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ABSTRACT

Objectives: This study investigated 1) epileptiform activity propagation triggered by intrahippocampal kainic acid (KA) injec-
tions, 2) whether low-frequency probing stimulation applied to the ipsilateral amygdaloid complex (AMY) would affect prop-
agation, and 3) whether distinct temporal patterns of electrical stimulation applied to the contralateral amygdaloid complex
interfere with the interhemispheric propagation pattern.

Materials and Methods: Electrical stimulation (ES) comprised a 100-us pulse of 500 pA applied to the AMY. The Probing
protocol applied a 2000-millisecond interpulse-interval (IPI) ES ipsilateral to KA injection. The Propagation protocol ES was
applied contralateral to KA injection using temporally coded ES patterns: periodic stimulation (PS, with fixed 250-millisecond IPI
or nonperiodic stimulation [NPS], power-law distributed IPIs constrained by a maximum of 4 pulses/s). Continuous local-field
electrophysiologic data were recorded from AMY and hippocampus sites in both hemispheres.

Results: Our results show that probing stimulation to the ipsilateral amygdala does not interfere with the seizure propagation
pattern; however, independent contralateral seizures were observed. Our data show that NPS treatment, but not PS, interferes
with propagation to the contralateral hemisphere even when applied before KA injection: seizure duration, energy, and total
number of seizures were significantly reduced. Seizure causality analysis between channels also shows significant differences
between PS and NPS treatments.

Conclusion: These data corroborate that KA injection seizures, even during status epilepticus, are not restricted to injection foci.
Our data show promising perspectives on designing a closed-loop solution using 0.5-Hz probing stimulation to predict seizures
and temporally coded stimulation to modulate seizure propagation.

Keywords: Closed-loop, DBS—deep brain electrical stimulation, epilepsy, neuromodulation, seizure control, seizure prediction,
seizure propagation
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SANTOS XAVIER ET AL

INTRODUCTION

Despite decades of scientific advancements, epilepsy continues
to represent a significant global health burden, affecting the lives
of patients, families, and society." Notwithstanding the high
prevalence of the disease, which affects 1% to 2% of the popula-
tion worldwide,” current first-line treatments often fail to provide
full relief of seizures and associated symptoms. Although antiepi-
leptic drugs manage to control seizures in only approximately 70%
of patients,® surgical intervention—an option primarily for refrac-
tory cases—is feasible in fewer than half of such instances.” Even in
those cases, the surgery removes brain tissue in hopes that neither
function would be severely compromised, nor is an alternate route
for seizure propagation and/or genesis eventually likely to evolve.
In contrast, the pharmacologic approach to treatment often aims
to change the state of the system, maintaining constant tonic
modulation, rather than acting at specific time windows that may
alter system dynamics, that is, interfering precisely when the sys-
tem is becoming unstable.° This traditional perspective—tar-
geting constant network activity inhibition through neurochemical
agents or surgically excising dysfunctional regions—may be the
reason there has been little advance in new therapeutic strategies
that can resolve cases that have been unsuccessful using con-
ventional available therapies.**™ Ideally, closed-loop solutions,
such as the Food and Drug Administration (FDA)-approved Neu-
roPace RNS System®®° offer a promising alternative by
approaching the disease from two key angles: 1) acquisition of
data that may be used to provide a reliable indication that network
activity is shifting toward instability (ie, seizure prediction)'®'* and
2) delivering precise, fast-acting neuromodulation to restore sta-
bility to network dynamics.'*'> Implementing this strategy, open-
loop neuromodulation techniques approved by the FDA, such as
deep brain stimulation (DBS) and vagus nerve stimulation have
consistently shown therapeutic effects in preclinical and clinical
trials'® by suppressing or attenuating seizures while also putatively
inducing plasticity and curative brain rewiring.'” Although highly
promising, the complex neurophysics underlying the interactions
between electromagnetic fields and the intricate cytoarchitectonic
structure of neural tissue still represents a major obstacle to fully
understanding the mechanisms underlying therapeutic efficacy.'®
This jeopardizes the design of more robust, efficient, and safe
neuromodulation methods.'*'%°

Further advancements in the field must prioritize mechanistic
insight over pure empiricism.”?'?* In this context, the modern
framework for brain architecture based on the role of neural syn-
chronism in long-range integration and signal processing has proved
invaluable.”*?” Neural synchronization, described as the driving
interaction between oscillatory systems**—brain structures in this
case—manifests across multiple organizational levels. It spans from
the molecular processes of coincidence detection in the synapse that
lead to neuroplasticity,” to neural network dynamics responsible for
the origin of major electrographic oscillations,”* including global
long-range brain integration that underlies both major cognitive
processes”® and fundamental circadian rhythms (eg, sleep-wake
cycle)°3% As the dysfunctional side of the same coin, aberrant
synchronism is a hallmark of many neurologic disorders.**** In epi-
lepsy, excessive neural synchronism is intricately linked to distinct
epileptic phenomena, including maladaptive plasticity underlying
epileptogenesis (and kindling),>> abnormal neuronal coupling that
contributes to hyperexcitability,®® the circuit-level mechanisms

driving seizure activity (ictogenesis).>*’ > It also plays a key role in
propagating epileptiform activity across distant brain areas.’®*?
Notably, neural synchronism mediated by a myriad of structures,
including neural hubs in subcortical regions and the corpus callosum,
has been recognized as a central mechanism of interhemispheric
generalization of primarily partial seizures.”**’

Viewing neurologic disorders as dysfunctions of neural syn-
chronism has allowed in-depth understanding of neurobiology in
addition to the proposition of novel therapeutic approaches.”? In
particular, the rationale of designing electrical stimulation
methods specifically tailored to modulate synchronization levels
across brain structures holds great promise. In 2009, our group
showed that seizures in animal models could be modulated
according to the temporal regularity of pulsatile stimulation.?
Specifically, although periodic low-frequency (4 Hz) electrical
stimulation of the basolateral amygdala precipitated convulsive
behaviors related to the recruitment of mesial temporal lobe sei-
zures, nonperiodic stimuli (with IPIs following a power-law distri-
bution) of equal average frequency (4 pulses/s) robustly delayed
the occurrence of behaviors originating from both partial and
generalized epileptiform activity. This anticonvulsant effect of
nonperiodic stimulation (a stimulus later termed NPS) was
repeatedly indicated in acute and chronic seizures,'''%144875
Mechanistic investigations indicated that long-range synchronism-
modulating effects mediated by the amygdala might have a pre-
ponderant role."****? The amygdala has been extensively
described as a neural hub of major importance not only in medi-
ating various brain functions>>>* but also in supporting epileptic
phenomena, including ictogenesis,” seizure propagation,”® status
epilepticus,”” and kindling.>®>°

In this study, we investigated the propagation pattern of
epileptiform activity triggered by focal intrahippocampal injections
of kainic acid (KA) during the status epilepticus. Moreover, we
explored two hypotheses central to the closed-loop approach to
epilepsy therapy: 1) Low-frequency (0.5 Hz), low-amplitude stim-
ulation ipsilateral to the KA injection does not significantly affect
seizure severity or propagation; this suggests that such stimulation
parameters could be used for seizure prediction without inter-
fering with seizure dynamics; and 2) temporal patterns of amyg-
dala stimulation—periodic stimulation (PS, fixed frequency) vs
temporally complex and irregular stimulation (NPS)—differentially
influence the interhemispheric long-range propagation of seizures
induced by contralateral intrahippocampal KA injection. Specif-
ically, we predicted that PS would favor the propagation of sei-
zures to the hemisphere contralateral to the onset region, whereas
NPS would impair it. The rationale follows the framework
described in previous work, in which the amygdala, as a major
brain hub for transferring activity across the brain, recruits distinct
areas according to the temporal regularity of said activity. Thus, we
have previously established that electrically stimulating the
amygdaloid complex with different temporal patterns can be used
to predict seizure occurance,'®'" facilitate seizures, and/or atten-
uate seizures'**#°925% i animal models of epilepsy. In this sense,
regular oscillation, such as those from PS, would promote the
formation of reverberant (thus ictogenic) circuits that facilitate
seizure propagation. At the same time, temporally complex, NPS
would disrupt network integration, impairing seizure generaliza-
tion. Accordingly, low-frequency/low-amplitude stimuli to the
ipsilateral amygdala should not interfere with ictogenesis or
seizure propagation, thus making it suitable for seizure prediction.
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TEMPORALLY CODED NEUROMODULATION

MATERIALS AND METHODS

Animals and Experimental Design

This work was conducted using male Wistar Hannover rats
weighing 250 g at the start of the protocols, obtained from the
Instituto de Ciéncias Bioldgicas of the Universidade Federal de
Minas Gerais. They were housed in polypropylene boxes (414
mm X 344 mm X 174 mm), with five animals per box, under a 12-
hour light-dark cycle, and provided with water and food ad libi-
tum. The experimental procedures were evaluated and approved
by the Animal Ethics Committee, under registration numbers 384/
2018 and 116/2021.

Animals were divided into two protocols: 1) testing whether
probing stimulation applied to the ipsilateral amygdaloid complex
would affect propagation—Probing protocol; and 2) whether
distinct temporal patterns of electrical stimulation applied to the
contralateral amygdaloid complex could disrupt the propagation
pattern—Propagation protocol.

The Probing protocol was designed with two groups: stimula-
tion (n = 3) and control (n = 4). In both groups, seizures were
induced with KA, but stimulation was applied only in the stimu-
lation group. The Propagation protocol also included two groups:
PS (n = 5) and NPS (n = 5). Again, seizures were induced with KA in
both groups, but different stimulation patterns were applied.

KA Injection

In both protocols (Probing and Propagation), a guide cannula,
made from a 22-gauge needle, was placed 1 mm above the CA3
region of the right ventral hippocampus for the Probing protocol
—ipsilateral to stimulation electrode (coordinates relative to the
bregma: —5.6 mm AP-antero/posterior, 4.3 mm ML-medial/lateral,
and —5.5 mm DV-dorsal/ventral)—and the left ventral hippocam-
pus for the Propagation protocol—contralateral to stimulation
electrode (coordinates relative to the bregma: —5.6 mm AP, —4.3
mm ML, and —5.5 mm DV). This guide-cannula was later used to
guide an injection cannula (exactly 1T mm longer than the guide
cannula) for KA injection (2 mg/ML—18.8 mm KA—injected at a
rate of 100 nl/min and a total volume of 200 nl) to produce a focal
model of temporal lobe epilepsy.

Stereotaxic Placement of Recording and Stimulation
Electrodes

The animals from both protocols underwent stereotaxic surgery
for the implantation of electrodes and the guide cannula. For the
procedure, the rats were anesthetized with isoflurane (1 mL/mL,
Isoforine®, Cristalia Prod. Quim. Farm. Ltd) through an inhalation
system with an induction rate set at 500 mL/min at 5% isoflurane,
and maintenance between 100 and 200 mL/min at 2% to 3%
isoflurane. The animals received local anesthesia with a 2% lido-
caine hydrochloride and epinephrine solution and were positioned
in the stereotaxic system (Stoelting Co, Wood Dale, IL). At the end
of the surgery, the animals received a subcutaneous injection of
the opioid antiinflammatory tramadol (3 mg/kg, diluted to a vol-
ume of 1 mL total) and a single dose of veterinary pentabiotics
(Zoetis®). They were then rested and monitored for >five days until
fully recovered.

The recording electrodes used in this work were developed
manually using either tungsten microwires 99.5% S-Formvar with 50
um internal diameter (California Fine Wire Co®, Grover Beach, CA -
Probing protocol) or Teflon-coated stainless steel wire (Model:
791400, A-M Systems®, Carlsborg, WA - Propagation protocol). The

Teflon-coated stainless steel wires were intertwined, producing a
twisted pair with a 0.5-mm distance between the exposed tips. This
configuration also was used for the stimulating electrode pair. The
number of recorded areas varied within each protocol because the
Probing protocol aims to determine whether an ipsilateral stimulus
interferes with seizure initiation and propagation (ie, to evaluate
whether the probing stimuli may be used for seizure prediction as
described in the literature). In contrast, the Propagation protocol
aims to determine whether contralateral stimulation may attenuate
seizure propagation to the contralateral hemisphere from the initial
ictogenic foci.

The electrode headstage was assembled as detailed elsewhere®’
using a fiberglass board with drilled stereotaxic coordinates where
the electrodes are aligned and fixed in position to accelerate sur-
gery for multisite electrode placement. Each protocol had its own
set of electrode implants: 1) The probing protocol had an
arrangement of tungsten electrodes with bilateral hippocampal
CA3 implants (AP —5.3 mm, ML +4.3 mm, DV —6.0 mm; four elec-
trodes per area separated by 100 um each) and bilateral baso-
lateral amygdala implants (AP —2.52 mm, ML +4.8 mm, DV -8.8
mm; four electrodes per area separated by 100 um each). The total
number of recorded channels was 16. The stimulus electrode was
placed in the right baso-lateral amygdala (AP —2,52 mm, ML —4,8
mm, DV —8.3 mm; twisted pair), ipsilateral to the KA injections site;
2) the Propagation protocol had an arrangement with two bilateral
hippocampal implants—dorsal CA1 (AP —2.70 mm, ML £2.0 mm,
DV —2.6 mm; a twisted pair recording electrodes) and ventral CA3
(AP —=5.6 mm, ML £4.3 mm, DV —-7.2 mm; a twisted pair recording
electrodes) and bilateral baso-lateral amygdala implants (AP —2.52
mm, ML +4.8 mm, DV —-8.8 mm; a twisted pair recording elec-
trodes). The total number of recorded channels was 12, but only
the better of each pair was used. The stimulus electrode was
placed in the right baso-lateral amygdala (AP —2.52 mm, ML —4.8
mm, DV —8.3 mm; twisted pair 0.5 mm apart), contralateral to the
KA injection site. Figure 1b shows the recording sites.

Intraencephalic Local Field Potential Recordings and
Amygdaloid DBS

The recordings were conducted using the headstage built with
the Intan RHD2000 chipset and a surface mount device/flexible
printed circuit female connector for both protocols: 16 channels
for the Probing protocol and 12 channels for the Propagation
protocol. The sampling rate was set at 10 kHz (16 bits successive-
approximation analog-to-digital converter), and an event channel
was added to provide a synchronization signal between recording
and stimulation.

Stimulation in the amygdala was a 100-ps pulse of 500 pA (DIGI-
TIMER® Model: DS2A-Mk) at programmed interpulse intervals
depending on the protocol. Both groups stimulated the amygdaloid
complex; Probing stimulated the ipsilateral amygdala to determine
whether it interferes with seizure initiation and propagation (ie, to
evaluate whether the probing stimuli may be used for seizure
prediction as described in the literature). In contrast, the Propagation
protocol stimulated the contralateral amygdaloid complex (AMY) to
assess whether contralateral stimulation may attenuate seizure
propagation to the contralateral hemisphere from the initial icto-
genic foci. The pulse was triggered by a transistor-transistor-logic
output of an Atmel SAM3X8E ARM microprocessor Cortex-M3, pro-
grammed on the ARDUINO DUE platform. The pattern of stimulation
used in the Probing protocol was set at a fixed 2-second interpulse
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Figure 1. Design of the experimental protocols. a. Probing protocol. Experiment timeline (upper row), and diagram showing electrode placements and the
positions of KA injections (bottom). b. Propagation protocol. Experiment timeline (upper row), and diagram showing electrode placements and the positions of KA
injections (bottom). EEG, electroencephalogram. [Color figure can be viewed at www.neuromodulationjournal.org]

interval (IPl = 2000 ms—0.5 Hz or no-stimuli group). The Propagation
stimulation pattern was either a PS of 4 Hz (PS—250 ms IPI); or an
NPS of four pulses per second on average (NPS with IPIs obeying an
inverse decay histogram-power law distribution). The stimulation
parameters were chosen on the basis of previous results regarding PS
and NPS patterns.'"”*®° The NPS stimulus is a randomized but
restrictive stimulation, whereas the PS is a regular and constant
stimulation; however, both forms present a total of four stimuli per
second, modifying only the temporal pattern governing the IPIs.
These patterns were taken from a previous study showing pro-
convulsive properties for PS and anticonvulsant for NPS.°° Examples

of ARDUINO routines written in C++ for both the PS and NPS stan-
dards can be accessed at a GITHUB (https://github.com/nnc-ufmg/
stimulator_triggers). Figure 1 shows the stimulation patterns.

Electrophysiologic Statistical Analysis of Data

Given the differences between the two data sets, preprocessing
was conducted separately for each Protocol while adhering to a
consistent set of procedures. The differences are minor and do not
interfere with the hypothesis being tested in each protocol.

For the Probing protocol, the data were standardized to a
20-minute window, spanning 10 minutes before the first stimulus
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Figure 2. Examples of preprocessed electrophysiologic recordings extracted from control and stimulation groups, in which the left panel shows the different
experiment sections, middle panel shows the gray highlighted area magnified, and the right panel shows the portions 1, 2, and 3 in detail. a. Segment of an animal
of the stimulation group showing seizure starting in the ipsilateral hemisphere. b. Segment of an animal of the control group evidencing a seizure starting in the
ipsilateral hemisphere with no propagation to the contralateral portion. c. Segment of an animal of the control group showing a seizure starting in the contralateral
hemisphere with a subsequent propagation to the ipsilateral portion. d. Segment of an animal of the stimulation group evidencing a generalized seizure, at the end
of the recording session. [Color figure can be viewed at www.neuromodulationjournal.org]

and 10 minutes after the last stimulus. Preprocessing steps
included notch filtering at 60 and 120 Hz, bandpass filtering
between 1 and 450 Hz, and resampling to 1000 Hz. The propa-
gation protocol had a minor power line noise, requiring an addi-
tional harmonic (180 Hz) to be removed in the data from this
protocol. This preprocessing step was not needed in the Probing
protocol.

For the Propagation protocol, the data were standardized to a
14-minute window, spanning 7 minutes before the first stimulus
and 7 minutes after the last stimulus. Preprocessing steps included
notch filtering at 60, 120, and 180 Hz, bandpass filtering between 1
and 300 Hz, and resampling to 1000 Hz.

For both protocols, a graphical interface was constructed using
the programming language Python combining the matplotlib
library to visualize and pan the EEG signal and Tkinter for the
selection of both seizures and noise. The procedure was performed
such that the researcher was able to pan the EEG data, and when
noise or a seizure event was identified, he was able to mark the
corresponding portion of the signal, generating a label with a start
and end samples. These labels were then saved in a JSON format
for every instance of noise in every channel in the whole data and
were later used to set the affected samples to zero so as to not
interfere with the rest of the analysis, and the preprocessed data
were segmented into four distinct phases: (A) before KA

administration and stimulation, (B) before KA administration but
after stimulation, (A-KA) after KA administration but before stim-
ulation, and (B-KA) after KA administration and stimulation (Fig. 1a,
b).

Initially, data from each animal were calculated by aggregating
the contributions of all channels, using five attributes related to
the recorded seizures: 1) total number of seizures; 2) total duration
of events; 3) total energy of events; 4) average seizure duration;
and 5) average energy. After defining each attribute, the control
and stimulation or PS and NPS groups were compared in two
experimental stages: a) A-KA and b) B-KA. To compare the resulting
distributions, the Wilcoxon rank-sum test for two samples was
applied, followed by a false discovery rate (FDR) correction using
the Benjamini-Hochberg procedure. Attributes 1), 2), and 3) were
corrected together, given they relate to seizure occurrence,
whereas 4) and 5) were corrected together because they reflect
seizure severity. Moreover, effect sizes were calculated using the
rank-biserial correlation. Only the relevant results are shown in
Figure 2a and Figure 5a, and a left-tailed rank-sum test was used
for the intergroup analysis involving discrete countable data using
a significance level of 0.05.

In the second step, using the same five attributes, the data were
analyzed at the channel level. Again, analyses were conducted
separately for the two experimental stages: a) A-KA and b) B-KA,
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Channel X preceding channel Y Ch X
Ch ~X
SUM col
Ch, channel.

Table 1. Contingency Table Showing the Relation Between Preceding Channel X and Subsequent Y.

Y happening after or at the same time as X

Chy Ch ~Y SUM row
a b a+b
C d c+d
a+c b+d a+b+c+d

with additional separation by left and right hemisphere. We used
generalized linear models using Generalized Estimating Equations
(GEE)—a Poisson model for count data and a Gaussian model for
continuous data—to compare the control and stimulation (PS and
NPS) groups. This approach accounts for the nonindependence of
observations from the same subject given each animal contributes
data from multiple recording channels. Although the models
treated channels as repeated measures within animals, we opted
to present the results by channel to improve clarity and to report
them in the text using grouped medians and interquartile ranges.
Results are presented in Figure 2b,c and Figure 5b,c, along with
FDR-corrected p-values (Benjamini-Hochberg correction) and
effect sizes (Cohen’s d for continuous variables and rate ratios for
Poisson models).

The univariant analysis previously conducted did not allow a
proper evaluation of the sequential propagation of ictogenic
events determined by interchannel relations. When evaluating
functional connectivity, researchers often use techniques such as
crosscorrelation, coherence, phase synchronization, or Granger
causality. Each of these methods has its strengths in evaluating the
temporal and directional relationships between brain signals.
However, in our situation, the unique characteristics of our data—
specifically, the discrete and small number of ictal-like electro-
graphic activity episodes—meant we needed to take a different
approach.

Traditional methods, such as Granger causality, typically work
under the assumption of continuous time series data and are most
effective for uncovering predictive relationships within signals.
Given the discrete nature of our observations, we opted for a more
suitable approach based on an analytical method commonly used
in neuroethologic research (ie, quantifying the likelihood of
behavioral association sequences).>®> A series of contingency
tables are designed to determine whether the cooccurrence of
events across various brain regions could be attributed to chance
alone (probability close to 1) or some measure of propagation
relation (probability close to 0). This strategy enabled us to draw
meaningful conclusions about functional relationships in the
context of seizure propagation while avoiding the assumptions
inherent in continuous dynamics. It is noteworthy that, much like
Granger causality, our method does not suggest mechanistic
causality. Rather, it emphasizes probabilistic associations that are
directly relevant to the specific questions we sought to answer in
this study. Thus, a prior statistical assumption regarding the NULL
hypothesis is that circuits do not have obvious and immediate
generalized activity.

Therefore, a more detailed analysis of specific relationships
between channels was conducted using a set of contingency
tables for each seizure (Table 1), where the rows represent events
related to a recorded channel (channel X), and the columns
represent events related to another selected channel (channel Y).

The Boschloo test (derived from the Fisher exact test) was used to
assess the probability that a particular sequence between two
channels occurred by chance, whether unlikely or very likely. This
was accomplished using relational contingency tables to create a
6 X 6 matrix (Fig. 2d and Fig. 5d) of channel sequential recruitment,
as later described.

Using the Propagation protocol as an example, channels X and
Y represent any of the six channels recorded, CA1R, CA1L, CA3R,
CA3L and AMYR, AMYL (completely analogous for the Probing
protocol set of channels, where R and L stand for right and left,
respectively). The terms in the table represent a) the number of
times Y happened after or at the same time as X; c) the number of
times Y happened after or at the same time of any other channel
other than X; b) the number of times any other channel than Y
happened after or at the same time as X; and d) the number of
times any other channel than Y happened after or at the same
time as any other channel but X. Therefore, the terms (a+c) refer
to the number of times Y happened after or at the same time as
any channel; (b+d) any channel aside from Y happening after or
at the same time as any other channel; (a+b) X preceding (or at
the same time) as any other channel; and (c+d) any channel other
than X preceding (or at the same time) as any other channel. The
p-values retrieved from the tables as previously described
indicate the probability that the relationship between X and an
ictal event in Y, occurring either before or simultaneously, could
arise by chance on the basis of the ratios presented. Therefore,
p-values close to 1 suggest no relationship between X and Y,
whereas p-values near O indicate strong evidence that these
channels are connected in their activity patterns. It is important to
note that the 6 x 6 matrix, displaying all possible combinations, is
not symmetric, given the table for X-Y may differ from that for
Y-X. Moreover, the diagonal column was excluded given X-X
combinations do not contribute to channel correlations. Thus, for
each seizure, 30 contingency tables were generated, representing
all possible channel combinations except those involving the
same channel. The tables obtained for each seizure were then
compiled as a single table within each group, generating 30
contingency tables for the PS group and another 30 for the NPS
group.

To assess the probability of directed seizure propagation
between pairs of brain regions, we used Boschloo’s test—a more
powerful variant of Fisher exact test—on 2 x 2 contingency
tables summarizing the temporal order of ictal events. This
method is particularly well suited for our data, which comprise
sparse, discrete events, and offers greater statistical power while
maintaining control over type | error rates. Each resulting table
was statistically analyzed, and the corresponding p-values are
represented by the matrices in Figures 2d and 5d, where the
rows indicate the predecessor channels relative to seizure onset,
and the columns indicate the successor channels.
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Histologic Procedures

At the end of the recordings, the animals were anesthetized with
an intraperitoneal solution of ketamine (80 mg/kg) and xylazine
(30 mg/kg). The position of the electrodes was confirmed by an
electrolytic lesion (0.5 mA for 2 seconds), and the animals were
then subjected to a cardiac perfusion protocol with phosphate-
buffered saline solution (PBS) 0.1 M (0.387 M NaH2PO4.H20; 0.612
M Na2HPO4.7H20; 1.4 M NaCl) pH = 7.4, followed by a solution of
paraformaldehyde (PFA) dissolved in PBS (PFA/PBS; 4% w/v;
pH = 7.4). The brains were then removed, postfixed in PFA/PBS 4%
weight in volume (w/v), and kept at 4 °C for 24 hours. The brains
were subsequently sectioned (40 pm) using a cryostat (Leica®),
and some slices, on the basis of stereotaxic coordinates related to
the implantation sites of the recording electrodes and the cannula,
were selected and stained to confirm the implantation sites,
following a marking protocol with neutral red solution (neutral red
1% w/v; anhydrous sodium acetate 0.3% w/v; glacial acetic acid
0.12% volume/volume).

RESULTS

Probing Protocol

Figure 3ab,cd, along with the zoomed-in insets, illustrates the
quality of the electrophysiologic recordings from both stimulation and
control groups. The gray boxes and dashed lines indicate the intervals
in which the electroencephalogram was depicted in the insets. The
examples were chosen to represent situations in which electrographic
seizure-like activity started at different locations for both stimulation
and control regarding laterality in terms of the KA injection site.

The results obtained indicate that there were no significant
differences when analyzing the seizure events across groups that
received (stimulation) and did not receive (control) the 0.5-Hz
stimulation (total seizures A-KA-CONTROL: 4 [2.5-4.5], STIMULA-
TION: 2.5 [2-3], p = 0.760, e.s. = 0.331; mean duration A-KA-
CONTROL: 67.719 [67.439-92.373], STIMULATION: 62.678
[54.543-139.545], p = 0.638, e.s. = —0.233; mean energy A-KA-
CONTROL: 95.341 [93.368-95.948], STIMULATION: 16.730 [5.649—-
30.942], p = 0.983, e.s. = 0.946; total seizures B-KA-CONTROL: 4
[4-5.5], STIMULATION: 2 [1.5-2], p = 0.975, e.s. = 0.845; mean
duration B-KA-CONTROL: 57.167 [54.175-60.313], STIMULATION:
42.665 [42.204-114.442], p = 0.744, e.s. = —0.324; mean energy B-
KA-CONTROL: 73.218 [61.094-79.803], STIMULATION: 33.022
[27.412-64.446], p = 0.744, e.s. = 0.354. All statistical tests in this
section were performed using the Wilcoxon rank-sum test), thus
showing that it did not have a significant effect on the seizure
events, when comparing combined data across total seizures,
interhemispheric seizures, total and mean seizure duration, and
total and mean energy. The trend in these findings continues in
the analysis considering only the separate sections, A-KA and B-KA,
in which the p-values remain not significant.

Regarding the number of seizure events per channel, the results
show that there were no significant differences when analyzing the
seizure events across the channels, when comparing combined data
across total seizures, total and mean seizure duration, and total and
mean energy (total seizures A-KA-CONTROL: 2 [1-3], STIMULATION: 2
[2-2], p = 0.807, e.s. = 0.941, GEE Poisson; total duration A-KA—CON-
TROL: 50.794 [37.101-69.050], STIMULATION: 55.399 [48.868-197.875],
p = 0.349, ess. = —2.279, GEE Gaussian; total energy A-KA-CONTROL:
21.612[11.465-80.935], STIMULATION: 6.272 [1.596-10.606], p = 0.053,
e.s. = 1.221, GEE Gaussian; mean duration A-KA—-CONTROL: 67.159
[53.107-67.159], STIMULATION: 51.489 [48.304-260.851], p = 0.268,

es. = —1.620, GEE Gaussian; total duration B-KA-CONTROL: 27.748
[12.236-63.499], STIMULATION: 46.630 [42.665-48.249], p = 0.177,
es. = 0.937, GEE Gaussian; total energy B-KA-CONTROL: 15.222
[10.641-42.158], STIMULATION: 10.966 [4.506-30.220], p = 0.053,
e.s. = 1.739, GEE Gaussian; mean duration B-KA-CONTROL: 42.375
[32.439-45.475], STIMULATION: 42.665 [42.665-73.175], p = 0.268, e.--
s. = —1.839, GEE Gaussian; mean energy B-KA-CONTROL: 25.779
[12.306-29.476], STIMULATION: 10.343 [4.794-29.574], p = 0.268,
e.s. = 1.063, GEE Gaussian). However, the mean energy in the A-KA
section and total seizures in the B-KA section scored a p-value of <0.001
(mean energy A-KA—CONTROL: 29.567 [18.892-54.954], STIMULATION:
9.348 [1.795-10.523], *p = <0.001, e.s. = 2.149, GEE Gaussian; total
seizures B-KA—-CONTROL: 4 [2-5], STIMULATION: 1 [1-2], *+p = <0.001,
e.s. = 0.327, GEE Poisson), suggesting a significant difference when
comparing the different channels in the control and stimulation
groups. Finally, when analyzing seizure events per electrode, there
were no significant differences in seizure events metrics across right
and left electrodes in the A-KA and B-KA sections (total seizures A-KA
(right)-CONTROL: 1 [1-3], STIMULATION: 2 [2-2], p = 0.944,
e.s. = 0.909, GEE Poisson; total duration A-KA (right)-CONTROL: 64.400
[43.877-70.941], STIMULATION: 54.415 [47.703-164.003], p = 0.606,
es. = —1.711, GEE Gaussian; total energy A-KA (right)-CONTROL:
33.573[13.373-85.632], STIMULATION: 5.409 [1.584-11.063], p = 0.378,
e.s. = 0.940, GEE Gaussian; mean duration A-KA (right)-CONTROL:
67.159 [53.107-67.159], STIMULATION: 51.489 [49.574-162.525],
p = 0327, es. = —-6.690, GEE Gaussian; mean energy A-KA
(right)-CONTROL: 29.567 [19.409-58.165], STIMULATION: 10.343
[1.795-12.022], p = 0.066, e.s. = 1.530, GEE Gaussian; total seizures
A-KA (left)-CONTROL: 2.500 [1.750-3.000], STIMULATION: 2.000
[2.000-2.250], p = 1.000, e.s. = 1.000, GEE Poisson; total duration A-KA
(left)-CONTROL: 47.284 [35.385-67.159], STIMULATION: 55.399
[51.381-197.875], p = 0.378, e.s. = —3.147, GEE Gaussian; total energy
A-KA (left)-CONTROL: 14.192 [8.823-23.592], STIMULATION: 6.272
[2.339-9.379], p = 0.378, e.s. = 13.345, GEE Gaussian; mean duration
A-KA (left)-CONTROL: 64.563 [55.607-69.970], STIMULATION: 151.025
[48.448-257.122], p = 0.205, e.s. = —1.638, GEE Gaussian; mean energy
A-KA (left)-CONTROL: 31.259 [16.375-46.458], STIMULATION: 6.854
[3.548-9.616], p = 0.066, e.s. = 2.039, GEE Gaussian).

The analysis of functional connectivity during seizure events
revealed a lack of predictability in the analyzed brain regions,
regardless of the experimental condition (Fig. 2d). In both the control
and stimulation groups, seizures were detected simultaneously
across channels, with p-values predominantly equal to 1.0, indicating
no temporal delay between regions. This suggests that seizure
activity occurred synchronously across the evaluated network, mak-
ing it difficult to identify directional propagation patterns.

Although some p-values were lower in the B-KA section,
particularly in connections such as CA3R-CA3L and CA3L-AMYL in
the control group, and CA3R-CA3L in the stimulation group, these
differences did not reach statistical significance (p > 0.05), rein-
forcing the absence of systematic delays among channels (Fig. 1).
The lack of significant connectivity differences suggests that
seizure activity does not follow a predictable propagation pattern
within the analyzed structures

Propagation Protocol

Figure 4a,b,c,d, along with the zoomed-in insets, illustrates repre-
sentative examples of electrophysiologic recordings from both the PS
and NPS groups during the Propagation protocol. In the PS group,
generalized seizures were selected, with one initiating in the left
hemisphere (Fig. 4a) and another in the right hemisphere (Fig. 4b). In
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Figure 3. a. Seizure metrics comparison between control and stimulation groups across all data during A-KA and B-KA sections. b. Analyses of seizure events per
channel using GEE models, showing a significant difference in mean energy in the A-KA section (p < 0.001) and total seizures in the B-KA section (p < 0.001). c. No
significant difference in seizure events per electrode for A-KA and B-KA when analyzed using GEE models. Panel d shows the statistical analysis of seizure causality
between brain regions in control and stimulation groups under A-KA and B-KA protocols. p = 1.0 (shaded from yellow to dark blue) indicates simultaneous seizure
detection across channels, whereas lower p-values suggest temporal offsets. [Color figure can be viewed at www.neuromodulationjournal.org]

contrast, the NPS group shows distinct episodes: one restricted to the The analysis of seizure occurrence per animal revealed no sig-
left hemisphere (Fig. 4c) and another that generalized bilaterally but nificant difference between groups (total seizures A-KA-NPS:
remained confined to the hippocampus with low amplitude (Fig. 4d). 0 [0-1] PS: 2 [1-2], p = 0.087, e.s. = 0.429, Wilcoxon rank-sum test
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Figure 4. Examples of preprocessed electrophysiologic recordings extracted from PS and NPS groups. a. Segment from an animal in the PS group showing highly
synchronized activity across areas at the onset of a generalized seizure that recruits all channels. b. Segment from an animal in the PS group showing a generalized
seizure that clearly affects the right hemisphere more than the left hemisphere at the beginning of the seizure. c. Segment from an animal in the NPS group

showing a hippocampal focal seizure. d. Segment from an animal in the NPS group showing a low-amplitude seizure recorded in both hippocampi. [Color figure
can be viewed at www.neuromodulationjournal.org]

and total seizures B-KA-NPS: 0 [0-2] PS: 1 [1-2], p = 0.202, *p = 0.047, es. = 0.627, Wilcoxon rank-sum test) and a trend
es. = 0.264, Wilcoxon rank-sum test). However, statistical com- toward significance in mean seizure duration during the B-KA
parisons identified group differences in mean seizure energy period (mean duration B-KA-NPS: 0 [0-22.595] PS: 43.492
(mean energy B-KA-NPS: 0 [0-2.023] PS: 11.962 [5.094-36.646], [22.292-95.419], p = 0.087, e.s. = 0.429, Wilcoxon rank-sum test)—
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Figure 5. Propagation protocol. a. Comparison of extracted seizure parameters in PS and NPS groups across all seizure events, subdivided into A-KA and B-KA
periods. b. Overall effect comparison using GEE, revealing significant differences between PS and NPS across most parameters during the A-KA period. c. GEE-based
comparison of stimulation effects during the A-KA period, further subdivided by hemisphere. d. Seizure causality analysis between brain regions in PS and NPS
groups during both A-KA and B-KA periods. Shading from yellow to dark blue indicates increasing interregional sequential relationships, as described in the section

titled Electrophysiologic Statistical Analysis of Data. [Color figure can be viewed at www.neuromodulationjournal.org]

both indicative of seizure severity once triggered. The limited significance for some parameters in Figure 5a. Nevertheless, these
number of seizures, which is typical in short-term chemically findings suggest a more severe ictal state in the PS group during
induced models, likely contributed to the absence of statistical the later stages of the protocol. Figure 5b reveals a distinct
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modulatory effect of the stimulation pattern, with borderline dif-
ferences (p < 0.05 or trending, with large effect sizes) across all
parameters during the A-KA period, as determined by global
comparisons using the GEE model (total seizures A-KA NPS:
0 [0-0.75] PS: 2 [0-2], p = 0.078, e.s. = 4.3, GEE Poisson; total
duration A-KA NPS: 0 [0-4.086] PS: 86.132 [0-127.816], p = 0.063,
es. = 1.4, GEE Gaussian; total energy A-KA NPS: 0 [0-4.23] PS:
13.856 [0-41.611], p = 0.078, e.s. = 0.818, GEE Gaussian; mean
duration A-KA NPS: 0 [0-4.086] PS: 35.205 [0-60.55], p = 0.07,
e.s. = 1.26, GEE Gaussian; mean energy A-KA NPS: 0 [0-4.23] PS:
7.274 [0-20.806], p = 0.117, e.s. = 0.729, GEE Gaussian).

In summary, these results suggest a potential propagation-
interference effect of NPS compared with PS through two comple-
mentary mechanisms: Figure 5b indicates early modulation (A-KA). In
contrast, Figure 5a suggests a delayed effect (B-KA). Notably, both
protocols delivered the same number of stimuli to the same brain
region (AMYR), differing only in their temporal organization.

The differential effect of PS vs NPS in preventing seizure propa-
gation to the right hemisphere is more clearly illustrated in Figure 5c.
NPS showed superior efficacy during the A-KA period, particularly
in the right hemisphere (upper panels), corresponding to the stim-
ulation site (total seizures A-KA NPS: 0 [0-0] PS: 2 [0-2], *p = 0.046,
es. = 7, GEE Poisson; total duration A-KA NPS: 0 [0-0] PS: 85.697
[0-127.185], *p = 0.034, e.s. = 2.076, GEE Gaussian; total energy A-KA
NPS: 0 [0-0] PS: 10.318 [0-48.996], *p = 0.046, es. = 1.127, GEE
Gaussian; mean duration A-KA NPS: 0 [0-0] PS: 28.856 [0-58.57],
*p = 0.046, es. = 1.829, GEE Gaussian; mean energy A-KA NPS:
0 [0-0] PS: 3.439 [0-24.498], p = 0.065, e.s. = 1.013, GEE Gaussian).
Although no statistically significant differences were observed in the
contralateral (left) hemisphere, several parameters approached
significance (total seizures A-KA NPS: 0 [0-1] PS: 2 [0-2], p = 0.163,
e.s. = 3.143, GEE Poisson; total duration A-KA NPS: 0 [0-11.057] PS:
86.772 [0-128.352], p = 0.145, e.s. = 1.128, GEE Gaussian; mean
duration A-KA NPS: 0 [0-11.057] PS: 41.485 [0-56.823], p = 0.146,
e.s. = 1.003, GEE Gaussian). Nevertheless, they showed large effect
sizes, suggesting a possible anticonvulsant effect of NPS in focally
induced KA seizures even when stimulation occurs in the contralat-
eral hemisphere.

A more targeted investigation of interchannel relationships was
conducted using the contingency table approach described in the
section titled Electrophysiologic Statistical Analysis of Data.
Figure 5d shows that NPS reduces the likelihood of left-to-right
probability of sequential activation compared with PS during
both the A-KA and B-KA periods, as indicated by darker matrix cells
(representing stronger interchannel sequential relationships).
Notably, a consistent interaction between AMYL and CA3L was
observed in the NPS group across both periods. Although not
statistically significant, the low p-values suggest that this effect is
unlikely to have occurred by chance.

DISCUSSION

In this work, we aimed to study 1) whether a probing stimulation
applied to the ipsilateral amygdaloid complex (ie, for seizure pre-
diction) would affect propagation, 2) the propagation pattern of
epileptiform activity due to focal intrahippocampal injections of KA
during the status epilepticus, and 3) whether distinct temporal
patterns of electrical stimulation applied to the contralateral
amygdaloid complex could interfere with the ictogenic propaga-
tion pattern. The NPS aimed to restore homeostasis in a focal

epilepsy animal model, even at the cost of increasing excitation,
when circuit competition is knowingly compromised. The imbal-
ance caused by the ictogenesis process, induced by intra-
hippocampal KA injection,®*°® fosters a “winner-takes-all” (WTA)
dynamic,®* favoring a single attractor (or a reduced number of
attractors restricted to specific circuits) and eventually destabiliz-
ing the entire network. Circuit disorganization before seizure
activity has been observed as low-voltage fast activity (LVFA,
>14-100 Hz*°®), provoked by the hyperactivation of inhibitory
interneurons. This apparent paradox can be explained by
competitive microcircuits that aggregate and synchronize to form
a “winner circuit motif” during the ictogenesis process. In this
context, the role of inhibitory interneurons makes sense only if
their functional aspect is more closely related to sharpening the
coincidence detection circuit framework than to the classical view
of excitation-inhibition imbalance. This interpretation aligns with
the view that LVFA is not merely a desynchronizing biomarker but
rather an emergent property of competitive microcircuits during
ictogenesis. In this sense, LVFA reflects the network-wide dynamics
that precede the selection of a dominant circuit motif, consistent
with a WTA process. Although the WTA selection may remain
subthreshold, the electrographic expression of LVFA provides a
detectable signature of this competition. Thus, instead of repre-
senting a paradox, LVFA can be viewed as a mechanistic feature of
ictogenesis. Although this interpretation is supported by the
consistency of the electrographic pattern across seizures, we
acknowledge that the WTA model remains a hypothesis.®*°® In any
case, our results indicate that NPS disrupted the abnormal
hyperconnectivity pattern to the contralateral hemisphere (Fig. 5),
interfering with the seizure propagation pattern. Interestingly, the
neuromodulatory effect of NPS before chemically induced seizures
made the ictogenic process less likely to propagate contralaterally,
whereas PS facilitated the recruitment of the contralateral hemi-
sphere. These data support a significant argument for the viability
of open-loop therapy with NPS, especially considering previously
published findings with both NPS and probing stimuli, as elabo-
rated in the later paragraphs.

Moreover, this work revealed that the number of seizures was
not significantly affected by ipsilateral probing stimulation, which
is recognized as effective in predicting seizure onset.'®”"7%773
However, there were minor variations in seizure duration during
ictogenesis (Fig. 2b), suggesting that the probing signal may not
be as innocuous as previously suggested and therefore should be
cautiously applied. Nonetheless, the observed effect did not seem
to facilitate the process of triggering seizures but rather to amplify
ictal electrographic activity once it had begun. In any case, one
should always consider adjusting parameters of the probing
stimulus to exclude any undesired effect while still yielding signals
that allow seizure detection or prediction, such as further
decreasing amplitude and firing rate. In summary, our results,
along with previously published data from our laboratory,
corroborate the proposal of a closed-loop solution involving the
Probing protocol for seizure detection and the Propagation pro-
tocol for seizure attenuation.'®'"’* It is important to highlight that
the experimental procedure and data presented in this work focus
on the seizure propagation effects of stimuli when applied to a
focal animal model of seizure (ie, KA injection). However, the
overall application of temporally coded stimulation for seizure
prediction and attenuation, in addition to its use in a closed-loop
system, is better substantiated by considering previously pub-
lished data from our group.
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Our findings contribute to the existing literature, showing that
DBS application to modulate ictogenesis and epileptogenesis has
yielded promising results in epilepsy treatment by altering the
neural circuits involved in seizure generation and propagation, as
can be observed in the review.”? Although modern DBS protocols
are primarily established for movement disorders,”>’® there is a
growing body of research supporting its application in psychiatric
conditions such as depression and obsessive-compulsive disor-
der.”””® Recent studies have highlighted the need to adapt stim-
ulation parameters for these indications rather than reusing
protocols originally developed for motor symptoms.”*>* Early
mechanistic hypotheses proposed that high- or low-frequency DBS
would activate or suppress neural networks, restoring function or
inhibiting dysfunction.>’ Building on these insights, this
research, along with other temporally coded DBS strategies found
in the literature, operates under a distinct framework based on the
hypothesis that stimulation may disrupt or facilitate large-scale
integration of information among brain regions by influencing
synchronization and the temporal organization of the underlying
neural networks.””**#° Despite differences in specific methods, the
shared goal across various DBS approaches remains consistent:
creating competing circuits to restore network homeostasis and
redirect the system away from instability while promoting
balanced circuit dynamics.?’ For instance, Tass et al use a method
known as "Coordinated Reset” to stimulate multiple sites with
uncorrelated temporal stimulation patterns, generating disruptive
spatiotemporal stimulation aimed at preventing synchronization
and the propagation of epileptiform activity.'”*#%*> Our group also
used multisite stimulation patterns,*®°%°? as previously described;
nevertheless, we also showed that PS and NPS interfere with the
ictogenesis process in various epilepsy animal models, even when
applied to a specific site."**"*%®" This work not only supports data
indicating that PS facilitates propagation to the stimulated region
and that NPS interferes with the propagation process but also
advances the idea that both PS and NPS exert a priming effect
when applied to the contralateral hippocampus, thus affecting
seizure propagation even when used before seizure induction by
KA. This finding is particularly relevant for neuromodulation
through DBS using an open-loop framework (eg, DBS Medtronic
Percept®) because it suggests that NPS might have a sustained
anticonvulsant effect on the underlying neural network (indicated
by our A-KA data for NPS in the Propagation protocol). However,
our results do not preclude its use when paired with a predictive
system for seizures, triggering NPS in a closed-loop configuration.

The observed effects of PS and NPS highlight a critical interplay
between network dynamics and seizure propagation mechanisms.
This interplay may be closely influenced by mechanisms similar to
"priming," wherein stimulation patterns influence the recruitment
and balance of neural circuits. Understanding this relationship
provides a deeper context for ways specific DBS strategies can
modulate ictogenesis by either disrupting or reinforcing circuit
activity, ultimately shaping the evolution of seizures. The term
"priming," borrowed from memory research,2*%> describes a phe-
nomenon whereby exposure to a stimulus influences the response
to subsequent stimuli by facilitating the recruitment of pre-
activated neural pathways, thus making it easier to process or
recall associated information. Our findings suggest that the non-
periodic stimulus applied to the contralateral ictogenic foci inter-
feres with this propagation of information, most likely by exciting a
diverse population of competing circuits; conversely, the periodic
stimulus pattern would consistently activate the same circuitry,

providing it with an “edge” during the WTA ictogenesis process.
Moreover, although previous studies have suggested that PS at 0.5
Hz shows promise for seizure prediction,'®'" this parameter
(although not potentiating seizure initiation) slightly affected the
underlying network during the ictogenesis process (Fig. 3b—mean
energy, total seizures). Unsurprisingly, if probing stimulation is
useful for seizure prediction, it would be expected to trigger short-
term plastic changes in the underlying network that could influ-
ence seizure duration (Figs. 2 and 3). de Castro Medeiros et al'®
showed that by pairing probing stimulation with seizures, it was
possible to induce plastic changes in the underlying network so
that further seizures could be predicted from the evoked
responses—the process was named a programmable surrogate
marker. Thus, it is reasonable to assume that “some” plastic
changes are necessary to have a properly working probing stim-
ulation for seizure prediction, provided it does not trigger the
initiation of seizures themselves.*® The frequency of repetition of
these constant IPI stimulations is quite relevant in differentiating
the probing effect from the proconvulsant effect, that is, compared
with the PS. In both cases, temporally fixed stimuli may facilitate
same-circuit representations within hippocampal neural networks,
whereas NPS may disrupt them. In this context, epilepsy may be
interpreted as a brain state of facilitated entrainment effect on the
neural network, suggesting that epileptogenesis is a process that
shares many mechanistic steps with memory formation—a
pathologic memory facilitating a circuit that hijacks the entire
network. It would be interesting to investigate further the possible
long-lasting effects of NPS in spontaneous-recurrent-seizure
models of epilepsy.

Another interesting result was that in some cases, the contra-
lateral site from foci induction began to exhibit epileptiform
activity before any other area. This, of course, only occurred after
>one episode of secondary contralateral recruitment occurred
owing to propagation from the ipsilateral foci. Overall, our data
indicate that even during the Probing protocol (and during the
Propagation protocol), KA-induced status epilepticus evolves into
short-term plastic changes, allowing a secondary focus to even-
tually take control of the system. Literature has reported the sec-
ondary recruitment of the contralateral hippocampus during KA-
induced status epilepticus,®” with population oscillations gener-
ated both ipsilaterally and contralaterally to KA injection but with
marginal long-term effects on contralateral hippocampal circuitry
reorganization. Still, the present work indicates that such a
contralateral secondary focus can generate and sustain seizures
independently of the primary focus. The argument against intra-
hippocampal KA as a “strictly focal” animal model does not negate
the validity of the hypothesis being tested once NP interfered with
contralateral recruitment and seizure propagation. Nonetheless,
this observation would benefit from proper quantification and a
larger number of animals within each group—particularly given
this phenomenon was not evident in every instance of KA-induced
status epilepticus. Moreover, although we observed evidence for
the independent recruitment of epileptiform activity in the
contralateral hippocampus, further studies should investigate
whether the epileptogenic plastic changes also extend to the
contralateral hippocampus after the latent period for spontaneous
recurrent seizures.

In summary, our findings confirm that the propagation of sei-
zures during KA status epilepticus is influenced by the time-coded
stimulation pattern used, provided that the total number of stimuli
and the stimulated area are the same, offering novel insights into
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the dynamics of ictogenesis and possibly epileptogenesis. In
addition, probing stimulation did not potentiate seizure initiation
but did influence the ictal process after initiation, showing that it
was not entirely innocuous in the ictogenic process. Nevertheless,
seizure prediction protocols using chemically induced models,
such as ours, fall outside the scope of spontaneous seizure pre-
diction, and this is arguably an appropriate context for evaluating
predictive algorithms. However, our focus was on understanding
the effects of stimulation on seizure propagation and evaluating its
potential impact on ictogenesis and epileptogenesis.

CONCLUSION

Our results show no evidence that probing stimulation to the ipsi-
lateral amygdaloid complex (focal seizure KA animal model) facilitates
seizure induction or propagation. Temporally coded neuromodulation
interfered with seizure propagation patterns even if applied before (or
after) the KA induction of focal seizures. Altogether, our results support
the feasibility of a closed-loop therapeutic approach for seizure control,
combining probing stimulation for seizure prediction with temporally
coded DBS to disrupt seizure propagation.
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COMMENTS

This manuscript evaluates the effects of temporally coded electrical
stimulation applied to the AMY on seizure propagation in a KA-induced
focal epilepsy rat model. The authors explore two hypotheses: 1) low-
frequency (0.5 Hz) probing stimulation of the ipsilateral AMY can
serve as a predictive signal for seizure onset without affecting seizure

dynamics, and 2) temporally patterned (PS vs NPS) stimulation of the
contralateral AMY affects interhemispheric seizure propagation.

The study addresses important aspects of neuromodulation, epi-
lepsy, and seizure propagation, providing insights relevant to clinical
translation and closed-loop therapeutic systems. The authors use
sophisticated electrophysiologic recordings and stimulation pro-
tocols, providing multisite, bilateral measurements, and the use of
temporally patterned stimulation (NPS vs PS) introduces an innovative
perspective in neuromodulation strategies.
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In the present manuscript, the authors interestingly show that
applying a regular oscillation and low-frequency stimulation to the
ipsilateral AMY facilitated seizure propagation. However, nonrepeating
and temporally complex inputs disrupted network integration,
impairing seizure generalization. Therefore, applying low-frequency
stimuli to the ipsilateral AMY is a suitable strategy for seizure prediction.
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