ELSEVIER

Contents lists available at ScienceDirect

Marine Policy

journal homepage: www.elsevier.com/locate/marpol

Global ocean indicators: Marking pathways at the science-policy nexus

Karina von Schuckmann ^{a,*}, Alex Godoy-Faundez ^b, Véronique Garçon ^c, Frank E. Muller-Karger ^d, Karen Evans ^e, Ward Appeltans ^e, Narissa Bax ^f, Lisandro Benedetti Cecchi ^g, Anthony Bernard ^h, Kim Bernard ⁱ, Jarret Byrnes ^j, Gabrielle Canonico ^k, Lucille Chapuis ^l, Malcolm R. Clark ^m, Audrey M. Darnaude ⁿ, Claire Davies ^o, Pia Englyst ^p, Agneta Fransson ^q, Samantha Hallam ^r, Emma Heslop ^e, Elisabeth Holland ^s, Maria Hood ^a, Stefan Kern ^t, Aurélien Liné ^a, Ana Lara-Lopez ^{e,u}, Nora Loose ^v, Belén Martín Míguez ^w, Clive R. McMahon ^x, Lina Mtwana Nordlund ^y, Joanna Post ^e, Sabrina Speich ^z, Adrienne Sutton ^{aa}, Toste Tanhua ^{ab}, Maciej Telszewski ^{ac}, Dimitris Poursanidis ^{ad}, Weidong Yu ^{ae}

- ^a Mercator Ocean international, Toulouse, France
- ^b Sustainability Research Center, Facultad de Ingeniería, Universidad del Desarrollo, Santiago, Chile
- ^c Institut de Physique du Globe IPGP/CNRS, Paris, France
- ^d College of Marine Science, University of South Florida, PSt. Petersburg, USA
- e UNESCO-IOC, Paris, France
- f Pinngortitaleriffik, Greenland Institute of Natural Resources, Greenland Climate Research Centre, Nuuk, Greenland
- g University of Pisa, Department of Biology, Pisa, Italy
- ^h South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- ¹ Oregon State University, College of Earth, Ocean, and Atmospheric Sciences, Corvallis, USA
- ^j Department of Biology, University of Massachusetts Boston, Boston, USA
- k NOAA US. Integrated Ocean Observing System, Silver Spring, USA
- ¹ Biomedicine and Environment, School of Agriculture, La Trobe University, Australia
- ^m National Institute of Water & Atmospheric Research, Wellington, New Zealand
- ⁿ MARBEC, Univ. Montpellier, CNRS, IRD, Ifremer, Montpellier, France
- ° Environment, CSIRO, Tasmania, Australia
- ^p Danish Meteorological Institute, Copenhagen, Denmark
- ^q Norwegian Polar Institute, Tromso, Norway
- ^r Irish Climate Analysis Research Units (ICARUS), Department of Geography Maynooth University, Co. Kildare, Ireland
- s University College London, Institute of Strategy Resilience & Security, London, UK
- ^t University of Hamburg, Integrated Climate Data Center (ICDC), Hamburg, Germany
- ^u Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania, Australia
- v [C]Worthy, LLC, Boulder, USA
- w WMO, Geneva, Switzerland
- ^x IMOS Animal Tagging, Sydney Institute of Marine Science, Mosman, New South Wales, Australia
- y Dept. Of Earth Sciences, Uppsala University, Campus Gotland, Visby, Sweden
- ² Laboratoire de Météorologie Dynamique, École Normale Supérieure-PSL, Paris, France
- aa NOAA Pacific Marine Environmental Laboratory, Seattle, USA
- ^{ab} GEOMAR Helmholtz centre for Ocean Research Kiel, Kiel, Germany
- ac International Ocean Carbon Coordination Project, Institute of Oceanology of Polish Academy of Sciences, Sopot, Poland
- ad Foundation for Research and Technology—Hellas (FORTH), Institute of Applied and Computational Mathematics, Heraklion, Greece
- ae School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, China

E-mail address: karina.von.schuckmann@mercator-ocean.fr (K. von Schuckmann).

^{*} Corresponding author.

Marine Policy 184 (2026) 106922

ARTICLE INFO

Keywords: Ocean Indicators Ocean science-policy nexus

ABSTRACT

Ocean knowledge is crucial for shaping policies that enable sustainable development, adaptation, and well-being at all levels, as everyone—either directly or indirectly—depends on the ocean, which today faces escalating threats from climate change, pollution, and biodiversity loss, pushing us beyond critical planetary boundaries. Ocean indicators are crucial for translating ocean science and data into practical metrics, guidance, and tools informing on the state and health of the ocean that can be directly applied by policymakers, practitioners, and the public. Despite their critical importance, ocean indicators trail behind those for continental areas, limiting effective monitoring and policy integration. Developing reliable, comparable, and regularly updated ocean indicators, backed by a unified international framework, is essential for delivering coherent, actionable insights that can guide global goals and protect the ocean's future. This paper establishes a scientific foundation for ocean indicators through international and multidisciplinary collaboration, presenting defined criteria and a set of pilot indicators for the ocean's physical, biogeochemical, biodiversity, and ecosystem aspects. The proposed framework offers a solid foundation for generating indicators that not only track the ocean state but also provide outputs for application in informing policy and decision-making.

1. Introduction

Ocean science, supported by ocean data disseminated through national and international ocean -, weather-, and climate services, provides critical input to operational forecasts and a foundation for evidence-based decision-making [56]. To maximize the impact of ocean science, raw data has to be uniformized and quality controlled, but also translated into metrics, practical guidance and tools that can be directly applied by policymakers, practitioners, and the public [7]. One such tool is ocean indicators translating complex data and science on the status and health of the ocean into simpler meaningful and useful metrics. When effectively designed and applied, they can prove very effective to support informed decision-making [231], such as for marine spatial planning, governance and management ensuring the protection, sustainability, and resilience of the ocean [245].

Ocean knowledge is essential to inform policies for sustainable development, adaptation, safety, wellbeing and prosperity at all scales. All people on Earth rely on the ocean, either directly or indirectly. Nearly 28 % of the global population lives in close proximity to the coasts and maintains a deep connection with the ocean [98]. The ocean sustains life, regulates the Earth's climate, and provides services and resources for society, such as food, sustainable societal resilience, well-being, cultural identity, and economic growth [4]. The ocean offers opportunities for climate-resilient and adaptation solutions urgently needed as Earth faces increasing pressure from the interconnected crises of human-driven global warming, pollution, and biodiversity loss [96, 98]. These crises have already pushed us beyond six of the nine planetary boundaries [173].

The ocean provides essential services for developing effective solutions for climate action under the Paris Agreement, while also contributing to the achievement of Sustainable Development Goals (SDGs) [92]. The ocean absorbs about 90% of the heat trapped by human-induced greenhouse gas emissions, and 25–30% of anthropogenic CO2 emissions that would otherwise further increase global warming [68,232,64]. Many nature-based solutions in the ocean that aim to mitigate climate change and pollution can also maintain or improve marine and coastal ecosystems' health and services, thereby also addressing challenges associated with biodiversity loss. These include design of climate-smart networks of marine protected areas [23, 191,9], provision of clean energy and resources for human health [138], and increased global food security [188]. A protected, sustainable and resilient ocean is essential for the planet's health and the well-being of all people today and in the future [185,210].

Addressing these issues requires some metrics that can help us track the state and changes to the environment and biodiversity over time and space. To this aim, a suite of environmental indicators have been developed over the last decades and are now incorporated into international climate change and biodiversity assessment frameworks [97,

98,99]. These indicators, alongside societal and economic indicators, are used regularly in international agreements to help focus the efforts of nations in tracking and achieving commonly set targets such as those associated with the [209] Sustainable Development Goals [214], the 1.5°C target established under the Paris Agreement [213] and those set through the Convention on Biological Diversity [19]. The United Nations Environment Programme (UNEP) also uses indicators in support of regional conventions and global environment situation monitoring [217]. Under the United Nations Framework Convention for Climate Change (UNFCCC), countries are mandated through Nationally Determined Contributions (NDCs), to determine their own indicators for reporting in their Biennial Transparency Reports (BTRs). However, the development of environmental indicators for the ocean remains significantly behind that for continental areas.

Since the 27th UNFCCC Conference of the Parties, ocean action is to be included in national climate goals [223]. The UNFCCC Global Stocktake [222], designed to assess global progress under the Paris Agreement [215], is also facing growing calls to explicitly include the ocean in its evaluation. There is therefore a clear opportunity to facilitate the development of national indicators that can be aggregated to create global indicators, and to better integrate the ocean into the international policy dialogue. International policy frameworks are increasingly recognizing the importance of monitoring the ocean's environmental and marine life status to support the management of ocean use by national governments, First Nations, and the private sector, such as raised in the Convention on Biological Diversity's Kunming-Montreal Global Biodiversity Framework [216]. Additionally, this is also stated in the agreement under the newly ratified United Nations Convention on the Law of the Sea on the Conservation and Sustainable use of Marine Miological Diversity of Areas Beyond National Jurisdiction (BBNJ agreement, [209]), in the frameworks for biodiversity protection and invasive species detection under the International Maritime Organization [40], and in the Global Goal on Adaptation within the Paris Agreement [221].

Existing environmental indicators used in these initiatives vary in terms of the data and information required, the disciplines and methods necessary to generate them, and the level of rigor involved in the process. To be effective, environmental indicators must be based on reliable and comparable methodologies, be updated frequently, and be spatially and publicly available [107,231,147]. Insufficient dialogue at the science-policy interface can hinder the transfer of indicator-based knowledge that are critical to reliably monitor global goals, such as the 1.5°C target, and which are today challenged for example by differences in methodologies and baselines used [103,16]. Science-driven international initiatives are addressing these challenges through indicator-specific community efforts. These quantify environmental, biology, and biodiversity change, facilitate in-depth assessments of uncertainties, observing system status, limitations, and science priorities,

and drive innovations in monitoring and analysis techniques. Examples include the indicators of global climate change [64], the global carbon budget [67], the global sea level budget [238], the Earth heat inventory [232], and indicators on ocean acidification [47], and ocean deoxygenation [183]. International assessment reports such as those produced by the Intergovernmental Panel on Climate Change (IPCC) and Intergovernmental Science Policy Platform for Biodiversity and Ecosystem Services (IPBES) have now included definitions of indicators in their glossaries [97,100]. Indicator-based frameworks such as Biodiversity Indicators Partnership (BIP), and the Global Climate Observing System (GCOS) also provide scientifically sound definitions and criteria for scalable indicators [19,71].

In 2019, the decadal OceanObs'19 Conference brought together 2400 scientists from 60 nations to collectively produce Community White Papers outlining the state of the ocean observing system and priorities for the next decade [198]. The final Conference Statement highlighted the need for ocean indicators based on globally coordinated frameworks for ocean observations: 'Indicators based on ocean observations help nations meet national goals and targets of the United Nations 2030 Agenda on Sustainable Development, the Paris Climate Agreement, the Sendai Framework for Disaster Risk Reduction, the Convention on Biological Diversity, and the Small Island Developing States Accelerated Modalities of Action Pathway. Ocean observations are fundamental to increase the scientific and information content of indicators, contribute to the United Nations Decade of Ocean Science for Sustainable Development (2021–2030) and are coordinated by Global Ocean Observing System (GOOS) and Group on Earth Observations (GEO).' [155]. Despite this consensus, there is still no internationally agreed-upon comprehensive set of ocean indicators to characterize ocean physical, biogeochemical, biological and ecosystem variables. Likewise, a unified framework with standardized methodologies for evaluating their status is lacking, although it would align individual efforts and establish the shared understanding and baselines required for transparent, coherent and effective ocean monitoring. Reconciling the inconsistencies in methodologies, data sources, and baselines used to generate ocean indicators is essential to prevent the dissemination of fragmented or contradictory ocean information. Adopting an international, multidisciplinary approach will strengthen the coherence of ocean knowledge, providing more reliable insights for policy and decision-making.

To this aim, the Global Ocean Observing System (GOOS), whose main sponsor is the Intergovernmental Oceanographic Commission (IOC) of UNESCO, established a task team on ocean indicators, bringing together experts from various fields to propose a core set of indicators. Through international and multidisciplinary collaboration, the team seeks to establish a scientifically agreed-upon foundation for ocean indicators. Building on the Framework for Ocean Observing [131], this effort intends to improve the accuracy, consistency, and utility of ocean data for global monitoring and decision-making. Standardization is critical for aligning international initiatives, tracking progress under global environmental agreements, and providing actionable insights for adaptation, sustainable development, and ocean resilience.

Here we present the first outputs of this initiative, in the form of criteria and definition for viable ocean indicators, together with a set of pilot examples for their development. Building on ongoing international efforts such as in IPCC, and IPBES, and the GCOS indicator framework, we outline the methodological approach for producing standardized ocean indicators, discuss criteria for indicator development, and demonstrate their application. We define what a science-based ocean indicator is and identify the criteria that an indicator should meet as applied across the three disciplinary domains covered by the GOOS expert panels: ocean physics, ocean biogeochemistry and ocean biology and ecosystems. We examine the application of these criteria to nine pilot indicators identified by GOOS expert panels and explore opportunities for leveraging ocean indicators to inform decision-making, shape policy processes and guide scientific advances.

 Table 1

 Examples of definitions for climate and ocean indicators from various sources.

Indicator definitions	Reference
The Global Climate Indicators are a set of parameters that describe the changing climate without reducing climate change to only temperature. They comprise key information for the most relevant domains of climate change: temperature and energy, atmospheric composition, ocean and water as well as the cryosphere.	WMO [247]
A quantitative or qualitative factor or variable that provides a simple, measurable and quantifiable characteristic or attribute responding in a known and communicable way to a changing environmental condition, to a changing ecological process or function, or to a changing element of biodiversity.	IPBES [97]
Climate indicator - measures of the climate system, including large-scale variables and climate proxies.	IPCC [100]
A proxy climate indicator is a record that is interpreted, using physical and biophysical principles, to represent some combination of climate-related variations back in time.	IPCC [98]
A simple easy to understand tool to describe, measure and monitor a complex ocean phenomenon. The ocean indicator may change globally to locally, at different time scales, and can be utilized for ocean literacy, and to build a sustainable ocean observing system for holistic scientific assessment and stewardship.	Von Schuckmann et al. [231]
Marine ecosystem indicators are quantitative measurements that represent key attributes of interest.	Heim et al. [90]
An indicator can be defined as a 'measure based on verifiable data that conveys information about more than just itself'. This means that indicators are purpose dependent - the interpretation or meaning given to the data depends on the purpose or issue of concern.	BIP [18]

2. Ocean indicators: Definition and criteria

A science-based ocean indicator requires a robust, standardized methodology for its production and a sound narrative that balances the need for rigor with simplicity of application. This presents an inherent challenge in design but facilitates practical application. In general, a science-based indicator should aim to provide broad, easily understandable insights to a process or complex system and how this change in space (e.g. pattern, phenomena between locations and regions) and/or time (e.g. variations or trends). Building on the main definitions for indicators provided to date (Table 1), experts from ocean physical, biogeochemical, and biology and ecosystems disciplines, along with specialists in sustainability and international environmental diplomacy, have agreed on the following definition for science-based ocean indicators:

Ocean indicators refer to measures based on scientifically verified approaches and data that allow for the identification of the state in ocean phenomena across a range of temporal and spatial scales that are accessible to inform decision makers and beyond.

The definition emphasizes the need for verified scientific approaches grounded in peer-reviewed evidence, collected through standardized ocean observing procedures based on both in situ and remote sensing data, such as those adopted by the GOOS panels, and completed by standardized modeling efforts. 'Ocean phenomena' encompass a variety of environmental characteristics (e.g., species distribution, salinity, temperature, sea level), processes (e.g., surface ocean heat flux, net primary productivity), or events (e.g., algal blooms, heat waves, transient ocean currents) that have distinct spatial and temporal scales but are equally informative about the state of the ocean and its biodiversity [74,75]. This definition requires that indicators be tailored to be informative for and accessible to decision makers and the wider public. This includes governmental (e.g., policy), organizational (e.g., executives), community-based (e.g., local leaders), Indigenous and Traditional (e.g., Elders & cultural leaders) decision makers, experts (e.g., scientists and advisors) and collaborative (e.g., multi-stakeholder groups and coalitions) bodies.

A foundation for the development of science-based ocean indicators

is provided by existing international monitoring frameworks such as the Essential Ocean Variables (EOVs) and the Essential Climate Variables (ECVs) developed by the GOOS and GCOS international programmes. GOOS EOVs are defined as the minimum set of ocean variables that are needed to assess ocean state and variability for important global ocean phenomena, and to provide essential data for applications that support societal benefit. They are derived from sustained individual measurements, or combinations of measurements, that can be undertaken at global scale and in a cost-effective manner (Martin Miguez et al., submitted). GOOS define the EOVs and the panels of experts curate them and develop observational requirements for three main applications: climate, operational oceanography and ocean health. The ECVs cover atmospheric, oceanic, and terrestrial domains [20]. The oceanic ECVs include several of the GOOS physics, biogeochemistry, and biology and ecosystem EOVs. The Essential Biodiversity Variables (EBVs) are established by the Group on Earth Observations Biodiversity Observation Network (GEO BON), and use a time series of observations or modeled results to advance the use of biodiversity information at multiple levels of biology and ecosystems organization [151,161]. Essential Variable frameworks can serve as fundamental building blocks for creating indicators, as they represent the essential measurement foundation from which indicators are derived. Often, a single indicator may be developed from multiple EOV datasets, involving the setting of thresholds and combining with other data.

Applying clear scientific quality criteria to the endorsement and development of ocean indicators will facilitate consistency of content, identification of the data streams and methodologies needed, and ensure that they are scientifically robust and relevant. For indicators, variations exist in data availability, uncertainty characterization, regional specificity, in ocean practices (methodologies, protocols and standards), applications, and user priorities. Limited long-term observations, or delays in the availability of observational data, hinder the calculation of ocean indicators and uncertainty estimates. Uncertainty estimates help to detect real change with confidence (e.g., real change rather than observational error). Many existing ocean measurements that seek to track change can benefit from more robust uncertainty estimates, including clear documentation of accuracy and precision, better metadata documentation (e.g., sensor stability, platform, or standards), and guidance on errors that may be due to the observing procedures. The building of some indicators also involves complex and varied methodologies which, if not adequately described, may affect transparency and implementation in operational services, assessments, or reporting mechanisms.

Clear quality criteria for ocean indicators production will also make them more understandable, usable, and accessible to decision makers, stakeholders, rights holders, and the public. These criteria should be based on methodologies that adhere to Findable, Accessible, Interoperable, and Reusable (FAIR) and Collective Benefit, Authority to

Fig. 1. Overview of the six science-based quality criteria identified by the GOOS cross-panel task team on ocean indicators, using the climate and biodiversity indicator criteria [19,246] as a starting point. Each of the six criteria must be met for the establishment of an ocean indicator.

Control, Responsibility, Ethics (CARE) principles for data and knowledge gathering [205,26], to boost credibility and reliability of ocean observing networks, including the delivery of information. By promoting transparency in EOVs or ECVs selection for indicator production, and in their implementation processes, the provision of clear criteria fosters accountability, ensuring reporting of change. Ultimately, science-based indicators that adhere to clear and commonly accepted criteria will provide a solid foundation for evidence-based decision-making, and enhance the effectiveness of indicators. Building on the successful implementation of the WMO and BIP criteria, GOOS has developed a comprehensive set of six specific quality criteria for ocean indicators (Fig. 1):

- (1) **Verified.** The indicator must represent a state of an ocean phenomenon that relies on a peer-reviewed scientific rationale of the fully traceable indicator approach.
- (2) **Significant.** The indicator must provide robust information on the state of an ocean phenomenon within a scientific framework.
- (3) **Scalable:** An ocean indicator should be scalable spatially and temporally, and where possible interoperable.
- (4) **Justified:** The indicator should be relevant to inform and support decision-making, and be understandable to a broad audience.
- (5) **Measurable:** The indicator should be determined where relevant via one or more Essential Variable framework, such as EOVs, ECVs, or EBVs.
- (6) **Accessible:** The ocean indicator should be provided whenever possible on a regular basis guided by CARE and FAIR principles, and enables past and near-term information, forecasts, and projections.

Ocean indicators should only be endorsed as verified, if they are generated using a method or an approach based on a solid theoretical background, evaluated through rigorous scientific analysis, and confirmed to be accurate and reliable, validated through peer review to ensure consistency and credibility. To be listed as significant, they will require to be grounded in a robust and rigorous scientific framework, considering uncertainties that may influence their interpretation, reliability, and the perceived accuracy of the data used in their calculation. To be scalable, ocean indicators should be applicable across different spatial scales (e.g., local, regional, or global levels) and temporal scales (e.g., extremes, short-term, seasonal, or long-term trends). Additionally, they should be based on interoperable information, meaning it should rely on consistent approaches, and can integrate with other datasets, systems, or models to enable seamless comparison, sharing, and analvsis, enhancing its utility across various contexts and disciplines. The ability to downscale the indicator from a global to a regional/local level will help explain how various regions exhibit unique environmental patterns and understand the factors driving these differences. To be justified, ocean indicators will need to be clearly relevant for informing and supporting decision-making processes, addressing specific environmental, social, or policy needs. They will also need to be presented in a way that is accessible and understandable to a broad audience, including stakeholders, knowledge holders, decision makers, and the public, ensuring their practical value and usability. To qualify as measurable, indicators should be quantifiable and, where applicable, derived using established essential variable frameworks, which rely on an internationally coordinated governance for the global ocean and climate observing systems. Finally, to be accessible, ocean indicators should be made available regularly, ensuring consistent updates for users, which underlines the critical role of regular services for sustained data and indicator dissemination. They should follow CARE principles to respect data sovereignty and ethical considerations, including those of interest to Indigenous and Local Communities, and adhere to FAIR principles to maximize scalability over time and space and scientific utility. Additionally, they should include historical data, current information, and near-term forecasts or projections to support informed decision-making and planning.

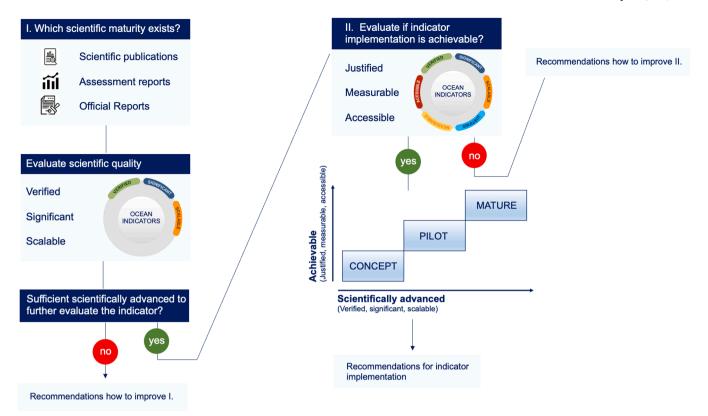
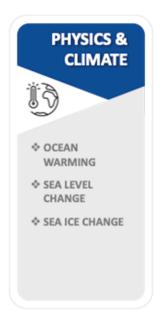


Fig. 2. A guide for applying expert judgment in the evaluation of a proposed ocean indicator. This illustration depicts the process that assessment experts should apply in evaluating and communicating the readiness level of a proposed indicator. It relies on assessing the scientific maturity and quality of the proposed indicator (criteria 1–3), and if its implementation is achievable (criteria 4–6), allowing to judge if the proposed indicator can be classified as at the "concept", "pilot" or "mature" stage. This approach is derived from the methods of Ara Begum et al. [13] and Mantovani et al. [135].

3. Evaluating ocean indicators

The above definition and quality criteria for ocean indicators are intended to enable their effective implementation. Following the methods of Ara Begum et al., [13] and Mantovani et al., [135], we propose a stepwise pathway for systematically assessing a candidate ocean indicator (Fig. 2). This framework allows for the development of expert-based recommendations for expanding the scientific capacity needed for effectively contributing to the indicator in question. In addition, this guided expert judgment enables informed recommendations on the observing systems needed to contribute data for estimating a specific ocean indicator. Finally, the framework supports decision-making and appeals to a broad audience.

The first proposed step in assessing whether a proposed metric is a viable ocean indicator is to assess how scientifically mature it is, based on criteria 1–3, i.e. on whether it is Verified, Significant, and Scalable. The scientific maturity of the indicator should also be evaluated based on peer-reviewed publications, i.e. on scientific literature and national and international assessment reports (Fig. 2). If the proposed indicator does not meet the criteria, a set of expert recommendations should be provided to enhance the scientific quality of the methodology, strengthen the rationale, and refine the uncertainty framework for its production, or to improve its scalability in space and time.


If the proposed indicator is scientifically mature, the expert assessment may proceed to assessment step II (Fig. 2). This assesses the maturity and readiness for routine implementation, for example in an environmental department, a policy framework, or an operational center. This step II focuses on three criteria (4–6): the availability of reliable data (measurability), the ability to update the indicator regularly (accessibility), and the relevance of the indicator for policy and beyond (instified).

If the expert assessment passes these initial two steps, results can be

expressed as part of an assessment matrix (Fig. 2 lower right). This helps determine if the proposed indicator is concept, pilot or mature [219]. Outputs from the two steps include a set of expert recommendations needed to improve the scientific quality and/or to improve the implementation of limited and emerging ocean indicators. By adhering to these three structured steps, the proposed framework ensures that endorsed ocean indicators are scientifically robust and comparable across regions.

4. Application of Framework: Examples of Ocean Indicators

To illustrate the utility of the proposed framework, nine pilot ocean indicators were considered (Fig. 3). All align with the criteria outlined above, and integrated data from EOVs and ECVs to address various aspects of ocean health and climate variability. These indicators were selected by the GOOS expert panels to showcase the ocean indicator framework's ability to integrate diverse data sources, ensure standardization, and maintain scientific consistency. Suggestions for use of indicators that track these EOVs have already been made by the international community for global assessments, such as those conducted by the IPCC and IPBES. By adhering to a standardized baseline and by including estimates of uncertainty, these indicators offer consistent metrics that facilitate cross-comparison and trend analysis for multiple applications including in national, regional and global assessments of ocean variability and state, linking to temporal and spatial changes in stressors. These examples highlight how the proposed framework can be applied across multiple disciplines, ensuring scientific rigor and relevance to broader policy applications. While this paper presents nine pilot indicators as examples, other potential ocean indicators considering for example ocean circulation aspects, trophic ocean states or species abundance and habitat may be considered in the future.

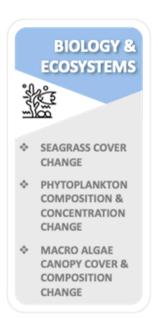


Fig. 3. The nine pilot indicators proposed by GOOS for three general disciplines: physics & climate, biogeochemistry, and biology and ecosystems.

1. Ocean Warming

Criteria for indicator scientific maturity

Verified: Integration of ocean temperature over depth provides a measure of heat stored in the ocean, and its rate of change offers insights on ocean warming [130,2], and on the Earth energy imbalance [232].

Significant: This indicator relies on a peer-reviewed scientific rationale, grounded in a robust and rigorous scientific framework, including a robust uncertainty characterization (e.g., [32,130,230]). The indicator is used in IPCC assessments [100].

Scalable: The indicator is scalable in space and time, with observing system limitations in continental shelves, coastal zones, and polar areas where there are not enough observations to characterize variations and trends at a local level (e.g., [233]). Before the Argo float era in the 2000's, sub surface observations were more limited and with higher uncertainties (e.g., [32]).

Criteria for indicator implementation status

Justified: This indicator is highly relevant for climate change monitoring and it manifests the role of the ocean as a sentinel for planetary warming. Changes over time of ocean heat storage provide insight into how fast surplus energy is accumulating in the Earth climate system due to human activities; about 90 % of this global signal is accumulating in the ocean [232,64]. This indicator also reveals that Earth system heating has been accelerating over the past century [145, 201,33]. Ocean warming has implications for the ocean's biogeochemical processes and biodiversity variations and state [32,96,98].

Measurable: Ocean warming is measurable with well established methods outlined in the Essential Ocean Variable and Essential Climate Variables for surface and subsurface ocean temperature. The indicator combines in situ and full-depth estimates from in situ and remote sensing observations [32,86,137]. These allow for routine, repeated and frequent global views of the sea surface [146] and interior ocean temperatures. A limitation is that current autonomous technologies provide routine observations over large regions only to 2000 m depth [176], while the average depth of the ocean is about 4000 m and maximum depths exceed 10,000 m.

Accessible: The indicator is accessible from national (e.g., IAP, 1

Recommendations and research needs for maturing the indicator

This indicator is mature. To fully mature this indicator, continuing and expanding measurements of subsurface ocean temperature is highly recommended (Argo programme, and other), with particular socioeconomic importance to improving observing infrastructure in high latitudes, confluence zones, the deep ocean and shelf and coastal areas [232,32]. Finally, more research and development is needed for ocean warming scalability to improve regional assessments and forecasts.

2. Sea Level Change

Scientific maturity

Verified: the Sea Level Change indicator delivers an integrated view on the melting of land ice, changes in groundwater drainage, and steric volume changes (changes in volume of a water mass due to variations in its temperature) [99,30].

Significant: This indicator relies on a peer-reviewed scientific rationale, grounded in a robust and rigorous scientific framework, including a robust uncertainty framework [157], and is integrated into IPCC assessments [98].

Scalable: This indicator is scalable in space and time, with data limitations before the year 1993 due to observing system limitations (e. g., Cazenave and Moreira, 2022).

 $Indicator\ implementation$

Justified: Sea level change is highly relevant for climate change monitoring. Sea level rise increases the risk of coastal floods and consequent loss and damage [98]. Sea level rise has increased

NOAA²) and multi-national and international services (e.g., Copernicus, WMO). The fundamental observations largely follow FAIR principles. At projected time scales, the indicator is accessible via international assessment efforts (e.g.,[99,232,64]). For operational use, this indicator goes back in time to at least 1970, with some in situ observations available from the late 1800's but increasingly limited before that. Earlier historical observations are obtained by proxy from the composition of minerals in the sediment or structures of biological organisms (fossils). The indicator is best implemented based on an international intercomparison approach (e.g., ensemble mean of different products) to monitor continuous data quality with associated uncertainties.

¹ http://www.ocean.iap.ac.cn/pages/dataService/dataService.html

² https://www.ncei.noaa.gov/access/global-ocean-heat-content/

community and infrastructure vulnerability and food security risk, particularly in low-lying areas and island states [98]. Episodes of decreased sea level in an area also indicate marked changes in ocean circulation, including upwelling, nearby ocean currents, or wind effects [157].

Measurable: The indicator is measurable as it relies on the Essential Ocean Variable sea surface height. Depending on the measurement technique used, information on two forms of sea level change can be obtained. Relative sea level as obtained from tide gauges is referred to the height of the sea surface relative to the sea floor, and thus to land, at a given location (e.g., [235]). Sea level from satellites (from 1993 onwards) is linked to what is known as absolute sea level, which is the height of the sea surface at a given location relative to the reference ellipsoid (e.g., [1]). Locally, time series of several decades are available from tide gauge instruments. When combined at a regional scale, these measurements allow for understanding on the causes of sea level change.

Accessible: The indicator is accessible at national (e.g., NASA, CNES⁴) and multi-national and international service level (e.g., Copernicus, WMO, PSMSL) for past information following FAIR principles. At projected time scales, the indicator is accessible via international assessment efforts (e.g., IPCC, 2021).

Recommendations and research needs for maturing

This indicator is mature. To further mature this indicator, it is essential to sustain the satellite platforms and *in situ* tide gauge and other monitoring, that allow research and development activities, and that are needed for characterizing uncertainties and biases at national and regional scales. Data rescue efforts of historical manual tide recordings are also important to help complete the historical record.

3. Sea Ice Change

K. von Schuckmann et al.

Scientific maturity

Verified: This indicator provides an integrated view of sea ice state and changes in terms of mass, dynamics, area cover, and for characteristics that are important for atmosphere-ocean interactions, such as heat and carbon fluxes (e.g., [51]).

Significant: This indicator relies on a peer-reviewed scientific rationale, grounded in a robust and rigorous scientific framework, including a robust uncertainty framework (e.g., [125]), and is integrated into IPCC assessments (IPCC, 2021).

Scalable: This indicator is specific to the cryosphere, where it has been scalable in space and time from the 1970 s onwards (e.g., [190]). This indicator is integrated into IPCC assessments (IPCC, 2021).

Indicator implementation

Justified: Sea ice is an active system that controls the exchange of heat, water and carbon with the ocean, and is hence a fundamental actor in physical, biological and biogeochemical processes in the cryosphere (IPCC, 2019). Besides its role in affecting ocean circulation and processes (e.g., through water mass modification), sea ice plays a prominent role through the ice-ocean-albedo feedback, which is a central process amplifying high latitude warming [104,105,111,174,76]. Sea ice harbors various biogeochemical tracers and species at the base of the food chain, which play a central role in the biological carbon pump and support key higher trophic species [121].

Measurable: The indicator is measurable as it relies on the Essential Climate Variable [Sea Ice] which includes seven ECVs sea ice quantities: concentration, thickness, motion, age, surface temperature, albedo, and snow depth [125]. Metrics of sea ice require different observation techniques with each at a different maturity level. Sea ice concentration is at the most mature stage and can be obtained at (mostly) daily

resolution from remote sensing techniques since late 1978 (e.g. [143, 126]). Long-term satellite-derived records are also available for sea ice motion (e.g. [123,208]), surface temperature (e.g. [115,152,36]), albedo (e.g. [175]) and snow depth (e.g. [194,253,184]), but at a lower stages of maturity, while sea ice thickness (e.g. [63,189] and age (e.g. [144,208]) are less mature and only available at lower temporal (thickness) and spatial (age) coverage.

Accessible: The indicator is accessible at national (e.g., Canadian Ice Service (CIS), NOAA National Snow and Ice Data Center (NSIDC), US national ice service (NIC), Finnish Meteorological Institute, Danish Meteorological Institute, Arctic and Antarctic Research Institute (AARI) and multi-national and international service level (e.g., Copernicus Climate Change Service, Centre for Environmental Data Analysis (CEDA) archive; EUMETSAT The Ocean and Sea Ice Satellite Application Facility (OSI SAF), for past information following FAIR principles. At projected time scales, the indicator is accessible via international assessment efforts (e.g., IPCC, 2021) and has been in the focus of international model intercomparison projects such as the Sea-Ice Model Intercomparison Project (SIMIP) and the Climate Model Intercomparison Project (CMIP) (e.g. [177,196, 113]).

Recommendations and research needs for maturing:

This indicator is mature. Recommendations for this indicator include continued research and development efforts to improve the maturity of all sea ice ECVs [125], particularly thickness and snow depth, the regionalization of the indicator with focus on the Southern Ocean, and continued efforts to collect, quality-control, and make non-satellite observations of the sea ice environment available.

4. Ocean Acidification:

Scientific maturity

Verified: As the ocean takes up human-induced carbon dioxide from the atmosphere, ocean acidity increases [106]. The chemical expression is a decrease in pH and a decrease in the saturation state of carbonate ions (e.g. seawater aragonite, Ω_{ar}) [133]. These chemical changes are referred to as ocean acidification (e.g., [158,17]).

Significant: This indicator relies on a peer-reviewed scientific rationale, grounded in a robust and rigorous scientific framework, including a robust uncertainty framework [133,17,84], is integrated into IPCC assessments [98], and is essential to UN Sustainable Development Goal Target 14.3.

Scalable: The indicator is scalable in space and time, with limitations before the late 1980s due to measurement constraints (e.g., [72, 133]).

Indicator implementation

Justified: Carbonate ions and other biogeochemical compounds and specific elements change their state based on pH. These changes are critical for marine organisms, like corals, shellfish, and some plankton. Many of these build shells and skeletons using calcium carbonate. As a result, ocean acidification can impact marine life at the level of an individual organism by affecting its physiology or behavioral patterns [48, 61,169,38], and by altering population dynamics or altering community

³ https://sealevel.nasa.gov/

⁴ https://www.aviso.altimetry.fr/en/data/products/ocean-indicators-products/mean-sea-level.html

 $^{^5\} https://www.canada.ca/en/environment-climate-change/services/ice-forecasts-observations/about-ice-service.html$

⁶ https://nsidc.org/home

⁷ https://usicecenter.gov/

⁸ https://en.ilmatieteenlaitos.fi/ice-conditions

https://ocean.dmi.dk/arctic/icecover.uk.php

¹⁰ https://www.aari.ru/en

¹¹ https://climate.copernicus.eu/

¹² https://marine.copernicus.eu/

¹³ https://archive.ceda.ac.uk/

¹⁴ https://osisaf-hl.met.no/

structure [48,87,88,241]. Measurements of any two of these parameters allow calculation of the remaining components of the inorganic carbon system, for example.

Measurable: The indicator is measurable as it relies on the EOV "Inorganic Carbon", which includes sub-variables for dissolved inorganic carbon (DIC), total alkalinity (TA), partial pressure or fugacity of CO₂, and pH. Any two of these parameters can be used to calculate the remainder of the inorganic carbon system, including Ω_{ar} . Prior to the 1980s, the availability of measurements for some key parameters of ocean acidification is limited and uncertain, but has since then gradually improved, following the refinement of spectrophotometric pH measurement methods, the establishment of standard protocols, access to reference materials [45,46], and international coordination efforts through GO-SHIP, GOA-ON, GLODAP and others (e.g., [206]). Most recently, the advent of the biogeochemical Argo network has strongly increased potential measurement availability [35], supported by advancement in statistical methods (e.g., [72,83,133]), although there are still unresolved issues around the consistency of ocean pH measurements for the global observing system (e.g. [122]).

Accessible: The indicator is accessible at multi-national and international service level (e.g., Copernicus, WMO, GOA-ON, IOC-UNESCO, EuroStat) for past information following FAIR principles. At projected time scales, the indicator is accessible via international assessment efforts (e.g., IPCC, 2021).

Recommendations and research needs for maturing:

This indicator is mature. Recommendations for this indicator include continued sensor development, including development of sensors for measuring DIC and TA, improved accuracy of existing sensors measuring pH and CO₂, further development of sensors that are calibrated in situ, and the development of lower-costs sensors that can be deployed at scale [95]. Improved access to certified reference materials is also critical for ensuring the global observing community can continue to validate the quality of ocean acidification measurements [95].

5. Ocean Deoxygenation

Scientific maturity

Verified: Oceanic measurements of dissolved oxygen have a long history, and oxygen (O₂) is the third-most often measured water quantity after temperature and salinity [70]. Sub-surface oxygen concentrations in the ocean everywhere reflect a balance between supply through circulation and ventilation and consumption by respiratory processes by marine organisms, the absolute amount of oxygen in a given location is therefore very sensitive to changes in either process [70]. Oceanic oxygen has been therefore proposed as a bellwether indicator of climate change [82]. It has decreased over the last few decades due to ocean warming and increased loads of nutrients and organic wastes particularly in coastal waters, this process being called deoxygenation ([21]a, b).

Significant: This indicator relies on a peer-reviewed scientific rationale, grounded in a robust and rigorous scientific framework, including a robust uncertainty framework (e.g., [202,203,44]; R. E. [112,193,21,119]), and is integrated in the IPCC assessment [98,99] and European Marine Board agenda [80].

Scalable: The ocean deoxygenation indicator can be provided at regional and global scales, thanks to the existing data sets (e.g., [80]). It can be evaluated since the 60's, however expanded observation is immediately required for more accurate documentation and prediction of ocean oxygen changes, and for improved understanding of its causes and consequences.

Indicator implementation

Justified: The implementation of a full-fledged observatory of oxygen in the ocean is critical to measure and understand the large (mostly) decreasing trends in the concentrations of dissolved oxygen in the ocean over these past decades. These deoxygenation trends have important implications for our understanding of anthropogenic climate change.

Deoxygenation disrupts marine ecosystems, affects fish stocks and aquaculture and leads to loss of habitat and biodiversity. Deoxygenation can accelerate global warming via enhanced marine production of greenhouse gases under low oxygen conditions.

Measurable: This indicator is measurable as it relies on the Essential Ocean Variable Oxygen with sub-variable dissolved oxygen [11] with a high maturity level in observation techniques (https://www.ioccp. org/index.php/oxygen). The Winkler [244] titration method performed on seawater samples is still the reference method for measuring oxygen in the ocean. Modern variants of this method still underpin best practices in oceanographic oxygen measurements today [120]. In the 70 s, the inclusion of Clark oxygen electrodes [34] in a standard Conductivity-Temperature-Depth device allowed continuous measurements of oxygen in the water column to be made. Later in the 2000s, low-power sensing optical sensors, called optodes, with good long-term accuracy and precision, have permitted oxygen to be measured at increased spatial and temporal ranges when implemented on lagrangian autonomous platforms such as Argo floats or gliders (e.g. [79]). The data quality that can be obtained from optodes relies on their calibration method.

Accessible: The indicator is accessible at national (e.g., WOD) and multi-national and international service level (e.g., EMODnet, Copernicus, GLODAP) for past information following FAIR principles. At projected time scales, the indicator is accessible via international assessment efforts (e.g., IPCC, 2021).

Recommendations and research needs for maturing:

This indicator is at the pilot stage. Recommendations for this indicator include continued efforts to collect, quality-control, and make *in situ* observations of dissolved oxygen available, sustaining Eulerian and Lagrangian observing systems acquiring oxygen data to maintain long-term monitoring, and particular research and development activities for advancing our knowledge on ocean oxygen dynamics, including deoxygenation, meaning for instance better understanding historical, current and future ocean deoxygenation rates, or better understanding how deoxygenation will impact marine life and ecosystems, from populations to ecosystems [119].

6. Net Community Production (NCP)

Scientific maturity

Verified: Net Community Production (NCP) is an indicator that represents the metabolic state of the system and allows the evaluation of the capacity of an ecosystem to produce or consume dissolved oxygen and CO₂. It is fundamental in efforts to evaluate possible sources and sinks of CO₂ (i.e., acting as a CO₂ source from the ocean to the atmosphere, or a sink where atmospheric CO₂ may be absorbed and removed from contact with the atmosphere) (e.g. [207]). This indicator provides an estimate of the amount of organic carbon that can be exported to depth [148,53].

Significant: The Net Community Production (NCP) is the amount of photosynthetically produced organic carbon available to heterotrophs (e.g., bacteria, zooplankton, fish). It is the difference between the Gross Primary Production (GPP) and respiration by autotrophs and heterotrophs (i.e., community respiration, CR) [53]. NPP (Net Primary Production) is the net biomass production by autotrophs after autotrophic respiration, and represents the rate at which food and energy are generated for food webs to function [127,187,31]. The NCP indicator relies on a peer-reviewed scientific rationale, grounded in a robust and rigorous scientific framework, including a robust uncertainty framework (e.g. [24,27,101,108,242,49].

Scalable: NCP methods rely on budget calculations to partition observed tracer variations into physical or biological processes occurring over timescales greater than a few hours or a day [101]. Presently, multiyear in situ and remote sensing NCP time series are feasible at near-weekly resolution from several in situ methods and from remote sensing observations. In situ NCP series use consecutive or simultaneous

ship or Argo float deployments at local scales. Results, however, are sensitive to the choice of tracer used in the budget calculations and uncertainties in the budget parameterizations employed across different NCP approaches. The indicator is scalable in space and time, with the above limitations [101].

Indicator Implementation

Justified: Monitoring the estimates of NCP is instrumental to understanding the future ocean functioning regarding delivery of regulating ecosystem services (e.g. carbon sequestration) [237]. NCP determines if an ocean region is net autotrophic (net production, indicated by NCP >0) or net heterotrophic (net consumption and NCP <0). GPP measures community-wide photosynthesis, representing the total production of organic carbon (if reported as gross carbon production -GCP-) or O2 (if reported as gross oxygen production -GOP-) by autotrophs (e.g., phytoplankton, cyanobacteria) and represents the photosynthetic energy available to the entire food web [101].

Measurable: This indicator can be estimated based on measurements of Essential Ocean Variables such as Oxygen, Particulate Organic Carbon (sub-variable of Particulate Matter EOV), Nitrate (sub-variable of Nutrients EOV), and Ocean Colour combined with estimates or measurements of total alkalinity (TA) and dissolved inorganic carbon (DIC), both sub-variables of the Inorganic Carbon EOV. Well matured observation techniques exist for all of these measurements, including in situ and remote sensing techniques [14,117,165,171,186,149]. These tracers are selected because their concentrations in the sunlit ocean are impacted by primary production (photosynthesis and respiration). Other sources and sinks, such as exchange across the air-sea interface, transport and/or sinking and grazing, also impact the concentrations of these tracers. A variety of approaches has been used to estimate the NCP indicator, with early methods using natural seawater samples incubated in light and dark bottles and measuring the evolution of O2 or with 18O-labelled water (GOP; e.g. [60]) to trace temporal changes in O2 production under realistic incubation conditions. Sampling via instrumented moorings similarly enabled high resolution time series of NCP estimates at fixed stations [239,57]. Yet, all these approaches required tradeoffs between temporal, horizontal, and vertical measurement resolution. There were also attempts to derive NCP estimates from satellite data together with measurements of changes in O2 (e.g. [207]). Furthermore, the advent of autonomous platforms such as Argo floats and gliders made this indicator scalable in space and time [101,160,25, 37,93]. Large uncertainties in alterations to NPP in response to climate change exist [204] as well as for the total open ocean respiration [43]. Remote sensing estimates have led to better understanding of the distribution of NCP, and helped understand the link between surface NPP and biodiversity and abundance of organisms in the ocean [148,168].

Accessible: The indicator is accessible at basin scale (e.g., Table A1 in [101]), globally from multiple remote sensing products and services [117,14,186] and at international service level (e.g. BGC-Argo float data GDAC, NASA Ocean Color, Oregon State University Ocean Productivity, NOAA CoastWatch) following FAIR principles.

Recommendations and research needs for maturing of the indicator:

This indicator is at the pilot stage, and as such requires dedicated efforts leading to its maturity across the required scales. Recommendations for this indicator include continued research and development efforts to improve the maturity of all EOVs involved in its determination, including development of sensors for measuring TA and DIC, improved accuracy of existing sensors measuring O₂, pH and nitrate, improving the combination of remote sensing and in situ observations, and quality controlling these measurements [95]. To facilitate global-scale determinations of the carbon export potential, the development of lower-costs sensors to be deployed at scale [95], and improved algorithms for satellite remote sensing, including evaluation of changes in productivity, are also critical.

7. Seagrass Cover Change.

Scientific maturity

Verified: Changes in seagrass cover have a significant impact on ocean services [225]. Seagrasses have a global distribution (except in Antarctica). They grow mostly in soft sediments, bioengineer their local environment and are sensitive to various stressors [153,225]. Because seagrass meadows represent a foundational habitat for many species, Seagrass Cover Change is an important indicator of marine biodiversity status and changes.

Significant: Seagrass beds are important for fisheries and biodiversity, carbon sequestration, and storage as well as stabilizing coastlines [50,65,154,153,224,226,227]. The seagrass cover change indicator relies on a peer-reviewed scientific rationale, grounded in a robust and rigorous scientific framework [141,178,225,250]. It is integrated into World Ocean Assessments [249,248], IPBES [97] and is important to the UN Sustainable Development Goal Target 14, especially 14.1 (reduce marine pollution) and 14.2 (protect and restore ecosystems).

Scalable: The Seagrass Cover Change indicator can be provided at local to regional to global scales. At present, while some local areal extent estimates have high confidence [167], regional to global estimates have low confidence because mapping efforts are patchy and have high uncertainty [141]. Further, there is a minimum of FAIR seagrass data [141]. Substantial efforts are being made to address this to enable this indicator to be scalable in space and time with higher confidence.

Indicator implementation

Justified: Extent of nat

Justified: Extent of natural ecosystems is one of the headline indicators for Goal A of the Kunming-Montreal Global Biodiversity Framework. Seagrass areal extent directly contributes to this headline indicator. Change in seagrass cover, species composition and the distribution is relevant to coastal system functioning, natural forms of coastal protection and carbon storage and sequestration potential (blue carbon). Changes in seagrass cover will affect the quality and extent of essential habitat and nursery areas for many associated species [128, 195,225,226,89]. Seagrass is affecting water quality positively, but is also sensitive to degradation in water quality. Although seagrasses comprise in the order of 0.2 % of the world ocean, they are estimated to contribute > 10 % of all carbon buried annually in the sea [65]. Vigorous photosynthesis by seagrasses can also reduce the acidity of surrounding water by removing dissolved carbon dioxide.

Measurable: Seagrass cover change is derived from the EOV Seagrass Cover and Composition. This EOV consists of three sub-variables; Seagrass percent cover, species composisiton and areal extent. Seagrass percent cover and species composition is typically measured in the field. Most commonly it is measured with quadrats ($<1~\text{m}^2$) and visually estimated directly in the field or through images. Seagrass areal extent is most typically evaluated using different remote sensing methods. This can include observations from surface vessels or from underwater surveys. Some approaches use visible images, including photography and video from autonomous airborne platforms (drones) and observations collected with cameras attached to animals that repeatedly swim across a region (e.g., [69]). Substantial progress has been made in mapping seagrasses over larger regions using high spatial resolution satellite images [132,181,234,229].

Accessible: Substantial seagrass presence records are available in the Ocean Biodiversity Information System (OBIS) as polygon and individual geographic data points, and in EMODnet as geospatial data (geotiffs/shapefiles) the latter for the European Seas. Increasingly these records have other information such as cover (density of seagrasses), productivity, and other metrics. At present, databases for regional and global seagrass cover are based on incomplete observations that have high uncertainty [141]. The World Conservation and Monitoring Centre's (UNEP-WCMC) seeks to aggregate observations into a "Global Distribution of Seagrasses" database [218], in parallel with OBIS that is focusing on seagrass EOV data.

Recommendations and research needs for maturing of the indicator:

This indicator is at the pilot stage. There is substantial work needed to achieve single as well as repeated, routine seagrass percent

cover, species composition and areal extent surveys that follow FAIR principles to make data accessible. Additional work is needed for the seagrass observing community to converge on interoperable protocols and on Standard Operating Procedures (SOPs). The community needs to work toward accomplishing this and report a minimum of the EOV observations with metadata.

8. Phytoplankton Concentration and Composition Change.

Scientific maturity

Verified: Phytoplankton is a key indicator of ecosystem health and plays a vital role in essential ecosystem services such as food provision and biogeochemical cycling. As such, changes in the overall composition of phytoplankton is increasingly recognized as important to understand the overall health and structure of aquatic food webs. Phytoplankton concentrations are also used as indicator of local water quality, including eutrophication or the presence of harmful algae blooms. Also, phytoplankton monitoring provides information about the general status and trends of marine ecosystem health, about greenhouse gas exchange across the ocean surface, and as tracers of ocean circulation, among many applications (see series of reports produced by the International Ocean Colour Coordinating Group ([94]; see also [166,139]).

Significant: A comprehensive review of the value of phytoplankton is provided by Estes et al. [54] and Grigoratou et al. [81]. Phytoplankton represent food at the base of most marine food webs. They also play a key role in the uptake and generation of gases such as oxygen, carbon dioxide, nitrogen oxides, and other gases, and in the cycling of elements in the water column. The phytoplankton are responsible for about half of the world's annual primary productivity [54]. They reproduce and disperse rapidly, largely carried by ocean currents, although many have the ability to swim or control buoyancy and therefore move vertically in the water column [136,142]. The biodiversity of phytoplankton, specifically their functional traits, can define how food webs may be characterized in any one region at any time. Phytoplankton are also relevant when considering the drivers of ecosystem structure. For example, top-down ecosystem control occurs when predation and consumption of phytoplankton dominates, and effects of availability of phytoplankton cascade down the food chain. Instead, bottom-up control occurs when phytoplankton production and abundance are controlled by resources (such as nutrient limitation controls), and this, again, has impacts on the food web. The short-term, seasonal to interannual variations in phytoplankton concentration at any one location has significant implications for food web integrity and health (e.g., [66,164]). While most phytoplankton may be considered important to food webs in this context, some phytoplankton can be harmful, and toxic blooms can lead to mass mortality of fish and other organisms, hypoxic conditions, and can affect human health and the economy of areas affected.

Scalable: Measures of the concentration or abundance of phytoplankton are among the most common observations in marine ecosystem research and in operational monitoring. These measurements are often also done in an interoperable way, as concentration of particular phytoplankton pigments such as chlorophyll-a, or for composition as cell counts. These are scalable. A limitation is that in situ data are reported in different formats and through different platforms, many of which are not interconnected, and therefore scaling to regional or global assessments is not straightforward. Ocean color satellites have provided coverage of global surface ocean phytoplankton concentration as chlorophyll-a concentration estimates since 1976, and near continuous observations since 1997. Measurements of the composition of the phytoplankton have not been as common or accessible and may be collected and counted via several different methods, which has made it more difficult to aggregate to regional or global assessments. However, this is possible and can be translated into FAIR data as demonstrated in the initiative to standardize and document historical compositional data across Australia [41].

Indicator implementation

Justified: Changes in phytoplankton are considered among the most sensitive ecosystem responses to both anthropogenic pressure [12] and global environmental/climate change [243]. In addition, perturbations in biogeochemical cycles can also result in harmful algal blooms (HABs) and alter the overall health of marine habitats and are in many ways, the foundation for the 'blue economy' [22]. Under the Global Ecosystem Typology phytoplankton are identified as a functional group of Epipelagic Ocean Waters in support of the monitoring system for the Kumming-Montreal Global Biodiversity Framework. The plankton manifesto [212], a collaborative resource involving 30 international experts, advocates for 'plankton based solutions' to address 'The Triple Planetary Crisis' using emerging and existing technologies.

Measurable: Phytoplankton concentration and composition can be derived using measurements listed under the Phytoplankton Biomass and Diversity EOV and products considered under the Ocean Colour EOVs. The phytoplankton biomass and diversity metrics also form part of the plankton ECV. Phytoplankton composition observations are often localised and collected with nets or bottles. At larger regional and global scales, phytoplankton concentration is routinely and repeatedly evaluated by various in situ methods (autonomous buoys, gliders), ship observations, and by satellite remote sensing (Phytoplankton Biomass and Diversity EOV, Ocean Colour EOV). Cyanobacteria, while technically encompassing several taxonomic orders of bacteria, are often included in phytoplankton surveys for phytoplankton biomass (as a stock) and productivity (the rate of change of biomass per unit time and unit area or unit volume). Ocean Best Practices standardized methods for quantifying microscopic and molecular counts of phytoplankton have been developed and adopted [110]. The International Ocean - Colour Coordinating Group (IOGCC) also has a collection of Ocean Best Practice documents on protocols, including those for Harmful Algal Blooms.

Accessible: The regional and global phytoplankton concentration indicator is accessible from multiple national agencies (e.g., NASA Ocean Color website, NOAA CoastWatch, Copernicus Marine Services, and numerous regional data services provided by local groups). The satellite observations follow FAIR principles. Limited regional and global assessments of biomass variability and trends were conducted by the International Group for Marine Ecological Time Series (IGMETS; [124]). Global databases of ocean color EOV sub variables, including phytoplankton concentration, composition, and bio-optical parameters are available from the NASA SeaBASS database, ¹⁵ OBIS, ¹⁶ and Valente el al. [228]

Recommendations and research needs for maturing of the indicator:

This indicator is mature. The underlying EOV for this indicator can continue to develop by concentrating on methods of standardising collection for compositional samples and encouraging the use of accepted taxonomy references such as WoRMS¹⁷). Measurements should also embrace new technologies to enhance information collections. For example, improvements in flow imaging microscopy, in equipment such as FlowCam, and the associated AI image recognition software, for example Ecotaxa, ¹⁸ will make processing samples for composition much more efficient and accessible to those without the necessary taxonomic skills. Advances in eDNA and molecular techniques could also make sampling more accessible. However, automated methods and molecular tools still require a continued investment in taxonomy, particularly in the development of robust libraries and databases required to support the automated analysis of samples. To facilitate this, maintaining and supporting trained taxonomists remains essential. For concentration measurements the availability of hyperspectral ocean color satellite sensors, such as the PACE Ocean Color Instrument (PACE OCI), provide an opportunity to conduct advanced research into detection of

¹⁵ https://seabass.gsfc.nasa.gov/

¹⁶ https://obis.org/

¹⁷ https://www.marinespecies.org/index.php

¹⁸ https://ecotaxa.obs-vlfr.fr/

phytoplankton functional groups discriminated by their relative concentration of different pigments.

9. Macroalgae Canopy Cover and Composition Change.

Scientific maturity

Verified: Macroalgal forests and intertidal canopies are iconic on rocky subtidal and intertidal reefs around the world. These diverse ecosystems provide roughly 10 times the net primary production of coastal phytoplankton [163]. Their high biomass and complex structure enable many other functions and services including— provision of nursery areas [102,162], human food resources, protection from coastal erosion, and contribute substantial biomass towards blue carbon [62]. Experimental studies validate their sensitivity to warming, nutrient shifts, and invasive species [197,39]. However, a lack of standardisation for global metrics such as cover and composition, for example % canopy loss and species turnover rates along with variation in existing methods such as transect and drone surveys can vary regionally, hindering global comparisons.

Significant: Macroalgae are critical for SDG 14 (Life Below Water) and the Kunming-Montreal Global Biodiversity Framework (Target 2: ecosystem restoration) and serve as early warning indicators for ecological tipping points for coastal eutrophication (Teicherberg et al., 2010), overfishing [200], and warming (Suskeiwicz et al., 2024). For example, kelp declines in Tasmania due to marine heatwaves [156] and climate driven range expansions of urchins (Ling 2008). Further, due to their role as primary producers, we are beginning to see a limited integration of macroalgae into national biodiversity assessments (e.g., for blue carbon as in [140]).

Scalable: Spatial scalability is possible with satellite-derived canopy metrics (Bell et al., 2021) and drones to enable broad-scale canopy mapping (see [85] for an example in Norway or [29] for California) or other novel technological solutions [28]. However, there are limitations to these methods. Turbid coastal waters can limit optical remote sensing. Remote sensing and sidescan sonar methods do not capture understory species diversity. Records are also limited in temporal extent by when technology was first employed. Temporal scalability, however, exists from long-term human observed datasets in regions like California [118], Australia's Great Southern Reef [251], the UK (Hawkins et al., 2022), and more. Many national governments and private companies conducting ecological impact assessments have long-term macroalgal records spanning decades. However, not all records ate discoverable and accessible.

Is the indicator implementation achievable?

Justified: Macroalgal forests provide a sensitive and well understood indicator of changing coastal marine environments [39]. They are also models for understanding more complex interactions influencing marine communities [55]. Under the Global Ecosystem Typology, kelp forests are identified as a functional group in support of the monitoring system for the Kunming-Montreal Global Biodiversity Framework. Macroalgal forests are directly tied to blue carbon strategies (kelp contributes ~ 3 % of global ocean carbon export; [116]), and the loss of macroalgae correlates with fisheries collapse (e.g., abalone in California sensu [182]) providing clear links to policy, management and economies.

Measurable: Change in macroalgal cover and composition is derived from the macroalgae cover and composition EOV. The macroalgae cover and composition EOV forms part of the Marine Habitats ECV under GEO BON's Essential Biodiversity Variables (EBVs). Global interoperability is a challenge (e.g., Europe uses % cover; Australia uses biomass density, *Macrocystis* forests are often assessed with stipe counts) and taxonomic reporting resolution varies (e.g., species- or genus-level vs. functional group). Further, how to compare intertidal and subtidal shifts is currently understudied.

Accessible: This indicator is accessible at the OBIS (Ocean Biodiversity Information System), GBIF (Global Biodiversity Information

Facility), and regional portals (e.g., EMODnet). Many long-term monitoring sets are not public or even digitized, as they may come from government or industrial monitoring programs. Indigenous/traditional knowledge (e.g., Māori kelp harvest records as in [240]) are rarely digitized or CARE-compliant (https://www.gida-global.org/care) despite containing some of the oldest knowledge. While some academic data sets are not digitized, the growth of data sharing and large-scale databases (e.g., OBIS, the Environmental Data Initiative, etc.) have begun to remedy this situation.

Recommendations and research needs for maturing of the indicator:

This indicator is at the pilot stage. In terms of standardisation, it is recommended that unified metrics such as canopy area, loss %, and functional group shifts are developed by partnerships with GEO BON and/or GOOS to align with the Global Ecosystem Typology for kelp forests [114]. It is recommended for the macroalgal monitoring community to develop and adopt community standards for data recording. Further, it is recommended that technology such as satellite data, eDNA metabarcoding (including the development of global barcoding libraries such as [252]), along with low cost sensors (e.g., underwater photogrammetry rigs) be standardized along with standard operating procedures prioritizing ease-of-use, especially for data poor regions (such as Africa and Southeast Asia). Priority actions include: 1) adoption of standardised metrics and data schemas in temperate regions with existing data (e.g., NE Pacific and Australia/New Zealand); 2) expand training for monitoring and data creation/deposition in data poor regions; 3) expand monitoring to polar regions potentially using eDNA and ROVs. 4) Integrate Indigenous knowledge and improve CARE compliance, such as working with communities of the circumpolar Arctic [170, 236,5], New Zealand [42,150], many small island states and territories [77,211], and of other locations [129].

5. Conclusion

The present efforts to foster an international dialogue and develop a robust and comprehensive framework for ocean indicators lay the groundwork for advancing the effective application of ocean indicators, as outlined in this article. Through a multidisciplinary approach, this initiative has provided a clear definition and co-developed criteria for ocean indicators. This study presents a structured framework designed to standardize and enhance the development of scientific ocean indicators that can improve current ocean monitoring systems. By integrating scientifically validated methods, harmonized data sources, and clear uncertainty quantification, the proposed framework offers a solid foundation for generating indicators that not only track the ocean state, but also provide outputs for application in informing policy and decision-making.

The launch of the first set of pilot indicators (Section 4) marks a significant milestone. The ambition behind introducing a set of pilot ocean indicators supported by GOOS is to generate momentum within the international community by demonstrating the tangible value of robust ocean indicators. These pilot indicators will act as a foundation for future steps, such as developing comprehensive transdisciplinary ocean narratives by showcasing how shifts in the ocean state directly impact economic growth, livelihoods, and societal well-being (Fig. 4). For example, this framework opens avenues for reflecting understanding built on multiple knowledge systems including those held by Indigenous Peoples and shared across local communities [220]. Climate change impacts on Indigenous Peoples and local communities are ongoing, tangible, widespread, and affect multiple elements of their social-ecological systems [172,192]. The integration of local and indigenous knowledge with science is a promising tool to increase the climate change resilience of communities during crises such as from natural hazards [52,8,91].

Indicators presented here should not be viewed as independent. A codesign process focused on addressing the causes and consequences of a particular application or ocean problem may require consideration of



Fig. 4. The multi-layered chain to streamline evidence-based and tailored ocean knowledge transfer from science to policy.

sets of indicators. These should be evaluated together to understand change and the driver(s) of change, to help model and forecast impacts and evaluate possible scenarios relevant to weigh policy options. Often, just monitoring one indicator may be helpful to detect change in a particular environmental state. But ancillary and complementary indicator monitoring is useful to manage impacts and possible consequences of change in a particular ocean process, resource, or area. For example, in order to understand and model changes in ocean acidification indicators, the physical and biological drivers of those changes must also be measured and understood (for example, [59,58,73,10]).

Coastal communities would benefit from information and resources to support active adaptation to local impacts [159]. The proposed GOOS pilot indicators are relevant for adaptation planning and can strengthen associated decision-making capacity for local communities such as for sea level (e.g., [134]), sea ice (e.g., [15]); ocean warming (e.g., [3]); ocean acidification [6,78] or ocean deoxygenation [109]. For this purpose, the scalability of ocean indicators to regional and local scale is essential to provide relevant area- and context-specific information.

The next phase of this initiative is to expand the pilot indicators into a robust, globally recognized framework for ocean indicators. This will require coordinated efforts to further validate and refine each indicator's methodology and applicability, ensuring they meet the needs of diverse stakeholders from policy makers to local communities. A key step is adopting global standards and best practices for consistent data collection and reporting. The development of indicators extends the

functionality of Essential Variables so that they can be incorporated into a broader set of assessments undertaken at varying scales and therefore deliver some clear guidance to the in terms of national monitoring and reporting. Building on the Essential Variable frameworks, this initiative complements existing climate (GCOS) and biodiversity (BIP) indicators, addressing a critical gap in the international discussion on the ocean's role in the broader environmental context. Strengthening collaboration among academia and international organizations will then be essential to broaden the use of these indicators and incorporate them into global frameworks and services.

Ongoing engagement with stakeholders will help to iteratively refine the indicators, aligning them with emerging science and societal needs, and ensuring they effectively capture the complex, evolving dynamics of ocean health and sustainability. Also, these indicators are pivotal in advancing our understanding of how the ocean's health interacts with Planetary Boundaries [173,179,180,199]. By systematically tracking ocean change, they will help us assess where we stand concerning critical thresholds—such as ocean acidification, biogeochemical cycles, and climate regulation—that define the safe operating space for humanity. Aquatic deoxygenation has been proposed as an additional planetary boundary process that is critical to the integrity of Earth's ecological and social systems, and that both regulates and responds to ongoing changes in other planetary boundary processes [183]. Refinement of the ocean acidification boundary has also been proposed by extending it into the ocean's interior so that it also represents the functioning and habitability of the planet more generally (Findlay et al., 2025, in review). This knowledge will not only inform us on how close we are to crossing these boundaries but will also provide actionable insights to prevent or mitigate the risks of transgressing them, supporting global efforts to maintain a resilient Earth system.

CRediT authorship contribution statement

Toste Tanhua: Writing – review & editing. Byrnes Jarrett: Writing - review & editing. Adrienne Sutton: Writing - review & editing. Kim Bernard: Writing - review & editing. Sabrina Speich: Writing - review & editing. Anthony Bernard: Writing – review & editing. Joanna Post: Writing – review & editing. Lisandro Benedetti Cecchi: Writing – review & editing. Audrey M. Darnaude: Writing - review & editing. Weidong Yu: Writing - review & editing. Clark Malcom R.: Writing review & editing. Dimitris Poursanidis: Writing – review & editing. Lucille Chapuis: Writing - review & editing. Maciej Telszewski: Writing - review & editing. Gabrielle Canonico: Writing - review & editing. Pia Englyst: Writing – review & editing. Claire Davies: Writing - review & editing. Nordlund Lina M.: Writing - review & editing. McMahon Clive R.: Writing - review & editing. Maria Hood: Writing review & editing. Holland Elisabeth A.: Writing - review & editing. Emma Heslop: Writing – review & editing. Hallam Samantha: Writing - review & editing. Nora Loose: Writing - review & editing. Muller-**Karger Frank E.:** Writing – review & editing, Writing – original draft. Ana Lara-Lopez: Writing - review & editing. Véronique Garçon: Writing - review & editing, Writing - original draft. Aurélien Liné: Writing - review & editing. Alex Godoy-Faundez: Writing - review & editing, Writing - original draft, Methodology. Stefan Kern: Writing review & editing. Karina von Schuckmann: Writing – review & editing, Writing - original draft, Visualization, Methodology, Investigation, Conceptualization. Narissa Bax: Writing - review & editing. Ward Appeltans: Writing – review & editing. Belén Martín Míguez: Writing - review & editing. Karen Evans: Writing - review & editing. Agneta Fransson: Writing – review & editing.

Acknowledgement

NBax is funded by Granskingarráðið for the BlueCea project (grant number 8014).

FMK: supported by the Marine Biodiversity Observation Network

(MBON: NASA grant 80NSSC22K1779, NOAA IOOS grant NA19NOS0120199; and NOAA CPO grant NA22OAR4310561).

VG, KC, AS and MT acknowledge support from the United States National Science Foundation award OCE-2513154 to the Scientific Committee on Oceanic Research (SCOR, United States) for the International Ocean Carbon Coordination Project.

BMM acknowledges support from NOAA through an award A101685 / 37000825 to the Woods Hole Oceanographic Institution

KvS and AL have received funding from the project ObsSea4Clim (Ocean observations and indicators for climate and assessments), which is funded by the European Union, Horizon Europe Funding Programme for Research and Innovation under grant agreement number: 101136548. ObsSea4Clim contribution nr. 17. KvS: This activity was also carried out as part of the Copernicus Marine service implemented by Mercator Ocean international under a contributing agreement with the European Commission.

LMN was funded by the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No. 101136748 (BioEcoOcean).

Data availability

No data was used for the research described in the article.

References

- [1] M. Ablain, J.F. Legeais, P. Prandi, M. Marcos, L. Fenoglio-Marc, H.B. Dieng, J. Benveniste, A. Cazenave, Satellite Altimetry-Based sea level at global and regional scales, in: In.A. Cazenave, N. Champollion, F. Paul, J. Benveniste (Eds.), Integrative Study of the Mean Sea Level and Its Components, 58, Springer International Publishing, 2017, pp. 9–33. (http://link.springer.com/10.1007/97 8-3-319-56490-6 2).
- [2] J.P. Abraham, M Baringer, N.L. Bindoff, T. Boyer, L.J. Cheng, J.A. Church, J. L. Conroy, C.M. Domingues, J.T. Fasullo, J. Gilson, G. Goni, S.A. Good, J. M. Gorman, V. Gouretski, M. Ishii, G.C. Johnson, S. Kizu, J.M. Lyman, A. M. Macdonald, W.J. Minkowycz, S.E. Moffitt, M.D. Palmer, A.R. Piola, F. Reseghetti, K. Schuckmann, K.E. Trenberth, I. Velicogna, J.K. Willis, A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change, Rev. Geophys. 51 (2013) 450–483, https://doi.org/10.1002/rog.20022.
- [3] J. Abraham, L. Cheng, M.E. Mann, K. Trenberth, K. Von Schuckmann, The ocean response to climate change guides both adaptation and mitigation efforts, 100221–100221, Atmos. Ocean. Sci. Lett. 15 (4) (2022), https://doi.org/ 10.1016/j.aosl.2022.100221.
- [4] Abram, N., Gattuso, J.-P., Prakash, A., Cheng, L., Chidichimo, M.P., Crate, S., Enomoto, H., Garschagen, M., Gruber, N., Harper, S., Holland, E., Kudela, R.M., Rice, J., Steffen, K., von Schuckmann, K., Pörtner, H.-O., Roberts, D.C., Masson Delmotte, V., Zhai, P., Mintenbeck, K. (n.d.). Framing and Context of the Report. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 73-129. https://doi.org/10.1017/9781009157964.003.
- [5] K.P. Akhiatak, J. Akoaksion, T. Alanak, H. Drost, W. Esau, C. Haogak, J. Harry, R. Inuktalik, P. Johnston, C. Joss, N. Klengenberg, D. Kudlak, J. Kudlak, K. Kudlak, J. Kuptana, E. Malgokak, J. Noksana Jr., B. Okheena, J. Pogotak, A. Pogotak, Indigenous owned aquatic monitoring programs in the inuvialuit settlement region work: an adaptive framework with example traditional & local knowledge quotes and coastal marine water quality data collected from 2019 to 2022 near sachs harbour and ulukhaktok, Arct. Sci. 20240005 (2025), https://doi.org/10.1139/as-2024-0005.
- [6] R. Albright, L. Hansson, S.R. Cooley, J.-P. Gattuso, P. Marshall, N. Marshall, S. Fletcher, G. Haraldsson, O. Hoegh-Guldberg, Are we ready for ocean acidification? A framework for assessing and advancing policy readiness, 041001–041001, Environ. Res. Lett. 18 (4) (2023), https://doi.org/10.1088/1748-9326/acc085.
- [7] Allen, C., Espey, J., Marks, A., & Skipper, M. (2021). Harnessing Science for a Sustainable Future: Narrowing the Policy, Research, and Community Divide. 1636274-Bytes. https://doi.org/10.6084/M9.FIGSHARE.15741606.V1.
- [8] D.J. Amaya, M.G. Jacox, M.R. Fewings, V.S. Saba, M.F. Stuecker, R. R. Rykaczewski, A.C. Ross, C.A. Stock, A. Capotondi, C.M. Petrik, S.J. Bograd, M. A. Alexander, W. Cheng, A.J. Hermann, K.A. Kearney, B.S. Powell, Marine heattwaves need clear definitions so coastal communities can adapt, Nature 616 (7955) (2023) 29–32, https://doi.org/10.1038/d41586-023-00924-2.
- [9] N. Arafeh-Dalmau, J.C. Villaseñor-Derbez, D.S. Schoeman, et al., Global floating kelp forests have limited protection despite intensifying marine heatwave threats, Nat. Commun. 16 (2025), https://doi.org/10.1038/s41467-025-58054-4.

- [10] Y.M. Astor, M.I. Scranton, F. Muller-Karger, R. Bohrer, J. García, fCO2 variability at the CARIACO tropical coastal upwelling time series station, Mar. Chem. 97 (3–4) (2005) 245–261, https://doi.org/10.1016/j.marchem.2005.04.001.
- [11] B. Martin Miguez, et al., GOOS essential ocean variables: the backbone of a sustained and evolving global ocean observing system, submitted to Frontiers in Marine Science (2025).
- [12] J. Bedford, D. Johns, S. Greenstreet, A. McQuatters-Gollop, Plankton as prevailing conditions: a surveillance role for plankton indicators within the marine strategy framework directive, Mar. Policy 89 (2018) 109–115, https://doi.org/10.1016/j. marpol.2017.12.021.
- [13] R.A. Begum, R. Lempert, E. Ali, T.A. Benjaminsen, T. Bernauer, W. Cramer, X. Cui, K. Mach, G. Nagy, N.C. Stenseth, R. Sukumar, P. Wester, Point of departure and key concepts, in: H.-O. Pörtner, D.C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022, pp. 121–196, https://doi.org/10.1017/9781009325844.003.
- [14] M.J. Behrenfeld, P.G. Falkowski, Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr. 42 (1) (1997) 1–20, https://doi.org/10.4319/lo.1997.42.1.0001.
- [15] M. Berman, J. Baztan, G. Kofinas, et al., Adaptation to climate change in coastal communities: findings from seven sites on four continents, Clim. Change 159 (2020) 1–16, https://doi.org/10.1007/s10584-019-02571-x.
- [16] R.A. Betts, S.E. Belcher, L. Hermanson, A. Klein Tank, J.A. Lowe, C.D. Jones, C. P. Morice, N.A. Rayner, A.A. Scaife, P.A. Stott, Approaching 1.5 °C: how will we know we've reached this crucial warming mark? Nature 624 (7990) (2023) 33–35, https://doi.org/10.1038/d41586-023-03775-z.
- [17] N.L. Bindoff, W.W.L. Cheung, J.G. Kairo, J. Arístegui, V.A. Guinder, R. Hallberg, N. Hilmi, N. Jiao, M.S. Karim, L. Levin, S. O'Donoghue, S.R. Purca Cuicapusa, B. Rinkevich, T. Suga, A. Tagliabue, P. Williamson, Changing ocean, marine ecosystems, and dependent communities, in: H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2019, pp. 447–587. (https://doi.org/10.1017/9781009157964.007).
- [18] Biodiversity Indicators Partnership (BIP). (2011) Guidance for national biodiversity indicator development and use. UNEP World Conservation Monitoring, Centre, Cambridge, UK. 40pp, (https://www.bipindicators.net/national-indicator-development).
- [19] BIP, 2024: The Biodiversity Indicators Partnership, (https://www.bipindicators.net/) (last access: 16 Sept. 2024).
- [20] S. Bojinski, M. Verstraete, T.C. Peterson, C. Richter, A. Simmons, M. Zemp, The concept of essential climate variables in support of climate research, applications, and policy, Bull. Am. Meteorol. Soc. 95 (9) (2014) 1431–1443, https://doi.org/10.1175/BAMS.D-13-00047 1
- [21] D. Breitburg, L.A. Levin, A. Oschlies, M. Grégoire, F.P. Chavez, D.J. Conley, V. Garçon, D. Gilbert, D. Gutiérrez, K. Isensee, G.S. Jacinto, K.E. Limburg, I. Montes, S.W.A. Naqvi, G.C. Pitcher, N.N. Rabalais, M.R. Roman, K.A. Rose, B. A. Seibel, J. Zhang, Declining oxygen in the global ocean and coastal waters, Science 359 (6371) (2018) eaam7240, https://doi.org/10.1126/science.
- [22] M. Briscoe, D. Glickson, S. Roberts, R. Spinrad, J. Yoder, A moving target: matching graduate education with available careers for ocean scientists, Oceanography 29 (1) (2016) 22–30, https://doi.org/10.5670/oceanog.2016.05.
- [23] I. Brito-Morales, D.S. Schoeman, J.D. Everett, C.J. Klein, D.C. Dunn, J. García Molinos, M.T. Burrows, K.C.V. Buenafe, R.M. Dominguez, H.P. Possingham, A. J. Richardson, Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas, Nat. Clim. Change 12 (4) (2022) 402–407. https://doi.org/10.1038/s41558-022-01323-7.
- [24] H. Brix, N. Gruber, D.M. Karl, N.R. Bates, On the relationships between primary, net community, and export production in subtropical gyres, Deep Sea Res. Part II Top. Stud. Oceanogr. 53 (5–7) (2006) 698–717, https://doi.org/10.1016/j.dsr2.2006.01.024.
- [25] S.M. Bushinsky, S. Emerson, Marine biological production from in situ oxygen measurements on a profiling float in the subarctic Pacific Ocean, Glob. Biogeochem. Cycles 29 (12) (2015) 2050–2060, https://doi.org/10.1002/ 2015GB005251.
- [26] S.R. Carroll, I. Garba, O.L. Figueroa-Rodríguez, J. Holbrook, R. Lovett, S. Materechera, M. Parsons, K. Raseroka, D. Rodriguez-Lonebear, R. Rowe, R. Sara, J.D. Walker, J. Anderson, M. Hudson, The CARE principles for indigenous data governance, 43–43, Data Sci. J. 19 (2020), https://doi.org/10.5334/dsj-2020.043
- [27] N. Cassar, S.W. Wright, P.G. Thomson, T.W. Trull, K.J. Westwood, M. De Salas, A. Davidson, I. Pearce, D.M. Davies, R.J. Matear, The relation of mixed-layer net community production to phytoplankton community composition in the Southern Ocean, Glob. Biogeochem. Cycles 29 (4) (2015) 446–462, https://doi.org/ 10.1002/2014GB004936.
- [28] K.C. Cavanaugh, T.W. Bell, K.E. Aerni, J.E.K. Byrnes, S. McCammon, M.M. Smith, New technologies for monitoring coastal ecosystem dynamics, Annu. Rev. Mar. Sci. 17 (1) (2025) 409–433, https://doi.org/10.1146/annurev-marine-040523-020221.

- [29] K.C. Cavanaugh, K.C. Cavanaugh, T.W. Bell, E.G. Hockridge, An automated method for mapping giant kelp canopy dynamics from UAV, 587354–587354, Front. Environ. Sci. 8 (2021), https://doi.org/10.3389/fenvs.2020.587354.
- [30] A. Cazenave, L. Moreira, Contemporary sea-level changes from global to local scales: a review, Proc. R. Soc. A 478 (2022) 20220049, https://doi.org/10.1098/ rspa.2022.0049.
- [31] E. Chassot, S. Bonhommeau, N.K. Dulvy, F. Mélin, R. Watson, D. Gascuel, O. Le Pape, Global marine primary production constrains fisheries catches, Ecol. Lett. 13 (4) (2010) 495–505, https://doi.org/10.1111/j.1461-0248.2010.01443.x.
- [32] L. Cheng, K. Von Schuckmann, J.P. Abraham, K.E. Trenberth, M.E. Mann, L. Zanna, M.H. England, J.D. Zika, J.T. Fasullo, Y. Yu, Y. Pan, J. Zhu, E. R. Newsom, B. Bronselaer, X. Lin, Past and future ocean warming, Nat. Rev. Earth Environ. 3 (11) (2022) 776–794, https://doi.org/10.1038/s43017-022-00345-1.
- [33] L. Cheng, K. Von Schuckmann, A. Minière, M.Z. Hakuba, S. Purkey, G.A. Schmidt, Y. Pan, Ocean heat content in 2023, Nat. Rev. Earth Environ. 5 (4) (2024) 232–234, https://doi.org/10.1038/s43017-024-00539-9.
- [34] L.C. Clark, R. Wolf, D. Granger, Z. Taylor, Continuous recording of blood oxygen tensions by polarography, J. Appl. Physiol. 6 (3) (1953) 189–193, https://doi. org/10.1152/jappl.1953.6.3.189.
- [35] H. Claustre, K.S. Johnson, Y. Takeshita, Observing the global ocean with Biogeochemical-Argo, Annu. Rev. Mar. Sci. 12 (1) (2020) 23–48, https://doi.org/ 10.1146/annurev-marine-010419-010956.
- [36] J.C. Comiso, R.A. Gersten, L.V. Stock, J. Turner, G.J. Perez, K. Cho, Positive trend in the Antarctic sea ice cover and associated changes in surface temperature, J. Clim. 30 (6) (2017) 2251–2267, https://doi.org/10.1175/JCLI-D-16-0408.1.
- [37] L. Coppola, M. Fourrier, O. Pasqueron De Fommervault, A. Poteau, E.D. Riquier, L. Béguery, High-resolution study of the air-sea CO2 flux and net community oxygen production in the ligurian sea by a fleet of gliders, 1233845–1233845, Front. Mar. Sci. 10 (2023), https://doi.org/10.3389/fmars.2023.1233845.
- [38] C.E. Cornwall, J. Carlot, O. Branson, et al., Crustose coralline algae can contribute more than corals to coral reef carbonate production, Commun. Earth. Environ. 4 (2023) 105, https://doi.org/10.1038/s43247-023-00766-w.
- [39] R. D'Archino, L. Piazzi, Macroalgal assemblages as indicators of the ecological status of marine coastal systems: a review, Ecol. Indic. 129 (2021) 107835, https://doi.org/10.1016/j.ecolind.2021.107835.
- [40] D. Dalton, V. Berger, H. Kirchmeir, V. Adams, J. Botha, S. Halloy, R. Hart, V. Švara, K. Torres Ribeiro, S. Chaudhary, M. Jungmeier, A framework for monitoring biodiversity in protected areas and other effective area-based conservation measures: concepts, methods and technologies. IUCN WCPA Technical Report Series, IUCN, Gland, Switzerland, 2024. (https://portals.iucn.org/library/sites/library/files/documents/PATRS-007-En.pdf). last access 24 September 2025.
- [41] C.H. Davies, A. Coughlan, G. Hallegraeff, P. Ajani, L. Armbrecht, N. Atkins, P. Bonham, S. Brett, R. Brinkman, M. Burford, L. Clementson, P. Coad, F. Coman, D. Davies, J. Dela-Cruz, M. Devlin, S. Edgar, R. Eriksen, M. Furnas, A. J. Richardson, A database of marine phytoplankton abundance, biomass and species composition in Australian waters, 160043–160043, Sci. Data 3 (1) (2016), https://doi.org/10.1038/sdata.2016.43.
- [42] J. De Souza, J. Jakoboski, J. Gardner, M. Hudson, M. Felsing, The moana project braids tradition and science for a more sustainable ocean, Eos 105 (2024), https://doi.org/10.1029/2024FO240233.
- [43] P.A. Del Giorgio, C.M. Duarte, Respiration in the open ocean, Nature 420 (6914) (2002) 379–384, https://doi.org/10.1038/nature01165.
- [44] R.J. Diaz, R. Rosenberg, Spreading dead zones and consequences for marine ecosystems, Science 321 (5891) (2008) 926–929, https://doi.org/10.1126/ science 1156401
- [45] A.G. Dickson, C.L. Sabine, J.R. Christian, Guide to best practices for ocean CO2 measurement, North Pacific Marine Science Organization, 2007. (https://repository.oceanbestpractices.org/handle/11329/249).
- [46] Dickson, A.G. 2010. The carbon dioxide system in seawater: Equilibrium chemistry and measurements. Pp. 17–40 in Guide to Best Practices for Ocean Acidification Research and Data Reporting. U. Riebesell, V.J. Fabry, L. Hansson, and J.P. Gattuso, eds, Chapter 1, EUR 24328 EN, European Commission, Brussels, Belgium.
- [47] K.L. Dobson, J.A. Newton, S. Widdicombe, K.L. Schoo, M.P. Acquafredda, G. Kitch, A. Bantelman, K. Lowder, A. Valauri-Orton, K. Soapi, K. Azetsu-Scott, K. Isensee, Ocean acidification research for sustainability: Co-designing global action on local scales, ICES J. Mar. Sci. 80 (2) (2023) 362–366, https://doi.org. 10.1093/icesims/fsac158.
- [48] S.C. Doney, D.S. Busch, S.R. Cooley, K.J. Kroeker, The impacts of ocean acidification on marine ecosystems and reliant human communities, Annu. Rev. Environ. Resour. 45 (1) (2020) 83–112, https://doi.org/10.1146/annurevenviron-012320-083019.
- [49] C. Duarte, I. Losada, I. Hendriks, et al., The role of coastal plant communities for climate change mitigation and adaptation, Nature Clim. Change 3 (2013) 961–968, https://doi.org/10.1038/nclimate1970.
- [50] J. Duffy, Biodiversity and the functioning of seagrass ecosystems, Mar. Ecol. Prog. Ser. 311 (2006) 233–250, https://doi.org/10.3354/meps311233.
- [51] C. Eayrs, X. Li, M.N. Raphael, D.M. Holland, Rapid decline in antarctic sea ice in recent years hints at future change, Nat. Geosci. 14 (7) (2021) 460–464, https:// doi.org/10.1038/s41561-021-00768-3.
- [52] Ellen, R.F. (2007). Modern crises and traditional strategies: Local ecological knowledge in island Southeast Asia. Berghahn.
- [53] S. Emerson, Annual net community production and the biological carbon flux in the ocean, Glob. Biogeochem. Cycles 28 (1) (2014) 14–28, https://doi.org/ 10.1002/2013GB004680.

[54] M. Estes, F. Muller-Karger, K. Forsberg, M. Leinen, S. Kholeif, W. Turner, D. Cripe, Y. Gevorgyan, P. Fietzek, G. Canonico, F. Werner, N. Bax, Integrating biology into ocean observing infrastructure: society depends on it, Oceanography 34 (4) (2021) 36–43. (https://www.jstor.org/stable/27217336).

- [55] J.A. Estes, J.F. Palmisano, Sea otters: their role in structuring nearshore communities, Science 185 (4156) (1974) 1058–1060, https://doi.org/10.1126/ science.185.4156.1058.
- [56] K. Evans, J.O. Schmidt, K.A. Addo, M.J. Bebianno, D. Campbell, J. Fan, R. Gonzalez-Quiros, E.Y. Mohammed, M.G. Shojaei, V. Smolyanitsky, C.-I. Zhang, Delivering scientific evidence for global policy and management to ensure ocean sustainability, Sustain. Sci. 20 (1) (2025) 299–306, https://doi.org/10.1007/ s11625-004-01579-2
- [57] A.J. Fassbender, C.L. Sabine, M.F. Cronin, Net community production and calcification from 7 years of NOAA station papa mooring measurements, Glob. Biogeochem. Cycles 30 (2) (2016) 250–267, https://doi.org/10.1002/ 2015GR005205
- [58] R.A. Feely, S.R. Alin, J. Newton, C.L. Sabine, M. Warner, A. Devol, C. Krembs, C. Maloy, The combined effects of ocean acidification, mixing, and respiration on ph and carbonate saturation in an urbanized estuary, Estuar. Coast. Shelf Sci. 88 (4) (2010) 442–449, https://doi.org/10.1016/j.ecss.2010.05.004.
- [59] R.A. Feely, B.R. Carter, S.R. Alin, D. Greeley, N. Bednaršek, The combined effects of ocean acidification and respiration on habitat suitability for marine calcifiers along the West Coast of North America, e2023JC019892-e2023JC019892, J. Geophys. Res. Oceans 129 (4) (2024), https://doi.org/10.1029/ 2023JC019892
- [60] S. Ferrón, D.A. Del Valle, K.M. Björkman, P.D. Quay, M.J. Church, D.M. Karl, Application of membrane inlet mass spectrometry to measure aquatic gross primary production by the18 o in vitro method, Limnol. Oceanogr. Methods 14 (9) (2016) 610–622, https://doi.org/10.1002/lom3.10116.
- [61] B. Figuerola, A.M. Hancock, N. Bax, V.J. Cummings, R. Downey, H.J. Griffiths, J. Smith, J.S. Stark, A review and Meta-Analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean, 584445–584445, Front. Mar. Sci. 8 (2021), https://doi.org/10.3389/fmars.2021.584445.
- [62] K. Filbee-Dexter, A. Pessarrodona, M.F. Pedersen, T. Wernberg, C.M. Duarte, J. Assis, T. Bekkby, M.T. Burrows, D.F. Carlson, J.-P. Gattuso, H. Gundersen, K. Hancke, K.A. Krumhansl, T. Kuwae, J.J. Middelburg, P.J. Moore, A.M. Queirós, D.A. Smale, I. Sousa-Pinto, D. Krause-Jensen, Carbon export from seaweed forests to deep ocean sinks, Nat. Geosci. 17 (6) (2024) 552–559, https://doi.org/ 10.1038/s41561-024-01449-7.
- [63] S. Fons, N. Kurtz, M. Bagnardi, A decade-plus of antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting, Cryosphere 17 (6) (2023) 2487–2508, https://doi.org/10.5194/tc-17-2487-2023.
- [64] P.M. Forster, C. Smith, T. Walsh, W.E. Lamb, R. Lamboll, C. Cassou, M. Hauser, Z. Hausfather, J.-Y. Lee, M.D. Palmer, K. von Schuckmann, A.B.A. Slangen, S. Szopa, B. Trewin, J. Yun, N.P. Gillett, S. Jenkins, H.D. Matthews, K. Raghavan, A. Ribes, J. Rogelj, D. Rosen, X. Zhang, M. Allen, L. Aleluia Reis, R.M. Andrew, R. A. Betts, A. Borger, J.A. Broersma, S.N. Burgess, L. Cheng, P. Friedlingstein, C. M. Domingues, M. Gambarini, T. Gasser, J. Gütschow, M. Ishii, C. Kadow, J. Kennedy, R.E. Killick, P.B. Krummel, A. Liné, D.P. Monselesan, C. Morice, J. Mühle, V. Naik, G.P. Peters, A. Pirani, J. Pongratz, J.C. Minx, M. Rigby, R. Rohde, A. Savita, S.I. Seneviratne, P. Thorne, C. Betts, L.M. Western, G.R. van der Werf, S.E. Wijffels, V. Masson-Delmotte, P. Zhai, Indicators of Global Climate Change 2024: annual update of key indicators of the state of the climate system and human influence, Earth Syst. Sci. Data 17 (6) (2025) 2641–2680, https://doi.org/10.5194/essd-17-2641-2025
- [65] J. Fourqurean, C. Duarte, H. Kennedy, et al., Seagrass ecosystems as a globally significant carbon stock, Nat. Geosci. 5 (2012) 505–509, https://doi.org/ 10.1038/ngeo1477
- [66] K.D. Friedland, C. Stock, K.F. Drinkwater, J.S. Link, R.T. Leaf, B.V. Shank, J. M. Rose, C.H. Pilskaln, M.J. Fogarty, Pathways between primary production and fisheries yields of large marine ecosystems, e28945–e28945, PLoS ONE 7 (1) (2012), https://doi.org/10.1371/journal.pone.0028945.
- [67] P. Friedlingstein, M. O'Sullivan, M.W. Jones, R.M. Andrew, D.C.E. Bakker, J. Hauck, P. Landschützer, C. Le Quéré, I.T. Luijkx, G.P. Peters, W. Peters, J. Pongratz, C. Schwingshackl, S. Sitch, J.G. Canadell, P. Ciais, R.B. Jackson, S. R. Alin, P. Anthoni, B. Zheng, Global carbon budget 2023, Earth Syst. Sci. Data 15 (12) (2023) 5301–5369, https://doi.org/10.5194/essd-15-5301-2023.
- [68] P. Friedlingstein, M. O'Sullivan, M.W. Jones, R.M. Andrew, J. Hauck, P. Landschützer, C. Le Quéré, H. Li, I.T. Luijkx, A. Olsen, G.P. Peters, W. Peters, J. Pongratz, C. Schwingshackl, S. Sitch, J.G. Canadell, P. Ciais, R.B. Jackson, S. R. Alin, J. Zeng, Global carbon budget 2024, Earth Syst. Sci. Data 17 (3) (2025) 965–1039, https://doi.org/10.5194/essd-17-965-2025.
- [69] A.J. Gallagher, J.W. Brownscombe, N.A. Alsudairy, A.B. Casagrande, C. Fu, L. Harding, S.D. Harris, N. Hammerschlag, W. Howe, A.D. Huertas, S. Kattan, A. S. Kough, A. Musgrove, N.L. Payne, A. Phillips, B.D. Shea, O.N. Shipley, U. R. Sumaila, M.S. Hossain, C.M. Duarte, Tiger sharks support the characterization of the world's largest seagrass ecosystem, 6328–6328, Nat. Commun. 13 (1) (2022), https://doi.org/10.1038/s41467-022-33926-1.
- [70] V. Garcon, J. Karstensen, A. Palacz, M. Telszewski, T. Aparco Lara, et al., Multidisciplinary observing in the world Ocean's oxygen minimum zone regions: from climate to fish - the VOICE initiative, Front. Mar. Sci. 6 (2019), https://doi. org/10.3389/fmars.2019.00722.
- [71] GCOS, 2024: Global climate Observing System Indicator framework, (https://gcos.wmo.int/en/global-climate-indicators) (last access 16 Spet. 2024).
- [72] M. Gehlen, Thi Tuyet Trang Chau, Anna Conchon, Anna Denvil-Sommer, Frédéric Chevallier, Mathieu Vrac, Carlos Mejia, Ocean acidification. In:

- copernicus marine service ocean state report, issue 4, J. Oper. Oceanogr. 13 (sup1) (2020) s88–s91, https://doi.org/10.1080/1755876X.2020.1785097.
- [73] C.J. Gobler, H. Baumann, Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life, 20150976–20150976, Biol. Lett. 12 (5) (2016), https://doi.org/10.1098/rsbl.2015.0976.
- [74] GOOS-219, GOOS Cross-Panel workshop: decisions and actions summary, IOC-UNESCO, Paris, 2016. (https://goosocean.org/document/18312) (available at).
- [75] GOOS-228. A report of the Meeting of the Global Ocean Observing System Expert Panels (GOOS Cross-Panel 2018). GOOS Report No. 228. IOC-UNESCO, Paris, 2018; available at: (https://goosocean.org/document/21606).
- [76] H. Goosse, J.E. Kay, K.C. Armour, A. Bodas-Salcedo, H. Chepfer, D. Docquier, A. Jonko, P.J. Kushner, O. Lecomte, F. Massonnet, H.-S. Park, F. Pithan, G. Svensson, M. Vancoppenolle, Quantifying climate feedbacks in polar regions, 1919–1919, Nat. Commun. 9 (1) (2018), https://doi.org/10.1038/s41467-018-04173-0.
- [77] G.M. Gordon-Strachan, S.Y. Parker, H.C. Harewood, P.A. Méndez-Lázaro, S. T. Saketa, K.F. Parchment, M. Walawender, A.O. Abdulkadri, P.J. Beggs, D. F. Buss, R.J. Chodak, S. Dasgupta, O. De Santis, N.G. Guthrie-Dixon, S. Hassan, H. Kennard, S.B. Maharaj, K.G. Marshall, S.R. McFarlane, M. Romanello, The 2024 small island developing states report of the lancet countdown on health and climate change, Lancet Glob. Health 13 (1) (2025) e146–e166, https://doi.org/10.1016/S2214-109X(24)00421-2.
- [78] L. Greenhill, J.O. Kenter, H. Dannevig, Adaptation to climate change–related ocean acidification: An adaptive governance approach, Ocean Coast. Manag. 191 (2020) 105176, https://doi.org/10.1016/j.ocecoaman.2020.105176.
- [79] M. Grégoire, V. Garçon, H. Garcia, D. Breitburg, K. Isensee, A. Oschlies, M. Telszewski, A. Barth, H.C. Bittig, J. Carstensen, T. Carval, F. Chai, F. Chavez, D. Conley, L. Coppola, S. Crowe, K. Currie, M. Dai, B. Deflandre, M. Yasuhara, A global ocean oxygen database and Atlas for assessing and predicting deoxygenation and ocean health in the open and coastal ocean, 724913–724913, Front. Mar. Sci. 8 (2021), https://doi.org/10.3389/fmars.2021.724913.
- [80] M. Grégoire, A. Oschlies, D.E. Canfield, C. Castro, I. Ciglenecki, P. Croot, K. Salin, B. Schneider, P. Serret, C. Slomp, T. Tesi, M. Yucel, Ocean oxygen: the role of the ocean in the oxygen we breathe and the threat of deoxygenation, Zenodo (2023). (https://zenodo.org/record/7941157).
- [81] M. Grigoratou, S. Menden-Deuer, A. McQuatters-Gollop, G. Arhonditsis, L. Felipe Artigas, S.-D. Ayata, D. Bedikoğlu, B.E. Beisner, B. Chen, C. Davies, L. Diarra, O. W. Elegbeleye, J.D. Everett, T.M. Garcia, W.C. Gentleman, R.J. Gonçalves, T. Guy-Haim, S. Halfter, J. Hinners, R.R. Horaeb, J.A. Huggett, C.L. Johnson, M. T. Kavanaugh, A. Lara-Lopez, C. Lindemann, C. López-Abbate, M. Messié, K. O. Möller, E. Montes, F.E. Muller-Karger, A. Neeley, Y. Olaleye, A.P. Palacz, A. J. Poulton, A.E. Friederike Prowe, L. Ratnarajah, L. Rodríguez, C.N. Rodríguez-Flórez, A. Rodríquez-Santiago, C.S. Rousseaux, J.F. Saad, I. Santi, A. Soccodato, R. Stern, S. Våge, I. Varkitzi, A. Richardson, The immeasurable value of plankton to humanity, BioScience (2025) biaf049, https://doi.org/10.1093/biosci/bis640
- [82] N. Gruber, Warming up, turning sour, losing breath: ocean biogeochemistry under global change, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369 (1943) (2011) 1980–1996, https://doi.org/10.1098/rsta.2011.0003.
- [83] N. Gruber, C. Hauri, Z. Lachkar, D. Loher, T.L. Frölicher, G.-K. Plattner, Rapid progression of ocean acidification in the california current system, Science 337 (6091) (2012) 220–223, https://doi.org/10.1126/science.1216773.
- [84] S.K. Gulev, P.W. Thorne, J. Ahn, F.J. Dentener, C.M. Domingues, S. Gerland, D. Gong, D.S. Kaufman, H.C. Nnamchi, J. Quaas, J.A. Rivera, S. Sathyendranath, S.L. Smith, B. Trewin, K. von Schuckmann, R.S. Vose, in: V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (Eds.), Changing State of the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021, pp. 287–422, https://doi.org/10.1017/9781009157896.004.
- [85] Gundersen, Hege, et al. "Method development for mapping kelp using drones and satellite images: Results from the KELPMAP-Vega project." NIVA-rapport (2024). URI: (https://hdl.handle.net/11250/3146564); (https://niva.brage.unit.no/niva -xmlui/bitstream/handle/11250/3146564/7995-2024.pdf?sequence=1&isAllo wed=y) (last access 01. Juin 2025).
- [86] M.Z. Hakuba, T. Frederikse, F.W. Landerer, Earth's energy imbalance from the ocean perspective (2005–2019), e2021GL093624-e2021GL093624, Geophys. Res. Lett. 48 (16) (2021), https://doi.org/10.1029/2021GL093624.
- [87] J.M. Hall-Spencer, B.P. Harvey, Ocean acidification impacts on coastal ecosystem services due to habitat degradation, Emerg. Top. Life Sci. 3 (2) (2019) 197–206, https://doi.org/10.1042/ETLS20180117.
- [88] B.P. Harvey, K. Kon, S. Agostini, S. Wada, J.M. Hall-Spencer, Ocean acidification locks algal communities in a species-poor early successional stage, Glob. Change Biol. 27 (10) (2021) 2174–2187, https://doi.org/10.1111/gcb.15455.
- [89] K. Heck Hay, G. Hays, R. Orth, Critical evaluation of the nursery role hypothesis for seagrass meadows, Mar. Ecol. Prog. Ser. 253 (2003) 123–136, https://doi.org/ 10.3354/meps253123.
- [90] K.C. Heim, L.H. Thorne, J.D. Warren, J.S. Link, J.A. Nye, Marine ecosystem indicators are sensitive to ecosystem boundaries and spatial scale, 107522–107522, Ecol. Indic. 125 (2021), https://doi.org/10.1016/j. ecolind.2021.107522.
- [91] L. Hiwasaki, E. Luna, Syamsidik, R. Shaw, Process for integrating local and indigenous knowledge with science for hydro-meteorological disaster risk

- reduction and climate change adaptation in coastal and small island communities, Int. J. Disaster Risk Reduct. 10 (2014) 15–27, https://doi.org/10.1016/j.ijdrr.2014.07.007.
- [92] O. Hoegh-Guldberg, K. Caldeira, T. Chopin, S. Gaines, P. Haugan, M. Hemer, J. Howard, M. Konar, D. Krause-Jensen, C.E. Lovelock, E. Lindstad, M. Michelin, F.G. Nielsen, E. Northrop, R.W.R. Parker, J. Roy, T. Smith, S. Some, P. Tyedmers, The ocean as a solution to climate change: five opportunities for action, in: J. Lubchenco, P.M. Haugan (Eds.), The Blue Compendium, Springer International Publishing, 2023, pp. 619–680. https://link.springer.com/10.1007/978-3-031
- [93] Y. Huang, A.J. Fassbender, J.S. Long, S. Johannessen, M. Bernardi Bif, Partitioning the export of distinct biogenic carbon pools in the northeast Pacific Ocean using a biogeochemical profiling float, e2021GB007178-e2021GB007178, Glob. Biogeochem. Cycles 36 (2) (2022), https://doi.org/10.1029/ 2021GB007178
- [94] IOCCG, evaluation of atmospheric correction algorithms over turbid waters (International Ocean Colour Coordinating Group (IOCCG)), IOCCG, Darmouth, Canada, 2024. (https://ioccg.org/wp-content/uploads/2016/03/atm-corr-technical report for review.pdf).
- [95] IOC-UNESCO. 2024. State of the Ocean Report. Paris, IOC-UNESCO. (IOC Technical Series, 190). https://doi.org/10.25607/4wbg-d349.
- [96] IPBES, Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental Science-Policy platform on biodiversity and ecosystem services, in: S. Díaz, J. Settele, E.S. Brondízio, H. T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K.A. Brauman, S.H. M. Butchart, K.M.A. Chan, L.A. Garibaldi, K. Ichii, J. Liu, S.M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. Roy Chowdhury, Y.J. Shin, I.J. Visseren-Hamakers, K. J. Willis, C.N. Zayas (Eds.), secretariat, 56, IPBES, Bonn, Germany, 2019, https://doi.org/10.5281/zenodo.3553579.
- [97] IPBES, Global assessment report on biodiversity and ecosystem services of the intergovernmental Science-Policy platform on biodiversity and ecosystem services, Zenodo (2019) https://zenodo.org/doi/10.5281/zenodo.3831673.
- [98] IPCC. The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change, 1st ed., Cambridge University Press, 2022. (https://www.cambridge.org/core/product/identifier/9781009157964/type/book).
- [99] IPCC. Climate Change 2021 The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed., Cambridge University Press, 2023. (https://www.cambridge.org/core/product/identifier/9781009157896/type/book).
- [100] IPCC, 2021: Annex VII: Glossary [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. MassonDelmotte, C. Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022.
- [101] R.W. Izett, K. Fennel, A.C. Stoer, D.P. Nicholson, Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats, Biogeosciences 21 (1) (2024) 13–47, https://doi.org/10.5194/bg-21-13-2024.
- [102] N.C. James, A.K. Whitfield, The role of macroalgae as nursery areas for fish species within coastal seascapes, e3–e3, Camb. Prism. Coast. Futures 1 (2023), https://doi.org/10.1017/cft.2022.3.
- [103] A. Jarvis, P.M. Forster, Estimated human-induced warming from a linear temperature and atmospheric CO2 relationship, Nat. Geosci. 17 (12) (2024) 1222–1224, https://doi.org/10.1038/s41561-024-01580-5.
- [104] M. Jenkins, A. Dai, The impact of Sea-Ice loss on Arctic climate feedbacks and their role for Arctic amplification, Geophys. Res. Lett. 48 (15) (2021) e2021GL094599, https://doi.org/10.1029/2021GL094599.
- [105] M.T. Jenkins, A. Dai, Arctic climate feedbacks in ERA5 reanalysis: seasonal and spatial variations and the impact of Sea-Ice loss, Geophys. Res. Lett. 49 (16) (2022) e2022GL099263, https://doi.org/10.1029/2022GL099263.
- [106] L.-Q. Jiang, B.R. Carter, R.A. Feely, S.K. Lauvset, A. Olsen, Surface ocean ph and buffer capacity: past, present and future, 18624–18624, Sci. Rep. 9 (1) (2019), https://doi.org/10.1038/s41598-019-55039-4.
- [107] D. Johnson, A. Benn, M.A. Ferreira, Measuring success: indicators for the regional seas, conventions and action plans, UNEP Reg. Seas. Rep. Stud. (194) (2014). DEP/1847/NA. ISBN: 978-92-807-3421-8, UNEP, Nairobi, Kenya.
- [108] L.W. Juranek, A.E. White, M. Dugenne, F. Henderikx Freitas, S. Dutkiewicz, F. Ribalet, S. Ferrón, E.V. Armbrust, D.M. Karl, The importance of the phytoplankton "Middle Class" to ocean net community production, e2020GB006702-e2020GB006702, Glob. Biogeochem. Cycles 34 (12) (2020), https://doi.org/10.1029/2020GB006702.
- [109] C. Justrabo, Restor. Tradit. Mar. Food Syst. Clim. Adapt. Strategy Coast. First Nations (2023). (https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/2 4/items/1.0435577).
- [110] B. Karlson, et al., Microscopic and molecular methods for quantitative phytoplankton analysis, Unesco, 2010. (https://repository.oceanbestpractices.org/handle/11329/303).
- [111] H. Kashiwase, K.I. Ohshima, S. Nihashi, H. Eicken, Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone, 8170–8170, Sci. Rep. 7 (1) (2017), https://doi.org/10.1038/s41598-017-08467-z.

[112] R.F. Keeling, A. Körtzinger, N. Gruber, Ocean deoxygenation in a warming world, Annu. Rev. Mar. Sci. 2 (1) (2010) 199–229, https://doi.org/10.1146/annurev. marine 010908 163855

- [113] A. Keen, E. Blockley, D.A. Bailey, J. Boldingh Debernard, M. Bushuk, S. Delhaye, D. Docquier, D. Feltham, F. Massonnet, S. O'Farrell, L. Ponsoni, J.M. Rodriguez, D. Schroeder, N. Swart, T. Toyoda, H. Tsujino, M. Vancoppenolle, K. Wyser, An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models, Cryosphere 15 (2) (2021) 951–982, https://doi.org/10.5194/tc-15-951-2021.
- [114] I. Keith, W. Bensted-Smith, S. Banks, J. Suarez, B. Riegl, Caulerpa chemnitzia in Darwin threatening galapagos coral reefs, e0272581–e0272581, PLOS ONE 17 (8) (2022), https://doi.org/10.1371/journal.pone.0272581.
- [115] J. Key, X. Wang, Y. Liu, R. Dworak, A. Letterly, The AVHRR polar pathfinder climate data records, 167–167, Remote Sens. 8 (3) (2016), https://doi.org/ 10.3390/rs8030167.
- [116] D. Krause-Jensen, C.M. Duarte, Substantial role of macroalgae in marine carbon sequestration, Nat. Geosci. 9 (10) (2016) 737–742, https://doi.org/10.1038/ ngeo2790
- [117] K.M. Krumhardt, N.S. Lovenduski, M.C. Long, J.Y. Luo, K. Lindsay, S. Yeager, C. Harrison, Potential predictability of net primary production in the ocean, e2020GB006531-e2020GB006531, Glob. Biogeochem. Cycles 34 (6) (2020), https://doi.org/10.1029/2020GB006531.
- [118] D.J. Kushner, A. Rassweiler, J.P. McLaughlin, K.D. Lafferty, A multi-decade time series of kelp forest community structure at the california channel islands: ecological archives E094-245, 2655–2655, Ecology 94 (11) (2013), https://doi. org/10.1890/13-0562R.1.
- [119] Laffoley, D., & Baxter, J.M. (2019). Ocean deoxygenation: Everyone's problem. Causes, impacts, consequences and solutions. IUCN, International Union for Conservation of Nature. (https://portals.iucn.org/library/node/48892).
- [120] Langdon, C. (2010). Determination of dissolved oxygen in seawater by Winkler titration using the amperometric technique, The Go-SHIP Repeat Hydrography Manual: A collection of expert reports and guidelines, IOCCP Report No. 14, ICPO Publication Services No. 134, Version 1, (https://repository.oceanbestpractices.org/bitstream/handle/11329/380/Langdon_Amperometric_oxygen.pdf?sequen ce=1&isAllowed=y) (last access 29 May 2025).
- [121] D. Lannuzel, L. Tedesco, M. Van Leeuwe, K. Campbell, H. Flores, B. Delille, L. Miller, J. Stefels, P. Assmy, J. Bowman, K. Brown, G. Castellani, M. Chierici, O. Crabeck, E. Damm, B. Else, A. Fransson, F. Fripiat, N.-X. Geilfus, P. Wongpan, The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems, Nat. Clim. Change 10 (11) (2020) 983–992, https://doi.org/10.1038/s41558-020-00940-4.
- [122] S.K. Lauvset, N. Lange, T. Tanhua, H.C. Bittig, A. Olsen, A. Kozyr, M. Álvarez, K. Azetsu-Scott, P.J. Brown, B.R. Carter, L. Cotrim Da Cunha, M. Hoppema, M. P. Humphreys, M. Ishii, E. Jeansson, A. Murata, J.D. Müller, F.F. Pérez, C. Schirnick, R.M. Key, The annual update GLODAPv2.2023: the global interior ocean biogeochemical data product, Earth Syst. Sci. Data 16 (4) (2024) 2047–2072. https://doi.org/10.5194/essd-16-2047-2024.
- [123] T. Lavergne, E. Down, A climate data record of year-round global sea-ice drift from the EUMETSAT ocean and sea ice satellite application facility (OSI SAF), Earth Syst. Sci. Data 15 (12) (2023) 5807–5834, https://doi.org/10.5194/essd-15-5807-2023.
- [124] T.D. O'Brien, L. Lorenzoni, K. Isensee, L. Valdés (Eds.), What are marine ecological time series telling us about the ocean? A status report. Ioc-unesco, IOC Tech. Ser. 129 (2017) 297. (https://core.ac.uk/download/pdf/95151176.pdf). last access 29 May 2025.
- [125] T. Lavergne, S. Kern, S. Aaboe, L. Derby, G. Dybkjaer, G. Garric, P. Heil, S. Hendricks, J. Holfort, S. Howell, J. Key, J.L. Lieser, T. Maksym, W. Maslowski, W. Meier, J. Muñoz-Sabater, J. Nicolas, B. Özsoy, B. Rabe, X. Zhao, A new structure for the sea ice essential climate variables of the global climate observing system, Bull. Am. Meteorol. Soc. 103 (6) (2022) E1502–E1521, https://doi.org/10.1175/BAMS-D-21-0227.1.
- [126] T. Lavergne, A.M. Sørensen, S. Kern, R. Tonboe, D. Notz, S. Aaboe, L. Bell, G. Dybkjær, S. Eastwood, C. Gabarro, G. Heygster, M.A. Killie, M. Brandt Kreiner, J. Lavelle, R. Saldo, S. Sandven, L.T. Pedersen, Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, Cryosphere 13 (1) (2019) 49–78, https://doi.org/10.5194/tc-13-49-2019.
- [127] E.A. Laws, Photosynthetic quotients, new production and net community production in the open ocean, Deep Sea Res. Part A. Oceanogr. Res. Pap. 38 (1) (1991) 143–167, https://doi.org/10.1016/0198-0149(91)90059-0.
- [128] J.S. Lefcheck, B.B. Hughes, A.J. Johnson, B.W. Pfirrmann, D.B. Rasher, A. R. Smyth, B.L. Williams, M.W. Beck, R.J. Orth, Are coastal habitats important nurseries? A meta-analysis, e12645–e12645, Conserv. Lett. 12 (4) (2019), https://doi.org/10.1111/conl.12645.
- [129] K. Leonard, P.L. Buttigieg, M. Hudson, K. Paul, J. Pearlman, S.K. Juniper, Two-eyed seeing: embracing the power of indigenous knowledge for a healthy and sustainable ocean, e3001876–e3001876, PLOS Biol. 20 (10) (2022), https://doi.org/10.1371/journal.pbio.3001876.
- [130] S. Levitus, J. Antonov, T. Boyer, Warming of the world ocean, 1955–2003, 2004GL021592-2004GL021592, Geophys. Res. Lett. 32 (2) (2005), https://doi. org/10.1029/2004GL021592.
- [131] E. Lindstrom, J. Gunn, A. Fischer, A. McCurdy, L.K. Glover, T.T. Members, A framework for ocean observing, Eur. Space Agency (2012). (http://www.oceanobs09.net/foo).
- [132] L. Lizcano-Sandoval, C. Anastasiou, E. Montes, G. Raulerson, E. Sherwood, F. E. Muller-Karger, Seagrass distribution, areal cover, and changes (1990–2021) in coastal waters off West-Central florida, USA, 108134–108134, Estuar. Coast. Shelf Sci. 279 (2022), https://doi.org/10.1016/j.ecss.2022.108134.

[133] D. Ma, L. Gregor, N. Gruber, Four decades of trends and drivers of global surface ocean acidification, e2023GB007765-e2023GB007765, Glob. Biogeochem. Cycles 37 (7) (2023), https://doi.org/10.1029/2023GB007765.

- [134] A.K. Magnan, M. Oppenheimer, M. Garschagen, M.K. Buchanan, V.K.E. Duvat, D. L. Forbes, J.D. Ford, E. Lambert, J. Petzold, F.G. Renaud, Z. Sebesvari, R.S.W. Van De Wal, J. Hinkel, H.-O. Pörtner, Sea level rise risks and societal adaptation benefits in low-lying coastal areas, 10677–10677, Sci. Rep. 12 (1) (2022), https://doi.org/10.1038/s41598-022-14303-w.
- [135] C. Mantovani, J. Pearlman, A. Rubio, R. Przeslawski, M. Bushnell, P. Simpson, L. Corgnati, E. Alvarez, S. Cosoli, H. Roarty, An ocean practices maturity model: from good to best practices, Front. Mar. Sci. 11 (2024), https://doi.org/10.3389/ fmars.2024.1415374.
- [136] J. Marcot, Marine plankton Diatoms as indicators of ocean ciculation in Bay of Bengal, Bot. Mar. 19 (1976) (1976) 189–194.
- [137] F. Marti, A. Blazquez, B. Meyssignac, M. Ablain, A. Barnoud, R. Fraudeau, R. Jugier, J. Chenal, G. Larnicol, J. Pfeffer, M. Restano, J. Benveniste, Monitoring the ocean heat content change and the earth energy imbalance from space altimetry and space gravimetry, Earth Syst. Sci. Data 14 (2022) 229–249, https:// doi.org/10.5194/essd-14-229-2022.
- [138] M.L. Martínez, G. Vázquez, O. Pérez-Maqueo, R. Silva, P. Moreno-Casasola, G. Mendoza-González, J. López-Portillo, I. MacGregor-Fors, G. Heckel, J. R. Hernández-Santana, J.G. García-Franco, G. Castillo-Campos, A.L. Lara-Domínguez, A systemic view of potential environmental impacts of ocean energy production, 111332–111332, Renew. Sustain. Energy Rev. 149 (2021), https://doi.org/10.1016/j.rser.2021.111332.
- [139] M.J. McCarthy, K.E. Colna, M.M. El-Mezayen, A.E. Laureano-Rosario, P. Méndez-Lázaro, D.B. Otis, G. Toro-Farmer, M. Vega-Rodriguez, F.E. Muller-Karger, Satellite remote sensing for coastal management: a review of successful applications, Environ. Manag. 60 (2) (2017) 323–339, https://doi.org/10.1007/ s00267-017-0880-x.
- [140] J. McHenry, D.K. Okamoto, K. Filbee-Dexter, K. Krumhansl, K.A. MacGregor, M. Hessing-Lewis, B. Timmer, P. Archambault, C.M. Attridge, D. Cottier, M. Costa, M. Csordas, L.E. Johnson, J. Lessard, A. Mora-Soto, A. Metaxas, C. Neufeld, O. Pontier, L. Reshitnyk, J.K. Baum, A Bluepr. Natl. Assess. blue Carbon Capacit. kelp For. Appl. Can. 'S. Coast. (2024), https://doi.org/10.1101/ 2024.04.05.586816.
- [141] L.J. McKenzie, L.M. Nordlund, B.L. Jones, L.C. Cullen-Unsworth, C. Roelfsema, R. K.F. Unsworth, The global distribution of seagrass meadows, 074041–074041, Environ. Res. Lett. 15 (7) (2020), https://doi.org/10.1088/1748-9326/ab7d06.
- [142] M.A. McManus, C.B. Woodson, Plankton distribution and ocean dispersal, J. Exp. Biol. 215 (6) (2012) 1008–1016, https://doi.org/10.1242/jeb.059014.
- [143] W.N. Meier, J.S. Stewart, A. Windnagel, F.M. Fetterer, Comparison of hemispheric and regional sea ice extent and area trends from NOAA and NASA passive Microwave-Derived climate records, 619–619, Remote Sens. 14 (3) (2022), https://doi.org/10.3390/rs14030619.
- [144] C. Melsheimer, G. Spreen, Y. Ye, M. Shokr, First results of antarctic sea ice type retrieval from active and passive microwave remote sensing data, Cryosphere 17 (1) (2023) 105–126, https://doi.org/10.5194/tc-17-105-2023.
- [145] A. Minière, K. Von Schuckmann, J.-B. Sallée, L. Vogt, Robust acceleration of earth system heating observed over the past six decades, 22975–22975, Sci. Rep. 13 (1) (2023), https://doi.org/10.1038/s41598-023-49353-1.
- [146] P.J. Minnett, A. Alvera-Azcárate, T.M. Chin, G.K. Corlett, C.L. Gentemann, I. Karagali, X. Li, A. Marsouin, S. Marullo, E. Maturi, R. Santoleri, S. Saux Picart, M. Steele, J. Vazquez-Cuervo, Half a century of satellite remote sensing of seasurface temperature, 111366–111366, Remote Sens. Environ. 233 (2019), https://doi.org/10.1016/j.rse.2019.111366.
- [147] G. Mugellini, J.-P. Villeneuve, M. Heide, Monitoring sustainable development goals and the quest for high-quality indicators: Learning from a practical evaluation of data on corruption, Sustain. Dev. 29 (6) (2021) 1257–1275, https:// doi.org/10.1002/sd.2223.
- [148] F.E. Muller-Karger, R. Varela, R. Thunell, R. Luerssen, C. Hu, J.J. Walsh, The importance of continental margins in the global carbon cycle, 2004GL021346-2004GL021346, Geophys. Res. Lett. 32 (1) (2005), https://doi.org/10.1029/ 2004GL021346.
- [149] F. Muller-Karger, R. Varela, R. Thunell, et al., Annual cycle of primary production in the Cariaco Basin: Response to upwelling and implications for vertical export, J. Geophys. Res. 106 (C3) (2001) 4527–4542, https://doi.org/10.1029/ 1999.IC000291.
- [150] D. Najjar, A. Normandin, Open ocean, Ocean Cult. Rep. (2021), https://doi.org/ 10.21428/a680be9a.207c346e/e79271f1.
- [151] L.M. Navarro, N. Fernández, C. Guerra, R. Guralnick, W.D. Kissling, M. C. Londoño, F. Muller-Karger, E. Turak, P. Balvanera, M.J. Costello, A. Delavaud, G. El Serafy, S. Ferrier, I. Geijzendorffer, G.N. Geller, W. Jetz, E.-S. Kim, H. Kim, C.S. Martin, H.M. Pereira, Monitoring biodiversity change through effective global coordination, Curr. Opin. Environ. Sustain. 29 (2017) 158–169, https://doi.org/10.1016/j.cosust.2018.02.005.
- [152] P. Nielsen-Englyst, J.L. Høyer, W.M. Kolbe, G. Dybkjær, T. Lavergne, R.T. Tonboe, S. Skarpalezos, I. Karagali, A combined sea and sea-ice surface temperature climate dataset of the Arctic, 1982–2021, 113331–113331, Remote Sens. Environ. 284 (2023), https://doi.org/10.1016/j.rse.2022.113331.
- [153] L.M. Nordlund, E.W. Koch, E.B. Barbier, J.C. Creed, Seagrass ecosystem services and their variability across genera and geographical regions, e0163091–e0163091, PLOS ONE 11 (10) (2016), https://doi.org/10.1371/ journal.pone.0163091.

- [154] L.M. Nordlund, R.K.F. Unsworth, M. Gullström, L.C. Cullen-Unsworth, Global significance of seagrass fishery activity, Fish Fish 19 (3) (2018) 399–412, https://doi.org/10.1111/faf.12259.
- [155] OceanObs2019, 2019: OceanObs19 Conference Statement, (https://oceanobs19.net/sites/default/files/2023-03/OO19-Conference-Statement_online.pdf) (last access 17. Sept. 2024).
- [156] E.C.J. Oliver, V. Lago, A.J. Hobday, N.J. Holbrook, S.D. Ling, C.N. Mundy, Marine heatwaves off eastern Tasmania: trends, interannual variability, and predictability, Prog. Oceanogr. 161 (2018) 116–130, https://doi.org/10.1016/j. pocean.2018.02.007.
- [157] M. Oppenheimer, B.C. Glavovic, J. Hinkel, R. van de Wal, A.K. Magnan, A. Abd-Elgawad, R. Cai, M. Cifuentes Jara, R.M. DeConto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B. Meyssignac, Z. Sebesvari, Sea level rise and implications for Low-Lying islands, coasts and communities, in: H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2019, pp. 321–445. (https://doi.org/10.1017/9781009157964.006)
- [158] J.C. Orr, V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.-K. Plattner, K. B. Rodgers, A. Yool, Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature 437 (7059) (2005) 681–686, https://doi.org/10.1038/nature04095.
- [159] Y. Ota, G.G. Singh, A.M. Cisneros-Montemayor, E. Ritts, M.J. Schneider, A. Spalding, M. Strand, W. Swartz, A. Valauri-Orton, An ocean declaration for equitable governance to guide observation, 54–54, Npj Ocean Sustain. 3 (1) (2024), https://doi.org/10.1038/s44183-024-00093-3.
- [160] N.A. Pelland, C.C. Eriksen, S.R. Emerson, M.F. Cronin, Seaglider surveys at ocean station papa: oxygen kinematics and Upper-Ocean metabolism, J. Geophys. Res. Oceans 123 (9) (2018) 6408–6427, https://doi.org/10.1029/2018JC014091.
- [161] H.M. Pereira, S. Ferrier, M. Walters, G.N. Geller, R.H.G. Jongman, R.J. Scholes, M. W. Bruford, N. Brummitt, S.H.M. Butchart, A.C. Cardoso, N.C. Coops, E. Dulloo, D. P. Faith, J. Freyhof, R.D. Gregory, C. Heip, R. Höft, G. Hurtt, W. Jetz, M. Wegmann, Essential biodiversity variables, Science 339 (6117) (2013) 277–278, https://doi.org/10.1126/science.1229931.
- [162] A. Pérez-Matus, F. Micheli, B. Konar, N. Shears, N.H.N. Low, D.K. Okamoto, T. Wernberg, K.A. Krumhansl, S.D. Ling, M. Kingsford, T. Navarrete-Fernandez, C. S. Ruz, J.E.K. Byrnes, Kelp forests as nursery and foundational habitat for reef fishes, e70007–e70007, Ecology 106 (2) (2025), https://doi.org/10.1002/ ecv.70007.
- [163] A. Pessarrodona, J. Assis, K. Filbee-Dexter, M.T. Burrows, J.-P. Gattuso, C. M. Duarte, D. Krause-Jensen, P.J. Moore, D.A. Smale, T. Wernberg, Global seaweed productivity, eabn2465–eabn2465, Sci. Adv. 8 (37) (2022), https://doi.org/10.1126/sciady.abn2465.
- [164] T. Platt, S. Sathyendranath, C. Fuentes-Yaco, Biological oceanography and fisheries management: perspective after 10 years, ICES J. Mar. Sci. 64 (5) (2007) 863–869, https://doi.org/10.1093/icesjms/fsm072.
- [165] T. Platt, S. Sathyendranath, Oceanic primary production: estimation by remote sensing at local and regional scales, Science 241 (4873) (1988) 1613–1620, https://doi.org/10.1126/science.241.4873.1613.
- [166] T. Platt, S. Sathyendranath, H. Bouman, C. Brockmann, D. McKee, Special issue on remote sensing of ocean color: theory and applications, 3445–3445, Sensors 20 (12) (2020), https://doi.org/10.3390/s20123445.
- [167] D. Poursanidis, K. Mylonakis, S. Christofilakos, A. Barnias, Mind the gap in data poor natura 2000 sites and how to tackle them using earth observation and scientific diving surveys, 114595–114595, Mar. Pollut. Bull. 188 (2023), https:// doi.org/10.1016/j.marpolbul.2023.114595.
- [168] I.G. Priede, F.E. Muller-Karger, T. Niedzielski, A.V. Gebruk, D.O.B. Jones, A. Colaço, Drivers of biomass and biodiversity of Non-Chemosynthetic benthic fauna of the Mid-Atlantic ridge in the north atlantic, 866654–866654, Front. Mar. Sci. 9 (2022), https://doi.org/10.3389/fmars.2022.866654.
- [169] C.A. Radford, S.P. Collins, P.L. Munday, D. Parsons, Ocean acidification effects on fish hearing, 0202754–20202754, Proc. R. Soc. B Biol. Sci. 288 (1946) (2021) 2, https://doi.org/10.1098/rspb.2020.2754.
- [170] J. Raymond-Yakoubian, B. Raymond-Yakoubian, C. Moncrieff, The incorporation of traditional knowledge into Alaska federal fisheries management, Mar. Policy 78 (2017) 132–142, https://doi.org/10.1016/j.marpol.2016.12.024.
- [171] A. Regaudie-de-Gioux, S. Lasternas, S. Agust

 A, C.M. Duarte, Comparing marine primary production estimates through different methods and development of conversion equations, Front. Mar. Sci. 1 (2014), https://doi.org/10.3389/frage-2014/00101
- [172] V. Reyes-García, D. García-del-Amo, S. Álvarez-Fernández, P. Benyei, L. Calvet-Mir, A.B. Junqueira, V. Labeyrie, X. Li, S. Miñarro, V. Porcher, A. Porcuna-Ferrer, A. Schlingmann, C. Schunko, R. Soleymani, A. Tofighi-Niaki, M. Abazeri, E.M. A.N. Attoh, A. Ayanlade, J.V.D.C. Ávila, I.S. Zakari, Indigenous peoples and local communities report ongoing and widespread climate change impacts on local social-ecological systems, 29–29, Commun. Earth Environ. 5 (1) (2024), https://doi.org/10.1038/s43247-023-01164-y.
- [173] K. Richardson, W. Steffen, W. Lucht, J. Bendtsen, S.E. Cornell, J.F. Donges, M. Drüke, I. Fetzer, G. Bala, W. Von Bloh, G. Feulner, S. Fiedler, D. Gerten, T. Gleeson, M. Hofmann, W. Huiskamp, M. Kummu, C. Mohan, D. Nogués-Bravo, J. Rockström, Earth beyond six of nine planetary boundaries, eadh2458–eadh2458, Sci. Adv. 9 (37) (2023), https://doi.org/10.1126/sciadv.adh2458.

[174] A. Riihelä, R.M. Bright, K. Anttila, Recent strengthening of snow and ice albedo feedback driven by antarctic sea-ice loss, Nat. Geosci. 14 (11) (2021) 832–836, https://doi.org/10.1038/s41561-021-00841-x.

- [175] A. Riihelä, E. Jääskeläinen, V. Kallio-Myers, Four decades of global surface albedo estimates in the third edition of the CM SAF cloud, albedo and surface radiation (CLARA) climate data record, Earth Syst. Sci. Data 16 (2) (2024) 1007–1028, https://doi.org/10.5194/essd-16-1007-2024.
- [176] S.C. Riser, H.J. Freeland, D. Roemmich, S. Wijffels, A. Troisi, M. Belbéoch, D. Gilbert, J. Xu, S. Pouliquen, A. Thresher, P.-Y. Le Traon, G. Maze, B. Klein, M. Ravichandran, F. Grant, P.-M. Poulain, T. Suga, B. Lim, A. Sterl, S.R. Jayne, Fifteen years of ocean observations with the global argo array, Nat. Clim. Change 6 (2) (2016) 145–153, https://doi.org/10.1038/nclimate2872.
- [177] L.A. Roach, J. Dörr, C.R. Holmes, F. Massonnet, E.W. Blockley, D. Notz, T. Rackow, M.N. Raphael, S.P. O'Farrell, D.A. Bailey, C.M. Bitz, Antarctic sea ice area in CMIP6, e2019GL086729-e2019GL086729, Geophys. Res. Lett. 47 (9) (2020), https://doi.org/10.1029/2019GL086729.
- [178] G. Roca, T. Alcoverro, D. Krause-Jensen, T.J.S. Balsby, M.M. Van Katwijk, N. Marbà, R. Santos, R. Arthur, O. Mascaró, Y. Fernández-Torquemada, M. Pérez, C.M. Duarte, J. Romero, Response of seagrass indicators to shifts in environmental stressors: a global review and management synthesis, Ecol. Indic. 63 (2016) 310–323, https://doi.org/10.1016/j.ecolind.2015.12.007.
- [179] J. Rockström, J.F. Donges, I. Fetzer, M.A. Martin, L. Wang-Erlandsson, K. Richardson, Planetary boundaries guide humanity's future on earth, Nat. Rev. Earth Environ. 5 (11) (2024) 773–788, https://doi.org/10.1038/s43017-024-00527.
- [180] J. Rockström, W. Steffen, A. Noone, A. Persson, F.S. Chapin, I.I.I. Lambin, E. Lenton, T.M. Scheffer, M. Folke, C. Schellnhuber, H. Nykvist, B. De Wit, C. A. Hughes, T. van der Leeuw, S. Rodhe, H. Sörlin, S. Snyder, P.K. Costanza, R. Svedin, U. Foley, J, Planetary boundaries: exploring the safe operating space for humanity, Ecol. Soc. (2009). (http://www.ecologyandsociety.org/vol14/iss2/ art32/).
- [181] C. Roelfsema, E.M. Kovacs, M.I. Saunders, S. Phinn, M. Lyons, P. Maxwell, Challenges of remote sensing for quantifying changes in large complex seagrass environments, Estuar. Coast. Shelf Sci. 133 (2013) 161–171, https://doi.org/ 10.1016/j.ecss.2013.08.026.
- [182] L. Rogers-Bennett, R. Klamt, C.A. Catton, Survivors of climate driven abalone mass mortality exhibit declines in health and reproduction following kelp forest collapse, 725134–725134, Front. Mar. Sci. 8 (2021), https://doi.org/10.3389/ fmars.2021.725134.
- [183] K.C. Rose, E.M. Ferrer, S.R. Carpenter, S.A. Crowe, S.C. Donelan, V.C. Garçon, M. Grégoire, S.F. Jane, P.R. Leavitt, L.A. Levin, A. Oschlies, D. Breitburg, Aquatic deoxygenation as a planetary boundary and key regulator of earth system stability, Nat. Ecol. Evol. 8 (8) (2024) 1400–1406, https://doi.org/10.1038/s41559-024-02448-y.
- [184] P. Rostosky, G. Spreen, S.L. Farrell, T. Frost, G. Heygster, C. Melsheimer, Snow depth retrieval on Arctic sea ice from passive microwave Radiometers—Improvements and extensions to multiyear ice using lower frequencies, J. Geophys. Res. Oceans 123 (10) (2018) 7120–7138, https://doi.org/10.1029/2018JC014028.
- [185] V. Ryabinin, J. Barbière, P. Haugan, G. Kullenberg, N. Smith, C. McLean, A. Troisi, A. Fischer, S. Aricò, T. Aarup, P. Pissierssens, M. Visbeck, H. O. Enevoldsen, J. Rigaud, The UN decade of ocean science for sustainable development, Front. Mar. Sci. 6 (2019), https://doi.org/10.3389/ fmars.2019.00470.
- [186] T.J. Ryan-Keogh, S.J. Thomalla, N. Chang, T. Moalusi, A new global oceanic multi-model net primary productivity data product, Earth Syst. Sci. Data 15 (11) (2023) 4829–4848, https://doi.org/10.5194/essd-15-4829-2023.
- (2023) 4829–4848, https://doi.org/10.5194/essd-15-4829-2023.
 [187] J.H. Ryther, Photosynthesis and fish production in the sea: the production of organic matter and its conversion to higher forms of life vary throughout the world ocean, Science 166 (3901) (1969) 72–76, https://doi.org/10.1126/science.166.3901.72.
- [188] E. Sala, J. Mayorga, D. Bradley, R.B. Cabral, T.B. Atwood, A. Auber, W. Cheung, C. Costello, F. Ferretti, A.M. Friedlander, S.D. Gaines, C. Garilao, W. Goodell, B. S. Halpern, A. Hinson, K. Kaschner, K. Kesner-Reyes, F. Leprieur, J. McGowan, J. Lubchenco, Protecting the global ocean for biodiversity, food and climate, Nature 592 (7854) (2021) 397–402, https://doi.org/10.1038/s41586-021-03371-z.
- [189] H. Sallila, S.L. Farrell, J. McCurry, E. Rinne, Assessment of contemporary satellite sea ice thickness products for Arctic sea ice, Cryosphere 13 (4) (2019) 1187–1213, https://doi.org/10.5194/tc-13-1187-2019.
- [190] S. Sandven, G. Spreen, G. Heygster, F. Girard-Ardhuin, S.L. Farrell, W. Dierking, R.A. Allard, Sea ice remote Sensing—Recent developments in methods and climate data sets, Surv. Geophys. 44 (5) (2023) 1653–1689, https://doi.org/ 10.1007/s10712-023-09781-0.
- [191] C.F. Santos, T. Agardy, C. Brooks, K.M. Gjerde, C. Payne, L.M. Wedding, J. C. Xavier, L.B. Crowder, Taking climate-smart governance to the high seas, Science 384 (6697) (2024) 734–737, https://doi.org/10.1126/science.adp4379.
- [192] V. Savo, D. Lepofsky, J.P. Benner, K.E. Kohfeld, J. Bailey, K. Lertzman, Observations of climate change among subsistence-oriented communities around the world, Nat. Clim. Change 6 (5) (2016) 462–473, https://doi.org/10.1038/ nclimate/958
- [193] S. Schmidtko, L. Stramma, M. Visbeck, Decline in global oceanic oxygen content during the past five decades, Nature 542 (7641) (2017) 335–339, https://doi.org/ 10.1038/nature21399.

- [194] X. Shen, C.-Q. Ke, H. Li, Snow depth product over antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers, Earth Syst. Sci. Data 14 (2) (2022) 619–636, https://doi.org/10.5194/essd-14-619-2022.
- [195] M. Sievers, C.J. Brown, V.J.D. Tulloch, R.M. Pearson, J.A. Haig, M.P. Turschwell, R.M. Connolly, The role of vegetated coastal wetlands for marine megafauna conservation, Trends Ecol. Evol. 34 (9) (2019) 807–817, https://doi.org/ 10.1016/j.tree.2019.04.004.
- [196] SIMIP Community, Arctic sea ice in CMIP6, Geophys. Res. Lett. 47 (2020) e2019GL086749, https://doi.org/10.1029/2019GL086749.
- [197] D.A. Smale, N.G. King, Marine macrophytes in a changing world: mechanisms underpinning responses and resilience to environmental stress – an introduction to a virtual issue, N. Phytol. 244 (5) (2024) 1675–1677, https://doi.org/10.1111/ pph.20215.
- [198] S. Speich, T. Lee, F. Muller-Karger, L. Lorenzoni, A. Pascual, D. Jin, E. Delory, G. Reverdin, J. Siddorn, M.R. Lewis, N. Marba, P.L. Buttigieg, S. Chiba, J. Manley, A.T. Kabo-Bah, K. Desai, A. Ackerman, Editorial: Oceanobs'19: An Ocean of Opportunity, Front. Mar. Sci. 6 (2019), https://doi.org/10.3389/ fmars 2019 00570
- [199] W. Steffen, K. Richardson, J. Rockström, S.E. Cornell, I. Fetzer, E.M. Bennett, R. Biggs, S.R. Carpenter, W. De Vries, C.A. De Wit, C. Folke, D. Gerten, J. Heinke, G.M. Mace, L.M. Persson, V. Ramanathan, B. Reyers, S. Sörlin, Planetary boundaries: guiding human development on a changing planet, 1259855–1259855, Science 347 (6223) (2015), https://doi.org/10.1126/ science.1259855.
- [200] R.S. Steneck, A. Leland, D.C. McNaught, J. Vavrinec, Ecosystem flips, locks, and feedbacks: the lasting effects of fisheries on Maine's kelp forest ecosystem, Bull. Mar. Sci. 89 (1) (2013) 31–55, https://doi.org/10.5343/bms.2011.1148.
- [201] A. Storto, C. Yang, Acceleration of the ocean warming from 1961 to 2022 unveiled by large-ensemble reanalyses, 545–545, Nat. Commun. 15 (1) (2024), https://doi.org/10.1038/s41467-024-44749-7.
- [202] L. Stramma, G.C. Johnson, J. Sprintall, V. Mohrholz, Expanding Oxygen-Minimum zones in the tropical oceans, Science 320 (5876) (2008) 655–658, https://doi.org/10.1126/science.1153847.
- [203] L. Stramma, S. Schmidtko, L.A. Levin, G.C. Johnson, Ocean oxygen minima expansions and their biological impacts, Deep Sea Res. Part I Oceanogr. Res. Pap. 57 (4) (2010) 587–595, https://doi.org/10.1016/j.dsr.2010.01.005.
- [204] A. Tagliabue, L. Kwiatkowski, L. Bopp, M. Butenschön, W. Cheung, M. Lengaigne, J. Vialard, Persistent uncertainties in ocean net primary production climate change projections at regional scales raise challenges for assessing impacts on ecosystem services, 738224–738224, Front. Clim. 3 (2021), https://doi.org/10.3389/fclim.2021.738224.
- [205] T. Tanhua, S. Pouliquen, J. Hausman, K. O'Brien, P. Bricher, T. De Bruin, J.J. H. Buck, E.F. Burger, T. Carval, K.S. Casey, S. Diggs, A. Giorgetti, H. Glaves, V. Harscoat, D. Kinkade, J.H. Muelbert, A. Novellino, B. Pfeil, P.L. Pulsifer, Z. Zhao, Ocean FAIR data services, 440–440, Front. Mar. Sci. 6 (2019), https://doi.org/10.3389/fmars.2019.00440.
- [206] B. Tilbrook, E.B. Jewett, M.D. DeGrandpre, J.M. Hernandez-Ayon, R.A. Feely, D. K. Gledhill, L. Hansson, K. Isensee, M.L. Kurz, J.A. Newton, S.A. Siedlecki, F. Chai, S. Dupont, M. Graco, E. Calvo, D. Greeley, L. Kapsenberg, M. Lebrec, C. Pelejero, M. Telszewski, An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange, 337–337, Front. Mar. Sci. 6 (2019), https://doi.org/10.3389/fmars.2019.00337.
- [207] G.H. Tilstone, Y. Xie, C. Robinson, P. Serret, D.E. Raitsos, T. Powell, M. Aranguren-Gassis, E.E. Garcia-Martin, V. Kitidis, Satellite estimates of net community production indicate predominance of net autotrophy in the Atlantic Ocean, Remote Sens. Environ. 164 (2015) 254–269, https://doi.org/10.1016/j. rse.2015.03.017.
- [208] M.A. Tschudi, W.N. Meier, J.S. Stewart, An enhancement to sea ice motion and age products at The National snow and ice data center (NSIDC), Cryosphere 14 (5) (2020) 1519–1536, https://doi.org/10.5194/tc-14-1519-2020.
- [209] UN, 2023: AGREEMENT UNDER THE UNITED NATIONS CONVENTION ON THE LAW OF THE SEA ON THE CONSERVATION AND SUSTAINABLE USE OF MARINE BIOLOGICAL DIVERSITY OF AREAS BEYOND NATIONAL JURISDICTION, (https://www.un.org/bbnjagreement/sites/default/files/2024-0 8/Text%200f%20the%20Agreement%20in%20English.pdf), (Accessed 24 September 2025).
- [210] UN, 2024a: The Pact for the Future, Seventy-ninth session Agenda item 123 Strengthening of the United Nations system, Draft resolution submitted by the President of the General Assembly, A/79/L.2, (https://documents.un.org/doc/undoc/ltd/n24/252/89/pdf/n2425289.pdf) (last access: 26. Sept. 2024).
- [211] UN DESA, 2024. UN Department of Economic and Social Affairs. UN Conference on Small Island Developing States delivers new era of resilience amidst SIDS' crippling debt crisis. (https://www.un.org/en/small-island-developing-states-del ivers-new-era-of-resilience) (Accessed 1 April, 2025).
- [212] UN global compact, THE PLANKTON MANIFESTO a call for Plankton-Based solutions to address the triple planetary crisis (biodiversity, Clim. Pollut.) (2024). (https://ungc-communications-assets.s3.amazonaws.com/docs/publications/ PlanktonManifesto_MG_DIGITAL-2.pdf).
- [213] UN, 2015: The Paris Agreement, https://unfccc.int/sites/default/files/english paris_agreement.pdf.
- [214] UN, 2024b, Transforming our world: the 2030 Agenda for Sustainable Development, A/RES/70/1, https://docs.un.org/en/A/RES/70/1.
- [215] UN, The Paris Agreement, 2015. (https://unfccc.int/sites/default/files/english_paris_agreement.pdf) (last access: 16. Sept. 2024).

[216] UNEP, 2022, 15/4 Kunming-Montreal Global Biodiversity Framework, CBD/ COP/DEC/15/4, available at: (https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf) (last access: 18. Oct.2024).

- [217] UNEP. Global Resources Outlook 2024: Bend the Trend Pathways to aliveable planet as resource use spikes, International Resource Panel, Nairobi, 2024. htt ps://wedocs.unep.org/20.500.11822/44901.
- [218] UNEP-WCMC, & Short, F. T, global distribution of seagrasses [Dataset], U. Nations Environ. Program. World Conserv. Monit. Cent. (UNEPWCMC) (2005), https://doi.org/10.34892/X6R3-D211.
- [219] UNESCO, 2012: A Framework for Ocean Observing. By the Task Team for an Integrated Framework for Sustained Ocean Observing, UNESCO 2012 (revised in 2017), IOC/INF-1284 rev. 2, doi: 10.5270/OceanObs09-FOO, access: https://unesdoc.unesco.org/ark:/48223/pf0000211260) (last access: 14. Febr. 2025).
- [220] UNESCO, UNESCO policy on engaging with indigenous peoples, 201 EX/6, published by the united nations educational, scientific and cultural organization, 2018. (https://www.unesco.org/en/links). last access: 18. Oct.2024.
- [221] UNFCCC, 2024a: Matters relating to the global goal on adaptation, Draft conclusions proposed by the Chairs, FCCC/SB/2024/L.6, Bonn Climate Change Conference - June 2024, Session SBI 60, SBSTA 60, UNFCCC. Subsidiary Body for Implementation (SBI), available at: (https://unfccc.int/documents/638839) (last access: 18. Octo 2024).
- [222] UNFCCC, 2024b: Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on its fifth session, held in the United Arab Emirates from 30 November to 13 December 2023. Addendum. Part two: Action taken by the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement at its fifth session - March 2024, Conference UN Climate Change Conference - United Arab Emirates Nov/Dec 2023, Session CMA 5, Symbol FCCC/ PA/CMA/2023/16/Add.1, available at: (https://unfccc.int/documents/637073) (last access: 27.11.2024).
- [223] UNFCCC, 2022: Ocean and climate change dialogue 2022 Informal summary report by the Chair of the Subsidiary Body for Scientific and Technological Advice, https://unfccc.int/sites/default/files/resource/OceanAndClimateChan geDialogue2022 summary%20report.pdf.
- [224] United Nations Environment Programme, out of the blue: the value of seagrasses to the environment and to people (DEP/2278/NA), UNEP, Nairobi, 2020. (htt ps://www.grida.no/publications/479).
- [225] R.K.F. Unsworth, L.C. Cullen-Unsworth, B.L.H. Jones, R.J. Lilley, The planetary role of seagrass conservation, Science 377 (6606) (2022) 609–613, https://doi. org/10.1126/science.aba6923.
- [226] R.K.F. Unsworth, L.J. McKenzie, C.J. Collier, L.C. Cullen-Unsworth, C.M. Duarte, J.S. Eklöf, J.C. Jarvis, B.L. Jones, L.M. Nordlund, Global challenges for seagrass conservation, Ambio 48 (8) (2019) 801–815, https://doi.org/10.1007/s13280-018-1115-v.
- [227] R.K.F. Unsworth, L.M. Nordlund, L.C. Cullen-Unsworth, Seagrass meadows support global fisheries production, e12566–e12566, Conserv. Lett. 12 (1) (2019), https://doi.org/10.1111/conl.12566.
- [228] A. Valente, S. Sathyendranath, V. Brotas, S. Groom, M. Grant, T. Jackson, A. Chuprin, M. Taberner, R. Airs, D. Antoine, R. Arnone, W.M. Balch, K. Barker, R. Barlow, S. Bélanger, J.-F. Berthon, Ş. Beşiktepe, Y. Borsheim, A. Bracher, G. Zibordi, A compilation of global bio-optical in situ data for ocean colour satellite applications version three, Earth Syst. Sci. Data 14 (12) (2022) 5737–5770, https://doi.org/10.5194/essd-14-5737-2022.
- [229] B.K. Veettil, R.D. Ward, M.D.A.C. Lima, M. Stankovic, P.N. Hoai, N.X. Quang, Opportunities for seagrass research derived from remote sensing: a review of current methods, Ecol. Indic. 117 (2020) 106560.
- [230] K. von Schuckmann, P.-Y. Le Traon, How well can we derive global ocean indicators from argo data? Ocean Sci. 7 (2011) 783–791, https://doi.org/ 10.5194/os-7-783-2011
- [231] K. Von Schuckmann, E. Holland, P. Haugan, P. Thomson, Ocean science, data, and services for the UN 2030 sustainable development goals, 104154–104154, Mar. Policy 121 (2020), https://doi.org/10.1016/j.marpol.2020.104154.
- [232] K. Von Schuckmann, A. Minière, F. Gues, F.J. Cuesta-Valero, G. Kirchengast, S. Adusumilli, F. Straneo, M. Ablain, R.P. Allan, P.M. Barker, H. Beltrami, A. Blazquez, T. Boyer, L. Cheng, J. Church, D. Desbruyeres, H. Dolman, C. M. Domingues, A. García-García, M. Zemp, Heat stored in the earth system 1960–2020: where does the energy go? Earth Syst. Sci. Data 15 (4) (2023) 1675–1709, https://doi.org/10.5194/essd-15-1675-2023.
- [233] K. Von Schuckmann, M.D. Palmer, K.E. Trenberth, A. Cazenave, D. Chambers, N. Champollion, J. Hansen, S.A. Josey, N. Loeb, P.-P. Mathieu, B. Meyssignac, M. Wild, An imperative to monitor Earth's energy imbalance, Nat. Clim. Change 6 (2) (2016) 138–144, https://doi.org/10.1038/nclimate2876.
- [234] C.C. Wabnitz, et al., Regional-scale seagrass habitat mapping in the Wider Caribbean region using Landsat sensors: applications to conservation and ecology, Remote Sens. Environ. (2008).
- [235] J. Wang, J.A. Church, X. Zhang, J.M. Gregory, L. Zanna, X. Chen, Evaluation of the local Sea-Level budget at tide gauges since 1958, e2021GL094502e2021GL094502, Geophys. Res. Lett. 48 (20) (2021), https://doi.org/10.1029/ 2021GL094502
- [236] J. Wang, X. Fan, Traditional knowledge of Arctic indigenous peoples and the establishment of area-based management tools beyond national jurisdiction, 106604–106604, Mar. Policy 174 (2025), https://doi.org/10.1016/j. marpol.2025.106604.
- [237] Y. Wang, K. Wang, Y. Bai, D. Wu, H. Zheng, Research progress in calculating net community production of marine ecosystem by remote sensing, 1191013–1191013, Front. Mar. Sci. 10 (2023), https://doi.org/10.3389/ fmars.2023.1191013.

- [238] WCRP Global Sea Level Budget Group, Global sea-level budget 1993-present, Earth Syst. Sci. Data 10 (2018) 1551-1590, https://doi.org/10.5194/essd-10-1551-2018
- [239] B. Weeding, T.W. Trull, Hourly oxygen and total gas tension measurements at the Southern Ocean time series site reveal winter ventilation and spring net community production, J. Geophys. Res. Oceans 119 (1) (2014) 348–358, https://doi.org/10.1002/2013JC009302.
- [240] Wheeler, T., Major R., South P., Ogilvie S., Romanazzi D., Adams S. (2021). Stocktake and characterisation of New Zealand's seaweed sector: Species characteristics and Te Tiriti o Waitangi considerations, Report for Sustainable Seas National Science Challenge project Building a seaweed sector: developing a seaweed sector framework for Aotearoa New Zealand. (Project code 2.5), https://www.researchgate.net/profile/Serean-Adams/publication/378798312_Stocktake_and_characterisation_of_New_Zealand's_seaweed_sector_Species_characteristics_and_Te_Tiriti_o_Waitangi_considerations_Report_for_Sustainable_Seas_National_Science_Challenge_project_Building_a/links/65ea3538b7819b433be6e680/Stocktake-and-characterisation-of-New-Zealands-seaweed-sector-Species-characteristics-and-Te-Tiriti-o-Waitangi-considerations-Report-for-Sustainable-Seas-National-Science-Challenge-project-Building-a.pdf (last access 01. June 2025).
- [241] S. Widdicombe, K. Isensee, Y. Artioli, J.D. Gaitán-Espitia, C. Hauri, J.A. Newton, M. Wells, S. Dupont, Unifying biological field observations to detect and compare ocean acidification impacts across marine species and ecosystems: what to monitor and why, Ocean Sci. 19 (2023) 101–119, https://doi.org/10.5194/os-19-101-2023.
- [242] P.J.L.B. Williams, P.D. Quay, T.K. Westberry, M.J. Behrenfeld, The oligotrophic ocean is autotrophic, Annu. Rev. Mar. Sci. 5 (1) (2013) 535–549, https://doi.org/ 10.1146/annurev-marine-121211-172335.
- [243] M. Winder, U. Sommer, Phytoplankton response to a changing climate, Hydrobiologia 698 (1) (2012) 5–16, https://doi.org/10.1007/s10750-012-1149-2.
- [244] L.W. Winkler, Die bestimmung des in wasser gelösten sauerstoffen, Ber. der Dtsch. Chem. Ges. 21 (1888) 2843–2855.

- [245] J.-G. Winther, M. Dai, T. Rist, A.H. Hoel, Y. Li, A. Trice, K. Morrissey, M.A. Juinio-Meñez, L. Fernandes, S. Unger, F.R. Scarano, P. Halpin, S. Whitehouse, Integrated ocean management for a sustainable ocean economy, Nat. Ecol. Evol. 4 (11) (2020) 1451–1458, https://doi.org/10.1038/s41559-020-1259-6.
- [246] WMO, WMO and the 2030 agenda for sustainable development, journal of the world meteorological organization, bulletin 66 (2) (2017). (https://library.wmo.int/doc.num.php?explnum_id=3997).
- [247] WMO: State of the Global Climate 2024, WMO-No. 1368, 42 pp., ISBN 978-92-63-11368-5, https://library.wmo.int/idurl/4/69455 (last access: 18 April 2025), 2025.
- [248] WOA. The First Global Integrated Marine Assessment: World Ocean Assessment I, 1st ed., Cambridge University Press, 2017. (https://www.cambridge.org/core/ product/identifier/9781108186148/type/book).
- [249] WOA (2021). United Nations Office of Legal Affairs. The Second World Ocean Assessment: World Ocean Assessment II - Volume I & II. United Nations. https:// www.un-ilibrary.org/content/books/9789216040062.
- [250] N. Wood, P. Lavery, Monitoring seagrass ecosystem Health—The role of perception in defining health and indicators, Ecosyst. Health 6 (2) (2000) 134–148, https://doi.org/10.1046/j.1526-0992.2000.00015.x.
- [251] M.A. Young, K. Critchell, A.D. Miller, E.A. Treml, M. Sams, R. Carvalho, D. Ierodiaconou, Mapping the impacts of multiple stressors on the decline in kelps along the coast of Victoria, Australia, Divers. Distrib. 29 (1) (2023) 199–220, https://doi.org/10.1111/ddi.13654.
- [252] Y. Zeng, X. Wang, J. Liu, J. Cao, Y. Sun, S. Zhao, Z. Chen, J.K. Kim, J. Zhang, P. He, Harnessing the power of eDNA technology for macroalgal ecological studies: recent advances, challenges, and future perspectives, Algal Res. 77 (2024) 103340, https://doi.org/10.1016/j.algal.2023.103340.
- [253] L. Zhou, J. Stroeve, S. Xu, A. Petry, R. Tilling, M. Winstrup, P. Rostosky, I. R. Lawrence, G.E. Liston, A. Ridout, M. Tsamados, V. Nandan, Inter-comparison of snow depth over Arctic sea ice from reanalysis reconstructions and satellite retrieval, Cryosphere 15 (1) (2021) 345–367, https://doi.org/10.5194/tc-15-345-2021