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Intelligent Control to Suppress Epileptic
Seizures in the Amygdala: In Silico
Investigation Using a Network of
|zhikevich Neurons

Gabriel da Silva Lima™, Member, IEEE, Vinicius Rosa Cota*™,
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Abstract— Closed-loop electricalstimulation of brain
structures is one of the most promising techniques to
suppress epileptic seizures in drug-resistant refractory
patients who are also ineligible to ablative neurosurgery.
In this work, an intelligent controller is presented to block
the aberrant activity of a network of Izhikevich neurons
of three different types, used here to model the electrical
activity of the basolateral amygdala during ictogenesis,
i.e. its transition from asynchronous to hypersynchronous
state. A Lyapunov-based nonlinear scheme is used as the
main framework for the proposed controller. To avoid the
issue of accessing each neuron individually, local field
potentials are used to gain insight into the overall state
of the lIzhikevich network. Artificial neural networks are
integrated into the control scheme to manage unknown
dynamics and disturbances caused by brain electrical
activity that are not accounted for in the model. Four
different cases of ictogenesis induction were tested. The
results show the efficacy of the proposed control strategy
to suppress epileptic seizures and suggest its capabil-
ity to address both patient-specific and patient-to-patient
variability.

Index Terms— Epilepsy, amygdala, seizure suppression,
intelligent control, artificial neural networks.

[. INTRODUCTION

EUROLOGICAL disorders, including epilepsy, motor
Nimpairments, and neuropsychiatric dysfunctions, con-
tinue to be a significant contributor to adult-onset disability
on a global scale [1], [2]. Moreover, primary treatments like
pharmacotherapy, neurosurgery, or physical therapy often fall
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short in providing complete symptom relief or substantial
recovery of neural function. For example, in the case of
epilepsy, in circa one-third of the patients, seizures are resistant
to anti-epileptic drugs [3]. Among this group, approximately
35% are ineligible for neurosurgical methods [4]. Given the
widespread prevalence of the disease (affecting 1-2% of the
global population), these values translate into millions of
individuals grappling with uncontrollable seizures [5], [6].

Since the beginning of the last century, the neuroscience
community has investigated technologies to connect the brain
and electro-electronic devices, aiming to regulate and correct
abnormal brain activity for potential symptom relief, full
recovery, and even a cure. Referred to broadly as neurotech-
nologies, this multifaceted approach encompasses decoding
descriptive signals from the brain and manipulating neu-
ronal cell activity by directly applying stimuli of various
physical forms, effectively bypassing somatosensory neural
functions. Among the diverse possibilities, electrophysiolog-
ical interfaces emerge as the most extensively developed
and widely used, playing crucial roles in both experimental
and clinical settings. Electrical stimulation, particularly, has
undergone significant advancements in the last 50 years pro-
pelled by progress in neuroscientific knowledge, neurosurgery,
and digital technology [7]. Recent breakthroughs, such as
disruptive neuronal sensor technology, large-scale integration
of electronic circuits, machine learning techniques, and neu-
romorphism, herald a new phase in the field, marked by a
major paradigm shift like closed-loop approaches [8], [9].
Despite such substantial progress, the predominant approach in
clinical or experimental applications involves neurotechnology
operating in an open-loop circuit, in which neural stimulation
adheres to a fixed set of parameters, only changing through
expert intervention.

In simple open-loop mode of operation, electrophysiolog-
ical recordings come into play either before stimulation for
diagnostic purposes or after treatment to evaluate the thera-
peutic efficacy of neuromodulation. Conversely, closed-loop
neuroengineering systems, such as illustrated by Fig. 1(a),
where stimulation is directly controlled in real time by means
of electrophysiological data, has been proven superior. This
dynamic approach responds to the non-stationary nature of
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Fig. 1.

Framework of feedback control applied to neuroengineering: (a) representation of an actual feedback control process, where electrical

signals obtained by electrodes are used to calculate the electrical stimulus to be applied to the brain; (b) proposed simulation scheme for feedback
control in which the Izhikevich network emulates the behavior of a brain portion, the basolateral amygdala, and the local field potential (LFP) is used

as input to the intelligent controller.

brain activity, identifying optimal timeframes for stimulus
delivery and allowing fine-tuning of parameters. Hence, this
results in increased efficacy (resulting in a stronger therapeu-
tic result) and efficiency (delivering stimulation only when
required) [10].

To implement closed-loop neuroengineering systems, the
development of computational and mathematical strategies
capable of connecting features of electrophysiological record-
ings to electrical stimulation parameters in real time is
imperative. This crucial step ensures the seamless closure of
the loop, allowing for dynamic responsiveness to the intricate
nature of brain activity. Wagenaar et al. [11], for example,
proposed a feedback adaptive scheme based on neuron fir-
ing rate to manipulate the stimulation voltage applied to a
neocortical cell culture of rats. da Silva Lima et al. [12]
proposed a reinforcement learning algorithm to optimize the
pulse frequency of an electrical stimulus. Liang et al. [13] and
Rouhani et al. [14] presented interesting simulation results by
applying model-based closed-loop strategies for suppressing
seizures in abstract models such as the Epileptor and Jansen-
Rit model [13] and biological conductance-based models of
Hodgkin-Huxley (HH model) [14]. Koppert et al. [15] applied
target stimulation to postpone epileptic seizures in a network
of HH neurons. More applications of closed-loop strategies to
suppress or detect epileptiform activity can be found on [16],
[17], [18], and [19].

Beyond the issue of how the control signal is applied,
it is worth raising another important matter: the fact that
neurostimulation may be successful with one patient does
not guarantee that it will work with another. The success of
the chosen control approach can depend on several factors,
such as age, gender, genetics, anatomical variability, etc. [20],

[21]. Therefore, it is crucial that the design of the control
approach takes into account the possibility of parametric
unpredictability and variability among patients, enabling auto-
matic personalized-like neurostimulation approaches.

In this context, intelligent control can be a suitable choice
for a closed-loop technique with the goal of suppressing
epileptic seizures. By the combination of nonlinear control
approaches with computational intelligence schemes, the con-
troller can stabilize the patient condition while it estimates,
compensates and/or rejects the epileptiform activity as well
as the occasional external influences from other brain regions.
Intelligent controllers are widely adopted to control mecha-
tronic/mechanic systems such as underwater vehicles [22],
[23], [24], robots [25], [26], overhead cranes [27], [28], among
other applications [29], [30], [31], [32]. In the last years,
intelligent controllers have also been applied to bio-systems
in order to regulate vital signals such as cardiac rhythms [33],
[34] and blood glucose levels [35]. In such cases, the controller
was able not only to compensate for interpatient variability,
with the intelligent approach addressing different cases of car-
diac diseases [34], but also to manage intrapatient fluctuation
when different scenarios of food intake were considered in the
control of glucose concentration [35]. Regarding intelligent
control applied to suppress seizure events related to epilepsy,
Narayanan and Subbian [36] applied Model Predictive Control
with recurrent neural networks for a network of neurons
based on the HH model. Bessa and Lima [37] have applied
a feedback linearization approach with neural networks for
electric circuit of memristors based on the neuronal HH
model for suppression of seizure-like events. It is important to
highlight that the HH models are known to be computationally
expensive to implement, specially networks of thousands of
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neurons [38]. It is also worth to mention the work of Brogin
et al. [39] who applied feedback linearization with a fuzzy
Takagi-Sugeno model for suppressing epileptic seizures of a
neural dynamics reproduced by an Epileptor model [40].

In this work, we propose a Lyapunov-based nonlinear
control approach as the main framework of an intelligent
controller to diminish or even suppress the ictogenesis process
in a network of neurons. To achieve that, we employed
adaptive neural networks to deal with modeling inaccuracies
and external disturbances, such as background activity from
other neurons. To ensure safe applications, the boundedness
and convergence properties of the closed-loop signals are rig-
orously proved by means of a Lyapunov-like stability analysis
even when no prior knowledge of the mathematical model
is assumed. Overall, the main advantages of the proposed
controller are presented below:

1) the selected configuration of the artificial neural network
(ANN) requires just one hidden layer and a single
neuron in the input, rather than encompassing all system
states or state errors. This choice significantly reduces
the computational complexity of the neural network,
making its integration into low-power microcontrollers
far more feasible;

2) by utilizing online learning to update the ANN weights,
as opposed to supervised offline training, the adopted
neural network can consistently learn and approximate
neuronal activity over time;

3) no prior knowledge about the system to be controlled is
required, which allows it to adapt to different epileptic
trigger scenarios.

Based on the points presented above, it is worth high-
lighting that the proposed controller framework has four
key conceptual features: (1) the neural estimator functions
as a predictive tool by incorporating model dynamics and
anticipating the estimation action used in the controller; (2) the
online updating process allows the ANN to adapt to changes
in the system; (3) through continuous online learning, the
controller incorporates knowledge about the system, enhancing
prediction and adaptation processes and enabling it to handle
intra-individual variability and structural anatomical diversity
among patients; and (4) because the controller is designed
through a Lyapunov-like stability analysis, it is robust against
modeling uncertainties and external influences. Therefore, the
proposed controller meets the criteria presented by Bessa
et al. [41] for biologically inspired intelligent control.

A network of Izhikevich neurons is used to model the
Amygdala region, highly important in epileptic phenomena
and neuromodulation treatments [42], [43]. Synaptic weights
of the network were gradually increased to simulate seizure
development, or the transition from asynchronous to hyper-
synchronous state, in a computational environment. It is
important to clarify that our control objective is to regu-
late the overall state of the Izhikevich network rather than
controlling individual neurons in isolation. Controlling each
neuron independently would be impractical, as it would require
not only monitoring the behavior of every neuron but also
delivering precise electrical stimuli to each one. In this regard,
we calculated approximations of local field potentials of the

simulated network to identify irregular neural activity patterns
and responsively administered electrical stimulation into the
model to regulate it, as illustrated in Fig. 1(b). To access each
neuron, the control signal is scaled by a factor representing the
distance between the probe and the neuron within the pool.

The remainder of the article is organized as follows:
Section II introduces the model of the Izhikevich neuronal
network; Section III details the proposed intelligent controller;
Section IV presents the simulation results; and finally, our
concluding remarks are presented in section V.

[I. NEURONAL MODEL OF THE AMYGDALA

The main mode of communication between neurons is by
sudden and temporary changes in membrane voltage that travel
via the axon until the synaptic cleft where the signal is trans-
mitted neurochemically to affect other neurons. This is called
an action potential or, simply, a neuronal spike, as shown in
Fig. 2(a). To represent the dynamical behavior of a network of
true biological neurons, it is important that the model be able
to accurately reproduce the cells’ characteristic firing patterns.
Izhikevich [44] proposed a nonlinear integrate-and-fire model
that effectively captures such variability, demonstrating its
biophysical validity and suitability for large-scale simulations.
In this context, the basolateral amygdala model, Fig. 2(b),
is constructed by a network of different types of Izhikevich
neurons [45], [46]. Therefore, the model that represents the
membrane potential for each neuron is described by the
following set of equations:

V=004 Dyv+5v+140—-u+1-J (D
it =a(Dpv —u) )

Vi <— Ck (3)

if vy > 30 mV, then {
Up < up + di

in which v € RV represents the membrane potential of the
neuron, # € RY stands for a membrane recovery variable,
D, € R¥N*N is the diagonal matrix with Ay elements, where
h = v, b, I denotes the synaptic currents, and J the injected
current. Furthermore, the parameter a scales the recovery
variable’s time, b describes the sensitivity of u, c is the resting
potential of v, and d describes the reset of u after firing.
The cytoarchitecture, similar to that of the basolateral amyg-
dala, region of the human brain with approximately 11 million
neurons [47], must accurately depict the predominant cell
type distribution within this area and exhibit firing patterns
and oscillations characteristic of both synchronous and asyn-
chronous forebrain states [38], [46], [48]. Therefore, following
the proportions provided by Feng et al. [46] and considering a
network of N = 1200 neurons, the population is composed by
N, = 768 (64%) of principal neuronal cells with adaptation
(PNa), N, = 312 (26%) of principal neuronal cells with
continuous spiking (PNc), and N; = 120 (10%) of fast-
spiking inhibitory neurons (FSI). These cells were assigned
with the firing patterns typically observed in electrophysio-
logical recordings in the basolateral amygdala. The excitatory
neurons, specifically PNa and PNc, were assigned the firing
patterns of regular spiking (RS) and chattering (CH) neurons,
respectively. In turn, the inhibitory neurons (FSI) replicated the
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Fig. 2.

Basolateral Amygdala (BA) model. The neural model is based on Izhikevich representation for spiking neurons. The spikes (abrupt

and transient changes of membrane potential propagated along the axon to other neurons) are the principal means of communication between
neurons. The implemented network is formed of 768 main cells with adaptation (PNa), 312 neurons with continuous spiking (PNc), and 120 fast
spiking inhibitory neurons (FSI). This network was made to be recurrent with all-to-all connections, where PNa, PNc and FSI were connected among
themselves and with each other. LA: lateral amygdala; CA: central amygdala.

low-threshold spiking (LTS) neurons [38], [44]. The distinctive
pattern of each neuron type is shown in Fig. 2(c). The network
is full-connected by the matrix of synaptic weights § € RV,
where each s,,, weight is obtained from a continuous uniform
distribution with amplitude 0.5 for the PNa and PNc neurons
and —3.5 for the FSI.

This work considered the initial states of v and u as being
vo = ¢ mV and ug = Dpvyp mV. The parameters are defined
as follows:

Dy =02

Ck=—65 1§k§Na

dy =8

Dp =02

cx = =50 Noe+1<k<N;+ N,
dy =2

Dy = 0.05
cy = —65 Ng+N:.+1<k<N
dy =2

and a being 0.02. The synaptic current I can be modeled
by the sum of the fired neuron currents with the background
current which represents the unmodeled electrical activity of
the brain:

4)

where 15, = > sk m, Which si_, represents the synaptic weight
from the m-fired neuron connected to the k-neuron. Since the
sum occurs for every neuron and overall fired neurons, the
current Iy guarantees full connectivity among the neurons.
The background current I; is given by a normal distribution
with null mean and standard deviation of 5, 5.1, and 1.3 to
the PNa, PNc, and FSI neurons, respectively.

I=1;+1,
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Fig. 3. Experiment showing a neuronal network in normal activity: the network does not present any signal of synchronous behavior. The maximum
synaptic weights of each sub-population are defined as 0.5 for PNa and PNc, and —3.5 for FSI. From now on, the neurons on the raster plot are
aligned following the sequence in the y-axis: rows 1 to 768 for PNa, 769 to 1080 for PNc, and 1081 to 1200 for FSI.

TABLE |
SYNAPTIC WEIGHTS USED TO INDUCE ICTOGENESIS
Case | PNag | PNas, | PNcg | PNcoo FSIy FSI
1 0.5 1 0.5 0.5 —-3.5 | =35
2 0.5 0.5 0.5 1 —-35 | =35
3 0.5 1 0.5 1 -35 | —3.5
4 0.5 0.5 0.5 0.5 —-3.5 0

The Fig. 3 shows the raster plot and the local field potential
(LFP) of the neuronal model simulated as described above.
The Euler method with time steps of 1 ms was employed to
numerically solve the model (1)-(3) and simulate the neuronal
population. The inject current was set to be null. The LFP was
calculated by the weighted average of v with weights obtained
from a continuous uniform distribution:

LFP =0 "v (5)

Although there are other more sophisticated approaches for
calculating the LFP of a network of neurons [45], [49], for
our control purposes, the formula (5) is sufficient.

A. Induction of Ictogenesis

The process of ictogenesis was simulated by a gradual
asymptotic modification of the synaptic weights to different
values from what was initially set according to the cases
described in the Table I. The rationale here is to tamper with
the delicate balance between inhibition and excitation (in favor
of the latter), which correlates to many of the neurolobiological
mechanisms of ictogenesis. The update rule for the synaptic
weights is given by integrating the first-order differential
equation (6), with 7, = 1500 and p = {PNa, PNc, FSI}. The
initial condition is given by po according to the Table I.

p=r2E (©)

The results shown in Fig. 4-5 are related to cases 1 to 4,
respectively. It can be noted in all the raster plots that
after a certain period of modification in the synaptic weight,
a time that changes depending on the case and can reach up
to approximately 2 seconds in case 2, the neurons exhibit
synchronized firing behavior, which indicates that the substrate
is displaying epileptiform activity, which would translate to
an epileptic seizure when extrapolating the model. Notably,
in case 2, the ictogenesis process does not start as abruptly
as observed in other cases; instead, it begins gradually and
subsequently exhibits a pattern similar to the remaining cases.
This same behavior can be observed in the neural activation
plot, which shows the percentage of firing neurons, and also
by the LFP itself, which presents a typical behavior of a sharp
and rhythmic rise in the membrane voltage level. Another
point to be highlighted is that while in normal behavior
the frequency spectrum, Fig. 3(d), indicates that the highest
magnitude is present at a high frequency of approximately
40Hz, a sign of the asynchronous activity of the network,
in the cases where ictogenesis was induced, Fig. 4(d)-(h) and
Fig. 5(d)-(h), the predominance of much lower frequencies
is detected, such as approximately 4 Hz in case 3, and the
corresponding harmonics, a characteristic of the synchronized
activity also observed in the other graphs.

The objective of the intelligent controller, presented in the
next section, is to suppress such behavior and return the
network to normal activity.

I1l. INTELLIGENT CONTROL

In principle, it would be possible to design the controller in
such a way that it can track each neuron individually. However,
such a task is impractical for at least two reasons: first, it would
be necessary to know the isolated behavior of each neuron in
order to calculate the correct signal for each one; and second,
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Experiment for cases 1 (a-d) and 2 (e-h) showing a neuronal network in aberrant activity after the synaptic weights changed. In the

case 1 and 2, the excitatory synaptic weights of PNa and PNc sub-populations were increased from 0.5 to 1, respectively. In both cases, the
synchronous behavior starts after some seconds into process of changing the synaptic weights.

assuming the first reason was not an issue, it would be neces-
sary for each neuron to be individually accessible, so that the
necessary control effort could be assigned to it. To overcome
this issue, it is first essential to identify the state variable
capable of representing the overall behavior of the system.
As observed in Fig. 3-5, the local field potential is a well-
suited variable to be used as a reference for the network state.
Due to this, for the sole purpose of facilitating the derivation
of a control law, the original model (1)-(3) is rewritten in a
simplified form, ensuring that the overall network dynamics
remain manageable. Therefore, consider that x is the Local
Field Potential (or LFP), i.e. the electrographic oscillation
resulting from the combined contributions of extracellular
currents generated by the activity of each neuron in the
network propagated across the volume conduction represented
by the brain tissue. Then, by combining equations (5) and (1),
we can express the global dynamics of the N-neuron network

in terms of LFP as follows:
iF=f,0)+J+d )

where the function f = 0T[0.04 Dyv + 5v + 140 — u]
incorporates the internal dynamics of the system, J is the con-
trol variable, and d aggregates the uncertainties the neglected
dynamics associated with the simplification as well as the
external disturbances. Since the control input for all neurons
is encapsulated in the vector J € RY from Eq. (1), each
element J; represents the control input for the i-th neuron and
is computed as J; = 6;J, where 0; represents the distance
between the i-th neuron and the electrical stimulator. The
values of 0; are weights drawn from a uniform distribution,
i.e., 9_,' (S Z/{[O,l]-

In order to derive the control law, consider the positive-
definite Lyapunov candidate function V() = %)?2, where
X = x — x4 is the tracking error with x; being the desired
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Fig. 5. Experiment for the cases 3 (a-d) and 4 (e-h) showing a neuronal network in aberrant activity after the synaptic weights changed. While
in the case 3, the excitatory synaptic weights of PNa and PNc sub-populations were increased from 0.5 to 1, simultaneously, in the case 4, the
inhibitory synaptic weights of FSI sub-population was decreased in magnitude (simulating less inhibition) from —3.5 to 0.

LFP. The first derivative of V becomes:

V(1) = ix = X[x — ig4]
=3[f+J +d— %] (8)
Defining the control law by:
J=—f—d+%s— )& )

in which d is the estimate of d and with \ being a positive
constant, we have

V(t) = i[d —d — \i] 10)

Assuming that |d — c?| < &, V(t) becomes a negative-
definite function only when |x| > ¢/\. Therefore, a suitable
d is fundamental to guarantee the boundaries of the tracking
error and, consequently, the structural stability in the sense of
Lyapunov.

So, consider that a single-hidden layer artificial neural
network, as depicted at the Fig. 6, can perform universal

approximation [50] and approximate the unknown dynamics:

d=w"y@) (11)

where w [wq wy]" are the weights of the neural
network and ¥ (¥) = [¥; ... ¥,]' the activation functions.
It should be pointed out that by using the LFP error as input
to the network, instead of the state of each Izhikevich neuron,
the computational complexity exponentially decreases from
n" to n.

Admitting there is a vector of optimum weights w that
minimizes the approximation error € d — w'y, where
le|] < e, the candidate Lyapunov function can be modified
as follows:

(12)

where 1 € a strictly positive constant and w = w — w.
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. Computing the time derivative of V (r) and considering that
w = —w, we have
Viy=ik —n o w=3%d—d - i]—n""d w
=iy —w y+e—Ii]—n la"w
=F[® Y +e—A]—nld"
=ile = Al ="' [0 — iy

W w
(13)

By definition of the adaption law for the neural weights as

w=nxy (14)
the first derivative of V (¢) becomes,
V(1) = —[Af — €]¥ < —[A|F| — e]|%| (15)

It should be noted that equation (15) does not guarantee
that ||wl|, will be bounded when |x| < g/)\. To address this
issue, the projection algorithm [51] can be used to ensure that
w will remain within the region W = {w e R" : w'w < p?}:

NIy if wlls < or
if Jwl, = and nFw 'Y <0

-

ww - .

(I - —F )nxl/l otherwise
w'w

w=

(16)

where p is the desired upper limit of ||w|> and n will be
called the learning rate of the neural network.

Since ||w(0)|2 < w, it follows that |x| < &/X\ and that
lwll2 < n as t — oo, which guarantees that the controller
will ensure the exponential convergence of the tracking error
to a closed region [52]. The control framework is illustrated
in Fig. 7.

V. SIMULATION RESULTS

The controller was employed with time steps of 5ms
and control parameter set to be A = 0.01. Additionally,
by defining f = 0, we are imposing that the control
designer has no prior knowledge about the system dynamics,
so we rely on that the ANN will compensate for it while
simultaneously dealing with the external disturbances and
addressing various epileptiform scenarios, which ultimately
represent independent cases of different patients. It is impor-
tant to note that the controller without ANN was tested first,

Local field

potential, «

Electrical

stimulus, J

U

Intelligent

Projection
al| ivithm =T
& controller

Fig. 7. Controller framework with the representation of how the
computed electrical stimulus is applied to the Izhikevich network (the
indices are for illustrative purposes).

but the outcomes were unsatisfactory, as the controller did
not suppress the epileptic seizures. So, regarding the neural
network, six neurons were adopted with Gaussian activation
functions: ¥ (X; ¢, ¥i) = exp{—0.5[(X — ¢i)/yi1?}; with cen-
ters ¢ = [—¢, —¢/2, —p/4, ¢/4, ¢/2,¢]" and widths y =
[0/2,0/3,0/4, ¢/4, /3, $/2]", for ¢ = 30. Considering
that the only restriction for the learning rate is that it must be
a nonzero positive number and that increasing its value can
increase the overall control effort, different values of n were
tested in order to evaluate its optimum value. The results of
the ANN output are shown in Fig. 8. The learning process
occurs during 15 seconds of simulation after the start of the
ictogenesis process.

It notes by observing the Fig. 8 that we have a convergence
of the neural output after the learning rate of n = 5 x 107%.
The results with this learning rate are shown at the Fig. 9-10.

For case 1, it can be observed that although the controller is
turned on at the instant of 10 seconds, the effect of desynchro-
nization starts only around 12 seconds, as shown in Fig. 9(a).
This is characterized by a drastic reduction in the proportion
of firing neurons, Fig. 9(b), and a reduction in the LFP to
the pre-ictogenesis stage, Fig. 9(c). This delay is due to the
necessary time for the ANN to learn the system dynamics. It is
also observed that the Fast Fourier Transform (FFT) shown in
Fig. 9(e) indicates a dominant frequency close to the normal
case of approximately 40 Hz, Fig. 3(d).

For the other cases a similar analysis can be made. While in
case 2 the controller responds almost immediately, in case 4,
where the neural network is in an excitatory process by
reducing the inhibitory synaptic weights, the controller takes
approximately 6seconds to respond. However, in all cases,
the controller proves to be effective in suppressing seizures,
indicating a drastic reduction in the proportion of firing
neurons and consequently a reduction in the LFP. Additionally,
there is a return of the dominant frequency in the Fourier
spectrum to a level around 40 Hz.
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Fig. 9. Simulation for the cases 1 (a-d) and 2 (e-h) showing the application of the intelligent controller. In case 1, the network takes approximately
2 seconds to respond to the controller and return to normal behavior, which is observed not only in the raster plot, but also in the spiking rate and
in the LFP. The same type of response is obtained in case 2, with the difference that the controller rapidly suppresses the ictogenesis process.

It is worth mentioning that even with a low learning rate, the

as compensate for the background current, which changes in
ANN continuously approximate the neuronal dynamic as well

each simulation loop for all cases. By doing so, the intelligent
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Fig. 10. Simulation for the cases 3 (a-d) and 4 (e-h) showing the application of the intelligent controller. In case 3, the network takes approximately
1 second to be stabilized by the controller and to return to normal behavior, which is observed in the raster plot, in the spiking rate, and in the LFP.
The same type of response is obtained in case 4, with the difference that the controller needs 6 seconds to suppress the ictogenesis process.

controller demonstrates its capability to deal with exter-
nal disturbances once the ANN stabilizes the approximation
error.

V. CONCLUSION

In this work, we proposed an intelligent controller to sup-
press the aberrant activity of a network of Izhikevich neurons
used to emulate the electrical activity typical of epileptic
seizures. By using a computational model to represent the
epileptiform activity of a network of interconnected neurons,
we evaluated its ability to respond in real time to electri-
cal stimulation and assessed the controller’s performance in
modulating the ongoing dynamics. The controller is based
on a control scheme deduced by means of a Lyapunov-like

stability analysis, with artificial neural networks embedded
into it to approximate and compensate for unknown dynamics
and external disturbances, such as the external activity from
the amygdala’s surrounding areas. The choice for the adopted
neural network decreased the computational complexity, mak-
ing it possible to implement it in hardware devices. To bypass
the issue of targeting each neuron individually, the LFP was
used to represent the entire network’s state and the electrical
stimulation for each neuron was computed to be proportional
to the main control signal. The presented results demonstrate
the effectiveness of intelligent controllers in suppressing aber-
rant neural activity, even when the controller operates without
considering any prior information about the patient’s neural
behavior.
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It should be emphasized that epilepsy is a multi-faceted
phenomenon involving factors in multiple levels of brain
organization, from molecules to cells, to micro-circuits, and
finally to mid and long-range networks [43]. Adding to its
complexity, the epilepsy phenomena also encompasses non-
neuronal factors, such as glial and cardiovascular dysfunction.
For this reason, any brain tissue and seizure model will be
reductionist to a certain extent - or highly abstract, such
as the Epileptor model [40]. In this work, a network of
Izhikevich neurons was used to model the basolateral nucleus
of the amygdaloid complex, which plays a crucial role in
epileptic phenomena and neuromodulation treatments [42],
[43]. In many different aspects, it can be considered even more
important than the hippocampus itself [53]. Furthermore, this
model has been shown to be instrumental for investigating neu-
ral synchronization, phase transitions, the pathophysiology of
the disease, as well as the effects of therapeutical approaches
such as neurostimulation [12], [38], [44], [45], [46], [48],
[54]. Overall, our choice of this model represented a balance
between computational feasibility and biological plausibility,
ensuring a representation realistic enough for the main purpose
of this study: investigating the feasibility of the intelligent
controllers.

In our study, the efficacy of the controller in suppressing
hypersynchronization was evaluated across different scenarios,
where epileptiform activity was induced using four distinct
strategies (modifications of various synaptic weights). In all
tested cases, the intelligent controller successfully returned the
Izhikevich network to an asynchronous pattern, indicating its
potential to provide improved solutions for closed-loop neu-
rotechnologies. This is particularly relevant because seizures
can vary significantly not only across epilepsies of different
etiologies but also between patients and even over time in the
same individual (e.g., during kindling processes). Therefore,
the present results support the use of intelligent controllers as
effective tools for managing this neurological disorder.

Additionally, two points regarding the controller should be
addressed. First, although the control scheme is continuous,
it should not be interpreted as a literal DC current, as this could
potentially cause neural tissue damage. Instead, it represents
a continuous effort to modulate excitability (either increas-
ing or decreasing), which can be achieved in real settings
through charge-balanced pulsatile stimulation. In this sense,
consolidated neurostimulation medical devices, such as those
used in DBS of the thalamus or VNS, employ stimulation
protocols that continuously alternate between ON and OFF
stimulation periods spanning many days, even weeks and even
months uninterruptedly. Yet, they provide safe and effective
treatment that is well tolerated by patients. Furthermore,
it is well established in the neurostimulation literature that
charge-balanced electrical stimulation of brain tissue, when
parameters are kept within safe ranges, poses no substantial
lesion risk, causes minimal to no adverse effects, and can even
improve neural function in some cases [55], [56], [57].

Secondly, it is important to consider the perspective that
algorithms for seizure detection and prediction [58], [59]
should be incorporated into controllers such as the one pre-
sented here for optimal functioning. While the latter is still

considered as an unresolved issue [60] when evaluated using
more rigorous statistical frameworks [61], [62], the former
has in fact been used in state-of-the-art seizure-suppressing
responsive neurotecnologies, such as RNS from Neuropace
(REF). Yet, this does not preclude the advantages of using
intelligent controllers. In this case, they may serve at least two
complementary objectives: a) as a detector to respond in real-
time to impending seizures and, b) as an optimizer to deliver
minimal efficacious levels of electrical stimulation. Further-
more, although not explicitly tested here, once the controller
output is directly dependent on the presence of epileptiform
spikes, it is plausible that stimuli intensity would be very low
or non-existent during inter-ictal (between seizures or during
absence of spikes) periods. Finally, one can choose more
sophisticated methods for the detection of abnormal neural
activity as the input of the controller, including those sensible
to very minor deviations from healthy neuronal dynamics,
maybe even putative seizure prediction algorithms. In these
cases, intelligent controllers such as the present one would be
optimal as they would respond with minimal intervention in
the form of preemptive stimulation capable of restoring healthy
oscillatory patterns and thus prevent seizures from even beg-
ging. In any case, such promising and intriguing technological
and scientific perspectives can be certainly pursued with the
employment of intelligent controllers.

Naturally, further studies are essential to more definitively
establish intelligent strategies such as ours as effective for
seizure control. For instance, refining the neural tissue and
ictogenesis models, as well as enhancing the interface model
for generating LFP signals and simulating stimulation effects,
would benefit interpretability while also enhancing biolog-
ical plausibility of simulations. Specifically, converting the
current quasi-continuous control signals into rhythmic pulsed
electrical stimulation is necessary to better replicate real
neurostimulation scenarios is crucial. Additionally, comparing
simulation results with clinical data and conducting preclinical
trials are natural and vital steps in this line of investigation.
These efforts are mandatory to validating the proposed control
strategies and ensuring their translational potential. As part of
our future plans, we aim to implement the enhanced controller
in animal models of epilepsy and evaluate its efficacy in
scenarios more closely aligned with clinical practice.
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