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A B S T R A C T   

Seasonal hydrological forecasts play a critical role in water resources management. The Copernicus Climate 
Change Service (C3S) data store provides open access to monthly hydrological forecasts for up to six-months. 
This study aims to evaluate, for the first time, 1- to 3-month runoff forecasts using the European Centre for 
Medium-Range Weather Forecasts (ECMWF) ensembles of precipitation, runoff, and temperature in 1981–2015 
period over a total of 30 s-level basins in Iran. We adopted the 5th, 50th and 95th ECMWF ensemble quantiles for 
each variable that represent low, medium and high probability of occurrence, respectively. Pearson correlation 
analysis (Pca), Recursive Feature Elimination (RFE) via random forest (RF) model, and Bayesian Networks (BN) 
feature selection algorithms were used in order to reduce input variable dimension and select potential predictors 
to be fed to the machine learning models. Multiple Linear Regression (MLR), Artificial Neural Networks (ANN), 
Support Vector Regression (SVR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) machine 
learning models were used with Repeated K-Fold cross validation (rK-Fold CV) while model efficiency was 
evaluated using modified Kling-Gupta efficiency coefficient (KGE’), Nash-Sutcliffe Efficiency coefficient (NSE), 
and Normalized Root Mean Square Error (NRMSE). Results of this study revealed that C3S runoff ensembles have 
the highest impact on forecast accuracy of streamflow, followed by precipitation and temperature. Overall, 
model performance yield a best-to-worst ranking of ANN, XGBoost, RF, MLR, and SVR with KGE’ values of 0.70, 
0.68, 0.66, 0.57, and 0.41, respectively. The predictive performance of all models decreased with lead times 
beyond 1-month, where ANN and XGBoost outperformed other models with KGE’ of 0.65 for 2-month lead time 
and 0.60 for 3-month lead time. The three superior models of XGBoost, ANN, and RF, were employed with RFE 
and BN FSAs most frequently across Iran’s 30 s level basins in all lead times. Almost all models in the arid central 
region of Iran showed the lowest performance while highest skills were achieved in the western regions of Iran. 
Finally, for all models and over all regions, the model performance reduced by increase in lead-time.   

1. Introduction 

Given global water scarcity, particularly in the past decade, it is 
crucial to adopt the best water resource management practices to handle 
or avert consequent water crises (Greve et al., 2018). An important 
factor in water resource management is the accurate estimation of 
streamflow in order to plan for available water resources (Sharma & 
Machiwal, 2021). Long-term forecasts include weekly, monthly, sea
sonal, and even annual predictions and are crucial for operation of 
reservoirs, irrigation management systems, and hydropower generation 
(Liang et al., 2018). Improving the accuracy of long-term forecasts is 
significantly dependent on improvements in availability and 

sustainability of climate datasets and modeling tools (Wegayehu and 
Muluneh, 2022). Recent advances in meteorological forecasts open up 
new opportunities for improving long-term hydrological forecasting 
capabilities (Kilinc & Haznedar, 2022). Long-term forecasts are more 
complex to simulate compared to short-term forecasts (Karimi et al., 
2016). The practical gap in access to accurate long term runoff pre
dictions pushes research toward reliable hydroclimatological forecasts, 
particularly given the benefits received from even a slight increase in the 
accuracy of these forecasts to water resource management (Cheng et al., 
2020). 

Ensemble hydroclimatological forecasts are used to numerically 
produce a range of forecasts based on possible future atmospheric 
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conditions. Unlike single predictions, ensemble forecasting provides a 
more robust prediction by generating the range of possible outcomes 
and evaluating the confidence in future system states (Hawcroft et al., 
2021). A prominent provider of ensemble forecasts is the Copernicus 
Climate Change Service (C3S) multi-system seasonal forecast (https 
://cds.climate.copernicus.eu/). The service, which has recently 
released several European center forecasts, is run on behalf of the Eu
ropean Union by ECMWF and offers seasonal forecasting protocols 
publicly available through the Climate Data Store. The database com
bines observations of weather systems and provides holistic past, present 
and future information on atmospheric conditions (Ingleby, 2015; 
Lopez, 2013). Given the recent launch of the C3S database, research on 
its evaluation is very limited, in particular over Iran. The evaluation of 
performance of ensemble forecast can provide context to decision 
makers’ strategic choices for overcoming climate related risks (Nobakht 
et al., 2021). 

Crochemore et al. (2017) evaluated precipitation and river flow 
forecasting performance in 16 basins in France. The study evaluated and 
post-processed seasonal precipitation forecasts from the open library of 
ECMWF (System 4) with 90-day lead time. They used linear scaling (LS) 
and different distribution mapping methods for post processing of 
monthly and annual raw precipitation data. The results demonstrated 
that applying post-processing techniques increase precipitation fore
casting accuracy. Manzanas et al. (2019) applied simple Bias Adjustment 
(BA) methods, such as quantile mapping, as well as complicated 
ensemble Recalibration (RC) methods, such as non-homogenous 
Gaussian regression, to increase the accuracy of C3S forecasted precip
itation and temperature. In particular, they evaluated UK Met Office 
(UKMO)-GloSea5 (Maclachlan et al., 2015), Météo France-System5 
(Descamps et al., 2015), and ECMWF-SEAS5 (Johnson et al., 2019) 
seasonal forecasts with one-month lead time. The results revealed that 
both BA and RC methods correct large raw model biases effectively, with 
high model skill in confined regions and seasons. In these instances, RC 
bias correction outperformed BA methods (Manzanas et al., 2019). In 
another study, Gebrechorkos et al. (2022) evaluated the performance of 
precipitation forecasts from five potential climate models namely 
ECMWF, UK Met Office, Météo France, Deutscher Wetterdienst (Kaspar 
et al., 2015), and Centro Euro-Mediterraneo sui Cambiamenti Climatici 
(Nicolì et al., 2023). Multi-Source Weighted-Ensemble Precipitation was 
used as the reference data for model performance evaluation. Model 
performance was evaluated in daily, weekly, monthly, and seasonal 
timeframes, and at specific months and lead times. All models showed 
reliable predictions for 1-month forecasts. However, they showed rapid 
decline in performance with increase in lead times, in particular in drier 
regions and seasons. It was found that ECMWF followed by UK-Met were 
the most accurate models among other C3S products (Gebrechorkos 
et al., 2022). 

Due to machine learning (ML) algorithms’ significant nonlinear 
modeling capabilities in complex problems, they have been widely used 
for the monthly prediction of streamflow (Ali & Shahbaz, 2020). The 
data preprocessing, feature preprocessing, ML algorithm selection, and 
hyperparameter optimization stages are typically included in the 
machine-learning-based prediction process for streamflow prediction. 
One of the more common forms of data-driven models, multiple linear 
regression (MLR), has been shown to perform effectively for long-term 
forecasts (Krstanovic & Singh, 1991). However, due to the nature of 
the process, it makes the assumption that the relationships between 
input and output data are linear and the data has no multicollinearity 
whereas streamflow prediction is a highly nonlinear process and de
pends on a variety of known and unknown factors (Sudheer et al., 2014). 
When it comes to model selection, The Artificial Neural Networks 
(ANNs) (Kilinc & Haznedar, 2022), Deep Neural Networks (DNNs) 
(Apaydin et al., 2021; He et al., 2022; Kao et al., 2020, 2021; Maddu 
et al., 2022), Support Vector Regression (SVR) (Ni et al., 2020), Random 
Forest (RF) (Tyralis et al., 2021), Adaptive Boosting (AdaBoost) (Liu 
et al., 2014), Light Gradient Boosting Method (LGBM) (Szczepanek, 

2022), and eXtreme Gradient Boosting (XGBoost) (Ni et al., 2020) are 
frequently used for streamflow prediction. Both DT and Gradient 
Boosting (GB) are utilized by XGBoost. It has many benefits, including its 
predictive algorithms are straightforward but still effective, simple to 
understand, and don’t need as much data preparation (Ni et al., 2020). 
Artificial Neural Network (ANN)’s ability to process and model complex 
nonlinear time series has recently enabled its widespread applications in 
hydroclimatological studies, in contrast to application of physically- 
based models (Kilinc & Haznedar, 2022). The ability to work with 
large amounts of noisy data from nonlinear and dynamic systems, 
especially when the fundamental physical relationships are unknown, is 
one of the advantages ANN has over traditional modeling (Anusree & 
Varghese, 2016). ANN has been successfully applied in various hydro
logical simulations, known as an efficient and accurate tool in fore
casting streamflow, precipitation, and water quality (Kilinc & Haznedar, 
2022). RF is a decision tree-based model that addresses the overfitting 
issues with single decision trees while maintaining their prediction ac
curacy. The RF approach, in contrast to ANN and SVM, offers excellent 
computing speed while being simple to use (Schoppa et al., 2020). 
Multiple studies have reported complexities associated with flow fore
casting, driven by the natural complexity, nonlinearity, and randomness 
of river systems (Smith et al., 2007). In order to reduce the number of 
predictors, different linear or non-linear Feature Selection Algorithms 
(FSAs) such as Pearson’s correlation analysis (Pca) (Djibo et al., 2015), 
Recursive Feature Elimination (RFE) (Ferreira et al., 2021), and 
Bayesian networks (BN) (Das et al., 2022) are commonly used. In terms 
of ML algorithm calibration, the optimization of hyperparameters has a 
significant impact on the performance of ML models (Szczepanek, 
2022). As a result, to optimize hyperparameters for ML algorithms, re
searchers have used different methods such as Grid Search (GS) (LaValle 
et al., 2016) or metaheuristics (Malik et al., 2020). 

In Iran, ML algorithms have also been used in many hydro
climatological studies. For example, forecasts from ECMWF, UKMO, and 
National Centers for Environmental Prediction (NCEP) were evaluated 
for 13 synoptic stations in eight precipitation zones (Aminyavari et al., 
2018). The evaluation was based on precipitation data from 2008 to 
2016 with a 1- to 3-day lead times. Their results showed decrease in 
model performance with increase in lead time while different models 
performed differently over various regions, i.e., ECMWF in most regions, 
UKMO in mountainous regions, and NCEP around the Persian Gulf. 
Kolachian and Saghafian (2019) used a number of deterministic and 
probabilistic criteria to evaluate the performance of precipitation fore
cast for ECMWF Sub-seasonal to Seasonal (S2S) model with 1 month 
lead time for several synoptic stations and precipitation regimes in Iran. 
They found acceptable performance in wet months in most regions; 
however, absence of reliable raw forecasts in dry months was evident. 
No significant relationship was found between the precipitation regime 
and prediction skill. Furthermore, their results showed forecasting and 
post-processing capabilities vary significantly in different seasons and 
locations. 

Nobakht et al. (2021) evaluated the ensemble precipitation forecasts 
of ECMWF, UKMO, and Météo France C3S models over 1993–2017 
period in Iran’s eight classified precipitation clusters with 1- to 3-month 
lead times. Probabilistic and non-probabilistic criteria were used for the 
evaluation. The results indicated all models performed better in the 
western precipitation regions, while in the northern region with humid 
climate models had poor skill scores. All forecasts were better at pre
dicting upper-tercile events in dry seasons and lower-tercile events in 
wet seasons. Moreover, with increasing lead time, the forecast skills 
worsened. In terms of forecasting in dry and wet years, the predictions 
were generally close to observations, albeit they underestimated several 
severe dry periods and overestimated a few wet periods. 

In another study, Meydani et al. (2022) applied weather forecast 
downscaling and rainfall-runoff modeling for daily reservoir inflow 
forecasts in the Urmia Lake basin in Iran. They utilized large scale 
weather forecasts from ECMWF and NCEP to evaluate various 
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downscaling methods, including Artificial Intelligence (AI) and 
Bayesian Belief Network (BBN) techniques, to derive local reservoir 
inflow forecasts. The results showed a hybrid downscaling approach, 
that combined Group method of data handling (GMDH) and Support 
vector regression (SVR), performed better than their non-hybrid coun
terparts in downscaling precipitation. Furthermore, the authors found 
BBN to outperform hybrid AI in forecasting the dynamics of precipita
tion in observed datasets. 

In this study for the first time, the performance of ECMWF runoff 
forecasts over Iran is comprehensively assessed by evaluating the 
monthly ECMWF’s seasonal forecasting system 5 (SEAS5) and its po
tential in predicting streamflow over 30 s level basins in Iran subject to 
different climate and hydrological regimes. Based on a set of initial 
“potential predictors” and their association (high correlation and sta
tistical significance) with the target (monthly streamflow), a set of 
“potential predictors” is established. The “potential predictors” are then 

put through three Feature Selection Algorithms (FSA) including 
Bayesian Networks (BN), Recursive Feature Elimination (RFE), and 
Pearson correlation analysis (Pca), to create a set of “optimal predictors” 
for each scenario. These ”optimum predictors“ served as inputs for 
different ML algorithms. The study is also the first to use ECMWF runoff 
forecasts to predict monthly streamflow in Iran, according to the au
thors’ knowledge. Additionally, this study investigates the use of five ML 
algorithms, notably XGBoost a novel intelligent method based on the 
gradient boosting algorithm to forecast the streamflow across Iran’s 6 
major- and 30 s-level basins. 

2. Materials and methods 

This section describes the study area, datasets, pre-processing and 
modeling techniques to develop streamflow forecasting with lead-times 
from 1 to 3 months over Iran. The data used are from the latest 
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Fig. 1. Spatial illustration of Iran’s second level basins and the selected hydrometric stations.  
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generation of ECMWF’s seasonal forecasting system 5 (SEAS5) and 
consist of ensemble forecasts of precipitation, runoff, and temperature 
from 1991 to 2015, with 1- to 3-month lead time. In order to reduce the 
dimension of input variables, Pearson’s correlation analysis (Pca), 
Recursive Feature Elimination (RFE), and Bayesian Networks (BN) are 
used. MLR, ANN, RF, SVR, and XGBoost models with rK-Fold cross 
validation are adopted to model runoff in 30 Iranian basins. Lastly, 
recommendations are proposed for runoff forecast for different basins. 

2.1. Study area 

Iran with a total area of 1,648,195 km2 is located in the mid-latitude 
northern region between 25◦N and 40◦N latitude, and 44◦E and 64◦E 
longitude in southwest Asia. Other than western and northern coastal 
areas, Iran’s general climate is dominated by a mostly arid and semi-arid 
character. Precipitation varies mainly with latitude and topographical 
altitude of the region (Mansouri Daneshvar et al., 2019). The whole 
country may be divided into six major basins that are broken into a total 
of 30 s level basins (Saatsaz, 2020). Fig. 1 depicts the basins, rivers, and 
location of the hydrometeorological stations used in this study. In total, 
571 hydrometric stations in the country have at least 240 months of data 
throughout the 1981–2015 study period. In this study, however, we 
selected the stations with the highest elevation in each basin, resulting in 
a total of 30 selected stations shown in Fig. 1. Table 1 provides char
acteristics of the basins including basin name, basin code, area, and 
climate class according to Köppen-Geiger climate classification (Raziei, 
2022). 

2.2. Datasets and Pre-Processing 

2.2.1. Hydro-Meteorological and ensemble seasonal forecast data 
The observed station data spans the 1946 to 2015 period. Monthly 

averages of precipitation and runoff are shown in Fig. 2 for all 30- basins 

(in percentage). 
C3S data store, launched in 2017 by ECMWF, regularly releases 

seasonal forecast products. The data store relies on forecasts from mul
tiple organizations across Europe and updates monthly forecasts with up 
to six months lead time. The data includes forecasts created in real-time 
(since 2017) and retrospective forecasts (hindcasts) initialized at 
equivalent intervals during the 1981–2016 period. This study investi
gated monthly C3S precipitation, runoff, and temperature ensembles 
with 1- to 3-month lead time for the time period of 1981–2015 over the 
25◦–40◦N 44◦–64◦E geographical area with a grid size of 0.25◦×0.25◦

(with approximately 25-km spatial resolution). 
The correlation coefficient between SEAS5 raw runoff, average pre

cipitation, and temperature outputs with observed values over each 
basin is presented in Fig. 3 for 1- to 3-month lead time. It shows runoff 
ensemble demonstrates the highest correlation with observed values, 
followed by precipitation. 

2.2.2. Pre-Processing of raw product 
In order to work with ECMWF SEAS5 ensemble outputs, the quantile 

classification method was applied in a way that for each variable, the
corresponding 5th, 50th and 95th quantiles were extracted to represent 
low, medium and high probability of occurrence values, respectively. 
These quantile values form potential predictors to drive machine 
learning (ML) models. Golian et al. (2010, 2011) used a similar quantile 
classification to derive rainfall thresholds with different probability of 
occurrence through a Monte Carlo framework. Fig. 4 illustrates the end- 
to-end data preparation process implemented in this study, starting with 
data retrieval from the ECMWF data store to preparation for runoff 
simulation. Ensemble precipitation, runoff, and temperature hindcasts 
were retrieved for each cell over the entirety of Iran from CDS website 
(https://cds.climate.copernicus.eu/) for lead-times from 1 to 3 months. 
Next, data in Gridded Binary format (GRIB) were converted and saved in 
a comma-separated values (CSV) format. These converted files include 

Table 1 
Characteristics of the studied basins.  

Major Basin 
No. 

Major Basin Name Basin No. Basin Name Area (km2) Climate classification* Area (km2) 

1 Caspian Sea 11 Aras 39,534 Bsk 174,618 
12 Talesh-Anzali Lagoon 6,827 Csa 
13 Sefidrud 59,217 Bsk 
14 Sefidrud - Haraz 10,905 Csa 
15 Haraz 18,644 Csa 
16 Gharasu and Gorgan 13,061 Bsk 
17 Atrak 26,430 Bsk 

2 Persian Gulf 21 West border 39,667 Csa 424,515 
22 Karkhe 51,643 Csa 
23 Karun 67,257 Csa 
24 Jarahi & Zohre 40,788 BSh 
25 Heleh 21,274 BSh 
26 Mand 47,654 BSh 
27 Kol & Mehran 62,918 Bwh 
28 BandarAbbas-Sadij 44,763 Bwh 
29 South Baluchestan 48,551 Bwh 

3 Lake Urmia 30 Lake Urmia 51,801 Bsk 51,801 
4 Central 41 Namak Lake 92,563 Bsk 824,356 

42 Gavkhouni 41,550 Bsk 
43 Tashk, Bakhtegan, and Maharloo Lakes 31,492 BSh 
44 Abarkooh & Sirjan playas 57,196 Bsk 
45 Hamun-e Jaz Murian 69,390 Bwh 
46 Lut Desert 206,222 Bwh 
47 Central Desert 226,523 Bwh 
48 SiahKuh, RigZarin, and DeghSorkh Deserts 48,912 Bwh 
49 DorAnjir and Saghand Deserts 50,508 Bwk 

5 Eastern 51 Khaf Namak Zar 32,980 Bwk 103,169 
52 Hamun Hirmand 33,731 Bwh 
53 Hamun Moshkil 36,458 Bwh 

6 Garagum 60 Garagum 44,156 Bsk 44,156 

* Köppen-Geiger climate classification (Raziei, 2022) (climate/weather/temperature): Bsk: arid/summer dry/cold arid, Csa: warm temperature/summer dry/hot 
summer, BSh: arid/steppe/hot arid, Bwh: arid/winter dry/hot arid, Bwk: arid/winter dry/cold arid. 
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information on precipitation, runoff, and temperature containing all 25 
ensembles with 1- to 3-month lead time. Then, precipitation, runoff, and 
temperature were extracted for each cell and 5th, 50th and 95th quan
tiles were extracted along with the average of ensembles for each cell 
inside a particular basin (represented by ENS_5%, ENS_50%, ENS_95%, 
ENS_mean). Finally, for each variable and across all cells in a basin, the 
5th, 50th and 95th quantiles and the mean values were calculated for 
each basin (represented by cell_5%, cell_50%, cell_95%, cell_mean). 

2.3. Methods 

2.3.1. Selection of predictors 
Given the large number of potential predictors (i.e., 36 for each lead 

time), dimension reduction of the input matrix is needed to simplify the 
model and reduce calculation time. The feature selection algorithms 
used to select the optimum predictors has some limitations, such as the 
risk of overfitting when the data size is small, the high computation time 
when the variables are many, and the trade-off between reducing vari
ance and increasing bias by eliminating some relevant features (Munson 
& Caruana, 2009). Predictor selection is herein implemented through 
two methods of highly correlated variable exclusion and elimination by 
importance, where via a high-correlation filter, highly redundant pre
dictors are identified and removed (Kuhn & Johnson, 2013). 

In Pearson correlation analysis (Pca) method, the cross-correlation 
value is quantified between all potential predictor variable pairs, 
simultaneously, using Pca. Each predictor pairing with a Pearson’s 
correlation of more than 95% is compared with other predictors, keep
ing one predictor among those with the highest correlation (Ferreira 
et al., 2021). Thus, for each predictor pair with a high Pearson corre
lation, those with the highest correlation with other predictors are 
dropped from further analyses. This eliminates redundant input variable 
predictors that are already captured by other variables. 

The second method, elimination by importance, is implemented for 
predictor selection. By eliminating redundant and irrelevant inputs, the 
predictability and robustness of machine learning methods are increased 
while reducing the computational costs. A suitable method to identify 
the most important feature is the Recursive Feature Elimination (RFE) 
algorithm. In this approach, all possible combinations of predictive 
variables are used to apply the models, whereby the explanatory power 
of each predictor is identified through RFE. The algorithm then 
repeatedly eliminates variables below an importance criterion admitted 
by the models in each step of searching (Guyon et al., 2002; Kuhn & 
Johnson, 2013). Overall, RFE is performed on all variables considering 2 
to 36 predictors as possible inputs to the simulation models. Selection of 
the optimal predictor set based on the Leave One Out Cross Validation 
(LOOCV) method is tested using RMSE as a performance criterion for 
each set. The ideal predictor set is selected as one with the least RMSE 
and fewest predictors. This study has used RFE algorithm based on 
Random Forest (RF) model. 

Directed Acyclic Graph (DAG) is used to define the Bayesian Network 
(BN). It offers the joint probability distribution for a set of random 
variables and connected nodes that represent these random variables. 
BN demonstrates the causal relationship or nature between pairs of such 
variables (Dutta & Maity, 2020). Structure learning is necessary to 
develop and understand this structure, which comes in three major 
categories: score-based, constraint-based, and hybrid algorithms. The 
score-based Hill Climb search algorithm is one of the most common 
approaches taken to discover network structures and identify the best 
predictors (Scutari, 2017). This algorithm starts with a saturated graph 
and compares the score to the maximum score for each potential addi
tion, deletion or reversal before creating a top scoring network for the 
BN. In this study, the library “CausalNex” (Beaumont et al., 2017) was 
utilized for creation of BN models and plotting DAG graphs with 
Bayesian Information Criterion scores being employed to choose the best 

Fig. 2. Average observed monthly precipitation and runoff in percentage in 30 basins (The solid blue line and the dashed red line represent runoff and precipitation, 
respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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prediction model (Leu & Bui, 2016). Once established, it can be analyzed 
in order to determine if variables are dependent or conditionally inde
pendent from one another based on the relationship to target variable. 
This aids in the selection process of inputs for Machine Learning models 
that comprise potential predictors directly related to targets. In essence, 
through use of DAG’s and BNs, one is able to analyze data sets accord
ingly; this provides insight into cause and effect between variables while 
identifying key information that can be relayed back into ML models as 
best predictors possible under given conditions. 

2.3.2. Simulation models 
Five state-of-the-art ML models were used to develop models for the 

prediction of monthly streamflow in 30 s-level basins of Iran. Below is a 
brief description of each model. The selected five ML algorithms (MLR, 
ANN, SVR, RF, and XGBoost), are widely used for streamflow prediction. 

The first technique employed is the Multiple Linear Regression 
(MLR) model, possibly the most recognizable data-driven forecasting 
technique. MLR creates a linear relationship between a continuous 
dependent variable y and one or several independent variables xi. 
Regression is the most widely used to identify variables xi with a rela
tionship to the output y (Araghinejad, 2014). For the MLR model 
implementation, 70% of the available data is used for training and 30% 
used for testing of the model. 

Another simulation approach applied in this research is the Artificial 
Neural Network (ANN) with a unidirectional multilayer structure con
sisting of an input layer, multiple hidden layers, and an output layer. 
Each layer consists of several neurons connected to adjacent layers. 
Signals entering through the input layer are unidirectionally directed 
toward the output layer in ANN. The following transformation is applied 
for each neuron during signal flow in network: 

Fig. 3. Spatial correlation between observed runoff and ECMWF (C3S) ensemble mean of precipitation, runoff, and temperature for 1-to-3-month lead time.  
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y = f

(
∑n

i=1
(xiwi + bi)

)

(1)  

such that y is the output, xi is the input, n is the number of inputs, wi is 
the weight, bi is the bias, and f is the activation function of each input 
used to approximate any mapping between model inputs and outputs. 
Furthermore, this function normalizes neuron outputs to prevent 
extreme output values after several layers (Torre et al., 2020). The 
number of input layer neurons is based on the number of predictors 
considered for each basin. The number of hidden layer neurons is 
evaluated by forming networks of 5 to 15 neurons and selecting their 
optimal number by trial-and-error. The ratio of data used for training, 
validation and testing are 56%, 14% and 30%, respectively. The mini
mum network error for simulation cutoff was 0.000001, with maximum 
number of training failures of 30, and with Levenberg-Marquardt 

training functions. 
Random forest (RF) fundamentally incorporates over-fitting and 

local convergence issues into multiple classifier forests through a single- 
classifier decision tree (DT) (Belgiu & Drăgu, 2016). The method used 
for resampling takes multiple samples from the original dataset, trains a 
DT for each bootstrap sample, combines these DTs, and averages the 
predicted values for all the combined DTs. The prediction value of the i- 
th DT, yi, is evaluated using equation (2) with n representing the number 
of DTs, x is the inputs and y as the prediction result of the RF model: 

y =
1
n
∑n

i=1
yi(x) (2) 

Another model employed in this study is the Support Vector 
Regression (SVR). This model was created by generalization of the 
support vector machine (SVM) capabilities from classification to 

Fig. 4. End-to-end raw data pre-processing from data retrieval to runoff simulation.  
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regression problems (Noble, 2006). SVR inherits the core concepts of 
data fitting from SVM and has been widely applied in multiple areas 
recently. While SVM maximizes the distance to the sample point closest 
to the hyperplane, the SVR finds a hyperplane that minimizes the dis
tance to the sample point furthest from the hyperplane. By turning the 
process of finding a hyperplane into a convex quadratic programming 
problem and solving it, SVR was able to realize nonlinear data modeling 
and obtain the hyperplane. 

The final model employed in this study is a new intelligent algorithm 
for predicting streamflow based on the gradient boosting model. 
Recently eXtreme Gradient Boosting (XGBoost) has received praise in 
academia for its efficient performance, efficacy, and fast speed (Chen & 
Guestrin, 2016). In this method, a DT is selected by XGBoost as a weak 
learner. While training a weak learner, the algorithm increases the 
weight of previously misclassified data marginally, identifies the next 
weak learner, and adds another weak learner to correct the residuals of 
all previous weak learners. The result is finally obtained through the 
weighted sum of learners. By training the XGBoost-based model using 
the collected data, a strong learner can be used to predict the streamflow 
values obtained. Rk-Fold cross validation method is used to validate the 
developed models. 

2.3.3. Repeated K-Fold cross validation 
Once produced based on training data, the model accuracy is 

assessed using the test dataset. A classic validation method for machine 
learning methods is cross-validation, here employed by separating the 
dataset into its training and testing sets. High model accuracy in the 
training phase does not by default guarantee a similar performance with 
new data, emphasizing the importance of balancing between general
ization and overfitting of the model outputs. Model underfitting 
implies the model lacks sufficient performance in both the training and 
testing phases. Most likely, this is because the model is not well-tuned or 
trained enough on the training set, resulting in high bias and low skills. 
Model overfitting means the model is too far tuned in the training set. As 
a result, the model performs well on the training set, but poorly on the 
test phase, resulting in low bias and high variance (Berrar, 2019; Cawley 
& Talbot, 2010). 

The most important issue with separating data into training and test 
sets is that test datasets might not follow the distribution of the whole 
dataset. The K-fold cross validation process, as illustrated in Fig. 5, 
solves this by sampling all data in K rounds. K is defined as the number of 
folds and is typically between 3 and 10, but can also be any positive 
integer. The data is then divided into k equal parts. The algorithm, in k-1 
step selects different groupings of folds for testing and separates the 
remaining folds for the training dataset. With this method, it is possible 

to train the model k-1 times independently, and measure performance 
scores k-1 times based on selected criteria. Finally, the average of all 
scores is evaluated. 

Estimating model performance through k-fold CV may result in noisy 
estimates. This is due to the fact that every time the procedure is per
formed, a new division of the data enters the k-fold, leading to a different 
average estimate of the model performance. One way to reduce model 
performance noise is to increase the number of folds k. This reduces bias 
in performance of model estimates, while also increasing the variance of 
the outputs. An alternative approach is to repeat the k-fold CV process 
several times and report the average performance for all rounds. This 
approach is generally called repeated k-fold CV (Kim, 2009; Molinaro 
et al., 2005). The important point is that each repetition of k-fold cross- 
validation has to be performed on the same dataset but with different k 
folds. Repeated k-fold CV has the advantage of improving the average 
model performance through fitting and evaluation of other models. The 
process of such a method, similar to what is presented in Fig. 5, repeats 
multiple times as needed. The common number of repetitions are 3, 5, 
and 10. For example, if n repetitions with K number of folds are used to 
estimate model performance, n*K different models have to be fitted and 
evaluated. This approach is suitable for small to medium sized dataset 
and models which are not computationally extensive. 

2.3.4. Evaluation procedure 
A combination of criteria including KGE’, NSE, and NRMSE are used 

to evaluate model performance. Modified Kling-Gupta efficiency (KGE’) 
(Gupta et al., 2009; Kling et al., 2012) is a unique evaluation criterion 
used to express similarities between observed and simulated runoff. The 
KGE’ and its three decomposed components (correlation, bias ratio, and 
variability ratio) are all dimensionless and defined by: 

KGE′

= 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (β − 1)2

+ (γ − 1)2
√

(3)  

β =
μs

μo
(4)  

γ =

σs/μs

σo/μo

(5)  

where r is the Pearson correlation coefficient between simulation and 
observations, β is the bias ratio of simulated and observed flow, γ is the 
variability ratio between simulation and observed standard deviation, 
and σ is the standard deviation. The important point is that according to 
KGE’, the maximum score of KGE’ is the least score of its components. 
This structure guarantees that the highest KGE’ scores show good sim
ilarity between simulation and observation discharge. A KGE’ = 1, an 
optimum value, demonstrates perfect agreement of simulations and 
observations. KGE’ score is typically − 0.41 for the mean flow (Knoben 
et al., 2019). In order to fully evaluate model performance and its reli
ability, Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970) and 
Normalized Root Mean Square Error (NRMSE) (Janssen & Heuberger, 
1995) analyses are also performed. These criteria have the advantage of 
being dimensionless and are used to compare the variety of basins, cli
mates, flow regimes, and flow magnitudes. Equation (6) and equation 
(7) present NSE and NRMSE formulations, respectively. 

NSE = 1 −
∑n

i=1(Si − Oi)
2

∑n
i=1(Oi − O)

2 (6)  

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
Rp

i − Ro
i

)2
√

O
(7)  

such that Rs
i is the prediction of month i, Rs is the average of predictions, 

Ro
i is observation for month i, and Ro is the average of observations. The 

relative magnitude of residual variance in comparison to the measured 
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fold K

Round 1
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fold K

Round 2

fold 1

fold 2
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fold K

Round K

Score 1 Score 2 Score KScore 1

Average

Training set

Testing set

Fig 5. Schematic illustration of the K-fold cross-validation process.  
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data variance is provided by NSE. NSE varies from -∞ to 1, with 1 
describing a highly performing model. NRMSE is a deterministic metric 
varying between 0 and ∞, with a perfect score of 0. 

3. Results and discussion 

3.1. Selection of optimum predictors 

The high collinearity or interdependence of climatic variables often 
leads to redundant information and possibly deceptive results, where the 
data it provides is relevant to the analysis but not necessary, given its 
information is highly similar to that of another predictor. Utilizing these 
climatic variables requires careful consideration, especially when 
examining the connections between runoff and the climatic variables (Li 
et al., 2017). There are frequently connections that are overlooked in 
systems like hydro-meteorological issues with nonlinear and non- 
normal co-dependencies. However, by removing collinear/correlated 
and keeping orthogonal/uncorrelated variables, a correlation-based 
orthogonalization of datasets will reduce the problem’s dimension
ality. To remove irrelevant and redundant features and in order to make 

the ML models more accurate, Pca, a linear FSA and BN and RFE, two 
non-linear FSAs were employed in this study. 

Feature selection was implemented for the 36 potential predictors 
through highly correlated variable exclusion using concurrent applica
tion of Pca, RFE, and BN algorithms. For each basin 36 potential pre
dictors were calculated. Fig. 6 shows the heatmap of the cross 
correlation between predictors and predictant (runoff) for basin number 
24 with 1-month lead time, as an example. The results show that tem
perature predictors are highly correlated. Amongst all 36 predictors, 
runoff-based predictors, followed by those of precipitation, are highly 
correlated with observed runoff. 

FSA, is compared with two non-linear algorithms, i.e. RFE and BN. 
Rows with check marks in Tables 2, 3, and 4 show the features selected 
by different FSAs and used as input in the modeling stage. Selected 
predictors are for all 30 s level basins in Iran with 1-month lead time 
(LT1). As shown in Table 2, Pca optimum predictors demonstrate little 
dependence on temperature while runoff and precipitation show higher 
feature importance to the predictant. 

The optimum selected predictors from the RFE method are shown in 
Table 3. It can be seen that except in basins 12, 27, 43, and 53, the most 
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quantiles, respectively.) In order to create the ML prediction models for monthly streamflow, a total of 36 potential predictors are taken into account. Pca, a linear. 
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Table 2 
Optimum predictors selected from Pca for 1-month lead time.  

Basin name Selected predictors 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

Basin11             ✓ ✓    ✓  ✓      ✓          
Basin12 ✓ ✓    ✓ ✓ ✓   ✓ ✓     ✓ ✓            ✓      
Basin13 ✓ ✓   ✓ ✓ ✓ ✓    ✓ ✓ ✓      ✓ ✓    ✓           
Basin14 ✓ ✓ ✓   ✓ ✓ ✓ ✓  ✓  ✓ ✓ ✓    ✓ ✓ ✓   ✓ ✓            
Basin15 ✓ ✓ ✓    ✓ ✓ ✓  ✓ ✓ ✓ ✓     ✓ ✓ ✓    ✓            
Basin16 ✓      ✓      ✓ ✓ ✓     ✓ ✓ ✓               
Basin17 ✓      ✓     ✓ ✓ ✓      ✓ ✓               
Basin21 ✓      ✓     ✓ ✓ ✓    ✓  ✓                
Basin22 ✓     ✓  ✓  ✓ ✓  ✓     ✓ ✓ ✓   ✓             
Basin23  ✓      ✓     ✓ ✓     ✓                 
Basin24              ✓        ✓              
Basin25 ✓ ✓      ✓        ✓ ✓   ✓                 
Basin26 ✓ ✓ ✓  ✓  ✓      ✓ ✓  ✓ ✓  ✓ ✓      ✓           
Basin27 ✓  ✓  ✓        ✓     ✓   ✓                
Basin28 ✓ ✓ ✓ ✓ ✓   ✓        ✓  ✓  ✓ ✓  ✓              
Basin29 ✓         ✓         ✓                  
Basin30 ✓ ✓ ✓ ✓    ✓ ✓    ✓ ✓ ✓    ✓  ✓ ✓           ✓    
Basin41 ✓ ✓  ✓    ✓ ✓    ✓ ✓ ✓    ✓  ✓         ✓       
Basin42 ✓ ✓ ✓  ✓   ✓ ✓    ✓ ✓ ✓    ✓ ✓         ✓        
Basin43            ✓ ✓ ✓    ✓  ✓  ✓              
Basin44             ✓        ✓ ✓              
Basin45  ✓           ✓   ✓ ✓  ✓ ✓                
Basin46             ✓    ✓   ✓                
Basin47 ✓ ✓ ✓      ✓    ✓ ✓ ✓    ✓ ✓ ✓            ✓    
Basin48 ✓  ✓          ✓ ✓ ✓       ✓     ✓          
Basin49 ✓          ✓ ✓ ✓ ✓ ✓     ✓ ✓ ✓           ✓    
Basin51            ✓ ✓     ✓                  
Basin52 ✓ ✓    ✓ ✓ ✓      ✓     ✓ ✓                
Basin53   ✓         ✓     ✓                   
Basin60 ✓  ✓     ✓ ✓ ✓   ✓ ✓ ✓    ✓ ✓ ✓            ✓     
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Table 3 
Optimum predictors selected from RFE for 1-month lead time.  

Basin name Selected predictors 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

Basin11             ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓           
Basin12  ✓   ✓      ✓      ✓         ✓   ✓   ✓  ✓ ✓ 
Basin13            ✓ ✓ ✓  ✓   ✓  ✓ ✓ ✓  ✓           
Basin14             ✓ ✓  ✓ ✓ ✓ ✓ ✓  ✓ ✓             
Basin15        ✓ ✓     ✓  ✓   ✓   ✓  ✓ ✓ ✓          
Basin16            ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓               
Basin17             ✓  ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓             
Basin21            ✓ ✓ ✓   ✓      ✓ ✓ ✓ ✓         ✓ 
Basin22 ✓   ✓         ✓ ✓  ✓ ✓  ✓   ✓ ✓             
Basin23             ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓           ✓  
Basin24             ✓ ✓  ✓ ✓  ✓   ✓ ✓        ✓ ✓    
Basin25 ✓ ✓  ✓ ✓      ✓     ✓ ✓   ✓   ✓              
Basin26 ✓            ✓ ✓ ✓ ✓ ✓      ✓ ✓   ✓          
Basin27                 ✓      ✓  ✓   ✓ ✓  ✓  ✓ ✓ ✓ 
Basin28 ✓ ✓   ✓      ✓   ✓   ✓ ✓  ✓   ✓              
Basin29 ✓  ✓ ✓  ✓   ✓        ✓ ✓  ✓   ✓             
Basin30             ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓ ✓            
Basin41  ✓           ✓ ✓   ✓   ✓       ✓  ✓   ✓   ✓ 
Basin42             ✓ ✓          ✓ ✓ ✓   ✓  ✓ ✓   ✓ 
Basin43  ✓           ✓ ✓  ✓ ✓ ✓  ✓  ✓ ✓             
Basin44 ✓            ✓   ✓ ✓  ✓ ✓ ✓ ✓ ✓             
Basin45  ✓   ✓   ✓   ✓  ✓ ✓   ✓   ✓   ✓             
Basin46              ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓             
Basin47     ✓        ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓             
Basin48  ✓      ✓     ✓ ✓   ✓ ✓  ✓ ✓  ✓             
Basin49 ✓ ✓ ✓ ✓          ✓ ✓   ✓   ✓   ✓             
Basin51     ✓ ✓     ✓ ✓ ✓  ✓   ✓  ✓   ✓             
Basin52      ✓   ✓    ✓ ✓    ✓   ✓ ✓ ✓    ✓         
Basin53  ✓ ✓      ✓          ✓    ✓  ✓   ✓  ✓   ✓   
Basin60       ✓ ✓      ✓   ✓   ✓   ✓ ✓  ✓   ✓        
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Table 4 
Optimum predictors selected from BN for 1-month lead time.  

Basin name Selected predictors 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

Basin11            ✓  ✓       ✓  ✓         ✓    
Basin12           ✓                       ✓  
Basin13          ✓     ✓  ✓  ✓   ✓  ✓ ✓ ✓     ✓  ✓   
Basin14               ✓      ✓ ✓  ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓   ✓ 
Basin15   ✓   ✓              ✓    ✓       ✓     
Basin16 ✓     ✓ ✓  ✓       ✓      ✓   ✓     ✓ ✓  ✓   
Basin17 ✓                    ✓   ✓            
Basin21    ✓      ✓  ✓ ✓   ✓     ✓  ✓  ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓   
Basin22 ✓      ✓   ✓   ✓    ✓   ✓   ✓ ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
Basin23   ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓   ✓ ✓   ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ 
Basin24           ✓ ✓ ✓  ✓   ✓   ✓          ✓     
Basin25 ✓    ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓   ✓  ✓ ✓    ✓ ✓ ✓   ✓     
Basin26   ✓  ✓  ✓  ✓ ✓ ✓    ✓      ✓ ✓ ✓     ✓  ✓  ✓    
Basin27                  ✓         ✓         
Basin28                ✓         ✓    ✓ ✓      
Basin29      ✓                              
Basin30 ✓          ✓     ✓ ✓   ✓     ✓ ✓ ✓      ✓    
Basin41       ✓   ✓    ✓ ✓         ✓  ✓  ✓    ✓ ✓ ✓ ✓ 
Basin42 ✓   ✓      ✓ ✓   ✓  ✓         ✓      ✓ ✓    
Basin43  ✓         ✓   ✓  ✓  ✓  ✓ ✓ ✓  ✓ ✓ ✓  ✓   ✓ ✓  ✓ ✓ 
Basin44  ✓                                  
Basin45           ✓           ✓   ✓ ✓  ✓       ✓ 
Basin46 ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓  ✓ ✓ ✓    ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ 
Basin47 ✓ ✓ ✓  ✓  ✓ ✓   ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓   ✓  ✓  ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓ 
Basin48 ✓ ✓ ✓  ✓ ✓   ✓ ✓ ✓ ✓   ✓      ✓ ✓    ✓ ✓  ✓ ✓ ✓ ✓  ✓  ✓ 
Basin49 ✓  ✓ ✓   ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓ ✓  ✓  ✓ ✓   ✓ ✓ ✓ 
Basin51     ✓      ✓ ✓ ✓  ✓      ✓   ✓            
Basin52 ✓     ✓  ✓ ✓     ✓ ✓ ✓ ✓ ✓   ✓   ✓            
Basin53             ✓ ✓ ✓      ✓ ✓ ✓         ✓    
Basin60 ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓  ✓ ✓ ✓ ✓   ✓ ✓ ✓    ✓ ✓ ✓  ✓  ✓ ✓ ✓ ✓ ✓  
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frequent predictors selected by RFE algorithm are from the pool of 
runoff variables. Unlike Pca, neither temperature nor precipitation 
played a significant role in outputs of RFE algorithm in all 30 basins. 

For each basin, a more specialized subset of the potential predictors 
is selected using BN as an FSA to identify optimum predictors for ma
chine learning models. In order to get a clear picture of optimum pre
dictors, a conditional independent structure for the target (streamflow) 
and potential predictors is established via BN. For each major first level 
basin in Iran, a sample basin’s conditional independence structure is 
represented by DAG in Fig. 7 for 1-month lead time. The highest 
dependent potential predictors are those that exhibit direct edges (be
tween parent and child) with the target and other predictors. This 
feature selection depends on climate, lead-time, data availability, and 
the causal relationship between predictors and the target variable 
(Noorbeh et al., 2020). For the streamflow of Basin17, for instance, 
direct edges with three potential predictors are illustrated, where out of 
36 potential predictors, 3 optimum predictors are connected (P2, R10, 
and T1). Additionally, it shows that while each potential predictor can 
be thought of as a candidate predictor, some of the information they 
provide is redundant given the information provided by others, leading 
to a network model with only a few optimum predictors (node con
nections). Having fewer predictors can reduce overfitting that generally 
leads to better performance on new data (Das et al., 2022). 

Table 4 shows the optimum predictors selected from BN algorithm 
for 1-month lead time. It is worth noting that while in some basins nearly 
all predictors are selected for modeling, there exist also basins where 
only a very few predictors are selected. Unlike in Pca and RFE algo
rithms, runoff predictors show no significance in their selection 

compared to precipitation and temperature using BN method. 
The set of variables (potential predictors) with strong relationships 

to the target streamflow were taken into account for each of the different 
lead times (1–3 months) in order to create parsimonious models to 
predict streamflow. All the five ML models are developed using the 
selected predictors that are chosen by the three FSAs, i.e., Pca, RFE, and 
BN in each lead time for all the basins. The best FSA and model com
binations are chosen according to the KGE’ criteria in each basin to be 
used as the final set of ML models. Given the large number of ML models 
for all basins (5 ML models, 3 FSA, 3 lead times, and 30 basins), only 
ANN model results are shown because of their better performance. Fig. 8 
shows the KGE’ evaluation criteria for ANN models with 1 to 3-month 
lead time and for all basins created based on (a) BN, (b) RFE, and (c) 
Pca feature selection algorithm in training phase. For all lead times, (d) 
is the best FSA of each basin with the highest KGE’ value. Table 5 shows 
the frequency of BN, RFE, and Pca algorithms selected for all five ML 
models totaling to 30 s level basins in Iran. Reflecting Fig. 8 for ANN, 
each of the BN, RFE, and Pca algorithms is respectively selected in 12, 
16, and 2 basins for 1-month lead time, in 14, 15, and 1 basins for 2- 
month lead time, and in 11, 16, and 3 basins for 3-month lead time. 

Table 5 shows that based on XGBoost, ANN, and RF models, RFE and 
BN feature selection methods were used most frequently, while Pca was 
used least frequently in all lead times. In contrast, for SVR model, BN 
was the least frequently selected predictor while for MLR, feature se
lection methods do not follow any apparent pattern across all lead times. 

Fig. 7. BN represented by DAG developed for target and potential predictors for a lead time of 1 month. This structure, also referred to as the conditional dependence 
(independence) structure, visualizes the existing interplay between potential predictors. The potential predictors having direct edges with the streamflow variable are 
selected as the optimum predictors. for a representative basin from each major basin in Iran. 
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3.2. Comparison of several ML prediction models 

For the purpose of creating concise models for predicting stream
flow, the set of variables (optimal predictors) with strong connections to 
the target streamflow were employed for each lead time (1–3 months). 
Monthly streamflow is simulated using MLR, SVR, ANN, RF, and 
XGBoost models in all 30 basins in Iran and compared with the average 
observed runoff over the period of 1981 to 2015. In order to improve 
prediction accuracy, tuning of the ML models’ hyperparameters was 
performed. The Grid Search (GS) algorithm was used to optimize the 
hyperparameters of XGBoost, RF, and SVR models. In each model, a set 
of values for each hyperparameter were specified for the algorithm. 
1000 models were created by the GS algorithm using different combi
nations of hyperparameters. Fig. 9 compares the simulated hydrograph 
with observed streamflow for one representative basin within each 

major first level basin with 1-month lead time. All models show 
acceptable results in simulating stream flow time series of the displayed 
basins. 

Fig. 10 shows model evaluation results based on KGE’, NSE and 
NRMSE criteria for the 30 studied basins with 1-month lead time. The 
color shading demonstrates model efficiency: the darkest color shows 
highest model efficiency and the lightest shows the least efficiency for all 
evaluation criteria. KGE’ criterion shows ANN and XGBoosthave the 
highest prediction performance in all basins, followed closely by RF. It 
can be seen that almost all models performed poorly in subbasins of 
major first level basin 5, which is subject to arid climate located on the 
eastern border of Iran. NSE criterion shows all models have performed 
well in the training stage in almost all basins. It also shows that similar to 
the KGE’ criterion, the best performance in the testing stage is delivered 
by ANN, XGBoost, and RF. Occurrence of negative NSE means that the 
average of observed values are more reliable than the simulated model 
predictions (Ferreira et al., 2021). NSE of less than 0.5 implies weak 
model performance (Moriasi et al., 2015). Accordingly, the low perfor
mance of MLR and SVR models, in particular in major first level basins 4, 
5, and 6, is obvious. Given runoff variations across all basins, the 
dimensionless NRMSE criterion is used instead of RMSE for better 
evaluation of various models. Again, all models show acceptable per
formance in all basins except for major basin 5. Overall, the monthly 
results from all five models indicate better predictions in semi-humid 
and humid basins enjoying high flows as compared to the semi-arid 
and arid basins with low flow in central, eastern and southern regions; 
similar results were reported by Slater et al. (2017). 

In order to better understand predictions of MLR, SVR, ANN, RF, and 
XGBoost models, monthly streamflow predictions are shown against 
their observed values during the study period in different basins 

Fig. 8. Values of KGE’ evaluation criteria for ANN models for 1 to 3-month lead time of all basins created based on (a) BN, (b) RFE, and (c) Pca feature selection 
algorithms in training phase. (d) is the best FSA of each basin with the highest KGE’ values of the ANN models for all lead times. 

Table 5 
frequency of BN, RFE, and Pca algorithms selected for all five ML models across 
totaling to 30 s level basins in Iran.  

Lead time (month) FSAs Models 

MLR SVR ANN RF XGBoost  

RFE 3 11 16 15 11 
1 BN 13 6 12 12 17  

Pca 14 13 2 3 2  
RFE 10 12 15 17 12 

2 BN 14 8 14 8 14  
Pca 6 10 1 5 4  
RFE 9 13 16 15 10 

3 BN 13 7 11 10 16  
Pca 8 10 3 5 4  
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(Fig. 11). It can be seen that ANN, RF, and XGBoost models have higher 
prediction performance compared to SVR and MLR models, in particular 
in basins of high flow, similar to the results reported by Ferreira et al. 
(2021). Based on these scatter plots (Fig. 11), again it is confirmed that 
the highest bias occurs in major first level basin 5 which has one of the 

lowest streamflow among all six major basins. SVR and MLR models 
demonstrate a slightly larger spread of values especially in the area of 
low flows, the same conclusion reported by Szczepanek (2022). Lastly, 
the performance of ANN compared to other ML models in reducing the 
bias of data is evident. 

Fig. 9. Comparison of observed and simulated flows using XGBoost, RF, ANN, SVR, and MLR models for a sample basin within each major first level basin in Iran.  
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Fig. 12 shows the spatial distribution of performance of all ML 
models based on KGE’, NSE, and NRMSE criteria for training phase over 
all 30 basins in Iran for 1- to 3-month lead times. LT1, LT2, and LT3, 
represent 1-, 2-, and 3-month lead times, respectively. Similar to what 
was shown in Fig. 10, XGBoost, RF, and ANN offer better performance 
for 1-month lead time. All models show nearly the same performance 
with increasing lead time over all regions. 

The spatial distribution of performance of all ML models are shown 
in Fig. 13 based on KGE’, NSE, and NRMSE criteria for test phase over all 
30 basins in Iran for 1- to 3-month lead times. It was found that XGBoost, 
RF, and ANN offer better performance for 1-month lead time pre
dictions. All models show decrease in prediction performance with 
increasing lead time in all regions. This is similar to findings of Nobakht 
et al. (2021) and Wang et al. (2019). For longer lead times, ANN, 
XGBoost, and RFshow the best prediction performance on all evaluation 
criteria compared to other models. For 2- to 3-months lead times, ANN, 
XGBoost, and RFperform best in the western and northern basins for the 
KGE’ criteria. None of the models delivered suitable prediction perfor
mance for central and southeastern basins with higher than 1-month 
lead time. 

Next, the KGE’, NSE, and NRMSE evaluation criteria were averaged 
over the six major first level basins of Iran, creating a single value for 
each major basin. Table 6 shows such averaged values with 1-, 2-, and 3- 
month lead times (LT1-LT3). For all MLmodels, the final 30% of the data 
was used for model testing, corresponding to the 2006–2015 period. 

All models demonstrate good performance in runoff prediction in 
high streamflow basins, in particular in major basin 2 with the highest 
streamflow in Iran. However, in central arid regions with the largest 
land area and lowest precipitation (major basin 4), MLR and SVR models 
offer very poor prediction performance. While XGBoost performs better 
in the arid regions of eastern Iran, e.g. major basin 5, all models provide 
weaker streamflow predictions in these regions. 

High rainfall variability is a characteristic of arid regions, and NWP 
models frequently overestimate rainfall amounts over these regions 

(Robertson et al., 2013). The ECMWF forecasting system will naturally 
be less vulnerable to more severe aridity conditions due to the stronger 
physical model structure that makes it less dependent on prior recur
rence in moisture content and flows to foresee upcoming dynamics. On 
the other hand, with few observations, it might be challenging for NWP 
models to replicate the intricate meteorological processes that cause the 
high rainfall variability (Hapuarachchi et al., 2022). Empirical models 
built on observations and measurements will be limited in hydro- 
meteorological forecasting in arid regions, mostly because the auto
mated learning influencing the model behavior will not have mastered 
the range of dynamic behaviors underlying such climatic conditions. 
Therefore, it will continue to be challenging to increase forecasting ca
pacity in arid basins, similarly reported by Nifa et al. (2023). 

According to model evaluation criteria presented in Table 6 for 1- 
month lead time, ANN, XGBoost, and RF show better performance and 
achieved KGE’ criteria values of 0.70–0.87, 0.68–0.86, and 0.66–0.80, 
respectively, while yielding NSE criteria values of 0.66–0.82, 0.66–0.86, 
and 0.65–0.86 in the prediction phase; except for major basin 5, an arid 
area with very. 

low flows. As also observed in the scatterplots of Fig. 11, predictions 
over low flows regions such as the three subbasins in major basin 5 are 
underestimated by all analyzed models. The KGE’ evaluation criteria 
values for ANN, XGBoost, and RF are 0.24, 0.24, and 0.46 and the NSE 
values are 0.21, 0.21, and 0.46, showing better performance of the 
XGBoost model in such a low flow simulation, while the greatest de
viations from the observations can be noticed with the MLR model. 
Prediction models for low flow regions are generally found to exhibit 
low performance, similarly noted by Szczepanek (2022). Moreover, also 
in basins with high flow regime, high flow values are typically under
estimated by all models, as confirmed by Szczepanek (2022). Overall, 
the models are compared and ranked based on the KGE’ criteria from 
Table 6, with the order of ANN, XGBoost, RF, MLR, and SVR and mean 
KGE’ values of 0.70, 0.68, 0.66, 0.57, and 0.41, respectively, in the 
prediction phase. 

Fig. 10. Performance of all five evaluated ML models based on KGE’, NSE, and NRMSE criteria during the training and testing phases for 30 basins with 1-month 
lead time. 
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The predictive ability of all the models decreases for 2 and 3-months 
lead time, compared to 1-month lead time forecasts. ANN and XGBoost 
outperformed other models in case of 2-months lead time with an 
average KGE’ value of 0.65 for all basins, while resulting in an average 
KGE’ value of 0.60 for 3-months lead time. 

Overall, the best results are generated by ANN and XGBoost models 
and the worst by SVR and MLR in all major basins. In the prediction 
phase, ANN shows the best performance in major basins 1, 2, 4, and 6, 
while XGBoost shows the same in major basins 3 and 5. In ML algo
rithms, selection of the appropriate hyperparameters by GS method is a 

Fig. 11. Model simulated monthly streamflow against the corresponding observed values during the study period in all 30 basins.  
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Fig. 12. Train phase performance for all models based on KGE’, NSE, and NRMSE criteria in all 30 basins of Iran with 1- to 3-month lead times.  
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Fig. 13. Test phase performance for all models based on KGE’, NSE, and NRMSE criteria in all 30 basins of Iran with 1- to 3-month lead times.  
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Table 6 
Summary of average evaluation criteria for six major first level basins of Iran with 1- to 3-month lead times.  

Major Basin Model KGE’ NSE NRMSE 

Train Test Train Test Train Test 

LT1 LT2 LT3 LT1 LT2 LT3 LT1 LT2 LT3 LT1 LT2 LT3 LT1 LT2 LT3 LT1 LT2 LT3 

1 XGBoost  0.77  0.72  0.67  0.70  0.56  0.52  0.77  0.70  0.66  0.66  0.48  0.45  0.27  0.37  0.40  0.52  0.68  0.66  
RF  0.72  0.64  0.60  0.70  0.54  0.50  0.70  0.62  0.60  0.67  0.49  0.45  0.38  0.51  0.51  0.51  0.68  0.63  
ANN  0.76  0.64  0.61  0.73  0.55  0.52  0.68  0.56  0.55  0.67  0.47  0.44  0.46  0.57  0.63  0.52  0.73  0.65  
SVR  0.40  0.33  0.31  0.39  0.21  0.19  0.42  0.32  0.33  0.37  0.18  0.16  0.57  0.71  0.76  0.60  0.79  0.77  
MLR  0.62  0.58  0.54  0.63  0.26  0.25  0.58  0.47  0.40  0.57  0.18  0.12  0.56  0.61  0.56  0.58  0.88  1.27 

2 XGBoost  0.81  0.80  0.77  0.70  0.67  0.67  0.82  0.80  0.74  0.69  0.56  0.54  0.50  0.55  0.61  0.85  1.06  1.07  
RF  0.82  0.80  0.76  0.69  0.66  0.64  0.81  0.78  0.73  0.70  0.53  0.52  0.55  0.65  0.70  0.86  1.03  1.08  
ANN  0.84  0.82  0.78  0.77  0.74  0.72  0.82  0.77  0.74  0.77  0.60  0.60  0.62  0.69  0.76  0.85  1.00  1.07  
SVR  0.55  0.51  0.49  0.42  0.36  0.36  0.62  0.50  0.44  0.45  0.24  0.24  0.78  0.87  0.96  0.92  1.14  1.21  
MLR  0.70  0.63  0.63  0.71  0.22  0.29  0.69  0.54  0.53  0.67  0.11  0.15  0.73  0.83  0.67  0.82  1.59  1.29 

3 XGBoost  0.86  0.89  0.86  0.86  0.90  0.87  0.89  0.84  0.86  0.86  0.84  0.81  0.25  0.28  0.33  0.55  0.53  0.58  
RF  0.86  0.88  0.81  0.79  0.84  0.80  0.87  0.84  0.81  0.86  0.84  0.78  0.33  0.56  0.52  0.54  0.51  0.48  
ANN  0.81  0.86  0.76  0.71  0.80  0.76  0.80  0.75  0.69  0.72  0.71  0.70  0.48  0.68  0.57  0.60  0.53  0.63  
SVR  0.62  0.68  0.58  0.54  0.65  0.61  0.74  0.67  0.58  0.66  0.65  0.65  0.64  0.84  0.75  0.86  0.98  0.84  
MLR  0.69  0.45  0.54  0.67  0.43  0.01  0.71  0.35  0.45  0.64  0.08  0.13  0.61  1.09  1.14  0.66  1.95  2.35 

4 XGBoost  0.80  0.81  0.75  0.70  0.68  0.55  0.80  0.79  0.72  0.67  0.62  0.46  0.45  0.48  0.54  0.80  0.90  1.05  
RF  0.78  0.79  0.75  0.71  0.70  0.60  0.77  0.74  0.68  0.69  0.64  0.53  0.59  0.64  0.68  0.84  0.92  1.06  
ANN  0.77  0.79  0.74  0.75  0.72  0.61  0.72  0.70  0.64  0.68  0.62  0.50  0.68  0.75  0.85  0.82  0.91  1.04  
SVR  0.50  0.52  0.46  0.43  0.38  0.30  0.48  0.45  0.39  0.39  0.31  0.23  0.83  0.88  1.02  0.88  0.94  1.14  
MLR  0.59  0.63  0.55  0.54  0.30  0.26  0.57  0.55  0.46  0.53  0.09  0.03  0.78  0.69  0.75  0.87  1.22  1.86 

5 XGBoost  0.82  0.90  0.84  0.46  0.69  0.60  0.78  0.81  0.77  0.46  0.43  0.45  0.79  0.93  1.03  2.26  2.31  2.67  
RF  0.81  0.85  0.79  0.24  0.36  0.29  0.77  0.80  0.74  0.21  0.14  0.23  1.15  1.32  1.32  2.22  2.28  2.63  
ANN  0.82  0.87  0.70  0.24  0.34  0.26  0.72  0.71  0.57  0.21  0.11  0.19  1.64  1.79  1.89  2.21  2.24  2.63  
SVR  0.80  0.87  0.69  0.35  0.34  0.38  0.73  0.75  0.60  0.22  0.13  0.22  2.58  3.07  3.10  4.71  5.44  5.50  
MLR  0.30  0.42  0.47  0.18  − 0.07  0.01  0.26  0.34  0.40  0.18  − 0.03  − 0.99  1.88  1.56  0.90  2.84  3.33  2.26 

6 XGBoost  0.88  0.69  0.73  0.84  0.53  0.62  0.82  0.70  0.71  0.77  0.49  0.61  0.24  0.31  0.25  0.39  0.57  0.59  
RF  0.83  0.61  0.66  0.80  0.44  0.54  0.86  0.68  0.73  0.70  0.35  0.45  0.34  0.43  0.43  0.42  0.66  0.66  
ANN  0.89  0.73  0.75  0.87  0.70  0.75  0.82  0.74  0.76  0.82  0.66  0.74  0.27  0.46  0.23  0.38  0.55  0.48  
SVR  0.22  0.06  0.12  0.33  0.10  0.15  0.16  0.04  0.11  0.27  0.02  0.05  0.45  0.58  0.49  0.47  0.78  0.50  
MLR  0.34  0.02  0.52  0.34  − 0.24  − 0.25  0.35  0.10  0.44  0.27  0.01  − 0.16  0.59  2.99  1.48  0.62  3.81  3.24                     

All XGBoost  0.80  0.79  0.75  0.68  0.65  0.60  0.80  0.77  0.72  0.66  0.55  0.50  0.44  0.51  0.56  0.87  1.01  1.09  
RF  0.78  0.76  0.72  0.66  0.61  0.56  0.77  0.73  0.69  0.65  0.52  0.48  0.57  0.67  0.70  0.88  1.01  1.09  
ANN  0.80  0.77  0.72  0.70  0.65  0.60  0.75  0.69  0.65  0.66  0.53  0.50  0.68  0.78  0.85  0.88  1.00  1.09  
SVR  0.52  0.50  0.45  0.41  0.33  0.30  0.53  0.46  0.41  0.39  0.25  0.22  0.91  1.05  1.12  1.20  1.41  1.48  
MLR  0.60  0.57  0.56  0.57  0.22  0.22  0.57  0.49  0.46  0.54  0.10  − 0.02  0.81  0.89  0.74  0.97  1.57  1.66  
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time-consuming process (Ni et al., 2020). Practice has shown that when 
there is a model with a large number of hyperparameters like XGBoost, 
the results may end up worse than those produced using a small number 
of parameters. This can potentially be explained by XGBoost model’s 
optimization problems caused by the extensive list of parameters that 
need to be optimized (Szczepanek, 2022). The hyper-parameters in 
XGBoost have to be carefully tuned to achieve satisfactory forecasts and 
better generalization capability, despite the fact that it outperforms 
other tree-based models in terms of its ability to handle overfitting is
sues. This limitation may be the reason behind ANN’s superior perfor
mance over XGBoost in some major basins. Existing studies have shown 
that each machine-learning algorithm has a certain scope of application, 
and there is currently no ML algorithm that performs best on any given 
dataset (Shi & Shen, 2022). 

However, by comparing the result in all basins, especially by 
considering major basin 5, it can be seen that the fluctuation range of 
KGE’ of XGBoost is significantly smaller than that of the other ML al
gorithms. This shows the XGBoost algorithm is more robust in capturing 
a wide set of characteristics across all basins compared to other ML al
gorithms. The superior performance of XGBoost over other models in 
particular SVR was likely related to its capacity to handle a larger space 
of features and non-linear relationships between features that can better 
capture the hydrological characteristics of river basins. Additionally, 
non-parametric models such as XGBoost have shown ability to identify 
complex relationships between different variables in river systems (Ni 
et al., 2020). The results also revealed that XGBoost outperformed RF in 
terms of accuracy and stability, likely due to its ability to account for 
nonlinear interactions between variables which often go undetected by 
other methods. This allows it to capture more complex relationships in 
the data which would otherwise be ignored. Tree-based machine 
learning models and boosting techniques displayed reasonably good 
results given they classify each variable based on their characteristics in 
making nodes and leaves. This allows these models to gradually improve 
performance starting with weak learners. Together these techniques 
further augment the potential of XGBoost as a viable alternative for 
streamflow forecasting applications. 

The results of this study indicate that ECMWF precipitation, runoff, 
and temperature ensembles are suitable, although with varied degree of 
accuracy depending on the region, for flow forecasting in Iran. 
Furthermore, it was shown that runoff ensemble values contribute most 
significantly to basin streamflow forecasts. The two non-linear feature 
selections, i.e., RFE and BN, behaved similarly in selecting the best 
feature sets for all ML models over 30 s level basins. Finally, ANN and 
XGBoost broadly outperformed other ML models in all 30 basins and for 
all lead times. 

4. Conclusion 

This study evaluated runoff forecasting using ensemble products of 
ECMWF monthly precipitation, runoff, and temperature forecasts over 
Iran’s basins with different climate zones for the period of 1981 to 2015. 
Using different linear and non-linear FSA i.e, Recursive Feature Elimi
nation (RFE), Bayesian Networks (BN), and Pearson correlation analysis 
(Pca), best combination of inputs were selected to derive simulation 
models. The simulations of runoff were conducted through five ML 
models, namely eXtreme Gradient boosting (XGBoost), Random Forest 
(RF), Artificial Neural Networks (ANN), Support Vector Regression 
(SVR), and Multiple Linear Regression (MLR) while results were 
compared to observed runoff in 30 basins in Iran. The findings of this 
study can help researchers beyond the geographical implementation in 
Iran. This analysis suggests that the modeling skill varied considerably 
according to climate, methodology, and lead-time. 

This study found that ECMWF forecasts are efficient in prediction of 
runoff over a generally arid/semi-arid region, such as those found in 
Iran. In particular, the runoff ensemble followed by precipitation 
showed the highest importance in prediction of observed runoff in all 

basins. The ANN, followed by XGBoost and RF models had better fitting 
compared to SVR and MLR models in the training set in terms of most 
evaluation criteria in the majority of basins. In particular, the ANN, 
XGBoost, and RF models showed excellent performance in all basins in 
the wet months of the year. Overall, all models performed better over 
basins with higher runoff values, i.e. basins in the country’s western 
region. In contrast, approximately all models had lower performance in 
basins with arid climate characteristics like basins in central Iran. 

For the three superior models of XGBoost, ANN, and RF, RFE and BN 
FSAs were selected most frequently across Iran’s 30 s level basins, while 
Pca was used least frequently in all lead times. Overall model perfor
mance based on the KGE’ criteria yield a best-to-worst ranking of ANN, 
XGBoost, RF, MLR, and SVR (with KGE’ values of 0.70, 0.68, 0.66, 0.57, 
and 0.41, respectively). The predictive performance of all models 
decreased with lead times beyond 1-month, where ANN and XGBoost 
outperformed other models (with KGE’ of 0.65 for 2-month lead time 
and 0.60 for 3-month lead time). 

Finally, an increase in lead time reduced the performance of all 
models although ANN and XGBoost performed better than other models 
for longer lead times based on all performance criteria. Furthermore, 
ANN, XGBoost, and RF demonstrated good performance in 2- to 3-month 
lead times over western and northern basins of Iran with high runoff 
values. In the arid central and southeastern Iran, however, except for 
XGBoost, all models showed poor performance, especially with more 
than 1-month lead times. 
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