missingness in the multivariate response. In fact, there
was minimal discussion of how missingness was addressed, suggesting an implicit reliance
on the ignorability assumption. For further details on the methods carried out in this

previous study, see Appendix S6 of Maire et al. [2015].
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4.3.1 Results

We now apply missBART1 and missBART2 to the global Amax data. Prior to model
fitting, a log transformation is applied to each response variable to account for right-
skewness. As in Section 4.2.3, we use 5000 burn-in and 5000 post-burn-in iterations, 100
regression trees, and 50 missingness trees.

Figures 4.13 and 4.14 show the model predictions for the observed data against their
true log-transformed values for missBART1 and missBART?2, respectively, along with
vertical error bars representing their 95% prediction intervals. Rug plots on the y-axis
display the posterior means of the missing value imputations, providing insight into both
models’ imputations for the missing data.

Both models demonstrate strong predictive performances on the observed data, indi-
cating their robustness in making accurate predictions for observed cases, while simulta-
neously imputing the missing values. Notably, despite similar fits on the observed data,
the imputations differ between the models. While most imputations from missBART2
remain closely aligned with the range of observed values, missBART1 shows more drastic

deviations, especially for SLA, Parea, and Gs.
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Figure 4.13: missBART1 predictions for the observed data against their true log-transformed values.
Vertical error bars represent the 95% prediction intervals for the observed data. Rug plots on the y—axes
show the posterior means of the missing data imputations. Notably, the imputations for SLA, Parea, and
Gs deviate from the range of the observed data.
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Figure 4.14: missBART?2 predictions for the observed data against their true log-transformed values.
Vertical error bars represent the 95% prediction intervals for the observed data. Rug plots on the y—axes
show the posterior means of the missing data imputations. The imputations mostly lie within the range
of the observed data, aside from a few values for Parea and Gs.

Figure 4.15 shows the 95% posterior intervals of By obtained from missBART1. In
each panel, the error bars indicate the degree to which the missingness of each response
variable is influenced by the values of the 5 response variables. The coefficients for Narea
remain consistently non-zero (do not overlap with zero) across multiple panels, apart
from that for Gs, indicating that Narea strongly influences the missingness probabilities
for other responses. Aside from Aarea, the missingness of each response variable is often
explained by its own values. Specifically, higher values of SLA are more likely to be
missing, while higher values of Narea, Parea, and Gs are more likely to be observed. This
is consistent with the imputations shown in Figure 4.13. Despite Parea exhibiting the
highest level of missingness, only the error bars for Narea and Parea do not overlap with
0 in the missingness for Parea, indicating that its missingness is primarily influenced by
itself and Narea. Overall, most of the intervals for By do not overlap with 0, showing a

strong presence of MNAR missingness in the global Amazx data.
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Figure 4.15: 95% posterior intervals of By, the probit regression coefficients associated with the response
variables from missBART1. Most intervals do not overlap with 0, indicating a strong presence of MNAR
missingness.

From missBART2, we obtain the variable importance from both the regression and
missingness models. This is shown in Figure 4.16 below. In Figure 4.16a, the 10 most
important variables from the regression trees are displayed, along with the importance
measures from both the regression and missingness trees. While bulk density (BULK), cal-
cium carbonate content (CARB), and mean monthly fractional sunshine duration (SUN-
min) were the variables most frequently used in the regression trees for predicting the
responses, they showed little importance in explaining the missingness of the data. In con-
trast, Figure 4.16b shows that the most influential variables for the missingness model are
exchangeable aluminium percentage (ALU), clay content (CLAY'), and the seasonality of
precipitation (PPTseason). Of the 5 responses variables, Parea is the only variable in the
top 10 most important variables of the missingness trees, while the others are among the
20 least important variables. We also note that Parea has no importance in the regression
trees, as response variables only contribute to the missingness model by construction. The
covariates ALU, relative humidity (RH), sand content (SAND), and maximum monthly
precipitation (PPTmazx) are among the top 10 most influential variables for predicting

the responses as well as explaining the missingness.
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Figure 4.16: Comparisons of the top 10 important variables in the regression and missingness models
from missBART2. On the left, the top 10 variables from the regression model are shown alongside
their corresponding importance in the missingness model. On the right, the top 10 variables from the
missingness model are displayed and compared with their respective importance in the regression model.
Only RH, SAND, and PPTmaz are common to both sets. This highlights differences in how variables
influence both the missingness mechanism and the regression model’s predictions. In panel (b), of the 5
responses, Parea is the only one among the top 10 important variables, while the other 4 fall outside the
top 40. Parea has no importance in the regression trees as it is a response variable and can only contribute
to the missingness model by construction.

In addition to variable importance, variable interactions in the regression and missing-
ness trees can be measured by counting the number of times two variables appear consec-
utively along the same branch in the trees. Using visualisation techniques adapted from
Inglis et al. [2022], the average interaction effects of the top 10 variables from the regres-
sion and missingness trees are shown using heat maps in Figure 4.17 below, with variable
importance shown on the diagonals and variable interactions on the off-diagonals. In Fig-
ure 4.17a, BULK and potential evapotranspiration (PETf) show strong interactions with
SUNmin implying that BULK and PETYf are often used in conjunction with SUNmin for
predicting the responses. In Figure 4.17b, PPTmaxz and isothermality (7'MPiso) display

the strongest interaction, followed by CLAY and mean annual temperature (TMPmean).
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Figure 4.17: Heat maps showing the top 10 important variables and their interactions from the regression
trees (a) and missingness trees (b) of missBART2.

When comparing interactions between variables for the regression and missingness
trees, we note that there are more non-zero interaction terms between variables in the
regression trees than in the missingness trees. However, the magnitude of interactions is
larger in the missingness trees, and similarly for the importance measures. This is largely
due to the number of trees used in each model. As mentioned in Section 3.5.2, variables
occur more uniformly in splitting rules when more trees are used. In comparison, fewer
trees aid the identification of more influential variables. In this case, the regression trees
use twice as many trees as the missingness trees, leading to more uniform use of variables
in the regression model. In contrast, the smaller number of trees in the missingness model
allows the most critical variables to dominate the splitting rules, resulting in fewer but
stronger interactions and higher importance scores for those variables. This distinction
underscores the need for careful consideration of the number of trees in both sets of trees.

By using partial dependence plots [PDP; Friedman, 2001] and individual conditional
expectation [ICE; Goldstein et al., 2015] curves, we can further investigate the marginal
effect each variable has on the responses. In Figure 4.18, the PDP (shown in orange)
and ICE curves (shown in blue) illustrate how the predictions of each response variable
change as the two most important variables in the regression trees of missBART2, BULK
and CARB, increase. As shown in Figure 4.18a, the 5 responses remain relatively stable
across increasing values of BULK, with Narea and Parea increasing slightly as BULK

increases from 1.5 to 1.7, while Gs displays a slight decreasing trend as BULK increases.
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In Figure 4.18b, the responses show a non-linear relationship with CARB. Aarea shows a
spike when CARB is between 60 and 120. Both Narea and Parea exhibit a rise between
20 and 65, followed by a dip between 65 and 120. For Gs, there is a dip between 20 and

60, after which a slight increase occurs as CARB continues to increase.
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(b) PDP + ICE curves for responses across different levels of CARB.

Figure 4.18: PDP + ICE plots from the regression trees of missBART2 for responses across BULK
and CARB levels. The PDP curves (in orange) show the overall average effect of the covariates on the
response variables, while the ICE curves (in blue) illustrate the individual variability. The top panel (a)
corresponds to BULK, with the bottom panel (b) corresponding to CARB. The plots reveal little variation
in the responses for BULK and a non-linear relationship between the responses and CARB.

The results from Maire et al. [2015] found relationships between some of the responses
and covariates pH, Miq, and Pavail. Specifically, Aarea, Narea, and Parea increased as pH
increased and Miq decreased, while SLA decreased. Additionally, Parea increased while
Gs decreased with increasing Pawvail. Figure 4.19 shows the PDP and ICE curves for the

covariates pH, Miq, and Pavail.
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Figure 4.19: PDP + ICE plots from the regression trees of missBART?2 for different responses across pH,
Miq, and Pavail levels. These variables were deemed as influential variables in the Maire et al. [2015].
The PDP curves (in orange) show the overall average effect of the covariates on the response variables,
while the ICE curves (in blue) illustrate the individual variability.

In Figure 4.19a, Aarea, Narea, Parea, and Gs all show an increase when pH is above
6.5, while SLA sees a decline. However, there is a small decrease in Aarea as pH increases
from 8 to 8.5, likewise for Gs. These results align with established theory, as pH has a

strong influence on plant availability of soil nutrients, directly impacting photosynthetic
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traits. More specifically, nutrient availability is generally highest at moderate pH levels
and decreases significantly in highly alkaline soils (e.g., pH above 8) and highly acidic
soils (e.g., pH below 6) [Westerband et al., 2023]. As Miq increases in Figure 4.19b, SLA
and Gs increase while Narea and Parea decrease. Aarea seems unaffected. From Figure
4.19c, apart from a slight decrease in Gs when Pawvail increases from 0 to 200, we see
virtually no changes in all other responses.

As for the missingness, Figure 4.20 shows the effect of log(Parea) on the detection
probabilities of each response variable. While the detection probabilities of most responses
decrease as log(Parea) exceeds a value of —2, the detection probabilities of Gs show a
slight increase on average. This implies that SLA, Aarea, Narea, and Parea are more

likely to be missing when log(Parea) is greater than —2, while Gs shows the opposite.
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Figure 4.20: PDP + ICE plots from the missingness model of missBART?2 for the detection probabilities
of different responses across varying levels of log-transformed Parea. All variables other than Gs are more
likely to be missing when log(Parea) is greater than —2.

In Figure 4.21, bivariate PDPs across values of SAND and log(Parea) are shown for
the 5 responses. When log(Parea) is below —2, the detection probabilities of SLA are
close to 1 and stay constant with changing SAND values. However, when log(Parea) is
greater than —2, the detection probabilities decrease, especially when SAND is between
25 and 75. For detection probabilities of Narea and Parea, we see a general decrease when
SAND is below 25 and log(Parea) is above —2. Additionally, when log(Parea) is greater
than —2, the detection probabilities for Narea are higher when SAND is between 50 and
75. Finally, the detection probabilities of Gs are lower when SAND is below 75.
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Figure 4.21: Bivariate PDPs for the detection probabilities of different responses across values of SAND
and log(Parea).

4.4 Discussion & Conclusion

Motivated by the global Amaz data with multivariate missing responses and completely
observed covariates, we propose two novel models, missBART1 and missBART?2, to ad-
dress the limitations of existing missing data methods which predominantly focus on
MCAR or MAR assumptions. Our models, which can handle MCAR, MAR, and MNAR
scenarios for univariate and multivariate response datasets, offer a more flexible approach
for the predictive modelling of data where missingness may be a concern. Both models op-

erate within the selection model framework, differing primarily in the specification of the
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missing data model, where missBART1 uses a probit regression model and missBART?2
uses a probit BART model. While both models were designed to handle non-ignorable
missing response data, they have also been adapted to handle ignorable missingness in the
covariates. In missBART1, prior covariate imputation is necessary before model fitting,
while missBART?2 directly incorporates covariate missingness within the splitting rules of
the decision trees.

From simulation studies, both models demonstrate strong performance in making ac-
curate predictions on univariate and multivariate response data under various missingness
scenarios, as well as the ability to recover the true underlying missingness mechanisms.
The results highlight the advantages of our models compared to other methods such as
complete case analysis and missForest-imputation followed by model fitting. Moreover,
our models have the capability to recover both MAR and MNAR mechanisms, showcas-
ing their robustness and flexibility. We highlight the complexities of assessing predictive
performances when data are partially observed by reporting out-of-sample RMSEs based
on different levels of detection probabilities or missingness statuses. Especially when data
are MNAR, solely evaluating model performances based on RMSEs of the observed data
can lead to erroneous conclusions, as the missing data imputations of models which ignore
the missing data mechanism may be highly inaccurate.

When covariates are partially observed, missBART1 and missBART2 perform well
with imputed covariates. While our investigation focused primarily on missing responses
rather than covariates and thus limited studies were carried out for varying levels and
patterns of missing covariates, we speculate that complicated covariate missingness could
result in inaccurate covariate imputations, potentially degrading the performance of miss-
BART1. Without the need for prior covariate imputation, missBART2 is a robust alter-
native for handling datasets with missingness in both the responses and covariates. This
feature makes missBART?2 particularly advantageous in scenarios where the two-step pro-
cess of covariate imputation followed by model fitting may be inefficient or cumbersome.

While interpreting the missingness model, probit regression parameters in missBART1,
denoted by B, offer insights into the underlying missing mechanisms of the responses. By
assigning priors to the precision of B, we introduce more flexibility for incorporating any
prior beliefs about the missing data mechanisms. The default settings scale the prior
means of precisions according to the number of covariates and responses, which lessens
the emphasis on identifying missingness as MNAR unless strongly supported by the data.
This approach aligns with typical assumptions of missingness as MAR, while still allow-
ing for MNAR recovery if indicated. However, careful tuning of these hyperparameters is
essential to avoid potential model misspecification.

In contrast, the missingness model within missBART?2 does not offer users the option

to include any prior information on the missingness mechanism, but instead relies on the
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variable selection feature of BART to identify important variables which influence the
missingness. By evaluating the variable importance of the missingness trees, primarily
whether the responses were important or not, we can gain insights into the underlying
missing data mechanisms. However, the efficacy of this is impacted by the number of trees
used in the missing model, K,,. As found by Chipman et al. [2010], reducing the number
of trees in BART enhances its ability to identify the most influential covariates affecting
the response, as it necessitates fewer splitting rules, resulting in a more selective usage
of variables within the model. This encourages the inclusion of only the most influential
variables, improving the identification of key factors driving the underlying missingness
mechanisms. However, the MCMC sampler risks getting trapped in a local mode when too
few trees are used, resulting in slower convergence and poorer overall model fit [Chipman
et al., 2010, Bleich et al., 2014].

According to Bleich et al. [2014], while higher inclusion proportions suggest variable
importance, the raw values cannot be directly interpreted as they do not reflect posterior
probabilities. The authors posed a crucial question: What threshold must the variable
inclusion proportion meet to classify a predictor as important? To address this, they in-
troduced a permutation-based method that establishes optimal thresholds for variable in-
clusion proportions, allowing for more robust identification of important variables. Thus,
in the interest of missing mechanism evaluation and recovery, future work on missBART?2
may focus on examining importance thresholds derived from the missingness trees to gain
a better understanding of the key variables that influence the missingness mechanisms.
Alternatively, a Dirichlet prior may also be applied to the splitting rules of the missing-
ness trees, as introduced in Linero [2018]. This sparsity-inducing method encourages the
model to favour using only a subset of the predictors, which could facilitate the recovery
of the true underlying missing mechanism.

Our analysis of the global Amax data diverged from the approach used by Maire
et al. [2015] in several key ways. While Maire et al. [2015] employed separate regression
models for each photosynthetic trait, potentially overlooking the effects of missingness
in the data, our models utilised a non-linear and non-parametric multivariate BART
framework, explicitly accounting for the missingness structure in the responses. This joint
modelling approach allows for a more comprehensive understanding of the relationships
between covariates and responses while addressing the limitations of missing data. In
their study, Maire et al. [2015] identified three covariates — pH, Miq, and Pavail —
as significantly influencing photosynthetic traits. While our PDP and ICE plots from
Figure 4.19 generally support these findings for pH and Mig, our models suggest little to
no relationship between Pavail and the responses. Furthermore, the univariate analyses
in Maire et al. [2015] found that most responses were strongly influenced by pH and

Miq, whereas Pawvail primarily affected Parea and Gs — the two responses with the
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highest proportions of missingness. This raises two important considerations. First,
explicitly modelling the missingness structure allows our analysis to uncover more nuanced
relationships between the covariates and responses, highlighting potential biases that
may arise when missing data mechanisms are ignored. Second, future modification to
our models could involve integrating the “seemingly unrelated BART” model from Esser
et al. [2024], allowing each response variable to be associated with different sets of BART
trees while also accounting for dependencies between the responses, incorporating further
flexibility and interpretability of the models in multivariate response settings.

Finally, the global Amaz dataset used in Maire et al. [2015] consists of continuous data
only. However, from the DRYAD Digital Repository where global Amazr was obtained,
several other categorical covariates, such as Country and Genus, are also available. Includ-
ing these covariates may improve the predictive performances of our models, but would
require the adaptation of flexBART, which is an extension of BART from Deshpande

[2022] to handle categorical covariates.
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A Joint Seemingly Unrelated BART Model for
Non-lgnorable Missing Data

In this Chapter, we propose a novel joint model, “missSUBART”, that handles multivari-
ate response data with potentially non-ignorable missingness, allowing each response to be
associated with a distinct set of predictors while simultaneously capturing the correlation

structure between the responses.

5.1 Introduction

In Chapter 3, two joint models, missBART1 and missBART2, were introduced within the
selection model framework to handle multivariate response data with missing values with-
out imposing strict assumptions on the missing data mechanisms. Both models demon-
strated strong predictive performance and effective recovery of missingness mechanisms
under various simulated scenarios (Chapter 4), with missBART?2 frequently outperform-
ing missBART1 and other competing methods. However, a key limitation of missBART?2
is its enforcement of a shared tree structure across all responses, such that all p responses
share the same partitioning of the predictor space. In the analysis of the global Amax
dataset, Maire et al. [2015] highlighted that different predictors influence each response to
varying degrees, suggesting the need for response-specific regression functions. Thus, in
a tree-based modelling context, distinct responses may require separate tree structures.
A model that allows for separate functions representing the response estimates while
still capturing correlated error structures is the seemingly unrelated regression (SUR)
model, originally proposed by Zellner [1962]. Given a p-dimensional vector of fully ob-

served responses Y; and ¢ covariates X;, the SUR model can be represented as
Yi b/ X; €1
}/ip b;Xz €ip
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where (€1,...,¢p)" S N, (0,%) is the vector of residual standard deviations with a
p X p covariance matrix 3. The SUR model estimates a set of p separate linear regression
equations, where the conditional expectation of each response j = 1,...,p has its own
vector of coefficients b;. Unlike independent regressions, SUR jointly estimates a non-
diagonal covariance matrix 3 for the error terms, capturing potential correlations between
the residuals associated with each response. However, the strong linearity assumptions
of the original SUR model limit its applicability in non-linear settings. To address this,
Gallant [1975] introduced a non-linear generalisation of SUR. A comprehensive review of
SUR models can be found in Srivastava and Giles [1987], with more recent developments
summarised in Fiebig [2003].

Among several extensions made to the original SUR model is that from Chakraborty
[2016], who proposed BART-SUR to address issues arising from the strong linear assump-
tions imposed by traditional SUR. The BART-SUR model was developed as a non-linear,
non-parametric SUR model that replaces the linear functions in SUR with Bayesian ad-
ditive regression trees (BART). This approach allows each response variable to have its
own set of trees and predictors for splitting rules while also assigning priors to the num-
ber of trees for adaptive tuning, improving model efficiency. However, BART-SUR was
introduced only in the context of multivariate continuous responses.

To address broader applications, Esser et al. [2024] introduced seemingly unrelated
BART (suBART), a variant of BART-SUR that omits adaptive tree tuning while ex-
tending the model to the probit framework for estimating cost-effectiveness in health
economics. Further details of the suBART model are included in Section 5.2. A key inno-
vation in suBART is its carefully calibrated prior on the residual covariance matrix, which
is based on the hierarchical inverse-Wishart prior of Huang and Wand [2013] rather than
the non-informative inverse-Wishart prior used in Chakraborty [2016]. This calibration
regularises the residual variance parameters to prevent overfitting while ensuring proper
uncertainty quantification, particularly for their application in causal effect estimation.

By maintaining independent tree structures for each response while capturing error
correlations, suBART represents a flexible, non-parametric alternative to traditional SUR
models, making it particularly well-suited for complex multivariate regression problems.
By overcoming the limitation of a shared tree structure while retaining a shared error
structure, suBART also represents a flexible alternative to multivariate BART. Through
multiple simulation studies on datasets with fully observed responses and covariates, Esser
et al. [2024] demonstrated that suBART outperforms competing methods in terms of both
predictive accuracy and the accurate estimation of correlation structures. It outperformed
alternative methods, including standard BART applied separately to each univariate re-
sponse, the multivariate BART model such as the one in Chapter 3, and a Bayesian linear

seemingly unrelated regression model for multivariate responses.
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Here, we propose another novel selection model by replacing the data and missingness
models from the selection model with the seemingly unrelated BART models for contin-
uous and binary responses, jointly modelling the response and missingness indicators as
before. The proposed model, ‘missSUBART’, retains the advantages of missBART2, in-
cluding its non-linear treatment of both responses and missing indicators, its flexibility in
handling missing data without restrictive assumptions, and its ability to recover MNAR
missingness. However, missSUBART introduces additional flexibility by allowing each re-
sponse and missingness mechanism to have distinct predictor associations via separate sets
of trees. In addition to responses having individualised tree structures—enabling more
direct comparisons with results from Maire et al. [2015]—the missingness model also ben-
efits by accommodating heterogeneous missingness patterns across responses. This means
that while missBART2 may suggest an overall missingness mechanism shared across all
responses, missSUBART enables a more nuanced structure where the missingness mech-

anisms may vary between each response.

5.2 Seemingly Unrelated BART

In this section, we give an overview of the seemingly unrelated BART model following no-
tation, prior specifications, and model setup of sSuBART from Esser et al. [2024]. The suB-
ART model is a flexible, non-parametric approach developed to model multiple correlated
outcomes in settings where traditional linear methods, such as seemingly unrelated re-
gression (SUR), fall short. Unlike the multivariate BART model introduced in Chapter 3,
which assumes a shared tree structure across all responses, suBART allows each outcome
to have independent tree ensembles while still modelling residual correlations through a
structured error covariance. This enables greater flexibility in capturing response-specific
predictor effects and non-linear dependencies, making it particularly useful in complex
multivariate settings.

However, despite its increased flexibility and robustness, suBART comes with a key
computational drawback. Since each response is assigned an independent set of trees, the
total number of trees scales with the number of responses, significantly increasing com-
putational complexity. Moreover, this structure introduces a substantially larger number
of parameters, requiring more updates per iteration, further slowing down computation.
As a result, while suBART offers greater modelling flexibility, its computational demands
can be prohibitive, particularly in high-dimensional settings.

Given a fully observed set of p responses, Y;, and ¢ model covariates, X;, the suBART

model can be formulated as
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Yil Y19 (X T QYY) €i1
L= : +1
Y; Y19 (Xi T, Q) €ip
where T% = (’lej, R Tféj ), j=1,...,p,is the set of K regression trees associated with

the j™ response variable, Y@, Q¥% = (Q‘? s %) is the set of all terminal node param-
eters associated with YU, each sz = (,U,Z’i, e MZZ ( j)> contains the vector of 6,(3 ) univari-
ate terminal node parameters associated with tree 7,7, and (e;1, . . ., eip)T i N, (0,%)
is the vector of residual standard deviations with a p x p covariance matrix X. A key dis-
tinction of the suBART model from the multivariate BART model is that each response is
associated with a unique set of univariate regression trees. While the multivariate BART
model contained p—dimensional vectors of parameters in each terminal node, the suBART
model requires univariate terminal node parameters for all j ensembles of trees.

The model setup for suBART from Esser et al. [2024] closely follows the structure of
standard BART from Chipman et al. [2010]. First, the prior for each tree 7;5” follows the
specifications from Chipman et al. [2010], using default hyperparameter settings to favour

shallow trees and avoid overfitting. Upon scaling and shifting Y such that they fall

within the range [—0.5, 0.5], each terminal node parameter in u%, ceey ,uzz (j)> is assigned
k

aN (0, 1/ T'sz )) prior. Following this, each T'lsj ) can be calibrated using Equation .
Although the multivariate BART model detailed in Section 3.4 specifies a residual

precision matrix € and assigns to it a Wishart prior, Esser et al. [2024] specify 3 as

the covariance matrix of the residual errors and use an approach from Huang and Wand

[2013] to assign a prior for ¥ such that
3 | a ~ Inv-Wishart, (v +p — 1,Sy) ,

where a = (ay,...,ap), So = 2v x diag(a)™!, a; ~ Inv-Gamma (0.5, 1/A§>, v is a fixed
hyperparameter, and A; > 0 is a fixed scale hyperparameter, calibrated using a data-
based approach. This calibration technique distinguishes suBART from BART-SUR in
Chakraborty [2016], which employs a non-informative inverse-Wishart prior for 3.

More specifically, Esser et al. [2024] choose A; to ensure that the residual standard
deviation of each response, denoted by o; and equal to the square root of the 4™ diagonal
element of 3, does not exceed the rough data-based overestimate ;. Similar to Chip-
man et al. [2010], ; can be obtained by calculating the sample standard deviations or
computing the estimated residual standard deviations from least squares linear regression

models. The latter approach is chosen as the default in Esser et al. [2024], which we also
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adopt in our models. Following the prior specifications of 3 and a, the induced prior on
o; follows a half-t distribution, Half-¢t(v, A;). By assuming a priori that P(o; < 6;) = po,
where p, € [0,1], A; can be obtained through solving

o (u+1 w2 —0.5(v+1)
- = 1+ —5 du.
P 5)Aj /v ( + VA2> b

By default, » = 2 and p, = 0.95. For more details, see Esser et al. [2024].

A probit version of the suBART model is also outlined in Esser et al. [2024] for
handling multivariate binary outcomes. Similar to the multivariate probit BART model,
probit suBART uses the data augmentation scheme from Chib and Greenberg [1998] to
handle multivariate binary outcomes. Assuming instead that Y is binary and defining

Y™ as the corresponding latent variables, the probit suBART model takes the form

}/jﬁ ZIIC(ZI g ( 15 Tyl 5 yl) €i1

Yy  ~Yp
Y; lec(:l g (Xi; T’ kp> €ip

=

and Y;; = 0 if ¥;5 < 0 and vice versa. Here, (€1, .. Ceip) b N, (0,R) where R is a

correlation matrix.

5.2.1 Posterior Sampling of suBART

In the continuous response version of suBART, the joint posterior distribution is

p
p(T,Q",%,a]X,Y) H H{ (TP@QY T} < p(3 |a) x [] play).
k=1j5=1 j=1
In order to derive posterior Sampling distributions, the conditional distribution for each
response variable, Y;; | X, Y(9) T¥ QV, %, is required [Bierens, 2004, Esser et al., 2024].

This is given as
v _ =9 —1
N (i + 250020 (V7 = Y07) 50 = i B0 ) )

where }A/Z-j = ZkK:yl 9(X;; TY,QY) are the fitted Values, YZ(»_j ) is obtained by omitting the
§™ column in (Yiy,...,Y;,) and likewise for Ygfj ), Additionally, 3;; is the 5 diagonal
entry of X, 3;_;) is the vector obtained by omitting the 4 column of the j* row in
3 and likewise for 3_;);. Finally, 2(_—1]')(—3') is the inverse of the matrix obtained after

removing the j* row and column of X.
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Next, we also require the partial residuals of each response variable in tree k:

) =YD 3 g (XTQF).
t£k

which enables the back-fitting algorithm [Hastie and Tibshirani, 2000] as in univariate
BART. This enables K, sequential draws of (Tyj , z]) from

(Eyj’ Z;) | I.](cj)’ Y.a

where 775“ can be drawn independently for all j and k, as in univariate BART (see

Section 2.1.2 and Kapelner and Bleich [2016]). Next, draws of terminal node parameters
(szi, . ,ui]ém) can be obtained from
k

€)) )
Lo Tye

NG [ =S u? | vigi |
=1 =1

where we have

, A\ -1
g;= (TlSJ)Vj + n,(gg))
Vi =55 = S50 2 S

) _ -1 (=3) _ ~x(=3)
Ui = i - (Yi 7Y ])'

Next, we make j draws of a; from

aj | 3 ~ Inv-Gamma (V —g n, Aj_Q + I/ij) ,
where © = 37! and Q;; is the 4 diagonal entry of €. Finally, we draw 3 from
n N \T
2\Y,aNInv—Gamma<u+p+n—1,So+Z(Yi—Yi) (Yi—Yi) )
i=1

The sampling procedure for the probit suBART model follows closely with the univari-
ate probit suBART model and the sampling methods for continuous response suBART,

and will not be discussed here. For details, see Esser et al. [2024].

78




5.3. MISSSUBART FOR MULTIVARIATE MNAR MISSING DATA

5.3 missSUBART for Multivariate MNAR Missing Data

Using the selection model framework from Section 3.2,

p(Y,M[X,0,9) =p(Y|X,0) xp(M|X,Y,),

data model missingness model

where 0 and 1 are the data and missingness model parameters, respectively, we introduce
missSUBART, a seemingly unrelated joint model for handling multivariate non-ignorable
missing data, where missingness occurs in the response variables. This model allows each
response and missing indicator to follow distinct tree structures while simultaneously
accounting for correlated dependencies among responses. First, we assign a suBART
model as described in Section 5.2 to the data model.

For the missingness model, while it is possible to assign a probit suBART model, as-
suming correlated missing data indicators and estimating the correlation matrix R, this
poses some challenges. In Esser et al. [2024], a parameter-expanded data augmentation
strategy from Zhang [2020] was adopted to estimate the correlation matrix R in the pro-
bit suBART model, incorporating additional latent variables and a parameter-expanded
Metropolis-Hastings algorithm. However, without careful tuning of the proposal distri-
bution and a sufficiently large number of iterations, this approach can suffer from low
acceptance rates and high autocorrelation, leading to substantial computational over-
head. Given these computational challenges, along with the inherent flexibility of tree
structures to capture true underlying signals, we consider it sufficient to assume that
the missingness indicators are uncorrelated, essentially fixing R = I,. This specifica-
tion effectively reduces the missingness model to p independent univariate probit BART
models. We note that this is different from the missingness model in missBART2 where
missBART2 had uncorrelated error terms through fixing R = I, but retains dependence
through shared terminal node parameter vectors within the multivariate probit trees.

Recall from Equation that 572-]- = Yigbs if M;; =1 and ffij = Y;S’”s otherwise. Ad-
ditionally, Y0 = {Yi;: M;; = 1} is the set of observed responses and Ymis — {Yij: M;; =
0} is the set of responses which are missing. Denoting Z as the set of missingness model
predictors which includes but is not limited to the observed and missing responses, the
complete data likelihood for missSUBART is

p (Y. M|X,7%,Q".%,a,7",Q") =p(Y|X,T%,Q".%,a) p(M|Z,T",Q") ,

p univariate probit
BART missingness models

where 7Y and T contain p sets of regression and missingness trees respectively for each

suBART regression model

response variable, such that
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T = (77 T (T T))
T = (T T ) s (T T,

with K, and K,, being the respective numbers of trees for each variable in the regression
and missingness model. While the number of trees assigned to each outcome can vary, we
assume that K, remains constant across all responses and K, is similarly fixed for the
missingness indicators.

In missBART2, incorporating responses as predictors in the missingness model en-
ables the estimation of relationships between a response’s missingness and the values of
all missing responses, facilitating the recovery of potential MNAR mechanisms. Specifi-
cally, the missingness model predictors in missBART2, denoted as Z;, consist of both the
regression covariates and response values, (XZ-, Yi) T, which are used in the splitting rules
of 7™ and are shared across all p missingness indicators. This results in the formulation
7 — (XY)T

In contrast, missSUBART assigns independent univariate BART models to each re-
sponse’s missingness indicator, allowing for distinct sets of predictors used within the
splitting rules of each 7. For each response j, one possible specification of the missing-
ness predictors is Zgj ) = (Xi, YZ-)T, maintaining consistency with missBART2 while per-
mitting response-specific associations. However, missSUBART can extend this approach
by also allowing dependencies between a response’s missingness and the missingness in-

dicators of other responses, rather than just their values. This is formulated as
. - T
ZEJ) = (Xiina MZ( ])) )

where Mg_j ) denotes the missingness indicators of all responses except the ;' indicator.
This not only allows for the recovery of MNAR mechanisms, but also a form of MAR
missingness where the missingness of one response depends on whether another response

is missing or not.

5.3.1 Posterior Sampling of missSUBART

The joint posterior distribution of the missSUBART model is
p(T.QY, 3,2, T™, Q" M", Y™ | X, Y M),

where M* is the latent variable introduced in the data augmentation scheme within
probit BART to model the binary outcomes M (see Section 2.1.3). Retaining the prior

specifications and model calibration techniques from Esser et al. [2024], as outlined in
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Section 5.2, the sampling of (7Y,QY,3,a) follows the steps from Section 5.2.1. Next,
(ij, Qmj7M*(j)> can be drawn for each j as per the univariate probit BART model,
specifying default prior settings and calibrating the models as in Chipman et al. [2010].
More specifically, to sample M;;, we make draws from a truncated normal distribution,
such that

A

MZ; | ij7Qmj7Mij ~ TN <M'Z;7 771]) )

where MZ’; = Zf::ml g (Zz(j)§ T Qm) and ;; denotes the truncation points where ~;; =
[0, 00) if M;; =1 and ~;; = (—o0,0] if M;; = 0.

Finally, we also require the sampling of missing responses Y. Denoting 0U) =
{T%,Q%,%} and ¥U) = {T™i Q™ } as model parameters for the j* response and

missingness indicator respectively, we require for each missing entry
p (Y | X,09) p (M55 | Y0, v, )

where, as was the case for missBART2, no known distributional forms exist. Thus,
the posterior sampling of Y™ requires the implementation of a Metropolis-Hastings
algorithm. As specified in missBART2, we use a random walk proposal distribution with
a standard deviation oy = 0.5 to ensure that the proposed values do not exceed too far

outside the [—0.5,0.5] range. The sampling steps for missSUBART are as follows:
(1) For all j responses,

(a) For all K trees, propose a new tree via a grow, prune, change, or swap move

and accept or reject using a Metropolis-Hastings step?®.

(b) Update each terminal node parameter in (,uzji, e ,,uzjé (,)) of the k' tree using
QO

Equation .

(2) Update aq,...,a; and update ¥ as in Equations and .
(3) For all j missing indicators,
(a) Repeat Steps 1(a) and 1(b) for all K, trees.

(b) Update each terminal node parameter in (u;nlj e uZZj (_)) of the k™ tree as
k0
in univariate probit BART from Chipman et al. [2010].

(4) Update each M, using Equation .

#See Kapelner and Bleich [2016] for details on the tree-proposal moves and Esser et al. [2024] on the
Metropolis-Hastings acceptance probability.
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(5) Update Y™ via a Metropolis-Hastings step. For every missing entry, first propose

from N( tTZfi’j, 0%). Next, calculate the acceptance probability

a new value Y,
717.]

mis mis . .
W(Y;f,i,j ) t_17,~7j), which is equal to

D (szgs | ?Z(—j)’g(j)) D (MZ*] |Y(_j)’Ymis w(j)) q(Yymis — ymis.

t,1,7 i t,2,7 ) ,0,] t—1,4,5
p (Yimgs 1 Y17,000) p (M | V77 v o) a(Vms, — Yiue)

and accept or reject the proposed YZZZJS with probability min (1, w(YZZZJS, t’fﬁ j))

As discussed in Section 5.2, the total number of trees in the suBART model scales
with the number of response variables, leading to increased computational complexity.
In missSUBART, this scaling extends further, with the total number of trees given by
(Ky+ Ky) % p, where both the regression trees and missingness trees grow in proportion
to the number of responses and their corresponding missingness indicators. This presents
a key limitation, particularly when dealing with a large number of responses, as it requires
careful tuning of the number of trees to balance predictive accuracy and computational
efficiency, making missBART2 a more practical choice in such cases. However, this does
not pose a significant challenge when the number of responses is relatively small, as in
the case of the global Amax dataset, where p = 5.

As discussed in previous chapters, this choice balances the need for effective variable
selection with model stability. A reduced number of trees encourages selective variable
usage by limiting unnecessary splits, improving the identification of key predictors of
missingness, while too few trees can cause the MCMC sampler to get trapped in local
modes, slowing convergence and degrading overall model performance. In Chipman et al.
[2010], the default number of univariate trees was fixed at 200. However, Esser et al.
[2024] set the default number of trees for each response in the suBART as 50 and noted

that the model’s performance remains largely unaffected by variations in this parameter.

5.4 Simulation Studies

To assess the performance of missSUBART, we compare it against our previous joint
models, missBART1 and missBART?2, as well as suBART applied to complete cases (‘suB-
ART cc’) and missForest-imputed data (‘suBART_imp’). Comparisons with multivari-
ate BART and univariate BART on both complete cases and imputed data are omitted
here due to their comparatively weaker performances in earlier sections.

Before comparing with the two scenarios from the previous simulation studies in Chap-
ter 4, we first show an example in Section 5.4.1, called “MNAR 3”, where the data follows
a seemingly unrelated structure and missingness is simulated independently following sep-

arate univariate BART models for each response. More specifically, we generate the data
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using the “Friedman #1” example from Esser et al. [2024] with three response variables,
outlined later in Equation , while missingness is simulated such that missingness of
each response follows a distinct set of trees and varies between MAR and MNAR, outlined
later in Equation . Following this, in Section 5.4.2, we further evaluate two scenarios
from Section 4.2, MAR 2 and MNAR 2, where the bivariate responses share similar tree
structures.

As in Section 4.2, we use 5000 burn-in and post-burn-in iterations and carry out 4-
fold cross-validation. For the missSUBART models, we use Esser et al. [2024]’s default
of K, = 50 trees for each response in the data model. This setting is also used for data
model trees in the suBART models.

For the missingness model, missBART2 previously used K,, = 20 probit trees in uni-
variate and bivariate settings. However, in Section 4.2.3, where the number of responses
increased to 5, the number of probit trees in missBART2 was adjusted to 50 to account for
the greater number of response variables within a multivariate tree structure. However,
as missSUBART employs univariate trees which are expected to maintain convergence
stability even if the number of responses increase, we fix the number of probit trees in the
missingness model of missSUBART as K,,, = 20 probit trees throughout MAR 2, MNAR
2, and MNAR 3.

In MNAR 3, the number of regression and missingness trees for missBART1 and
missBART?2 are kept the same as in Section 4.2, i.e., K, = 100 multivariate regression
trees and K, = 20 multivariate probit trees. For MAR 2 and MNAR 2, the previously

reported results for missBART1 and missBART?2 are reproduced here for comparison.

5.4.1 MNAR 3 Simulation Details and Results

We first generate a complete dataset with n = 2000 i.i.d. samples using the “Friedman

#1” simulation recipe from Esser et al. [2024], given by

Yip 10sin X1 Xom 4 20 (Xi3 — 0.5)° €i1
Yo | = 8X4 + 20sin (X 7) + e
Yis 10X5 — 5Xi2 — 5X4 €i3
€i1 1 2 2.5
e | ~Npy |0, | 2 6.25 3.125
€3 2.5 3.125 25
where the XM, ... X6 ~ Unif(0,1). Next, we simulate an extra set of 5 covariates,

X©) ... X0 ~ Unif(0,1) and induce missingness by first simulating the M*:
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My ~ N (g1 (Xi2, Xig; T, Q™) , 1)

5
i*QNN<ZQQ (X1, Xio, Vi1, Yio; T2, ?2),1>
k=1

10
5~ N (Z g3 (Yiz; T2, Q1) 1) ;
k=1
followed by computing M where M;; = 0 if M, < 0 and M;; = 1 if M > 0. In
other words, Y1) has MAR missingness influenced only by two covariates, Y2 is MNAR
where its missingness is associated with two covariates, YW and its own values Y2,
while missingness of Y3 is MNAR but only depends on its own values. The resulting
dataset has a missingness proportion of 18.95% in YV, 41.75% in Y, and 15.25% in
Y®), Additionally, the covariates X(©) XM X and X9 have no importance in either
the data or missingness model, but are included as covariates in the competing models.
The out-of-sample RMSE, CRPS, and Frobenius norms for the 5 different models are
shown respectively in Figure 5.1, Figure 5.2, and Figure 5.3 below. While missBART?2
has poor performance in terms of Frobenius norms, we note that missBART2 performed
reasonably well in terms of RMSE and CRPS for YV and Y® but performed poorly
in Y®). Overall, missSUBART demonstrated strong performance compared to the other
models, both in making accurate predictions for the observed data and imputations for

the missing values.

84




5.4. SIMULATION STUDIES
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Figure 5.1: Out-of-sample RMSE for MNAR 3.
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Figure 5.2: Out-of-sample CRPS for MNAR 3.
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Figure 5.3: Out-of-sample Frobenius norms for MNAR 3.

As missSUBART employs separate tree structures for each response in both the data
and missingness models, variable importance plots can be generated individually for each
response and missingness indicator, rather than relying on a shared measurement across
all responses as in missBART1 and missBART2. The variable importance plots from
the regression and missingness trees of missSUBART, shown in Figure 5.4, confirm that
the model performed well in identifying the covariates used in generating the complete
responses in Friedman #1 from Equation , as well as the predictors used in simulating
the missingness for each response from Equation . Specifically, XM X3 and XG)
were the three most important covariates for predicting YV; X®) and X® had the
highest importance for Y@ and X@, X@ and X©®) ranked among the top four most
important covariates for Y®). In the missingness model, X2 and X® were the most
important predictors for the missingness in YD, For Y&, XU X® and Y® ranked
among the top three most important predictors, whereas Y1) had comparatively lower
importance. Finally, the missingness in Y3 was predominantly influenced by Y itself,

which had the highest importance, far exceeding that of all other predictors.
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(a) Variable importance from the 3 sets of regression trees in missSUBART.

1.004 1.004
0.3
0.754 0.75
Q (0] [0}
e 2 2
QO.Z fE E
g 5 0.504 5 0.504
Q Q Q
E £ E
0.1
X8 X2 X6 Y1 X1 Y3 X5 Y2X10 X9 X4 X3 M2 X7 M3 Y2 X1 X2 X9 X7 X4 X6 X8 Y1 M1 X3 X5X10M3 Y3 Y3 X6 X10 X5 X7 X9 X2 Y1 X1 M2 X3 Y2 X4 M1 X8
Variable Variable Variable

(b) Variable importance from the 3 sets of missingness trees in missSUBART.

Figure 5.4: Variable importance of the regression and missingness trees for each of the three responses
and missingness indicators modelled in missSUBART.

5.4.2 MAR 2 and MNAR 2 Results

The out-of-sample RMSE, CRPS, and Frobenius norms for MAR 2 and MNAR 2, shown
for the observed, missing, and combined responses, are presented in Figure 5.5 and Figure
5.6 below, respectively. In both examples, missBART2 outperformed all other models,
as expected, since the data and missingness mechanisms in MAR 2 and MNAR 2 were
simulated using multivariate BART models with shared tree structures across responses.
missSUBART demonstrated decent performance in both scenarios. Under MAR 2, miss-
SUBART had comparable results with missBART2. Under MNAR 2, missSUBART out-
performed missBART1 for the response Y2). Further, as anticipated, the complete-case
and imputed suBART models performed poorly due to their inability to account for the
missingness mechanisms. In fact, some suBART _cc results were omitted from Figure 5.6
(RMSE and CRPS, j = 2) due to poor performance.
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Figure 5.5: Out-of-sample RMSE, CRPS, and Frobenius norms for MAR 2. The joint models show
comparable performances.
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Figure 5.6: Out-of-sample RMSE, CRPS, and Frobenius norms for MNAR, 2. missSUBART outperformed
missBART1 for Y® but not for YV,
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5.5 Application to global Amax

We now apply missSUBART to the global Amaz data. For a more direct comparison with
results from missBART2, we first present, in Section 5.5.1, results obtained from exclud-
ing the missingness indicators M(=7) from the missingness model for each j™ response
in missSUBART. Following this, in Section 5.5.2, we incorporate M) back into the
missingness model and discuss results.

As in Section 4.3, the responses undergo a log-transformation to account for right-
skew. The model is run for 5000 burn-in and post-burn-in iterations, and 50 regression
and 20 missingness trees are used. While we increased the number of missingness trees
in missBART?2 in Sections 4.2 and 4.3, missSUBART assigns separate sets of trees to
each response variable rather than fitting all responses within a shared tree structure.
Consequently, we believe that the number of trees does not need to scale with the number

of responses, as was necessary for missBART?2.

5.5.1 missSUBART without Missing Indicators in Missingness Model

The predictions are shown for the observed data against their true log-transformed values
in Figure 5.7, as well as rug plots showing the posterior mean imputations and vertical
bars depicting the 95% prediction intervals. These predictions are comparable to those
from missBART1 in Figure 4.13 and missBART2 in Figure 4.14. In terms of posterior
imputations, missSUBART has a smaller range of values in comparison with that from

the previous models, and seem to stay roughly around the mean of the observed data.
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Figure 5.7: Predictions for the observed data from missSUBART without missingness indicators in the
missingness model against their true log-transformed values. Vertical error bars represent the 95% pre-
diction intervals for the observed data. Rug plots on the y—axes show the posterior means of the missing
data imputations. Aside from Gs, the imputations mostly lie within the range of the observed data.

Unlike missBART2, where variable importance is shared across all responses, miss-
SUBART allows for the evaluation of distinct variable importance measures for each
response. Figure 5.8 presents the variable importance from this missSUBART model,
including only the top 10 important covariates, derived from the five sets of regression
trees. ALU appears in most plots, except for SLA, while pH is commonly used across
responses, apart from Parea and Gs. Precipitation-related variables, including PPTmaz,
PPTmin, PPTmean, and PPTseason, frequently contribute to all responses. Similarly,
fractional sunshine duration variables, such as SUNmazx, SUNmin, and SUNrange, are
important for all responses except Parea. Furthermore, all of the top 10 most important
variables identified by missBART?2 (see Figure 4.16) appear in at least one of the plots in
Figure 5.8, reinforcing their relevance in the regression models.

To further investigate the differences in which variables are deemed to be relevant
under missBART2 and missSUBART, the differences between the variable importance
scores of the five sets of regression trees from missSUBART and the single shared set of
regression trees from missBART2 (from Section 4.3) are illustrated in Figure 5.9. The
differences are shown for each response variable as missSUBART assigns a distinct set of
trees to each of the five responses, resulting in five sets of variable importance measures.

Additionally, Figure 5.9 shows results only for the top 10 variables ranked most impor-
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tant by the single set of missBART2 regression trees. Positive values indicate that the
variable was more important under missSUBART, while negative values indicate higher
importance under missBART?2. To facilitate comparison, variable importance scores from
each method were adjusted to a comparable scale prior to calculating the differences.
Notably, ALU was consistently more important in several of the missSUBART trees
compared to missBART?2, particularly for Aarea, Narea, Parea, and Gs. While SUNmin
was considered more important for SLA and Narea, it was less important for Aarea and
Parea. However, the magnitude of the differences in variable importance scores is consis-

tently small, with absolute differences no greater than approximately 0.03 across all five

responses and the top ten predictors.

—
PNEEEN
& &

,Dg 5

0.04 4

Importance
Importance
Importance

% J
%,
40& _
4

—

T

5 SR SN

& & <\\ IS OQ © 2 & Q RIS & >N z’b SR QX

$* Q Q G 6?" & N < NS SR 6\ ~’¢ <& & KL

2 N & /&qk %Qe Q QQ K S Qe 0 IS
SLA Aarea Narea

0.08 o

Importance
Importance

. T T
NS &£ &
» © $@ /\Q’ & q@ & Qq"° e*“\
&
Gs

(\

Figure 5.8: Variable importance from the regression trees of the missSUBART model which excludes
M) from the missingness model predictors.
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As before, we further examine the relationships between responses and key variables
identified in Maire et al. [2015] using PDP and ICE curves. According to Maire et al.
[2015], Aarea, Narea, and Parea increased, while SLA decreased as pH increased and Mig
decreased. Additionally, Parea increased, whereas Gs decreased with increasing Pavail.
From missBART?2, the results shown in Figure 4.19 largely align with Maire et al. [2015],
except for the relationship between Parea and Pavail. missBART?2 also reveals additional
associations not detected in the original analysis of the global Amax data, where Gs
increased with increasing pH and Mig, which was not observed in the previous study.

The PDP and ICE curves from this missSUBART model are shown in Figure 5.10 for
pH, Miq, and Pavail. As pH increases, Aarea, Narea, and Gs exhibit a general upward
trend. SLA shows a slight dip between pH values of 6.5 and 7.5, before stabilising,
while Parea demonstrates a minimal increase at lower pH levels but remains relatively
unchanged thereafter. With increasing Mig, Aarea decreases, while SLA, Narea, and
Parea show only marginal increases. The relationship between Mig and Gs is non-linear,
with values between 1 and 5 corresponding to slightly higher stomatal conductance before
decreasing again. Finally, as Pavail increases from 0 to 300, Narea exhibits a slight upward
trend, whereas Gs declines steadily. Other responses, including SLA, Aarea, and Parea,

remain largely unaffected across the range of Pavail values.
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Figure 5.10: PDP + ICE curves from the data model of missSUBART without M(~) in the missingness
model predictors, across different levels of pH, Mig, and Pavail. The PDP curves (in orange) show the
overall average effect of the covariates on the response variables, while the ICE curves (in blue) illustrate
how the covariate influences individual predictions across different observations.

The missSUBART analysis largely aligns with Maire et al. [2015], confirming that
Aarea and Narea increase with pH, Aarea decreases as Miq increases, and Parea increases
while Gs decreases with Pavail. However, missSUBART reveals further relationships such
as an increasing trend in Narea as Pavail increases, as well as non-linear trends between G
and two covariates pH and Miq. This underscores the greater flexibility of the tree-based
model compared to the linear relationships described by Maire et al. [2015], while also

enabling additional inferences through the joint model’s simultaneous data imputation.
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The variable importance of the 5 sets of missingness trees in missSUBART, using only
X and Y as predictors in the missingness model, are shown in Figure 5.11. Previously,
variable importance in missBART2 indicated that Parea played a significant role in the
missingness model. Here, Parea appears only in the importance plot for Aarea, yet it
is the second most influential variable. No other response variables are present in the
importance plots for the remaining responses, suggesting that the missingness mechanisms
for all responses except Aarea are more likely to follow a MAR pattern. This highlights the

benefit of separately modelling the missingness mechanisms, allowing for a more nuanced

understanding of how missing data patterns vary across responses.
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Figure 5.11: Variable importance from the missingness trees of the missSUBART model which excludes
M9 from the missingness model predictors.

5.5.2 missSUBART with Missing Indicators in Missingness Model

As before, Figure 5.12 presents the predictions for the observed data against their true
log-transformed values, along with posterior mean imputations illustrated using rug plots,
obtained from missSUBART with missingness indicators incorporated in the missingness
model. We see no observable difference between the predictions and imputations from

this model as compared to the previous model shown in Figure 5.7.
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Figure 5.12: Predictions for the observed data from missSUBART with missingness indicators in the
missingness model against their true log-transformed values. There is no observable difference between
these results and that from the previous missSUBART model shown in Figure 5.7.

As before, we assess variable importance using the variable importance plots presented
in Figure 5.13. pH ranks among the top 10 most important variables for all five responses.
Variables related to fractional sunshine duration, including SUNmazx, SUNmean, SUNmin,
and SUNrange, frequently appear across all responses except for Gs. CN emerges as the
most influential predictor for both Aarea and Narea, while also ranking among the top 10
variables for G's. Compared to the previous model without missingness indicators in the
missingness model (Figure 5.8), ALU now appears only in the importance plots for SLA

and Parea, and precipitation-related variables are less frequently used.
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Figure 5.13: Variable importance from the regression trees of the missSUBART model with M=) included
as missingness model predictors.

In terms of PDP and ICE curves, shown for this model in Figure 5.14, Narea, Parea,
and Gs show an increase with increasing pH, SLA increases and decreases between pH
values of 4.5 and 7, while Aarea shows virtually no difference. As Miq increases, SLA,
Aarea, and Parea show some sort of increasing trend, GGs decreases, while Narea remains
unchanged. Finally, SLA and Aarea show little change with increasing Pavail, Parea
increases while Gs decreases as Pavail increases from 0 to 200.

The results from this missSUBART model are largely consistent with the previous
missSUBART analysis and Maire et al. [2015], confirming that Narea and Parea in-
crease with pH, while Gs decreases as Pavail increases. However, some notable differences
emerge. Unlike the previous missSUBART model, which showed a dip in SLA between pH
values of 6.5 and 7.5, this model finds a rise and fall in SLA between pH values of 4.5 and
7. Additionally, while both missSUBART models identified a declining trend in Gs with
Migq, the previous model suggested a non-linear response with a mid-range peak, whereas
this model indicates a more consistent decreasing trend. Furthermore, Aarea showed no
significant response to pH in this analysis, differing from both Maire et al. [2015] and the
previous missSUBART results.
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Figure 5.14: PDP + ICE curves from the data model of missSUBART when M(~7) is incorporated into
the missingness model predictors, across different levels of pH, Miq, and Pavail. The PDP curves (in
orange) show the overall average effect of the covariates on the response variables, while the ICE curves
(in blue) illustrate how the covariate influences individual predictions across different observations.

Figure 5.15 shows the top 10 important variables obtained from the missingness trees
in missSUBART where <X, Y, M7 )) are used as missingness model predictors. Notably,
none of the responses are included amongst the top 10 important variables, while the
missingness indicators of all responses, apart from Aarea, are commonly used to predict
the missingness in other responses. The missingness in Narea, denoted as ‘M(Narea)’,
was the most important predictor in predicting the missingness in all other responses.

Missingness in GGs was also an important predictor for most responses other than Aarea.

99




5.5. APPLICATION TO GLOBAL AMAX

0.34
o ]
§ S 0.08 8
s S S 024
et =t 8
o Q o)
Qo g— e
Eo = E
IIIIIII IIIII )
0.01 0001 T T T T T T T 0.0
— T
D D R 4 & ¢ r o T T T
P P S & D O O & F & & ’\“ \‘ <~\\ & S N A > o O
& @ & Q& F X ¢ & & K &5 e & s 3 & §F @ a v o P S
\&\V\W N O—'V\ & @g“’ Q N &N QQ/\ ¥ @@'Dﬁ Q ¢ @ /\\SZ N ,\\§ <
SLA Aarea Narea

Importance

e
\V“é’(é\

& & @
PN /\\5 @@e"’ &<

Importance
B o o C
~ ®
) )

0.04

Figure 5.15: Variable importance from the missingness trees of the missSUBART model with M(~7)
included as missingness model predictors.

Since the missingness indicators for each response is used to model the missingness of
other responses, we can further investigate this relationship to explore how the missingness
of a response variable affects whether or not a different response will be observed. Using
PDP and ICE curves, we first look at the most influential predictor, M(Narea), and how
it influences the missingness probabilities of SLA, Aarea, Parea, and Gs. This is shown
in Figure 5.16. Overall, all four of these responses are more likely to be observed when

Narea is observed.
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Figure 5.16: PDP + ICE curves from the missingness model in missSUBART when M) is incorpo-
rated into the missingness model predictors, with respect to the binary missingness indicator for Narea.
P(Mnarea) is omitted as it cannot depend on M(Narea).

The PDP and ICE curves with respect to the missingness indicators of all other
responses are shown in Figure 5.17. When SLA is observed, Narea is more likely to be
observed, whereas Gs has a lower probability of being observed. Aarea appears to have no
significant effect on the missingness probabilities of other responses, which is consistent
with its absence from the variable importance plots in Figure 5.15. Similarly, when Parea
is observed, Narea is more likely to be observed, while GSs is less likely. Finally, G's has
minimal influence on most missingness probabilities, except for a slightly increased chance

of Narea being observed when Gs is also observed.
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(a) PDP + ICE curves with respect to the binary missingness indicator for SLA. When SLA is observed, Narea is
more likely to be observed, whereas Gs has a lower probability of being observed.
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(b) PDP + ICE curves with respect to the binary missingness indicator for Aarea. Aarea appears to have no
significant effect on the missingness probabilities of other responses.
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(c) PDP + ICE curves with respect to the binary missingness indicator for Parea. When Parea is observed, Narea
is more likely to be observed, while Gs is more likely to be missing.
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(d) PDP + ICE curves with respect to the binary missingness indicator for Gs. Gs has minimal influence on most
missingness probabilities, except for a slightly increased chance of Narea being observed when Gs is also observed.

Figure 5.17: PDP + ICE curves from the missingness model in missSUBART when M) is incorporated
into the missingness model predictors, with respect to the binary missingness indicators for SLA, Aarea,
Parea, and Gs.

Maire et al. [2015] compiled photosynthetic traits from various studies, with Aarea
as the primary focus, resulting in minimal missing data for this trait. This is consistent
with the observation that Aarea has virtually no influence on the missingness of other re-
sponses and is itself unaffected by their missingness. Additionally, SLA, being relatively
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easy to measure, is commonly included in studies assessing Aarea, while Narea, a key
trait in photosynthesis, is also frequently quantified in research related to plant function.
The observed missingness patterns further support these explanations. When SLA is
recorded, Narea is more likely to be observed, reinforcing their frequent co-measurement
in photosynthesis studies. Likewise, Parea and Narea exhibit a similar relationship, sug-
gesting that studies measuring phosphorus content often also quantify nitrogen due to
their interconnected roles in plant metabolism. Notably, Gs is less likely to be recorded
when SLA or Parea is measured, implying that stomatal conductance is not prioritised

in studies focused on leaf morphological or nutrient-related traits.

5.6 Discussion

In this chapter, we introduced missSUBART, a novel joint modelling approach for multi-
variate response data with missingness that avoids imposing strict assumptions on miss-
ingness mechanisms, enforcing strong linear relationships, or constraining responses to
a shared tree structure. Building on the seemingly unrelated BART framework, miss-
SUBART addresses key limitations of previous models, missBART1 and missBART2,
by allowing each response and missingness indicator to follow distinct tree structures
while simultaneously modelling their correlations. This flexibility enhances the accuracy
of missing data imputation and improves the identification of missingness mechanisms,
particularly in cases where responses have unique predictor associations. However, this
increased flexibility comes at the cost of greater computational complexity. The need for
separate sets of trees for both the response and missingness models results in a higher
number of parameters and updates per iteration, making missSUBART computationally
demanding, especially in high-dimensional settings. While this trade-off is manageable for
datasets with a moderate number of responses, it may limit the scalability of the model
in applications with a large number of response variables.

Through extensive simulation studies, we demonstrated that missSUBART outper-
forms competing models in terms of predictive accuracy and missingness recovery. When
responses share similar tree structures (e.g., MAR 2 and MNAR 2), missSUBART per-
forms comparably to missBART?2, which enforces a shared tree structure across responses.
However, missSUBART provides additional flexibility, allowing it to model heterogeneous
predictor-response relationships more effectively. In MNAR 3, where each response follows
distinct missingness patterns, missSUBART outperformed all other methods, recovering
the underlying missingness structures while making accurate predictions and imputations.
When applied to the global Amax dataset, missSUBART produced results largely con-
sistent with Maire et al. [2015], while uncovering additional relationships that were not

detected in previous analyses.
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A key advantage of missSUBART is its ability to incorporate missingness indicators as
predictors in the missingness model-—something that was not feasible in missBART2 due
to its shared tree structure. This feature enables a more nuanced representation of miss-
ingness dependencies, offering a comprehensive approach to handling missing data. By
allowing missingness indicators to influence the model, missSUBART provides deeper in-
sights into how missingness propagates across variables, potentially revealing mechanisms
that might otherwise remain undetected.

Further extensions could involve enhancing missSUBART’s robustness in handling
missing covariate data. Previously, missBART1 and missBART2 leveraged the BARTm
framework from Kapelner and Bleich [2016] to accommodate missing covariates within
BART trees, an approach that could similarly be integrated into missSUBART.

Additionally, while missSUBART does not explicitly account for correlations between
missingness indicators, the parameter-expanded data augmentation strategy from Zhang
[2020], as implemented in Esser et al. [2024], could be incorporated to estimate a non-
diagonal correlation structure within a seemingly unrelated BART missingness model.

Finally, while our simulation studies considered various scenarios—including responses
sharing tree structures (MAR 2 and MNAR 2), responses with distinct structures but
correlated residuals (MNAR 3), and missingness mechanisms following either a linear
(MAR 2) or tree-based model (MNAR 2 and MNAR 3)—further simulations could be
conducted to assess missSUBART’s performance under broader conditions and larger

datasets.
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Conclusion

This thesis introduced three novel joint models for handling multivariate response data
with non-ignorable partial missingness which address key limitations of existing miss-
ing data methods that predominantly assume data are missing completely at random
(MCAR) or missing at random (MAR). Unlike traditional approaches that either discard
missing observations or rely on explicit assumptions about the missing data mechanism,
our models learn the missingness process directly from the data, allowing for the recovery
of non-ignorable MNAR mechanisms, as well as MCAR and MAR.

The motivation for developing these models stemmed from the global Amax dataset,
which exhibits substantial missingness in the response variables while retaining fully ob-
served covariates. The partial missingness in the response variables leads to complex,
overlapping missingness patterns and a limited number of complete cases. The original
analysis conducted by Maire et al. [2015] relied on complete-case analysis and excluded
certain responses when missingness levels were too high, implicitly assuming an MCAR
mechanism. However, even after excluding the most frequently missing response variable,
the number of complete cases remained low, likely introducing biases and information
loss. Additionally, several univariate models were implemented to separately model each
response in the 5-dimensional set of responses.

Our work aimed to provide a robust alternative by jointly modelling both the responses
and the missingness process while maintaining flexibility in handling different missingness
mechanisms within the multivariate framework. We developed three novel Bayesian joint
models that extend the selection model framework from Heckman [1976] while leveraging
Bayesian additive regression trees (BART) to flexibly model complex relationships in
multivariate response data. Instead of the traditional ‘two-step’ approach from Heckman
[1976] which accounts for univariate response data, we use a joint modelling approach
and extend it to the multivariate framework.

First, we introduced two new joint models, missBART1 and missBART?2, which inte-

grate multivariate BART with selection models to handle multivariate missing responses.
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These models enable simultaneous recovery of MCAR, MAR, and MNAR data without
imposing restrictive assumptions about the missingness mechanism. In both models, the
responses follow a multivariate BART structure that captures dependencies between re-
sponses while capturing flexible, non-linear relationships with covariates. For the missing-
ness model, missBART1 employs a multivariate Bayesian probit regression model, which
enables incorporation of prior knowledge when available. In contrast, missBART?2 extends
this to a non-parametric setting using multivariate probit BART, leveraging BART’s vari-
able selection capabilities to identify the most influential predictors of missingness.

Although the covariates in our motivating global Amaz dataset are fully observed,
real-world data often have missingness in the covariates as well as the responses. Thus,
missBART1 and missBART2 can also handle missing covariates, provided that the miss-
ingness is ignorable. missBART1 requires prior imputation on the covariates before model
fitting, while missBART?2 incorporates a technique from Kapelner and Bleich [2016] where
missing covariates are integrated within the splitting rules of the BART trees.

The third model, missSUBART, further extends this framework by incorporating
seemingly unrelated BART (suBART), where each response variable is modelled with
its own tree structure while still capturing dependencies across responses through cor-
related error terms. In missSUBART, the multivariate responses are modelled using
suBART, while missingness indicators for each response are modelled with individual sets
of univariate BART models. This enables distinct relationships between the missingness
of each response and its associated predictors, offering greater flexibility in modelling
heterogeneous response-covariate relationships. Additionally, the missingness of a single
response can also be informed by the missingness of other responses, rather than solely
relying on observed or imputed values.

Through extensive simulation studies, we demonstrated that these models accurately
predict multivariate responses under various missingness conditions while effectively re-
covering the true missingness mechanisms. Comparisons with alternative BART-based
missing data methods—such as complete-case analysis with multivariate or univariate
BART or imputation followed by model fitting with multivariate or univariate BART—
highlighted the robustness of our models, particularly in MNAR settings where standard
techniques tend to fail. Furthermore, we applied our models to the global Amaz dataset,
demonstrating their practical utility. While some of our findings aligned with the original
analyses by Maire et al. [2015], our models also uncovered additional insights that were
previously undetected, possibly due to the limiting assumptions of ignorable missingness
implicit in the modelling approaches undertaken in the previous analyses.

The development and evaluation of missBART1, missBART2, and missSUBART led
to several key findings. Our models improve the handling of missingness in multivariate

data by explicitly modelling the missingness process rather than assuming an ignorable
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mechanism. This is particularly important in cases of correlated multivariate responses
and when missingness is non-ignorable. Unlike traditional methods that assume MCAR
or MAR, our models accommodate MNAR data without requiring explicit assumptions
about the missingness mechanism. Additionally, our models simultaneously impute miss-
ing responses within their modelling framework, rather than adopting a two-step ap-
proach, enhancing efficiency. Through evaluation of the posterior intervals within the
parametric probit regression model and variable importance in the non-parametric pro-
bit BART model, we demonstrated that these models can effectively recover the true

underlying missing mechanism without relying on strong priors.

6.1 Future Work

To improve the identification of missingness mechanisms, future research could explore
more sophisticated variable selection techniques. As noted by Bleich et al. [2014], relying
solely on raw variable inclusion proportions in BART to determine variable importance is
insufficient, as these values do not directly reflect posterior probabilities. A key challenge
is determining appropriate thresholds for classifying a predictor as important. A potential
solution is the use of permutation-based methods, as proposed by Bleich et al. [2014], to
establish optimal thresholds for variable inclusion, thereby enhancing the robustness of
variable selection in the missingness model.

Another potential avenue for future work is exploring different approaches to han-
dling missing covariates under the ignorable MCAR or MAR assumptions. Currently,
missBART1 relies on prior covariate imputation using external methods such as mice
or missForest before model fitting, while missBART?2 incorporates the BARTm strategy,
which accounts for missing covariates directly within the splitting rules of the trees, elim-
inating the need for explicit imputation. The same approach can also be applied to
missSUBART. An alternative strategy for all three models is to explicitly model the ig-
norable missing covariates by assigning priors to the missing X variables and sampling
from their full conditionals within the MCMC framework. This approach would eliminate
the need for prior imputation, as required in missBART1, while still imputing missing
values rather than leaving them unknown, as in missBART2. However, this method in-
troduces additional computational complexity, and assigning appropriate priors can be
challenging, particularly when prior information is limited or when covariates exhibit
complex dependencies. Future research could explore the feasibility of this approach,
assessing its computational trade-offs and evaluating its effectiveness in comparison to
existing strategies for handling missing covariates.

In missBART1, the missingness model is based on a parametric multivariate probit

regression framework, where priors are placed on the probit parameters to incorporate
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prior information about the missingness mechanism. However, alternative priors, such
as spike-and-slab or horseshoe priors, could be introduced to improve variable selection,
thereby potentially enhancing the recovery of missingness mechanisms, particularly in
high-dimensional settings with a large number of covariates and responses. As part of
this approach, it will be of interest to explore differing priors for the covariates X and the
responses Y which form the predictors of the missingness models.

In contrast, the non-parametric missingness models in missBART2 and missSUBART
rely on uninformative and uniform splitting rules, as in standard BART. These approaches
leverage BART’’s automatic variable selection capabilities to identify influential predictors,
but can be inefficient when the number of predictors is large. An alternative approach is
to adopt the strategy proposed by Linero [2018] which applies a sparsity-inducing Dirich-
let prior to the splitting proportions of the regression trees. This encourages the model
to prioritise a smaller subset of predictors, potentially improving variable selection and
increasing efficiency in the presence of a large number of predictors. Within this frame-
work, it will be of interest to investigate prior elicitation strategies, for the missingness
trees in particular, that allow for splitting rules on X or Y to be prioritised, in order to
express a degree of belief in the ignorability of the missingness mechanism.

Next, missBART1 employs the parameter-expanded data augmentation strategy from
Talhouk et al. [2012] to estimate a non-diagonal correlation matrix in the missingness
model, allowing dependencies between the missingness indicators. However, incorporat-
ing multiple latent variables adds considerable computational complexity. Due to the
flexibility of the BART trees, missBART2 and missSUBART assume conditionally un-
correlated binary missingness indicators, with missBART2 permitting a non-diagonal co-
variance structure only within its terminal nodes. Future extensions could refine these
models by explicitly estimating the correlation matrix in the missingness model using
parameter-expanded data augmentation techniques, such as those implemented in Esser
et al. [2024]. However, this approach presents additional challenges, including the need
for the parameter-expanded Metropolis-Hastings algorithm from Zhang [2020], requiring
careful model tuning to mitigate the excessive computational burden.

Our models were initially designed to handle continuous responses and covariates, as
seen in the global Amaz data, while also accommodating binary missingness indicators (via
probit BART) and binary covariates (through BARTs splitting rules). A key avenue for
future research is extending these models to incorporate categorical covariates and mixed-
type responses, broadening their applicability to more diverse datasets. Methods such as
those of Deshpande [2022] for categorical predictors and Papageorgiou et al. [2015] for
mixed-type responses offer promising directions for enhancing model flexibility. Notably,

the DRYAD Digital Repository?, from which the global Amax data were obtained, contains

*https://datadryad.org/stash/dataset/doi:10.5061/dryad.j42m?7.
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several categorical covariates that were not included in the original analysis by Maire
et al. [2015] and were therefore omitted from our study. Incorporating these variables
could potentially improve the predictive performance of our models and provide deeper
insights into the relationships between leaf traits and environmental conditions.

Finally, we address the issue of computational efficiency. All models are implemented
in R and are available on GitHubP. While our models efficiently integrate response mod-
elling, missingness handling, and imputation within a unified framework—eliminating the
need for separate imputation steps—computational demands remain a concern, partic-
ularly for multivariate models with a large number of responses. Several enhancements
could be made to improve efficiency.

One potential extension is to adopt an adaptive tree selection strategy, as those pro-
posed by Chakraborty [2016], to dynamically optimise the number of trees used. In
missBART1 and missBART?2, this would apply to the set of multivariate BART trees
in the regression model and/or the missingness model. In missSUBART, this would ad-
just the number of univariate BART trees for each response, similarly in the response
and/or missingness models. However, implementing this approach would introduce re-
versible jump MCMC steps [Green, 1995], requiring careful consideration of its impact on
computational performance and potential trade-offs.

Additionally, the efficiency of our R implementation could be significantly improved by
integrating C++ via Rcpp [Eddelbuettel and Frangois, 2011]. The Rcpp package provides
a streamlined interface for incorporating C++ into R, which has been successfully used in
various BART-based packages, including the BART package from Sparapani et al. [2021a],
£1exBART from Deshpande [2022], and the suBART implementation of Esser et al. [2024]°.

6.2 Final Remarks

This thesis was motivated by the widespread challenge of missing data in multivariate
response settings, as exemplified by the global Amaz dataset, which exhibits substantial
missingness in key response variables. Handling missing data appropriately is crucial
for drawing valid inferences, yet many existing methods rely on restrictive assumptions
about the missingness mechanism or suffer from inefficiencies due to separate imputation
and analysis steps. To address these limitations, we developed three novel Bayesian
joint models—missBART1, missBART2, and missSUBART—that integrate the selection
model framework with Bayesian additive regression trees. These models provide a flexible
and unified framework for simultaneously modelling responses, estimating missingness

mechanisms, and imputing missing values. Through extensive simulation studies and

" Available at https://github.com /yongchengoh/missBART.
¢Available at https://github.com/MateusMaiaDS /subart.
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application to the global Amax dataset, we demonstrated the robustness and adaptability
of our models, particularly in MNAR settings where standard techniques often fail.

In practice, the choice between the three proposed models depends on the practi-
tioner’s knowledge of the missingness process and the characteristics of the dataset. miss-
BART1 is best-suited when strong prior knowledge about the missingness mechanism is
available, as it allows the specification of informative priors within the parametric miss-
ingness model. However, it requires prior imputation for any missing covariates and may
struggle to capture complex non-linearities or interactions within the missingness pro-
cess. missBART?2 is generally a more robust choice, as it does not require strong prior
information for the missingness structure, can flexibly capture complex non-linearities
and interactions in both the response and missingness models, and can also accommodate
missing covariates without prior imputation.

However, missSUBART may be preferable when distinct sets of factors are believed to
affect the values and/or missingness status of the different responses, rather than having
shared tree structures, as per missBART2, whereby covariates affect all responses (and
associated missingness indicators) simultaneously. In addition, missSUBART may also be
preferable when the missingness of one response is expected to depend on the missingness
or values of other responses, or when different responses are believed to follow distinct
missingness structures rather than a shared one. Finally, missSUBART can, in principle,
accommodate missing covariates without prior imputation (though further methodological
work is needed in this regard, much like missBART?2). Its added flexibility, however, comes
at the cost of substantially greater computational burden, particularly as the number of
responses increases.

While this work represents a significant advancement in missing data methodology,
several avenues for future refinement remain, as discussed in this chapter. Further im-
provements, such as incorporating categorical covariates, enhancing variable selection
techniques, and optimising computational efficiency, would expand the applicability and
scalability of joint modelling approaches for missing data. Ultimately, this work con-
tributes to the growing field of Bayesian statistical machine learning models for predicting
multivariate data with non-ignorable partial missingness, offering a principled and flexible
framework that ensures missingness is treated not as an obstacle, but as an integral part

of statistical modelling.
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