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Abstract: The objective and automatic detection of the sleep–wake cycle (SWC) stages is essential
for the investigation of its physiology and dysfunction. Here, we propose a machine learning
model for the classification of SWC stages based on the measurement of synchronization between
neural oscillations of different frequencies. Publicly available electrophysiological recordings of mice
were analyzed for the computation of phase–amplitude couplings, which were then supplied to a
multilayer perceptron (MLP). Firstly, we assessed the performance of several architectures, varying
among different input choices and numbers of neurons in the hidden layer. The top performing
architecture was then tested using distinct extrapolation strategies that would simulate applications
in a real lab setting. Although all the different choices of input data displayed high AUC values
(>0.85) for all the stages, the ones using larger input datasets performed significantly better. The top
performing architecture displayed high AUC values (>0.95) for all the extrapolation strategies, even
in the worst-case scenario in which the training with a single day and single animal was used to
classify the rest of the data. Overall, the results using multiple performance metrics indicate that the
usage of a basic MLP fed with highly descriptive features such as neural synchronization is enough
to efficiently classify SWC stages.

Keywords: slow-wave sleep; REM sleep; wakefulness; cross-frequency coupling; neural synchroniza-
tions; modulation index; multilayer perceptron; signal processing

1. Introduction

Historically considered merely a transient shutdown of brain activity, sleep is today
better understood in not only its intricate generation mechanisms [1] but also in its crucial
roles in supporting several different neural functions and homeostasis in general [2]. In
fact, the alternation of states that characterize the sleep–wake cycle (SWC) in a circadian
rhythmic pattern is the result of complex interactions of brain structures in multiple levels
of organization, from cellular and molecular to widespread neural circuits [3]. By its turn,
such a precise coordination of processes seems to be of uttermost importance to neuro-
chemical cleansing [4], to the maturation and development of neural tissue in newborns
and infants [5], and for memory consolidation in adults [6]. On the other side of the same
coin, sleep may be disrupted in neurological scenarios [7] and the deterioration of sleep
can induce neural dysfunction [8,9].

Each stage of the SWC displays distinctive overt behavior and neural activity signa-
tures, usually assessed by electromyography (EMG) and electroencephalography (EEG),
respectively. In a simplistic way, the SWC can be divided into three major stages. First, wake-
fulness (WK) is characterized by high-power EMG with desynchronized low-amplitude
EEG. By its turn, slow-wave sleep (SWS) features low EMG with synchronized high-
amplitude low-frequency EEG patterns. Finally, rapid eye movement sleep (REM) displays
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virtually flat EMG and low-amplitude EEG tracings, intercalated with synchronization
episodes in the theta frequency range. Importantly here, each of these different stages are
inherently correlated with distinct neurobiological processes, such as the differential roles
of SWS and REM in the consolidation of recently acquired memory traces [10–12].

For a proper assessment of the SWC and its relationship with brain function and dys-
function, it is thus of major importance to be able to characterize the rhythmic alternance
of its stages [13,14]. This is performed by detecting each of its stages in an objective and
reproducible manner. Even though there are clear guidelines for their recognition by expert
visual inspection of electrophysiological recordings [15], the process is very laborious,
tedious, and prone to errors due to subjectivity, fatigue, and bias. For this reason, differ-
ent automatic signal processing methods have been put forward by scholars in the field.
One pioneering work proposed and tested a method based on the automatic clustering of
points in a state map built from spectral content ratios, applied to the multi-channel local
field potential (LFP) recording of animals [16]. More recently, the application of machine
learning methods has become a major trend for sleep stage classification [17]. By also using
the spectral content of mice LFP and EMG power assessed by the mean-covariance re-
stricted Boltzmann machine approach, Katsageorgiou and collaborators were able to detect
SWC stages, including NREM substages, while observing important differences across
different genetic backgrounds [18]. Huang and collaborators employed a support vector
machine over a collection of signal features pre-screened from a set of 62 measurements
extracted from time and frequency domains and of a non-linear nature [19]. Finally, convo-
lutional neural networks have been applied to EMG and LFP signals, previously z-scored
according to a novel proposal, in the work of Barger et al., 2019 [20]. The authors observed
good agreement between automatic and expert classification while also incorporating the
algorithm into an open-source toolbox named Accusleep.

Although representing valid contributions to automatic SWC staging, complex topologies
of artificial neural networks (ANNs) yield no more than marginal improvements while requiring
considerably higher computational resources and impairing neurobiological interpretability [21].
A more rational approach to this problem could be the usage of simpler machine learning models
applied to more descriptive electrographic features. Among them, neural synchronization has
been extensively described as a direct correlate of brain states and processes [22–24], including
sleep [25] and its disorders [26]. For instance, an assessment of cross-frequency coupling
(CFC), which is a measurement of the driving force between neural circuits or substrates
oscillating at different frequencies [27–29], has proven to be very insightful in investigations of
neuroplasticity [30] and visual binding [31] and in neurological disorders [32–34].

Based on this rationale, in this work, we assessed the possibility and the convenience
of an SWC stage detection strategy by using a multilayer perceptron (MLP) trained and
tested with a CFC measurement, the phase–amplitude coupling values (PAC). For this, the
performance of different MLP architectures were objectively assessed by means of the re-
ceiver operating characteristic (ROC). Then, the top performing model was further assessed
with multiple performance metrics in its application in the extrapolation of classifications,
which simulates scenarios in an electrophysiology lab. We found that employing a basic
MLP model supplied with detailed features, such as neural synchronization, is sufficient for
accurately categorizing SWC stages in experimental conditions. We feel that our proposed
approach opens new avenues of neurobiological investigation considering the importance
of cross-frequency coupling for brain function. Particularly, it can enable the insightful
interpretation of probable disturbances to be observed in neurological disorders.

2. Material and Methods
2.1. Signal Database, Surgery, and Electrophysiological Recordings

This study employed data obtained from in vivo experiments conducted in mice and
made publicly available, as documented in the research by [20]. Briefly, 10 adult C57BL/6 mice
(10–20 weeks old) were housed on a 12 h dark/12 h light cycle. For the EEG and EMG record-
ings, a reference screw was surgically implanted into the cranium, specifically positioned
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on the top of the right cerebellum. The EEG signals were then captured using two screws
positioned on the left and right cortex, located at coordinates anteroposterior –3.5 mm and
medio-lateral +/−3 mm, respectively. For each mouse, 4 h long recordings were collected
on 5 different consecutive days. The signals were acquired using a flexible recording cable
that was connected to a pin header through a mini-connector. These signals were then am-
plified using an Intan RHD-2132 headstage amplifier (bandpass filter, 1–500 Hz; sampling
rate, 1000 Hz; Intan Technologies, LLC—Los Angeles, CA, USA). All the recordings from this
database were annotated with expert classification of the SWC stages, which was used here to
evaluate our approach. All the experiments with animals were approved by the Animal Care
and Use Committee at the University of California, Berkeley.

2.2. PAC Computation by Modulation Index and Comodulograms

The phase–amplitude coupling (PAC) was quantified using the modulation index (MI),
which essentially measures the amount in which the amplitude of a higher-frequency oscil-
lation is modulated by the phase of a slower oscillation, following a methodology detailed
elsewhere [29]. Briefly, the LFPs were subjected to finite impulse response (FIR) bandpass
filtering in both the forward and reverse directions using the “eegfilt” function in Matlab®

2023b to separate the LFPs into the low- and high-frequency bands of interest while also
ensuring the elimination of phase distortion. Subsequently, the instantaneous phase of the
low-frequency component was obtained, and the amplitude of the high-frequency oscilla-
tion was computed using the Hilbert transform. Afterward, a histogram of amplitudes of
the high-frequency oscillation falling within the phase bins (N = 18, each spanning 20◦) of
the low-frequency oscillation was built. The resulting histogram/distribution P was then
compared against a uniform distribution U, by means of applying the Kullback–Leibler
distance (DKL), defined in general form by:

DkL(P, Q) =
N

∑
j=1

P(j)log

 P(j)

Q
( .

j
)


where Q is any distribution. The distance was then normalized to obtain MI by:

MI =
DkL(P, U)

log(N)

Multiple values of the MI using many combinations of low- and high-frequency pairs
were then computed to create the comodulograms. Twenty frequency bands for the phase
(1–20 Hz, 1 Hz increments, and 1 Hz bandwidth) and forty frequency bands for the ampli-
tude (5–200 Hz, 5 Hz increments, and 10 Hz bandwidth), amounting to 800 values, were
considered for the different forms of input data construction (Section 2.4). These discrete
frequency vectors were deliberately adopted to ascertain an optimal balance between
capturing potential PAC patterns and mitigating unnecessary computational burden. By
focusing on this targeted frequency range, we were able to discern the salient features
pertaining to the PAC while minimizing the impact of irrelevant oscillatory components
that did not add significant informational value. A comodulogram was computed for each
one of the 480 available consecutive 30 s segments (a total of 240 min), without temporal
overlap, of the LFP spanning the entire 4 h long recording period.

2.3. Multilayer Perceptron Artificial Neural Network

A feedforward multiclass neural network known as the multilayer perceptron (MLP)
was used in this work to classify the sleep stages, namely, WK, SWS, and REM, based on
the information extracted from the set of MI values (Figure 1B). The MLP architecture was
shallow and comprised three layers: input, hidden, and output. The input layer receives
features extracted from the set of MI values (or PAC patterns), while the hidden layer performs
computations and transformations to learn complex relationships within the data. The output
layer yields the final predictions as binary classifiers of each stage based on the learned
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representations from the preceding layers. Thus, the number of neurons in the output layer
was always three, one for each of the stages of interest, while the number of input and hidden
neurons varied in search of the best architecture. The number of input neurons depended on
the choice of the input dataset (see Section 2.4.1). To determine the number of neurons in the
hidden layer, empirically established guidelines were considered. The widely employed rule
of thumb for this case suggests that the optimal size of the hidden layer typically lies between
the dimensions of the input and output layers (Figure 1B, but see Section 2.4 for more details).
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Figure 1. The experimental design: an assessment of the network architectures was performed in
phase 1 of the experiments, which is depicted in panels A to C, and simulation of the application of
the network with novel data with decreasing ratios of the train to test dataset extrapolations were
performed in phase 2, depicted in panel D. (A) The input data: four different protocols were used
for the construction of the input data, frequency points, frequency ranges, full comodulogram, and
first (1–10 Hz) half of the comodulogram (left panels); the values were computed for each 30 s time
window for all the animals and all the days and, thus, the input data were N (MI values) × 480 (time
windows) × 10 (animals) × 5 days. (B) The multilayer perceptron (MLP) architecture consisted of an
input layer (number of neurons equals to number of MI values), a hidden layer (number of neurons
varied), and an output layer with three neurons, one for each sleep stage. (C) The ROC curve for
all possible combinations of inputs and networks were computed and the AUC values obtained to
determine the best performing choice. (D) Using the best performing network architecture, four
different extrapolation strategies were tested in order to simulate usage in a lab scenario, from left to
right: train with 70% and test 30% of the dataset; train with the first day of all the animals to test on
all the other days; train with all the days of the first animal and test with all the other animals; and
train with one day of one animal to test on the rest of the dataset.

For training the network, information was processed using the logistic sigmoid activation
function in the hidden-layer neurons and the softmax activation function was employed in
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the neurons of the outer layer to generate the final output. As a shallow network, issues
like gradient vanishing are unlikely to occur and thus more sophisticated (and complex)
algorithms such as ReLU (Rectified Linear Unit) are not needed. The error obtained at each
parsing of the data was then used to update the network’s weights using the scaled conjugate
gradient (SCG) algorithm. This algorithm, a second-order optimization method, was chosen
due to its efficiency in handling large-scale machine learning problems [35–37]. Here, the
SCG optimized the Binary Cross-Entropy loss function, which is highly applicable to multi-
label classification problems such as this. It is also the default when using Matlab® 2023b
libraries. A total of 1000 epochs were employed in the training process to ensure adequate
learning while preventing overfitting. To keep the method very straightforward, we also
did not implement hyperparameter regularization procedures. The MLP was trained in
batches, meaning that the neural network is presented with the entire training dataset at once
and its weights are updated after each epoch. Batch training can be a beneficial approach,
when the pertinent information necessary for making accurate predictions is consistently
distributed across the entire dataset and there are sufficient computational resources available
to process it simultaneously. Finally, in our dataset, the class distribution was roughly 6:3:1
(SWS:WK:REM). While this indicates some degree of imbalance, it is not severe enough to
warrant specific algorithmic adjustments, such as resampling or cost-sensitive learning. In
any case, we were able to assess the impact of this imbalance by computing multiple different
metrics of network performance (see Section 2.4).

2.4. Experimental Design

The experiments performed with the MLP can be divided into two phases: (1) testing
different combinations of network architecture, i.e., the number of neurons in the hidden
layer and protocols for construction of the input dataset, in order to define the best per-
forming method (Figure 1A–C) and (2) using the best method to test the classification of
the SWC stages with new data in a simulation of the usage in real lab settings (Figure 1D).

2.4.1. Phase 1: Search for the Best MLP Architecture

The four different protocols used for the construction of the input data (Figure 1A left)
were as follows:

• Protocol 1 or frequency points: The input layer comprised six neurons, each corre-
sponding to MI values of specific frequency pairs that are of general neurobiological
relevance, sleep function included (Table 1). These pairs of frequency values were
defined on the basis of past literature, including a previous study of the group.

• Protocol 2 or frequency ranges: Analogous to protocol 1, but instead of using single
MI values for each frequency pair, narrow bands centered around the values of Table 1
were used. For this protocol, all the MI values inside each band were averaged, thus
also resulting in 6 data points.

• Protocol 3 or full comodulogram: The whole comodulogram was incorporated as the
data input, encompassing not only the previously mentioned frequency pairs but the
entire spectrum of calculated cross-frequency couplings.

• Protocol 4 or half comodulogram: The same as protocol 3 but, instead of the whole
comodulogram, only its first (left) half (0–10 Hz in the horizontal axis) was used.

The set of MI values (PAC patterns) representing each 30 s signal window was concate-
nated into a single column so that the input consisted of a matrix in which each line was the
MI values and each column represented a PAC pattern of a 30 s time window (Figure 1A right).
This resulted in 6 × 480 matrices for protocols 1 and 2, 800 × 480 matrices for protocol 3,
and 400 × 480 matrices for protocol 4. The PAC patterns of the entire recordings (all mice
and all days) were used. In this phase, the data were always standardized (z-scored) and,
subsequently, they were randomly divided into training (70%) and testing (30%) sets.

For each one of the four protocols, each possible network architecture, i.e., with the
number of neurons in the hidden layer varying from 3 (number of output layer neurons)
to the maximum number considered (equals the number of neurons in the input layer, 6,
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400, or 800) was tested in multiple proofs (10 simulations). In protocols 3 and 4, to improve
the computation time, we used different step sizes for different ranges of the number of
neurons in the hidden layer (see Figure 2). In this first experimental phase, the performance
of each MLP architecture and input protocol was assessed using the area under the ROC
curve (AUC) calculated for each output (Figure 1C) of all possible architectures. Here, the
reported results refer only to the testing part of the dataset. The MLP with the highest
average (across the distinct sleep stages) AUC value among all the proofs and stages was
chosen as the best network for the second phase of the experiments.

Table 1. Pairs of frequencies assessed by PAC.

Identifier Frequency Used for
Phase (Low)

Frequency Used for
Amplitude (High)

A Theta (7.5 Hz) High gamma (140 Hz)
B Theta (7.5 Hz) Low gamma (70 Hz)
C Slow wave (1 Hz) Theta (11 Hz)
D Theta (11 Hz) Low gamma (70 Hz)
E Delta (2.5 Hz) Theta (11 Hz)
F Slow wave (1 Hz) Higher gamma (200 Hz)

2.4.2. Phase 2: Testing the Best Architecture in a Simulation of a Lab Scenario

After the best combination of the number of hidden layer neurons and the input con-
struction protocol was detected (best architecture), the second phase of experiments was
performed. Here, the optimal neural network was evaluated in its capability of correctly
classifying novel data in scenarios that mimic a real lab setting (Figure 1D). Four different
strategies were employed, simulating different dimensions and increasing levels of extrapo-
lation, in which the ratio of the train dataset to the test dataset was progressively lower. Of
particular importance here, the network was tested for extrapolation across the dimensions
of multiple days of recording, multiple animals, or both. The extrapolation strategies were
thus (Figure 1D from left to right):

• Strategy 1: train on 70% of all the data; test on the remaining 30%.
• Strategy 2: train on all the animals of day 1; test on all the remaining days.
• Strategy 3: train on all the days of a single animal; test on all the other animals.
• Strategy 4: train on a single animal in a single day; test on all the other animals on all

the other days.

The first strategy is the same as the one used in the experiments of phase 1 but detailed for
the best architecture, with the values per animal and per day, and with additional metrics (see
below). Again, the reported results refer to the testing data only. Conversely, the performance
values for strategies 2, 3, and 4 refer to the full dataset. Not only does this better simulate an
application of the model in real situations from the lab but also the train part of the dataset in
these cases is small (20%, 10%, and 2%, respectively). Finally, in the last strategy, we varied
the single animal used for training to assess the possible variability across this dimension.

To fully assess model performance and its generalization capacity, in phase 2, we
measured not only the AUC but also several metrics from the confusion matrices, including
the precision, sensitivity, specificity, accuracy, and F1-score. The ground truth used here was
always the sleep classification information annotated by experts in the original database
study [20]. We used Matlab® 2023b machine learning toolboxes for creating, training, and
testing the model. The code is freely available on the internet at https://github.com/
vrcota/PAC-MLP (accessed on 8 May 2024).

2.4.3. Statistical Analysis

The AUC results of both phase 1 and phase 2 were assessed for their normality by
using the Kolmorogov–Smirnov test and for its statistical significance by one-way analysis
of variance followed by the Tukey post hoc test for pairwise comparison. In all cases,
p < 0.05 was adopted for the significance level.

https://github.com/vrcota/PAC-MLP
https://github.com/vrcota/PAC-MLP
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Figure 2. An assessment of the different network architectures. Each column represents one of the
four different protocols for the construction of the input dataset: (A) Protocol 1, frequency points;
(B) protocol 2, frequency ranges; (D) protocol 3, full comodulogram, and (C) protocol 4, first half of
the comodulogram. The curves of the top four rows depict the variation in the AUC values with
the number of neurons in the hidden layer, with the average across the proofs in dark color and the
dispersion (s.e.m.) across the many proofs being depicted in the background shadow of the same
color in a lighter hue. From top to bottom: WK in green, SWS in red, REM in blue, and ALL stages in
black (this color convention is used for all the figures). For protocol 3, the ticks of the horizontal axis
are not uniformly spaced given the different step sizes: step equal to 1 from 3 up to 49, step equal
to 2 from 50 up to 98, step equal to 5 from 100 up to 195, step equal to 10 from 200 up to 490, and
step equal to 25 from 500 up to 800. For protocol 4, we followed the same procedure as for protocol 3
but set the axis range up to 400. The bottom row depicts the ROC curves for the binary classification
of each stage for the optimal number of neurons in the hidden layer: 6, 6, 35, and 15 (indicated as a
vertical red dotted line in the fourth-row panels), for protocols 1 to 4, respectively.
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3. Results
3.1. Top Performing MLP Architectures Are Obtained by Using Full or Half of the Comodulogram

The performance obtained by all the architectures in the first phase of the experiments
are depicted in Figure 2. The AUC values are highly constant (with the variability almost
always lower than 2%) in protocols 1 and 2 but vary considerably in the extremities in
protocols 3 and 4, especially for the REM stage. Moreover, while the first two show an
apparently uniform increase in the AUC values with the increase in the number of neurons,
protocols 3 and 4 display a bell-shaped curve in this relationship. The maximum AUC
values were thus obtained using 6, 6, 35, and 15 neurons in the hidden layer for protocols 1,
2, 3, and 4, respectively. For protocols 3 and 4, the maximum AUC values were extracted
within the stable region of the AUC curves. After detecting the best network of the best
architecture for each protocol (with the above-mentioned number of neurons in the hidden
layer), the ROC curves and final AUC values were computed (Figure 2, bottom row). All of
them are clearly above chance (AUC values > 0.85 always).

The AUC values encompassing all the stages were 0.884, 0.885, 0.979, and 0.982 for protocols
1 to 4, respectively. The architectures using larger portions of the comodulogram (full or half),
and not only pairs of frequency of known neurobiological relevance, performed significantly
better for all the stages (Figure 3). Interestingly, while the AUC values for REM were the same
(no statistical difference)—and always high—across the different protocols, those for SWS and
WK were considerably higher when using more of the comodulogram. Furthermore, for both
the SWS and ALL cases, the performances obtained by using the half comodulogram were
even significantly superior to the full comodulogram, even with a small difference (SWS: 0.971
versus 0.978; ALL: 0.979 versus 0.982). Finally, the AUC values for the REM stage were always
considerably higher when compared to those of both SWS and WK, as it can be seen by the blue
curves always occupying the top left-most portion of the ROC graphs (Figure 2).
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Figure 3. A comparison of classification performance between the four different protocols of the input
data construction for WK (green; top left), SWS (red; top right), REM (blue; bottom left), and ALL (black;
bottom right). Protocols using more of the comodulogram performed significantly better than those
using only well-established frequency pairs described in the literature. Curiously, using only half the
comodulogram performed even better than using its entirety, in the cases of SWS and ALL, even though
only slightly. Using the one-way ANOVA and post hoc Tukey, the resulting statistics were as follows (mean
± s.e.m.): WK) points: 0.823 ± 0.001; ranges: 0.819 ± 0.001; full: 0.972 ± 0.001; and half: 0.974 ± 0.001
(difference a–b: p < 0.0001). SWS) points: 0.841 ± 0.001; ranges: 0.851 ± 0.001; full: 0.971 ± 0.001; and half:
0.978 ± 0.001 (differences a–b, a–c, a–d, b–c, and b–d: p < 0.0001; difference c–d: p < 0.001). REM) points:
0.988 ± 0.001; ranges: 0.984 ± 0.001; full: 0.994 ± 0.001; and half: 0.996 ± 0.001 (differences a–b, a–c, and
b–c: p < 0.0001). ALL) points: 0.884 ± 0.001; ranges: 0.885 ± 0.001; full: 0.979 ± 0.001; and half: 0.982 ± 0.001
(differences a–b and a–c: p < 0.0001; b: p < 0.0001; and difference b–c: p < 0.05). The boxplots display the
median and 25th and 75th percentiles in the main box; the whiskers depict the extremities of the data.
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3.2. Top Performing Network of Protocol 4 Extrapolates Well across Animals and/or Days
of Experiment

For the second phase of experiments, we chose the architecture using protocol 4
(first (left) half of the comodulogram; 1–10 Hz) for the input dataset with 15 neurons in the
hidden layer, as it was the best performing one. The results obtained for the four extrapola-
tion strategies are depicted in Figures 4–8, in the same sequence as shown in Figure 1D. In
every case, the performance of the chosen architecture across all the testing scenarios was
always above 0.9. In the first extrapolation strategy, with a random division of 70%/30%
train and test data, the AUC values were always above 0.95, with REM showing the highest
values, and without noticeable variation across the different days (Figure 4). The global
accuracy in this first assessment was 0.924 (Table 2).

Table 2. Global accuracy for all extrapolation strategies.

Accuracy

Strategy 1 0.924
Strategy 2 0.920
Strategy 3 0.898

Strategy 4—best 0.879
Strategy 4—worst 0.864

The same goes for extrapolating the training of one day (day 1), all animals, to classify
the other days: the AUC remained high (>0.95) with a slight decrease as the days passed
(Figure 5). The global accuracy here was 0.920 (Table 2).

The AUC values are also high when there is an extrapolation from one animal (ani-
mal 1), all days, to the others (Figure 6). Although the variability in the results is higher, the
average AUC values were always higher than 0.94. The global accuracy was 0.898 (Table 2).

Even in the most demanding scenario, in which the network trained on a single day of
a single animal is used to classify the rest of the dataset, the AUC values remained over
0.9 and without noticeable variation across the days (Figure 7), particularly for the case of
REM. This applies to the extrapolations using both the best and worst animal in the dataset.
The accuracies in strategy 4 were 0.879 and 0.864 for the best and worst cases, respectively
(Table 2).

When all the strategies are compared against each other, it becomes clear that the per-
formance decreases from the least (strategy 1) to the most demanding scenario (strategy 4)
in a statistically significant way (Figure 8). Moreover, in strategy 4, the extrapolation using
the worst animal (10; lowest prediction average in panel A) performs statistically worse
than using the best one (7; highest prediction average in panel A). Here, again, the REM
stage seems to be the least affected by the strategy choice.

Finally, Tables 3–5 below show, respectively, the results for the precision, recall, and F1-
score for all the extrapolation strategies. Overall, all these metrics were also high, typically
over 0.9 for SWS or 0.8 for WK, while REM shows both high and a couple of moderate
values in the most demanding scenarios. The global average of all the values is 0.88.

The confusion matrices and the complete set of its derived metrics for all the strategies
can be found in Figures S1–S5 and Tables S1–S5 of the Supplementary Materials. Graph
versions of Tables 3–5 can be found in Figures S6–S8 of the Supplementary Materials.

Table 3. Precision values for all extrapolation strategies.

WK SWS REM

Strategy 1 0.876 0.936 0.965
Strategy 2 0.912 0.928 0.897
Strategy 3 0.910 0.914 0.793

Strategy 4—best 0.827 0.901 0.923
Strategy 4—worst 0.871 0.920 0.649
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Figure 5. Extrapolation strategy 2. Training with the first day of all the animals also resulted in high
AUC values (>0.95) for the classification of stages in the other days, with small variability: (A) WK;
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stage was shown to be particularly optimal considering both the high AUC values and low variability.
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variability: (A) WK; (B) SWS; (C) REM, and (D) ALL. Considering that here our interest is to see the 
extrapolation across the dimension of the different animals, the AUC values were averaged for each 
animal across all days. Thus, in this figure, each row represents a sleep stage. The left column panels 
depict each AUC value for each animal and each day as a color-coded scheme (see the lateral bar for 
scale). The right column shows the average across all the days for each one of the ten animals in the 
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lighter hue. Once more, the classification of the REM stage was shown to be particularly optimal in 
terms of the AUC value. 

Figure 6. Extrapolation strategy 3. Training with all the days of the first animal resulted in high AUC
values for the classification of the stages in the other animals, still with considerably small variability:
(A) WK; (B) SWS; (C) REM, and (D) ALL. Considering that here our interest is to see the extrapolation
across the dimension of the different animals, the AUC values were averaged for each animal across
all days. Thus, in this figure, each row represents a sleep stage. The left column panels depict each
AUC value for each animal and each day as a color-coded scheme (see the lateral bar for scale). The
right column shows the average across all the days for each one of the ten animals in the dataset with
the variability (s.e.m.) being depicted in the background shadow of the same color in a lighter hue.
Once more, the classification of the REM stage was shown to be particularly optimal in terms of the
AUC value.
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Figure 7. Extrapolation strategy 4. Training with a single animal and single day and testing on the
rest of the dataset, the most demanding scenario, also resulted in high average AUC values across the
days. (A) The color-coded panel on the left depicts the overall classification performances using all
possible pairs of animals used for training and for testing. Each row is one animal used for training
and each column is an animal used for testing. From this panel, the best performing animal (animal 7:
the one that better predicted the others with a higher AUC on average; highest row-wise mean) and
the worst performing animal (animal 10: the one that predicted the others with a lower AUC on
average; lowest row-wise mean) were extracted. (B–E) The classification results using the best animal
for each stage, including the individualized AUC (top row) and AUC averages for all the animals
for each of the five days (bottom row). (F–I) Analogously to panels B–E, the classifications using the
worst animal. Equal to the previous results, the REM stage displayed the highest performances and
smaller variability.

Table 4. Sensitivity (recall) values for all extrapolation strategies.

WK SWS REM

Strategy 1 0.878 0.950 0.890
Strategy 2 0.856 0.951 0.935
Strategy 3 0.789 0.951 0.924

Strategy 4—best 0.867 0.925 0.668
Strategy 4—worst 0.713 0.929 0.952
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Table 5. F1-score values for all extrapolation strategies.

WK SWS REM

Strategy 1 0.877 0.943 0.926
Strategy 2 0.883 0.940 0.916
Strategy 3 0.845 0.932 0.853

Strategy 4—best 0.846 0.913 0.775
Strategy 4—worst 0.784 0.924 0.772
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Figure 8. The classification performance decreases significantly as the extrapolation strategy becomes
more demanding, in which the training data represent less of the total dataset. Using the one-way
ANOVA and post hoc Tukey, the resulting statistics were as follows (mean ± s.e.m.): WK) strategy
1: 0.976 ± 0.005; strategy 2: 0.973 ± 0.005; strategy 3: 0.960 ± 0.005; strategy 4: 0.955 ± 0.005; and
strategy 5: 0.937 ± 0.005 (differences a–bc and a–c: p < 0.05). SWS) strategy 1: 0.981 ± 0.002; strategy
2: 0.979 ± 0.002; strategy 3: 0.972 ± 0.002; strategy 4: 0.965 ± 0.002; and strategy 5: 0.967 ± 0.002
(differences a–bcd: p < 0.05; differences a–cd, a–d, and ab–cd: p < 0.0001; and differences ab–d:
p < 0.001). REM) strategy 1: 0.997 ± 0.002; strategy 2: 0.998 ± 0.002; strategy 3: 0.997 ± 0.002;
strategy 4: 0.990 ± 0.002; and strategy 5: 0.988 ± 0.002 (difference a–b: 0.05). ALL) strategy 1:
0.985 ± 0.003; strategy 2: 0.983 ± 0.003; strategy 3: 0.976 ± 0.003; strategy 4: 0.970 ± 0.003; and
strategy 5: 0.964 ± 0.003 (differences: a–bc and ab–c: 0.01; and difference a–c: 0.0001). The boxplots
display the median and 25th and 75th percentiles in the main box; the whiskers depict the extremities
of the data; and the outliers are displayed as red + symbols.

4. Discussion

The objective and automatic detection of sleep stages is of paramount importance
in its neuroscientific investigation and several different algorithms exist for this purpose.
Instead of using computationally heavy and complex machine learning models, here we
implemented and tested a simple and straightforward MLP network topology, which was
trained and tested using conventional algorithms and with a very meaningful electro-
graphic biomarker, the phase–amplitude coupling (PAC) between oscillations of different
frequencies. The results of phase 1, designed to test different protocols of input data usage
and to find the optimal number of hidden neurons, showed that such an approach can yield
good to excellent overall performances, as assessed by the AUC metric (Figure 2). Protocols
that use more data from the comodulogram (protocols 3 and 4, full or half comodulograms,
respectively) displayed significantly improved performances, with AUC values around
0.98. Moreover, the results from multiple metrics of phase 2, which was designed to assess



Appl. Sci. 2024, 14, 5816 14 of 18

the applicability of the network in a simulation of usage in the electrophysiology lab,
indicate that the network architecture with the highest AUC values for the present data
(half comodulogram input and 15 neurons in the hidden layer) can also perform well in
extrapolations across different days (Figure 5), different animals (Figure 6), or even in the
most demanding scenario in which data from a single animal in a single day can be used to
classify the rest of the dataset (Figure 7). Yet, some caution is advised in these situations
(see more on this further down the text).

Regarding the different choices of input (protocols 1 to 4), the usage of only the
PAC values described as highly important for sleep phenomena in the literature (Table 1;
protocols 1 and 2) were enough to classify all the stages reasonably well, at least as assessed
by the AUC values only (Figure 2). On the other hand, it was somehow expected that the
network architectures would perform significantly better when fed with more input values,
i.e., whole or half comodulograms instead of frequency points or ranges, which happened
(Figure 3). This suggests that, although the PAC between such frequency pairs does have a
profound relationship with SWC oscillatory phenomena, they do not describe it completely,
being more important to the REM stage, specifically. Conversely, the values of the PAC
synchronization across other frequency pairs seem to be needed for optimal classification.
Curiously, the usage of just the first half of the comodulogram yielded significantly better
classification than the usage of the whole comodulogram, although only slightly. In our
understanding, this is a compelling result in support of smart choices of input datasets and
that brute force options are not always the solution. Not only do bigger datasets imply
computationally heavier models, but they do not necessarily yield improved performance.
Indirectly, this also supports the concept of “garbage in, garbage out” in signal processing
and machine learning, which can be translated here as no matter how powerful one’s
network is, no good classification will be attained if the data are poor in their relevance to
the brain process under investigation.

In the same vein, the present findings showed that the number of neurons in the
hidden layer must be chosen with care in these applications. While simpler input protocols
performed better with the maximum number, this was not the case for the more complex
choices. Not only was the average performance lower with the maximum values but also
performance was unstable as shown by the high variability across distinct runs in this
extremity. The same happened in the lower extremity. In fact, for these protocols, there
seems to be a narrower middle range in which the model is stable. Importantly, such range
also yields the highest AUC values. For protocol 3, the range is between 15 and 60 neurons,
and for protocol 4, it is between 6 and 70 neurons. Curiously, REM seems to be the most
susceptible stage, showing greater variations in the extremities and the narrowest range of
stable AUC values (in comparison with SWS for instance). The reasons for this behavior
are unclear but may be related to the fact that REM is the class with the smaller number of
samples in the dataset.

Overall, the results from phase 2 showed that, by using protocol 4 with 15 neurons
in the hidden layer, experimenters can train the network on a small subset of the data to
confidently classify the rest of it. In fact, all the extrapolation strategies tested here with
this architecture, which are relatable to applications in the lab setting, typically yielded
good performances that did not vary substantially in any of the dimensions tested, either
across the days of experiments (Figures 4, 5 and 7) nor the different animals (Figure 6). As
expected, the values of all the metrics dropped as less of the original dataset was used for
training the network (Figure 8 and Tables 3–5). Yet, even in the worst-case scenario, in which
the network is trained on data from a single day of the worst predicting animal, the average
performance is still an over 0.95 AUC value. On the other hand, the F1-scores in both cases
(best and worst animals) of strategy 4 were not as high, around 0.77 (Table 5). Interestingly,
the results suggest that the generalizability of the training from a single animal and single
day can be impaired in different ways, in which the precision or recall can be lower (see
Tables 3 and 4). Of course, the acceptable level and type of error must be previously defined
by potential users, so one can properly choose the strategy to be adopted. Naturally, if
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very high overall performance is required, initial labor-intensive work of annotating larger
portions of the data by expert inspection will be needed, impairing automation aspects.
Even more, it is recommendable that the approach is validated once again on an initial
annotated dataset for each new application, including searching for the optimal architecture
(steps of phase 1). This will certainly maximize the performance metrics. Conversely, if
users are more interested in detecting only majority classes (e.g., SWS), or if specificity
is much more important than any other criteria, future users can safely adopt strategies
requiring training on a small subset of the data.

It is important to highlight that the electrographic data used in this study are very
homogeneous, once they were collected using the very same recording parameters, with
the same electrophysiology setup and experimental protocol. Although not tested here, it is
very plausible that changes in these factors between the training and testing datasets may
strongly impact performance, yielding misclassifications. Particularly, it is expected that the
type and anatomical position of electrodes will have a major influence in the PAC values
captured, as they will be able to or not properly capture important oscillatory content
related to the SWC. For instance, detection of the REM stage in rats by the usage of spectral
state maps is heavily influenced by the presence or not of electrodes in the hippocampus [16]
due to the important hippocampal theta oscillation. In the same vein, another aspect of
major importance may be animal species and, hence, brain functional anatomy. Thus, in
our understanding, a network trained in one experiment should never be used to classify
data from a different one. Furthermore, and given the small differences between using
a half or full comodulogram, new applications of this approach may consider using the
full spectrum to avoid the risk of not capturing important cross-frequency couplings that
did not matter here. Finally, the performance of the network may also depend on the
quality and consistency of the recordings across animals and days. For instance, if the
signal quality decays or varies too much as the days go by, as usually happens in very long
experiments, it is expected that the classification will fail. On the other hand, it is notable
that the high values of the performance metrics in this study were obtained from single-
channel electrocorticogram recordings only (we did not use the EMG signals available in
the database). This represents a simplified experimental protocol for the surgical implant
of electrodes and recordings. Thus, if problems are expected to happen, experimenters
can overcome them by adopting more robust recording strategies, which include EMG
and/or multiple channels of electroencephalographic recordings. This is evidence that the
approach may work well for practical purposes in neuroscientific investigation.

In our understanding, the good overall performance of the model corroborates our
central argument that a straightforward network can efficiently classify SWC stages if the
input data contain relevant neurobiological information. The fact that a shallow network,
as the one implemented here, is enough has intrinsic technical and scientific value by itself.
Yet, it is important to recognize that the model proposed here could be improved even
without the need for deep learning architectures nor incurring considerable additional
computational costs. Particularly, it seems that the network performance was impacted to
some extent by not properly dealing with imbalanced data. In fact, the F1-scores were lower
for the minority class REM stage, especially in the most demanding extrapolation strategy
(Table 5; F1 around 0.77). Curiously, while training with the best animal (with the highest
AUC values) showed good precision (0.923) and moderate sensitivity (0.668), the worst
animal was the other way around, with moderate precision (0.649) but good recall (0.952).
From the point of view of the F1-score, they were equivalent (0.775 and 0.772). Thus, it is
plausible that the adoption of additional steps aimed at mitigating data imbalances (e.g.,
resampling or cost-sensitive learning) might yield improved performance. From the point
of view of sleep neurobiology though, REM is usually considered the most “elusive” of the
stages and different SWC staging methods can fail in properly detecting it. For instance,
the REM cluster in spectral state spaces will certainly overlap the much more frequent WK
cluster if the electrographic recording fails to capture enough hippocampal theta, which
can happen when only intracortical microwire electrodes are used [16]. The resemblance
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between WK and REM electrographical signatures is one of the reasons that the latter
is many times called paradoxical sleep. Furthermore, we did not employ regularization
techniques (e.g., dropout), as the performance metrics (F1-score, precision, and recall)
indicated that overfitting was not a significant issue in our shallow network configuration.
However, we acknowledge the potential benefits of these techniques and suggest their
exploration in future work. Regarding signal processing, one limitation of the approach
presented here is that the calculation of the MI and of comodulograms in general may be
computationally intensive. This is largely due to the chosen algorithm, which was selected
for its significance in the neuroscientific literature of memory and plasticity. However,
alternative methods for computing PAC could be considered, such as those that do not
require the creation of phase–amplitude distributions and calculations of distances to
uniform patterns [38].

Overall, all this rationale, properly supported by the current findings, makes the case
that the usage of neurobiologically relevant features can represent game changers when
applying machine learning tools to analyze neural data in lab settings. In general, the
network is expected to perform well when tested with brand new data, given that some
consistency is granted. In the same vein, it is exactly the usage of highly interpretable
features that can make approaches such as this one useful in the context of perturbations
of the SWC neurodynamic. What would it mean if, in the case of a certain type of neural
dysfunction animal model, different methods of SWC staging stopped agreeing? For
instance, what would it mean if a Boltzmann machine strategy identifies WK, but a PAC-
based method identifies SWS? That could be interpreted as an electrophysiologically
dysfunctional brain state in which the animal is awake but with a brain synchronization
typical of slow-wave sleep. This kind of valuable finding has been reported in the past
(Dzirasa, 2006) [14] but largely depended on the visual inspection of an expert.

Finally, there has been some fruitful debate about the possibility that artificial intel-
ligence and machine learning techniques would substitute signal processing [39]. There
are no doubts of the wonders achieved by the new technologies, such as convolutional
neural networks, deep learning, and the very hyped Large Language Models, in many
areas of applied sciences and engineering. Yet, in the opinion of the authors, supported also
by the present results, in-depth knowledge of the mechanisms underlying the processes
of interest—the sleep–wake cycle in our case—helps with devising simple models with
not only great performance but also yielding improved interpretability with reasonable
computational cost. Again, the fact that the architecture that uses only the first half of
the comodulogram is even better than the one using all of it is a strong argument in this
sense. In basic sciences, in which understanding the phenomenon is the most important
aspect, such due balance between well-informed machine learning approaches and signal
processing is indispensable.

5. Conclusions

In this study, we showed that a shallow and straightforward neural network model can
efficiently classify the stages of the sleep–wake cycle of animals from electrocorticograms.
Instead of adopting computationally heavy deep models, the network was fed with an
electrographic biomarker of improved neurobiological relevance, with phase–amplitude
coupling between oscillations of different frequencies. Obtaining high-performance values
comparable to other different strategies from the literature has intrinsic methodological
and scientific value. Furthermore, it corroborates the central argument here that the usage
of biologically relevant features in biomedical applications of machine learning tools is
at least as important as network topologies and learning algorithms. By doing this, we
believe that this manuscript contributes to the important debate of signal processing and
artificial intelligence for neuroscience.
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