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Abstract—Recent years have seen extensive use of brain-
computer interfaces (BCIs) using electroencephalography (EEG).
A critical element in BCI research is electrode selection, which in-
fluences performance, experiment duration, resource utilization,
and consequently, cost. Electrode choice is partly dictated by the
study location, as environmental electrical noise can impact EEG
signal quality. This study evaluates the performance of a P300
speller and EEG signal quality using 4-, 6-, 8-, and 16-electrode
configurations in two different office environments. Ten healthy
adults participated in a single session, using a P300 speller to
spell three words with each electrode set. Participants were split
between two locations, with five individuals in each. Significant
performance disparities were observed between the locations.
Notably, within each location, the performance differences among
4-, 6-, and 8-electrode sets were minimal; only the 16-electrode set
outperformed the others in both settings. The location associated
with poorer performances also exhibited lower P300 amplitudes
and higher levels of mains electricity noise.

Index Terms—P300 speller, brain-computer interface, BCI,
electroencephalography, EEG

I. INTRODUCTION

The P300 speller, introduced by Farwell and Donchin in
the 1980s [1], is a significant application in the field of brain-
computer interfaces (BCIs). Originally designed as a commu-
nication tool, its use has extended to controlling computers
and devices [2], [3].

Electroencephalographic (EEG) electrode selection is a cru-
cial factor in the effectiveness of P300 spellers and BClIs
in general. The number and placement of electrodes directly
affect BCI performance, as well as the setup time, resource
needs, and overall cost of the study.

Several studies have investigated how electrode choice
influences P300 speller performance, such as [4]-[6]. These
studies suggest that a lower number of electrodes can perform
similarly to larger electrode sets, though these were all con-
ducted in single locations. To the best of our knowledge, only
one study [7] has compared P300 speller performance across
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different locations. However, that study utilized the same 8-
electrode set.

The effect of different electrode setups on P300 speller
performance in various locations remains under-explored. This
is vital to investigate as an effective setup in one location may
not be as efficient in another.

Our study aims to address this by exploring how different
electrode configurations and locations affect P300 speller
performance. This information is essential for designing BCI
experiments. The study design is outlined in Section II, our
findings are presented in Section III, followed by a discussion
of these results in Section IV. The study conclusions are
summarized in Section V.

II. STUDY DESIGN

This study was carried out at Maynooth University and
received approval from the Maynooth University Ethics Com-
mittee (BSRESC-2023-36713).

A total of 10 healthy adults, all over 18 years of age,
participated in a single experimental session. During the
session, participants used a P300 speller with varying electrode
sets to classify target and non-target rows. Details about these
electrode sets and the task will be elaborated in subsequent
subsections.

The experiments took place in two different office locations.
The selection of these locations was intentional, aimed at
collecting real-world data outside a laboratory setting and
contrasting different environmental conditions. Location 1 was
minimally equipped with just the necessary laptop and screen,
using natural light from a window. Location 2, in contrast, had
multiple electrical devices, relied on bright artificial lighting
due to the absence of windows, and had an electric ventilation
system. The first five participants completed the experiment in
Location 1, while the latter five were in Location 2.

A. EEG Electrode Sets

In this study, we employed four different electrode sets.
These sets were informed by a previous data analysis study we
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Fig. 1: Electrode configurations for each set. 4-electrode
set: red and purple electrodes, 6-electrode set: red and blue
electrodes, 8-electrode set: red, blue and green electrodes, 16-
electrode set: electrodes of any colour.

conducted [8], which itself utilized data from a comprehensive
study involving the P300 speller [9], [10]. The electrode sets
comprised 4, 6, 8, and 16 electrodes. Fig. 1 illustrates the
specific electrodes included in each set. Based on our previous
study findings, these electrodes were identified as the most
influential for the P300 speller performance.

B. P300 Speller Task

We used a standard P300 speller, implemented using Open-
vibe [11]. Participants were presented with a 6x6 grid dis-
playing all letters of the alphabet and numbers 1-9. Each
row and column in the grid was highlighted, or ‘flashed’, by
enlarging the font size and brightening the color of the relevant
characters. Participants counted the number of times the row
and column containing their target symbol were flashed. This
process elicited a P300 response to the flashes, enabling the
computer to identify the targeted letter.

Initially, to calibrate the speller, all participants spelled the
words ‘THE’ and ‘QUICK’, with each row and column being
flashed 12 times.

To compare the four different electrode sets, participants
were then asked to copy-spell the word ‘DANCE’ three times
for each electrode configuration. The order of electrode set
use varied for each participant to minimize learning effects
and fatigue. In the first attempt, with a specific electrode set,
the system used 10 flashes per row and column. This was
reduced to 5 flashes in the second attempt, and in the third
and final attempt, only 3 flashes were used. This strategy was
designed to collect data under various conditions. Therefore,
each participant spelled ‘DANCE’ a total of 12 times during
the experiment.

C. EEG Acquisition and Processing

The EEG signals were acquired using the ANT Neuro eego
rt amplifier [12], paired with a 32-channel waveguard cap

[13]. In this setup, AFz served as the ground electrode, while
CPz was designated as the reference electrode (see Fig. 1).
Electrode impedance was maintained below 10 kOhms.

For the P300 speller task, the EEG signals underwent band-
pass filtering within the range of 1 to 20 Hz, followed by
downsampling by a factor of 4. An xXDAWN spatial filter was
applied for the 16- and 8-electrode sets, reducing the number
of channels to 3 and 2 components, respectively. Subsequently,
a Linear Discriminant Analysis (LDA) classifier was employed
in all electrode sets to discriminate between target and non-
target trials.

For offline EEG processing, the EEG signals were band-
pass filtered to 1-20 Hz. Subsequently, all trials were epoched,
capturing data from 150ms to 550ms post-stimulus onset.
Baseline correction was applied, using the 150ms period
preceding each stimulus as the baseline.

D. Data Analysis

In this study, we conducted an analysis of two key metrics.
The first metric, spelling accuracy, serves as a measure of
performance for the P300 speller. Spelling accuracy represents
the percentage of correctly identified letters during a run. For
instance, if a participant spells ‘DFBCE’ instead of ‘DANCE’,
the spelling accuracy for that run is 60%. The ability to
effectively control the speller is crucial for its usability and
user acceptance, making performance a central focus of this
study. We calculated the mean spelling accuracy across the
three words spelled for each participant and each electrode
set.

We also assessed performance in terms of the P300 am-
plitude at POz, a common electrode in all sets. Here, the
amplitude is defined as the difference between the positive
and negative peaks in the target epochs defined in II-C.

Our analysis focused on comparing spelling accuracy and
P300 amplitude across different electrode sets within each
subject and between locations within each electrode set. For
between-set comparisons, we employed repeated measures
ANOVA for normally distributed data and Friedman tests
for data not meeting the normality assumption [14]. Where
necessary, post-hoc pairwise comparisons were conducted
using paired t-tests (for normally distributed data) or Wilcoxon
signed rank tests (for non-normally distributed data), both
with Bonferroni adjustment [14]. For within-set location com-
parisons, we used Student’s t-tests (for normally distributed
data) or Wilcoxon rank sum tests (for non-normally distributed
data), again with Bonferroni adjustment [14].

To investigate potential factors contributing to the differing
performances across the two locations, we analyzed the power
at 5S0Hz (the frequency of mains electricity) in the raw EEG
signals relative to EEG activity. Initially, we calculated the
power spectral density at POz from the raw EEG recordings
for all runs, sets, and subjects to determine the power at
50Hz. We then computed the EEG activity’s power as the
mean power between 1 and 20Hz in target epochs. The
power at SOHz was then divided by the mean power of EEG
activity and subsequently converted to decibels (dB). Given
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Fig. 2: Mean spelling accuracy across all runs, illustrated
by location and number of electrodes. Statistical analyses
include within-location comparisons between sets and within-
set location comparisons, using (paired) t-tests and Wilcoxon
rank tests, * p < 0.05.

that these ratios were normally distributed in both locations,
we conducted a Student’s t-test [14] to compare the locations.

Given the study small sample size, we calculated effect
sizes for all pairwise comparisons using Cohen’s D, d, [15]
for normally distributed data and the correlation coefficient, r,
[16] for non-normally distributed data.

III. RESULTS

A. Spelling Accuracy

Figure 2 presents the mean spelling accuracy across all
electrode sets and both locations.

At Location 1, a Friedman test revealed significant differ-
ences in spelling accuracy among the electrode sets (X?g) =
9.133, p = 0.028). Although pairwise comparisons showed
no significant differences between any paired sets, large effect
sizes were noted between the 16-electrode set and others
(4-electrode: » = 0.92, 6-electrode: » = 0.86, 8-electrode:
r=0.91).

Conversely, at Location 2, the repeated measures ANOVA
indicated no significant differences in spelling accuracy be-
tween sets (F(312) = 0.767, p = 0.534), corroborated by
non-significant pairwise comparisons. However, medium effect
sizes were observed between the 16-electrode set and the
others (4-electrode: d = 0.69, 8-electrode: d = 0.65).

A comparison between the two locations within each set
highlighted a statistically significant difference only in the 16-
electrode set (Z = 23, p = 0.029). Though not statistically
significant, large effect sizes were observed in all sets (4-
electrode: » = 0.60, 6-electrode: d = 1.33, 8-electrode:
d = 1.21, 16-electrode: r = 0.73).
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Fig. 3: Mean peak-to-peak P300 amplitude (14V) across all tri-
als and runs, illustrated by location and number of electrodes.
Statistical analyses include within-location comparisons be-
tween sets and within-set location comparisons, using (paired)
t-tests and Wilcoxon rank tests.

B. P300 Amplitude

Figure 3 shows the mean P300 amplitude for all sets and
locations.

A repeated measures ANOVA test of mean P300 amplitude
in Location 1 revealed no significant differences between
electrode sets (F(3,12) = 0.53, p = 0.668). While pairwise
comparisons did not show any significant difference between
pairs of sets, the effect size between the 16-electrode set and
the 6-electrode set is moderate (d = 0.72).

In Location 2, a repeated measures ANOVA test also
showed no significant differences between electrode sets
(F(3,12) = 2.55, p = 0.105). While there are no significant
pairwise differences, the effect sizes between the 4-electrode
set and all others are large (6-electrode: d = 1.09, 8-electrode:
d = 1.10, 16-electrode: d = 1.93), and the effect size between
the 8- and 16-electrode set is medium (d = 0.53).

Within each set, there are no significant differences between
the locations according to t-tests. However, there are medium
to large effect sizes for all sets apart from the 6-electrode set
(4-electrode: d = 1.12, 8-electrode: d = 0.79, 16-electrode:
d=1.01).

C. Mains Electricity Noise

The mean raw mains electricity noise relative to EEG activ-
ity is 0.47dB in Location 1, compared to 3.95dB in Location 2.
This difference, while not statistically significant (t = —1.28,
p = 0.239), exhibited a large effect size (d = 0.81), suggesting
a potential impact of mains electricity noise on performance.

IV. DISCUSSION

Our study highlights two main findings. First, the per-
formance advantage of the 16-electrode set over the 4-, 6-,
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and 8-electrode sets is evident in both locations, which is
consistent with our expectations and previous study results.
Interestingly, the differences in performance among the 4-, 6-,
and 8-electrode sets are minor, suggesting limited benefit in
choosing the 6- or 8-electrode sets over the 4-electrode set.
This parallels the findings of our earlier study.

The second key observation is the impact of location on
performance. In Location 1, performance was significantly
better than in Location 2, with even the 4-electrode set achiev-
ing over 80% spelling accuracy. The EEG analysis confirmed
lower P300 amplitude at Location 2. Furthermore, our analysis
into mains electricity noise revealed higher levels in Location
2 compared to Location 1, which might have contributed to
the poorer performance in Location 2. But, the performance
differences between locations seem influenced by more than
just electrical noise. Participants in Location 2 often reported
eye strain and needed more breaks. One participant even
requested dimmed lighting due to the bright glare affecting
their concentration and causing eye fatigue.

Despite the small sample size, limiting the significance
of statistical tests, the large effect sizes observed indicate
meaningful differences between electrode sets and locations.
However, as the study involved only healthy adults, results
may vary with different participant groups, such as those with
disabilities or children.

V. CONCLUSIONS

This study assessed the performance of a P300 speller across
different electrode sets (4, 6, 8, and 16 electrodes) and in
2 different environments. We discovered that, in low-noise
environments with dim and natural lighting, all electrode sets
yielded relatively high performance. Conversely, in high-noise
environments with bright artificial lighting, performance across
all sets was much lower. Across both settings, the 16-electrode
set outperformed the others, while the 4-, 6-, and 8-electrode
sets demonstrated comparable results.

These findings suggest that a minimal 4-electrode set may
be adequate in controlled, low-noise, and dimly lit settings.
However, for situations requiring near-perfect performance,
or in uncontrolled, high-noise environments, opting for a 16-
electrode set is advisable.
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