

Nonperiodic stimulation for the treatment of refractory epilepsy: Applications, mechanisms, and novel insights

Vinícius Rosa Cota ^{a,*}, Jasiara Carla de Oliveira ^a, Laila Cristina Moreira Damázio ^{a,b}, Márcio Flávio Dutra Moraes ^c

^a Laboratório Interdisciplinar de Neuroengenharia e Neurociências (LINNce), Departamento de Engenharia Elétrica, Universidade Federal de São João Del-Rei, Praça Frei Orlando, 170 – Centro, São João Del-Rei, MG, CEP 36307-352, Brazil

^b Laboratório de Reabilitação, Departamento de Medicina, Universidade Federal de São João Del-Rei, Praça Dom Helvécio, 74 – Dom Bosco, São João Del-Rei, MG, CEP 36301-160, Brazil

^c Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil

ARTICLE INFO

Article history:

Received 29 June 2019

Revised 14 October 2019

Accepted 14 October 2019

Available online 5 November 2019

Keywords:

Electrical stimulation

Amygdala

Seizure suppression

Desynchronization

Power-law

Scale-free stimulation

ABSTRACT

Electrical stimulation of the central nervous system is a promising alternative for the treatment of pharmacoresistant epilepsy. Successful clinical and experimental stimulation is most usually carried out as continuous trains of current or voltage pulses fired at rates of 100 Hz or above, since lower frequencies yield controversial results. On the other hand, stimulation frequency should be as low as possible, in order to maximize implant safety and battery efficiency. Moreover, the development of stimulation approaches has been largely empirical in general, while they should be engineered with the neurobiology of epilepsy in mind if a more robust, efficient, efficacious, and safe application is intended. In an attempt to reconcile evidence of therapeutic effect with the understanding of the underpinnings of epilepsy, our group has developed a nonstandard form of low-frequency stimulation with randomized interpulse intervals termed nonperiodic stimulation (NPS). The rationale was that an irregular temporal pattern would impair neural hypersynchronization, which is a hallmark of epilepsy. In this review, we start by briefly revisiting the literature on the molecular, cellular, and network level mechanisms of epileptic phenomena in order to highlight this often-overlooked emergent property of cardinal importance in the pathophysiology of the disease. We then review our own studies on the efficacy of NPS against acute and chronic experimental seizures and also on the anatomical and physiological mechanism of the method, paying special attention to the hypothesis that the lack of temporal regularity induces desynchronization. We also put forward a novel insight regarding the temporal structure of NPS that may better encompass the set of findings published by the group: the fact that intervals between stimulation pulses have a distribution that follows a power law and thus may induce natural-like activity that would compete with epileptiform discharge for the recruitment of networks. We end our discussion by mentioning ongoing research and future projects of our lab.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Despite considerable development of both pharmacological and surgical treatments, a large portion of patients with epilepsy cannot obtain full control of their seizures [1,2]. In fact, optimistic statistics suggest there are at least fifteen million individuals in the whole world experiencing the neurobiological, economic, and social burden of pharmacoresistant epilepsy [3,4]. Alternative therapeutic approaches for refractory epilepsy are in obvious demand, and electrical stimulation (ES) is a promising choice [5,6].

Therapeutic electrical stimulation may be applied to targets of both the peripheral nervous systems – such as the vagus nerve [7] or the trigeminal nerve [8] – and the central nervous system (CNS). In the CNS,

common therapeutic targets are the cortex surface, the cerebellum, anterior nucleus of the thalamus, subthalamic nuclei, and the epileptogenic focus itself, including the amygdaloid complex and the hippocampus in temporal lobe epilepsy [9]. Electrical stimulation is most commonly delivered as continuous or intermittent firing of square pulses of voltage or current in a certain fixed rate or frequency [10]. Although parameters vary a lot among different studies in humans and animal models, common values are units of volts or tens to hundreds of microamperes in amplitude and tens to hundreds of microseconds of pulse duration. Moreover, high frequency stimulation (HFS), with firing rates above 130 Hz, are broadly accepted as anticonvulsant and thus used in medical practice, while low-frequency stimulation (LFS; firing rates <20 Hz) is seen as proconvulsant or of controversial results [11,12].

The prevalence of HFS in clinical approaches is not without concern, since LFS would certainly be preferable because of the many advantages of a lower transfer of energy to the tissue. First, an implantable

* Corresponding author.

E-mail address: vrcota@uol.com.br (V.R. Cota).

stimulator running LFS would need a smaller battery that would last longer, implying a less invasive surgery and fewer interventions for replacement. Second, a lower count of pulses per unit of time directly translates to decreased charge density around electrode contacts. This means improved therapeutic safety, since it reduces risks of nonsurgical-related lesions, such as those resulting from heat and electroporation. Also, LFS may be less prone to tissue habituation that results in loss of therapeutic effect in the long run. Finally, HFS, particularly when applied to areas of the mesial temporal lobe, is the protocol of choice for inducing long-term potentiation and kindling in experimental epilepsy, both related to increases in neural excitability, while LFS applied to the same areas has been described as an approach to induce long-term depression that may underlie antiepileptogenic effects seen in some studies. But again, seizure-suppressing effects of LFS are controversial at best [13–17].

It is thus of paramount importance for the advancement of neurostimulation therapy regarding its efficacy, efficiency, safety, robustness, and scope of application, to be able to reconcile the evidences of beneficial effects with the mechanisms of epilepsy, ictogenesis, and seizure abatement [18]. Our group has been pursuing this goal for more than a decade now by investigating an often-overlooked aspect of epilepsy beyond ubiquitous hyperexcitability: neural hypersynchronization. In 2009, we published, in a special edition of this prestigious journal for the NEWroscience 2008 International Symposium, evidence that a nonstandard form of LFS specially tailored to break reverberation in neural networks and thus to suppress excessive synchronization has a robust anticonvulsant effect in rats submitted to a model of chemically induced acute seizures [19].

Much work has been done since then. Here, we review the progress made in the science and technology behind this experimental therapeutic approach, termed NPS (nonperiodic stimulation), by developing the method and maximizing its effect, expanding its applications, and investigating its mechanisms. A review on the formal concept of neural synchronization and the techniques to measure it is given, before proceeding to the description of the findings of the group and the current understanding of the underpinnings behind the therapeutic effect of NPS. We conclude by describing ongoing investigation and perspectives of the work.

2. Some nuts and bolts of epilepsy: molecules, cells, and networks

A myriad of neurobiological factors from the molecular, to cellular, and to network levels of brain organization underlie the cardinal feature of hyperexcitability of epileptic neural tissue [20–24]. Among these, enhanced NMDA-mediated excitation [25] and decreased GABA-mediated inhibition [26], probably resulting from status epilepticus (SE)-induced trafficking of receptors through the membrane of postsynaptic neurons [27,28], are of key importance to the unbalance between excitation and inhibition, in favor of the former. Deficient potassium buffering, ion transporter dysfunction [29], impaired glial function [30,31], cell swelling [32], dendritic anatomical abnormalities [33], dendritic channelopathy [34], and many others are additional contributing factors in the plethora of neurobiological mechanisms underlying epilepsy. These pathological changes add up to create a permanent state of hyperexcitable neural tissue prone to develop episodes of aberrant intense neural activity: seizures. The dynamic transition from controlled hyperexcitability to a seizure state and back is not yet fully understood, but seizure onset and termination has been investigated and modeled as the movement of a particle in a surface to and from distinct wells of attraction representing the functional and the dysfunctional states, the separation of which is much decreased in epilepsy [35–39]. For instance, Suffczynski and colleagues have provided valuable insight on epileptic phenomena while investigating in silico the transition between dynamics underlying healthy spindle oscillations and dysfunctional spike and wave discharges by a bistable neuronal network model [40].

After the threshold is crossed, aberrant epileptiform activity spreads through both physiological pathways [22,41–43] and aberrant connections [44,45]. These neural networks are, thus, responsible for the propagation and sustaining of seizures [46–48] giving rise to distinct electrophysiological and behavioral expressions according to the substrates involved and the temporal coordination of their mutual activation [49–51].

It becomes clear at this point that both the disease and its main expression are complex phenomena encompassing multiple neurobiological factors in different levels of brain organization that demand alternative investigative approaches that are up to the task [52–54]. In this sense, it is important to understand that complex systems give rise to emergent properties that may contribute to the understanding of complex phenomena. One such feature is synchronism of brain activity. In fact, this property has been described to be inherent to neural networks in both homeostasis and dysfunction [55–57], including epilepsy [58,59].

By this token, epilepsy can be understood as a dysfunction of hypersynchronism (in most part at least). Although such understanding has been put forward since seminal work of Penfield & Jasper [60] and others, it has lacked a solid definition. Synchronization can thus be defined as the mutual influence of two dynamical systems entrained in oscillatory activity [61–63]. This means that if two oscillators are synchronized, at least a pair of any of their descriptors (amplitude, phase, frequency, etc.), one of each dynamic, will show a mathematical interrelationship of the form $y = f(x)$ [59].

Synchronization in epilepsy has been observed in multiple forms in different brain signals, such as noninvasive imaging, magnetoencephalography, and most predominantly – given its high temporal resolution – electroencephalography (EEG). A first evidence of neural synchronization is the occurrence of epileptiform spikes, which by itself is an indicator of simultaneous firing of neuronal populations making superficial synaptic contacts [64]. Furthermore, synchronization can be inferred simply by the spread and temporal locking of spikes among substrates of ictogenic circuitry [44,51,65,66] or by several approaches of electrographic signal processing, such as correlation measurements, partial directed coherence [67], phase-locking [68–70], phase lag [71], phase synchronization [72], cross-frequency coupling (CFC) [73–75], Granger causality [76], mutual information [77], and others [57,78].

Of particular interest, ES of the brain has been related to neural desynchronization [79,80]. On the other hand, the relationship between epileptic phenomena and its suppression by ES with neural synchronization and desynchronization, respectively, is not free of controversy, since it seems that increases and decreases in the coupling of oscillation depend on different factors, such as frequency of oscillation, instant in the course of ictogenesis, and spatial scale – short versus long range [59,81].

With the specific goal of decreasing synchronization in the low frequency range seen in animal models of generalized seizures [50], we designed NPS and tested it with different parameters and in distinct animal models of seizures and epilepsy, while, at the same time, investigating its therapeutic mechanism in face of the desynchronization hypothesis. The following sections of this text describe published findings and ongoing research of our group on the topic.

At this point, it is important to mention that two forms of NPS were developed: NPS-IH and NPS-LH (reasons for acronyms will be clearer later). Yet, only NPS-IH was shown to be effective and then it was renamed to just NPS for simplicity reasons. Thus, usage of acronym NPS here and in other publication of the group always implies the IH variation, while the LH variation is described in extent: NPS-LH.

3. NPS: temporal pattern generation and parameters

A desynchronizing and antireverberation stimulation pattern should have no regular temporal structure. Thus, all intervals between any two firing pulses (IPI: interpulse interval) of NPS were randomized. To keep it low energy, the stimulation pattern contained only four pulses per

second in average. This frequency was based on common firing rates of epileptiform spikes seen in animal models of acute seizures. To be able to perform randomization on real time, the algorithm consisted of the following steps: 1) randomize, from a uniform distribution, a timestamp t_1 between 0 and 940 ms; 2) wait until t_1 and fire the first pulse; 3) randomize a second timestamp t_2 between t_1 and 960 ms; 4) wait until t_2 and fire the second pulse; 5) repeat steps 3 and 4 two more times, while always increasing 20 ms to the end of the randomization period; 6) always check for IPI smaller than 20 ms and adjust to this value if necessary. By following these steps, we guaranteed four pulses per second with a real-time randomization of IPI always greater than 20 ms, so no high frequency content was present; firing rate was, thus, always <50 Hz.

This pattern of stimulation was also called restrictively randomized (given that randomization period always depended on previous randomization results) or even NPS-IH. The abbreviation IH stems from inverse histogram, since IPI distribution of this pattern can be fit with great accuracy ($R^2 = 0.9781$; [19]) by an inverse function of the form:

$$f(x) = \frac{k}{x}$$

where $f(x)$ is the probability of an IPI of size x and k is a multiplicative constant dependent only on the number of classification bins and the number of stimulus pulses (Fig. 1B, panels g and h). This characteristic has been proven to be of great importance (see Section 5.3). Considering that the algorithm for the generation of the temporal pattern does not allow frequencies over 50 Hz (or IPI < 20 ms), and that there are always four pulses per each one-second time window, the domain of IPI values is:

$$20 \text{ ms} \leq x \leq 1860 \text{ ms}$$

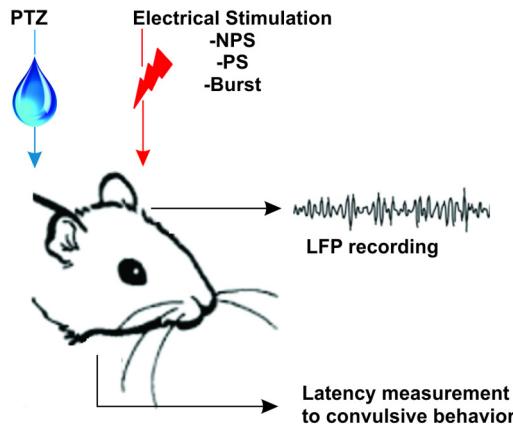
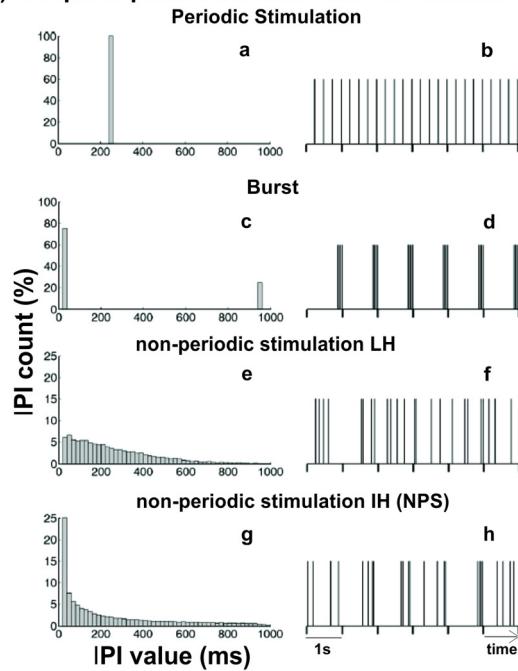
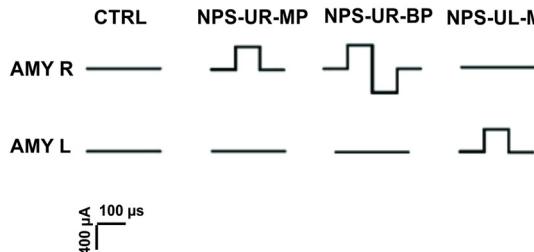
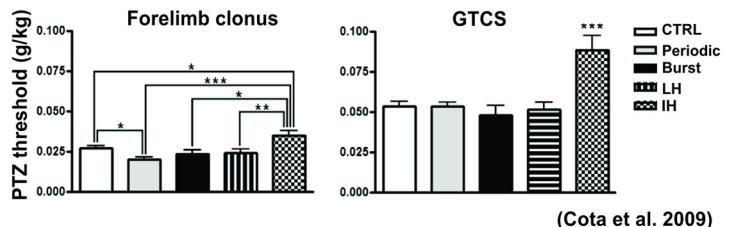
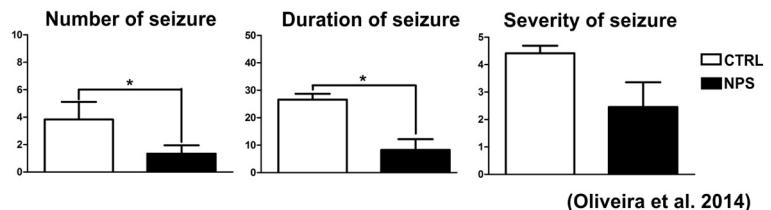
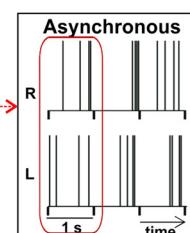
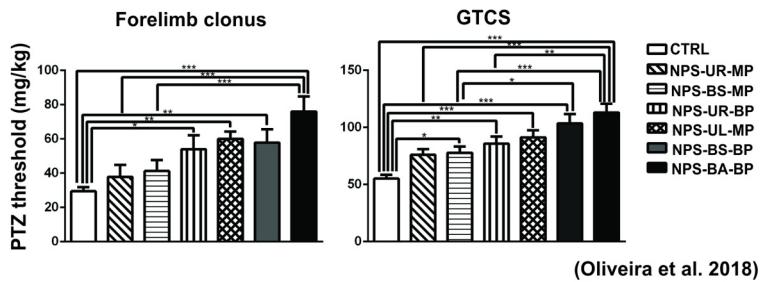
Pulses were always square waves of 100 μ s total duration, with current amplitudes varying from 100 to 600 μ A, according to animals' susceptibility (assessed prior to the experiments). This set of parameters and the low frequency nature of NPS reduced charge per phase in a 1-second period to as low as 0.1 μ C, among the lowest levels found in literature and well below the safety limits [12].

Stimulation was applied to the amygdala (AMY) since 1) it is a major player in seizure generation and spread [23]; 2) it processes incoming information from polymodal areas through the entorhinal cortex, working as a gatekeeper to mesial temporal lobe circuitry; 3) it is extensively connected to structures in the hindbrain, midbrain, and forebrain [82]; and 4) there are advantages in using the epileptogenic focus for stimulation, including better neurosurgical safety and others. Stimulation target varied only when specifically investigating anatomic aspects of NPS. In the same vein, some of its parameters varied in some studies to serve the purpose of answering specific questions of each phase of the investigation (see next section).

4. NPS has anticonvulsant properties in acute and chronic seizures

The first steps were to test NPS against experimental seizures. A common animal model for the screening of new drugs or novel therapeutics is the controlled intravenous infusion of pentylenetetrazole (PTZ) [83]. It is a nonspecific GABA_A receptor antagonist which, when gradually administered, induces a condition of neural hyperexcitability that starts in more susceptible areas, such as the limbic system, and then progresses to the whole brain [49,84]. This ensures gradual recruitment of structures into aberrant epileptiform activity, resulting in animals displaying a stereotypical sequence of convulsive behavior that begins with facial automatisms, progresses to myoclonic jerks and forelimb clonus, and ends with generalized tonic-clonic seizures (GTCS). Since PTZ infusion rate is controlled and constant, the time to evoke each behavior corresponds to the amount of drug necessary to trigger

seizures (minimal or maximal) — also called PTZ threshold — and variations of this parameter indicate an anticonvulsant or a convulsant effect of a candidate treatment.








In a first study of our group, NPS was applied to the right basolateral amygdala of male rats submitted to PTZ-induced acute seizures ([19]; Fig. 1A, but with no LFP recordings). Besides NPS-IH stimulated animals, four additional experimental groups were carried out: 1) control with no stimulation; 2) low-frequency (4 Hz) periodic stimulation (PS; Fig. 1B, panels a and b); 3) burst stimulation consisting of four pulses with a 20 ms IPI (Fig. 1B, panels c and d); and 4) stimulation with a different algorithm for randomization (also four pulses per second), called freely randomized IPI or, yet, NPS-LH, because of the fact that the IPI histogram can be fit by a linear equation of the form $f(x) = A - kx$ (Fig. 1B, panels e and f).

Results showed that NPS (particularly and only NPS-IH) has a robust anticonvulsant effect on both forelimb clonus and GTCS, since PTZ threshold was significantly increased for both behaviors (almost double for GTCS) in animals submitted to such stimulation pattern, while other stimuli displayed no effect or were even proconvulsant (PS; Fig. 1C). Considering that every other important stimulation parameter (mean pulse amplitude and duration, number of pulses per second, stimulation site, mean animal weight, etc.) was the very same across all groups, we concluded that the temporal pattern of stimulation is a key determinant factor for the therapeutic effect. Curiously, only one form of randomization (NPS-IH) displayed an anticonvulsant property. Although this still remains to be fully understood, plausible neurobiological factors originating from independent sources of different neuroscience fields have come to light recently with great explanatory potential. We will come back to this later in the text.

Next, we sought to test NPS in a scenario that better mimics the human condition. For this, we submitted animals to the experimental model of temporal lobe epilepsy, represented by the late phase after pilocarpine-induced status-epilepticus (SE). Pilocarpine (PILO) is a cholinergic agonist that, when administered in a massive bolus intraperitoneal injection, induces SE which, in turn, if sustained for about 90 min or more, will cause neuronal damage and consequently maladaptive cellular and network restructuring. The final result in the long run is a dysfunctional neural tissue sustaining a permanent condition of hyperexcitability. Animals, thus, display spontaneous and recurrent seizures with concomitant recruitment of mesiotemporal regions and the limbic system [85–89].

In this study, our group applied NPS for 6 h (10 a.m. to 4 p.m.) during four consecutive days right after four initial days of observation (no stimulation), all of them in the late phase of the PILO model (45 days after SE), while assessing number, duration, and severity (according to Racine's scale) of seizures [90]. Compared with the control period with no stimulation, NPS was able to significantly reduce the number and duration of seizures, with a strong tendency to decrease severity (Fig. 1D). Periodic stimulation was also applied to a different group of animals in the same way NPS was: while results were not significant, a trend to worsen seizures was observed. We considered these to be important results, since NPS was effective even when applied to dysfunctional tissue. Not only does this support the possibility of a translational study and application of NPS to human patients, but it also suggests that its therapeutic mechanism is not lost in dysfunctional hyperexcitable neural tissue.

Based on the rationale that NPS attains its therapeutic effect by means of neural desynchronization, we then tested the effect of varying key stimulation parameters in the suppression of acute PTZ-induced seizure [91]. We analyzed the number of pulse phases (mono and biphasic), stimulation side (right and left), number of sides (uni- and bilateral), and synchronicity between hemispheres (synchronous and asynchronous; Fig. 1E). All these variations were known to have differential effects regarding efficacy and site of neuronal activation, quality of charge distribution, desynchronization power, etc. Data showed that anticonvulsant power increases gradually if biphasic, bilateral,

A) Experimental protocol**B) Temporal patterns of electrical stimulation****E) Variations of NPS****C) NPS suppresses acute seizures by PTZ****D) NPS suppresses chronic seizures by pilocarpine****F) Anticonvulsant effect of NPS variations**

Fig. 1. Compilation of findings on the anticonvulsant effects of NPS. A) Wistar rats were submitted to PTZ-induced acute seizures while being treated with different temporal patterns of stimulation. Latency to convulsive behavior and electrophysiological recordings were performed to assess anticonvulsant effect and functional correlates. Method for induction of spontaneous and recurrent seizure by PILO is not shown. B) The different temporal patterns of stimulation used in this investigation, with IPI histograms at left and temporal representations on the right. C) Results for PTZ-threshold to evoke forelimb clonus and GTCS. D) Results for number, duration, and severity of seizures in PILO animals treated with NPS. E) Distinct variations of NPS. F) PTZ-threshold results for each variation. (Adapted with permission from Cota et al. [19] and Oliveira et al. [90,91].)

and asynchronous features are added to the stimulation pattern, resulting in almost a threefold increase of PTZ-threshold to evoke GTCS when compared with controls (Fig. 1F). If these additions are

modeled as increases in spatial and temporal complexities of the pattern of stimulation, measured by, for instance, spectral entropy or Shannon entropy, a strong correlation between such measurements and the

anticonvulsant power of different variations of NPS can be seen ([92] – this issue).

Finally, we also studied if NPS was capable of impairing the progression of experimental epileptogenesis (transition of a healthy brain into a hyperexcitable seizure-prone one). This is plausible, since the development of the epileptic condition in a previously healthy brain may be interpreted alternatively as neural plasticity underlying an aberrant form of memory formation [93,94]. Memory formation is related to synaptic weights, the modulation of which depends on the coincidence between firing of interconnected neurons. In turn, such coincidence has been shown in silico to depend on the temporal structure of external stimuli [95]. For this investigation, animals underwent fast electrical kindling of the amygdala intertwined (or not) with NPS. Preliminary behavioral and electrographic results showed that NPS decreases the severity of behavior and duration of seizures after kindling, which suggest that NPS has also an antiepileptogenic effect (unpublished results).

These lines of evidence, taken together, show that NPS has a robust anticonvulsant effect against both acute and chronic seizures, while suggesting that it also has antiepileptogenic effects. Results of the pilocarpine model show that the mechanisms of NPS are preserved in dysfunctional neural tissue, thus strengthening the possibility of translational research. Finally, the method displays its greatest anticonvulsant power when applied biphasically, bilaterally, and asynchronously.

5. Therapeutic mechanisms of NPS

As stated before, it has always been a main goal of this scientific endeavor not only to develop an efficacious ES method, but also to engineer it with the neurobiology of epilepsy in mind, particularly regarding the aspect of hypersynchronism among substrates of ictogenic circuitry [96]. Distinct behavioral outcomes originating from changing regular (PS) to irregular firing of pulses (NPS) and the fact that NPS efficacy is increased by varying its parameters from mono- to biphasic, uni- to bilateral, and synchronous to asynchronous (interhemispheric synchronicity) may be seen as indirect evidences that, in fact, the approach attains its therapeutic effect through neural desynchronization. Yet, a more direct mechanistic investigation of these issues was of paramount importance.

5.1. The importance of anatomy

A first attempt to understand the mechanism underlying NPS therapeutic effect and to test the desynchronization hypothesis was to assess anatomic aspects regarding both 1) neural recruitment after application of stimuli to the AMY and 2) conversely, behavioral outcome of varying the substrate of application.

In the first case, functional magnetic resonance imaging (fMRI) was performed in rats submitted to application of NPS or PS to AMY with or without a controlled infusion of PTZ, using a 7 T horizontal small-bore scanner, with fast spin-echo multislice sequence for structural images and single-shot gradient-echo echo-planar sequence for functional images, both T₂-weighted [97]. Special carbon fiber stimulation electrodes were developed to avoid imaging artifacts. As expected, PTZ induced generalized activation in both stimulation protocols. On the other hand, while PS reinforced ipsilateral activation (in regard to site of stimulus application), NPS reduced it. Moreover, in PTZ-free animals, PS induced activation of the mesiotemporal region (e.g., thalamus and hippocampus) in the contralateral axis, and NPS recruited frontal areas, especially the nucleus accumbens. This last result has been of particular interest, since the nucleus accumbens has been enrolled in epileptic phenomena [98,99] and also has served as a target for electrostimulation experimental therapies [100,101].

To test the importance of the anatomical target of NPS, the same protocol of Cota and colleagues was repeated [19], but stimuli were applied

also to the anterior nucleus of the thalamus (ANT) [102]. The choice of ANT in this study is based on extensive previous literature showing the efficacy of ES applied to this substrate [15,103–107]. Results for the amygdala were the same as those obtained in a previous study of the group. On the other hand, NPS applied to ANT showed an anticonvulsant effect only regarding GTCS, but not forelimb clonus. This difference may be explained by the involvement of both structures in each type of seizure: while AMY participates in forebrain ictogenic circuits related to minimal (forelimb clonus) and modulates those of maximal (GTCS) seizures, ANT is related only to midbrain and hindbrain generalized seizures [108–111]. Corroborating this understanding, while PS showed a convulsant effect towards forelimb clonus when applied to AMY, it showed no such effect when ANT was the target. Conversely, PS at AMY had no effect at GTCS but it was anticonvulsant when applied to ANT.

These results highlight the importance of anatomy in the mechanism of ES in general and NPS in particular. Not only do different stimulus patterns applied to the AMY induce differential neural recruitment, but also the same pattern applied to different anatomical substrates yields distinct behavioral outcomes. This corroborates the notion that NPS has an effect on the network level of brain organization and that the amygdala, but not the thalamus, is capable of producing different responses according to the temporal pattern of the presented stimulus. This fact has been successfully used in a study relating active-avoidance learning conditioned by temporally coded electrical stimuli [112].

5.2. Multi-level desynchronization

In order to test the desynchronization hypothesis more specifically, electrophysiological recordings had to be carried out simultaneously to electrical stimulation in animals submitted to experimental models of seizures and epilepsy. Different setups and signal processing strategies allow inferences regarding synchronization levels in the microdomain (local neuronal populations and microoscillators), medium range domain (neural networks), and macrodomain (coupling of networks).

The first study of our group with such goal sought to better understand the role of the nucleus accumbens in epileptic phenomena and in the seizure-suppression mechanisms of NPS. Particularly, given the intriguing findings of our previous work [97], we wanted to test whether the substrate might serve as an indirect pathway for desynchronization of the forebrain. In order to do this, we submitted rats to the PTZ model of acute seizures, with or without bilateral electrolytic lesion of the nucleus accumbens and treated or not with NPS [113]. Evaluation of convulsive behavior – including PTZ threshold assessment – and concomitant electrocorticographic (ECOG) recordings were carried out. Electrolytic lesion severely worsened PTZ-induced seizures, increasing duration of behavioral and electrographic manifestations, and decreasing PTZ threshold. Nonperiodic stimulation treatment in these animals had no overt effect whatsoever. In the same work, we assessed the occurrence and morphology of epileptiform spikes in order to investigate synchronization levels of neuronal populations [64]. After detecting spikes with a custom-build routine, total number, firing rate, amplitude, and slope of spikes were computed. It turned out that the nucleus accumbens lesion induced an increase in all these parameters, strongly suggesting an increase in the synchronization in the activity of neuronal populations responsible for spike generation in cortical levels. Nonperiodic stimulation in animals with intact brains (without nucleus accumbens lesion) showed mild to nonexistent decreases in the same parameters.

We have been also investigating the effects of NPS directly in the synchronization levels of neural networks. To do this, local field potentials (LFP) have been recorded from the cortex, hippocampus, and thalamus of rats submitted to acute PTZ-induced seizures and treated or not with NPS. To assess synchronization of a network, the level of epileptiform spike coincidence was measured by simply detecting the spikes

and computing their cooccurrence ratio (within a given temporal window) between a pair of recorded channels. Stimulated animals showed a consistently decreased level of ictal coincidence in several different sizes of time-windows ([114] – this issue).

The same dataset has been used to investigate CFC that may reveal synchronization levels between distinct circuits oscillating at different velocities. For this, the modulation index (MI) has been applied to measure how much the phase of a slow-frequency oscillation is coupled to the amplitude of a high frequency oscillation [115]. Untreated animals injected with PTZ showed a gradual increase of MI for many different pairs of frequencies throughout the controlled infusion period and before seizure onset. At the same time, MI of NPS-treated animals remained in baseline levels for much longer. Moreover, MI of treated animals during ictal periods (forelimb clonus and GTCS) was lower in comparison with that of nonstimulated rats ([116] – this issue). Curiously, NPS also induced an increase of MI between specific pairs of frequency bands in the higher portions of the spectrum.

Taken together, these results indicate that NPS does not exactly desynchronize circuits but, actually, sustains synchronization at baseline levels when the system is stressed with hypersynchronizing external stimulus (such as administration of PTZ). Moreover, this effect is observable in different levels of brain circuitry or domains: from local populations to the coupling of distinct networks. Curiously, this synchronization buffer effect is not ubiquitous in regard to the frequency spectrum, and NPS may actually induce synchronization in higher frequencies. Although a bit counterintuitive, this may actually be beneficial, since synchronization in higher frequency oscillations have been described also as a physiological rhythm in epilepsy [117]. Moreover, as mentioned before, seizures are episodes of hypersynchronous neuronal firing, but not in a ubiquitous fashion, and actually, desynchronization can also be observed during ictogenesis [59].

5.3. Not every desynchronization is the same: novel insights into the temporal structure of NPS

Nonperiodic stimulation was designed to lack rhythmicity and thus to be antiresonating or desynchronizing. This was the reason behind randomizing the intervals between stimulation pulses. In fact, NPS has been described in some of our studies as temporally unstructured electrical stimulation. The set of behavioral and electrographic evidences gathered in the studies of the group seems to corroborate the notion that the lack of rhythm in the stimulus may cause desynchronization of ictogenic neural networks leading to the suppression of seizures.

On the other hand, this theoretical framework was unable to predict some of the findings along the investigation, some of them being actually counterintuitive when seen from the straightforward “lack of temporal regularity induces desynchronization” perspective. For instance, when directly measured with electrophysiology, NPS seems to promote rather a resistance to synchronization, acting like a buffer for the feature, instead of a more intuitive desynchronization. In addition, NPS activates the nucleus accumbens (instead of desynchronizing or inhibiting it) in seizure-free animals and also induces CFC in higher frequency bands in animals submitted to PTZ-induced seizures. Finally, and maybe most importantly, current theory does not allow the understanding of why the two different IPI randomization protocols used to create NPS-IH and NPS-LH yield distinct therapeutic effects: the former is efficacious and the latter is neutral.

In our 2009 study, we speculated that, while both forms of NPS were sending random firing motifs to different microcircuits at distinct times, thus promoting desynchronization, only NPS-IH was doing it with the right frequency content, given that IPI distributions from the different ES patterns have distinct counts of shorter and longer intervals. It is clearer now that this is only partly true and that the efficacy of NPS in the IH form relies much more on the shape of its IPI distribution than on its frequency content. In fact, the shape of the IPI distribution of NPS of the IH type is closely related to the spatial and temporal

organizations of the brain and also to features of many other complex systems: they all obey a power law.

Mathematically, a power law can be stated as a relationship between two variables y and f in the form of:

$$y = \frac{1}{f^\beta}$$

where β is a constant that can assume any nonnegative value. One should notice that this is exactly the function that fits the IPI distribution of NPS-IH, in the particular case of $\beta = 1$. The presence of a multiplicative factor k in the fit of NPS-IH has no real relevance, since the behavior of the power law is unchanged, or, as usually termed, it is scale-free. This fact can be stated also as:

$$P(kf) = k^{-\beta} P(f)$$

where $P(f)$ is the power law function of f . Also, it is important to notice that, in turn, NPS-LH cannot be fit by such relation.

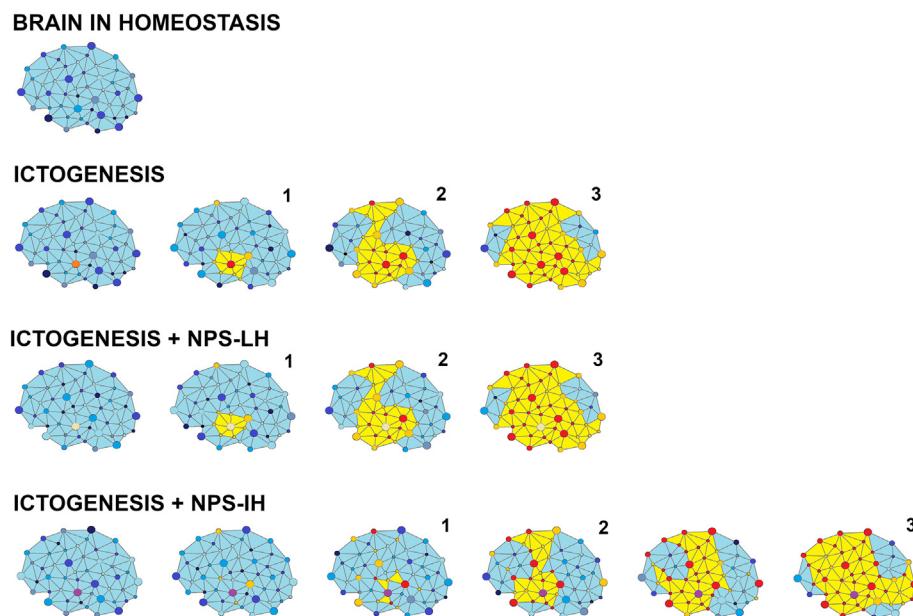
Power laws can be used to describe a myriad of phenomena of complex systems in nature. For instance, it describes the distribution of assets in the banking system worldwide, distribution of crater sizes in the moon, distribution of the number of contacts in social networks, citations of scientific papers, and the frequency of words in a given idiom [118]. In the brain, not only does neural tissue generate firing patterns that can be modeled by power laws [119], but neural networks also seem to better respond and process activity in this natural form [120], implying that neural circuitry has evolved to better tune to the properties of the environment [121].

Responses of neural tissue to electrical stimulation varying in regularity have been directly tested. In a pioneering work, Mainen and Sejnowski observed spike trains in cortical neurons of rats elicited by injection of constant or variable currents, using a slice preparation and somatic whole-cell recordings in the current-clamp configuration. They found that neurons respond with much greater reliability when submitted to natural-like inputs distributed as filtered Gaussian noise (i.e., $1/f^\beta$) mimicking synaptic activity [122]. Inspired by this work, Gal and Marom used joint input–output statistics to assess spike trains of single isolated cortical neurons from newborn rats plated onto substrate-integrated multielectrode arrays (MEA) and submitted to different regimens of extracellular electrical stimulation, according to the regularity of their IPI. The stimulation pattern following a power law with unitary exponent ($\beta = 1$) induced spike activity with greater reliability – as measured by the correlation of firing rates of both input and output – in comparison with stimuli with constant IPI, with IPI distributed as white noise, or even those with IPI following a power law but with distinct values of β [123]. Finally, Scarsi and colleagues carried out a similar experiment using *in vitro* culture of neurons plated onto MEA and stimulated with different temporal regularity to demonstrate that neuronal networks also better follow stimuli with IPI distributed as a power law. Of particular interest, they also tested different values of β and also of mean firing rates. While the average frequency seems to play no relevant role, unitary exponent was the one that induced the greatest reliability between input and output activities [124].

Although such input–output relationship between stimulation and neural activity has been described in the single neuron level or, at most, in *in vitro* cultures of cells forming microcircuits, the idea may be extrapolated to *in vivo*, large-scale network settings. By this token, it is very plausible that NPS, as a natural-like, scale-free pattern of stimulation following a power law of unitary exponent, may be easily processed in and recognized by neural networks organized in multiple levels (from microdomain to large scale) in the brain. That would work even in dysfunctional hyperexcitable tissue, given only that it can perform its basic function, which is generally the case of patients with epilepsy. In turn, such property would promote a widespread and naturally desynchronized response that would compete with the pathological

hypersynchronous epileptiform activity. Stimulation effects would thus be expressed as a seizure suppression property behavior-wise. Moreover, such stimulation, instead of promoting increase or decrease of any specific oscillation, would rather reestablish healthy patterns of synchronism coordination that results from normal processing of information in the brain. Electrophysiologically, this would be expressed as a resistance to increase synchronism to aberrant levels and/or as a restoration of synchronization patterns related to homeostasis. All these aspects have been observed directly or indirectly in our previous and ongoing studies. Finally, this novel theoretical framework would help explain the activation of the nucleus accumbens in seizure-free animals submitted to NPS as seen in the fMRI study, given that the pattern may represent natural-like activity with variability or, in other terms, that seems like natural salience/novelty.

These are only speculations that still lack further evidence and a more definite proof. They are being put forward exactly to create debate. On the other hand, given that the theoretical framework of NPS as a power-law scale-free stimulation needs fewer elements to explain the set of evidences, Occam's Razor principle recommends a thoughtful consideration (Fig. 2). In fact, much of the ongoing research and also future work of our group is based upon this new reasoning.


6. Ongoing research and perspectives

An obvious step in NPS research is to apply it to patients with epilepsy. In order to do it in the safest way possible, we have been studying a myriad of neural functions in seizure-free rats submitted to such stimulation. It is plausible that such stimulation will not cause a significant side-effect since it emulates natural-like input. Using well-established

behavioral methods, we found (unpublished data) that NPS applied to the amygdala has no overt significant impact on episodic memory, on ambulation, on social interaction, and also on baseline levels of anxiety. In the same study, another group of animals was submitted to long duration (up to 9 days, 6 h per day) LFP recordings from structures known to be involved in both epileptic phenomena and in the coordination of the sleep-wake cycle. When recordings are assessed as state spaces based on spectral content [125], data showed that sleep-wake cycle architecture of stimulated animals does not differ from that of naïve animals.

If this theoretical framework that establishes NPS as a scale-free natural-like input capable of restoring healthy levels of brain activity and synchronization is in fact right, it becomes very plausible that the approach may induce amelioration of symptoms in other neurological disorders. For instance, it is known that generalized anxiety/stress and related psychiatric disorders are the result of dysfunctional activity or, more specifically, hyperfunction of the amygdala [126]. Preliminary data (unpublished) from our lab have shown that restriction-induced chronically stressed rats treated with NPS performed better in the open-field and elevated plus maze tests.

Another interesting application field for NPS may be Parkinson's disease (PD). Being the result of neurodegeneration of dopaminergic cells in the substantia nigra, PD is characterized by motor function impairment such as postural instability, rigidity, tremors, and bradykinesia [127]. Electrophysiologically, PD is marked by increases of synchronization in the β range observed in areas such as the subthalamic nuclei, globus pallidus externus, and internus [128,129]; a rhythm with key roles in corticospinal integration; and motor function in general [130,131]. In our lab, we are currently reproducing well-established animal models of PD, such as

Fig. 2. Theoretical framework of NPS as scale-free temporal pattern that induces natural-like activity which, in turn, compete with epileptiform activity. Nodes (circles of different sizes) represent microoscillators, while edges are functional connections between a pair of nodes. Long-range connections are omitted for simplicity but considered in this rationale. Natural activity is depicted in shades of blue, while epileptiform activity in shades of red. A mix of them is represented in purple. Although the network in this figure is shaped like a human brain, we intend no correspondence with human neuroanatomy. **Row 1:** a brain in homeostasis displays widespread normal activity with spatial and temporal structure of a power law, together with normal levels of synchronization in its networks (triangles filled in blue). **Row 2:** ictogenesis induced by some endogenous (or exogenous) factor starts by a node (in orange) entraining in aberrant activity that will gradually spread to its neighbors. When a circuit is formed (step 1), epileptiform activity ensues (yellow fillings) and first mild motor manifestations are expressed (e.g., facial automatisms). Aberrant activity continues to spread, and when circuits encompassing major portions of the brain are entrained in aberrant activity (step 2), more severe convulsive behavior is manifested (e.g., forelimb clonus). Finally, when all major portions of the brain are recruited by epileptiform activity (step 3), generalized seizures occur. **Row 3:** when the epileptogenic focus is submitted to a pattern of stimulation that is not natural-like (e.g., NPS-LH), any effects gets territorially restricted to the point of application (beige dot) and ictogenesis progresses virtually in the same manner. **Row 4:** when NPS is applied to the epileptogenic focus of a brain during ictogenesis (purple circle), natural-like activity is spread through its connection and competes with epileptiform activity. Notice that, in each step, half of the nodes are recruited with epileptiform activity and the other half with natural like activity. This impairs the recruitment of networks into aberrant hypersynchronous oscillations, delaying occurrence of convulsion (steps 1 to 3). In every row, aberrant synchronization levels can be inferred by the number of circuit (triangle of nodes) filled with yellow. By this token, electrophysiological results indicate a resistance against synchronization increases.

application of electrolytic lesion or administration of 6-hidroxidopamine to one or both sides of the substantia nigra [132,133] to pursue such line of investigation. Since many of these alterations are also shared with the motor deficit outcome from brain ischemia followed by reperfusion, we may also follow a similar line of research using animal models induced by bilateral carotid artery occlusion [134].

Finally, it is of paramount importance to thoroughly test the hypothesis of NPS-induced natural-like activity suppressing epileptiform and other aberrant activity as a key therapeutic mechanism. We believe in silico investigation to be of central importance in this case. Particularly, in silico investigation would be highly beneficial in the rapid and ethical screening of variations of NPS (e.g., with different mean frequencies) or even other forms of IPI randomization that follow distributions related to the natural dynamics of the brain. In turn, not only would such screening advance the search for the optimal strategy of stimulation, but the comparison between distinct approaches may also provide insights on the mechanisms underlying the therapeutic effect of nonstandard stimulation and brain function in general. Alternatively, to close the loop and apply activity-dependent stimulation [135], responsive stimulation [136], or active probing for seizure detection or prediction [137] may also be of great value.

Declaration of competing interest

None.

Acknowledgment

This work was supported by the Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) [grant number: APQ 02485-15] and financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001; MFMD is a recipient of CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) research fellowship. The funding sources had no role of any kind in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

References

- [1] French JA. Refractory epilepsy: clinical overview. *Epilepsia* 2007;48:3–7. <https://doi.org/10.1111/j.1528-1167.2007.00992.x>.
- [2] Spencer SS. When should temporal-lobe epilepsy be treated surgically? *Lancet Neurol* 2002;1:375–82. [https://doi.org/10.1016/S1474-4422\(02\)00163-1](https://doi.org/10.1016/S1474-4422(02)00163-1).
- [3] Engel J, Birbeck GL, Diop AG, Jain S, Palmini A. Epilepsy: global issues for the practicing neurologist. 1st ed. New York: Demos Medical Publishing, LLC; 2005.
- [4] Savage N. Epidemiology: the complexities of epilepsy. *Nature* 2014;511:S2–3.
- [5] Laxpati NG, Kasoff WS, Gross RE. Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. *Neurotherapeutics* 2014;11:508–26. <https://doi.org/10.1007/s13311-014-0279-9>.
- [6] Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. *Nat Rev Neurol* 2014;10:261–70. <https://doi.org/10.1038/nrneurol.2014.59>.
- [7] Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. *Lancet Neurol* 2002;1:477–82. [https://doi.org/10.1016/S1474-4422\(02\)00220-X](https://doi.org/10.1016/S1474-4422(02)00220-X).
- [8] DeGiorgio CM, Shewmon DA, Whitehurst T. Trigeminal nerve stimulation for epilepsy. *Neurology* 2003;61:421–2. <https://doi.org/10.1212/01.WNL.0000073982.42650.57>.
- [9] Theodore WH, Fisher RS. Brain stimulation for epilepsy. *Lancet Neurol* 2004;3:111–8.
- [10] Udupa K, Chen R. The mechanisms of action of deep brain stimulation and ideas for the future development. *Prog Neurobiol* 2015;133:27–49. <https://doi.org/10.1016/j.pneurobio.2015.08.001>.
- [11] Klinger NV, Mittal S. Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy. *Clin Neurol Neurosurg* 2016;140:11–25. <https://doi.org/10.1016/j.clineuro.2015.11.009>.
- [12] Cota VR, Drabowski BMB, de Oliveira JC, Moraes MFD. The epileptic amygdala: toward the development of a neural prosthesis by temporally coded electrical stimulation. *J Neurosci Res* 2016;94:463–85. <https://doi.org/10.1002/jnr.23741>.
- [13] Urino T, Hashizume K, Maehara M, Kato K, Okada Y, Hori T, et al. Epileptic focus stimulation and seizure control in the rat model of kainic acid-induced limbic seizures. *Neurol Med Chir (Tokyo)* 2010;50:355–60. <https://doi.org/10.2176/nmc.50.355>.
- [14] Zhang Q, Wu ZC, Yu JT, Zhong XL, Xing YY, Tian Y, et al. Anticonvulsant effect of unilateral anterior thalamic high frequency electrical stimulation on amygdala-kindled seizures in rat. *Brain Res Bull* 2012;87:221–6. <https://doi.org/10.1016/j.brainresbull.2011.11.023>.
- [15] Mirski MA, Rossell LA, Terry JB, Fisher RS. Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. *Epilepsy Res* 1997;28:89–100. [https://doi.org/10.1016/S0920-1211\(97\)00034-X](https://doi.org/10.1016/S0920-1211(97)00034-X).
- [16] Cymerblit-Sabba A, Schiller M, Schiller Y. Termination of chemoconvulsant-induced seizures by synchronous and asynchronous electrical stimulation of the hippocampus in-vivo. *Brain Stimul* 2013;6:727–36. <https://doi.org/10.1016/j.brs.2013.03.006>.
- [17] Lüttjohann A, van Luijtelaar G. Thalamic stimulation in absence epilepsy. *Epilepsia* 2013;106:136–45. <https://doi.org/10.1016/j. epilepsyres.2013.03.009>.
- [18] Sunderam S, Gluckman B, Reato D, Bikson M. Toward rational design of electrical stimulation strategies for epilepsy control. *Epilepsy Behav* 2010;17:6–22. <https://doi.org/10.1016/j.yebeh.2009.10.017>.
- [19] Cota VR, Medeiros D d C, Vilela MRS d P, Doretto MC, Moraes MFD. Distinct patterns of electrical stimulation of the basolateral amygdala influence pentylenetetrazole seizure outcome. *Epilepsy Behav* 2009. <https://doi.org/10.1016/j.yebeh.2008.09.006>.
- [20] McNamara JO. Cellular and molecular basis of epilepsy. *J Neurosci* 1994;14:3413–25. <https://doi.org/10.1523/JNEUROSCI.14-06-03413.1994>.
- [21] McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. *Sci STKE* 2006;356:re12. <https://doi.org/10.1126/stke.3562006re12>.
- [22] McCormick DA, Contreras D. On the cellular and network bases of epileptic seizures. *Annu Rev Physiol* 2001;63:815–46. <https://doi.org/10.1146/annurev.physiol.63.1.815>.
- [23] Aroniadou-Anderjaska V, Fritsch B, Qashu F, Braga MFM. Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. *Epilepsy Res* 2008;78:102–16. <https://doi.org/10.1016/j. epilepsyres.2007.11.011>.
- [24] Aronica E, Mühlbauer A. Chapter 15 – Neuropathology of epilepsy. In: Kovacs GG, IBT Alafuzoff, editors. *Handbook of clinical neurology. Neuropathology* Elsevier; 2018. p. 193–216. <https://doi.org/10.1016/B978-0-12-802395-2.00015-8>.
- [25] Lothman EW, Rempe DA, Mangan PS. Changes in excitatory neurotransmission in the CA1 region and dentate gyrus in a chronic model of temporal lobe epilepsy. *J Neurophysiol* 1995;74:841–8.
- [26] Mangan PS, Rempe DA, Lothman EW. Changes in inhibitory neurotransmission in the CA1 region and dentate gyrus in a chronic model of temporal lobe epilepsy. *J Neurophysiol* 1995;74:829–40.
- [27] Wasterlain CG, Naylor DE, Liu H, Niquet J, Baldwin R. Trafficking of NMDA receptors during status epilepticus: therapeutic implications. *Epilepsia* 2013;54:78–80. <https://doi.org/10.1111/epi.12285>.
- [28] Naylor DE, Liu H, Niquet J, Wasterlain CG. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. *Neurobiol Dis* 2013;54:225–38. <https://doi.org/10.1016/j.nbd.2012.12.015>.
- [29] Scharfman HE. The neurobiology of epilepsy. *Curr Neurol Neurosci Rep* 2007;7:348–54.
- [30] Bedner P, Dupper A, Hüttmann K, Müller J, Herde MK, Dublin P, et al. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. *Brain* 2015;138:1208–22. <https://doi.org/10.1093/brain/awv067>.
- [31] Steinhäuser C, Seifert G, Bedner P. Astrocyte dysfunction in temporal lobe epilepsy: K⁺ channels and gap junction coupling. *Glia* 2012;60:1192–202. <https://doi.org/10.1002/glia.22313>.
- [32] Broberg M, Pope KJ, Lewis T, Olsson T, Nilsson M, Willoughby JO. Cell swelling precedes seizures induced by inhibition of astrocytic metabolism. *Epilepsy Res* 2008;80:132–41. <https://doi.org/10.1016/j. epilepsyres.2008.03.012>.
- [33] Aliashkevich AF, Yilmazer-Hanke D, Van Roost D, Mundhenk B, Schramm J, Blümcke I. Cellular pathology of amygdala neurons in human temporal lobe epilepsy. *Acta Neuropathol* 2003;106:99–106. <https://doi.org/10.1007/s00401-003-0707-0>.
- [34] Bernard C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D. Acquired dendritic channelopathy in temporal lobe epilepsy. *Science* 2004;305:532–5.
- [35] Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, et al. Early-warning signals for critical transitions. *Nature* 2009;461:53–9.
- [36] Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, et al. Anticipating critical transitions. *Science* 2012;338:344–8.
- [37] van de Leemput IA, Wicher M, Cramer AOJ, Borsboom D, Tuerlinckx F, Kuppens P, et al. Critical slowing down as early warning for the onset and termination of depression. *Proc Natl Acad Sci* 2014;111:87–92. <https://doi.org/10.1073/pnas.1312114110>.
- [38] Lopes da Silva FH, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN. Dynamical diseases of brain systems: different routes to epileptic seizures. *IEEE Trans Biomed Eng* 2003;50:540–8. <https://doi.org/10.1109/TBME.2003.810703>.
- [39] Lopes da Silva F, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN. Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. *Epilepsia* 2003;44(Suppl. 1):72–83 [doi:12005 [pii]].
- [40] Suffczynski P, Kalitzin S, Lopes Da Silva FH. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. *Neuroscience* 2004;126:467–84. <https://doi.org/10.1016/j.neuroscience.2004.03.014>.
- [41] Bertram EH. Neuronal circuits in epilepsy: do they matter? *Exp Neurol* 2013;244:67–74. <https://doi.org/10.1016/j.jexneuro.2012.01.028>.
- [42] Bertram EH, Zhang DX, Mangan P, Fountain N, Rempe D. Functional anatomy of limbic epilepsy: a proposal for central synchronization of a diffusely hyperexcitable network. *Epilepsy Res* 1998;32:194–205.
- [43] Bertram EH. Temporal lobe epilepsy: where do the seizures really begin? *Epilepsia Behav* 2009;14(Suppl. 1):32–7. <https://doi.org/10.1016/j.yebeh.2008.09.017>.
- [44] Avoli M, Antuono MD, Louvel J, Köhling R, Biagini G, Pumain R, et al. Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. *Prog Neurobiol* 2002;68:167–207.

[45] Benini R, D'Antuono M, Pralong E, Avoli M. Involvement of amygdala networks in epileptiform synchronization in vitro. *Neuroscience* 2003;120:75–84. [https://doi.org/10.1016/S0306-4522\(03\)00262-8](https://doi.org/10.1016/S0306-4522(03)00262-8).

[46] Steriade M. Interneuronal epileptic discharges related to spike-and-wave cortical seizures in behaving monkeys. *Electroencephalogr Clin Neurophysiol* 1974;37:247–63.

[47] Browning RAVII. Neuroanatomical localization of structures responsible for seizures in the GEPR: lesion studies. *Life Sci* 1986;39:857–67. [https://doi.org/10.1016/0024-3205\(86\)90367-X](https://doi.org/10.1016/0024-3205(86)90367-X).

[48] Browning RA. Role of the brain-stem reticular formation in tonic-clonic seizures: lesion and pharmacological studies. *Fed Proc* 1985;44:2425–31.

[49] Eells JB, Clough RW, Browning R, Jobe PC. Comparative fos immunoreactivity in the brain after forebrain, brainstem, or combined seizures induced by electroshock, pentylenetetrazol, focially induced and audiogenic seizures in rats. *Neuroscience* 2004;123:279–92. <https://doi.org/10.1016/j.neuroscience.2003.08.015>.

[50] Moraes MFD, Chavali M, Mishra PK, Jobe PC, Garcia-Cairasco N. A comprehensive electrographic and behavioral analysis of generalized tonic-clonic seizures of GEPR-9s. *Brain Res* 2005;1033:1–12. <https://doi.org/10.1016/j.brainres.2004.10.066>.

[51] Moraes MFD, Mishra PK, Jobe PC, Garcia-Cairasco N. An electrographic analysis of the synchronous discharge patterns of GEPR-9s generalized seizures. *Brain Res* 2005;1046:1–9. <https://doi.org/10.1016/j.brainres.2005.03.035>.

[52] Kalitzin S, Petkov G, Suffczynski P, Grigorovsky V, Bardakjian BL, da Silva FL, et al. Epilepsy as a manifestation of a multistate network of oscillatory systems. *Neurobiol Dis* 2019;104488. <https://doi.org/10.1016/j.nbd.2019.104488>.

[53] Tejada J, Costa KM, Bertti P, Garcia-Cairasco N. The epilepsies: complex challenges needing complex solutions. *Epilepsy Behav* 2013;26:212–28. <https://doi.org/10.1016/j.yebeh.2012.09.029>.

[54] Garcia-Cairasco N. Puzzling challenges in contemporary neuroscience: insights from complexity and emergence in epileptogenic circuits. *Epilepsy Behav* 2009;14:54–63. <https://doi.org/10.1016/j.yebeh.2008.09.010>.

[55] Womelsdorf T, Schafelein J-M, Oostenveld R, Singer W, Desimone R, Engel AK, et al. Modulation of neuronal interactions through neuronal synchronization. *Science* 2007;316:1609–12.

[56] Glass L. Synchronization and rhythmic processes in physiology. *Nature* 2001;410:277–84. <https://doi.org/10.1038/35065745>.

[57] Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. *Neuron* 2006;52:155–68. <https://doi.org/10.1016/j.neuron.2006.09.020>.

[58] Netoff TI, Schiff SJ. Decreased neuronal synchronization during experimental seizures. *J Neurosci* 2002;22:7297–307 doi:20026711.

[59] Jiruska P, de Curtis M, Jefferys JGRR, Schevon CA, Schiff SJ, Schindler K. Synchronization and desynchronization in epilepsy: controversies and hypotheses. *J Physiol* 2013;591:787–97. <https://doi.org/10.1113/jphysiol.2012.239590>.

[60] Penfield W, Jasper H. *Epilepsy and the functional anatomy of the human brain*. Oxford, England: Little, Brown & Co.; 1954.

[61] Kreuz T, Mormann F, Andrzek RC, Kraskov A, Lehnertz K, Grassberger P. Measuring synchronization in coupled model systems: a comparison of different approaches. *Phys D Nonlinear Phenom* 2007;225:29–42. <https://doi.org/10.1016/j.physd.2006.09.039>.

[62] Quiroga RQ, Kraskov A, Kreuz T, Grassberger P. On the performance of different synchronization measures in real data: a case study on EEG signals. *Phys Rev E* 2001;65:1–14. <https://doi.org/10.1103/PhysRevE.65.041903>.

[63] Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. *Trends Cogn Sci* 2007;11:267–9. <https://doi.org/10.1016/j.tics.2007.05.003>.

[64] Wu J, Yang H, Peng Y, Fang L, Zheng W, Song Z. The role of local field potential coupling in epileptic synchronization. *Neural Regen Res* 2013;8:745–53. <https://doi.org/10.3969/j.issn.1673-5374.2013.08.009>.

[65] Imamura S, Tanaka S, Akaike K, Tojo H, Takigawa M, Kuratsu J. Hippocampal transection attenuates kainic acid-induced amygdalar seizures in rats. *Brain Res* 2001;897:93–103. [https://doi.org/10.1016/s0006-8993\(01\)02098-4](https://doi.org/10.1016/s0006-8993(01)02098-4).

[66] Avoli M, Benini R, de Guzman P, Omar A. GABA receptor activation and limbic network ictogenesis. *Neuropharmacology* 2004;46:43–51. [https://doi.org/10.1016/S0028-3908\(03\)00307-1](https://doi.org/10.1016/S0028-3908(03)00307-1).

[67] Baccala LA, Sameshima K. Partial directed coherence: a new concept in neural structure determination. *Biol Cybern* 2001;84:463–74. <https://doi.org/10.1007/PL000007990>.

[68] Li J-J, Li Y-H, Gong H-Q, Liang P-J, Zhang P-M, Lu Q-C. The spatiotemporal dynamics of phase synchronization during epileptogenesis in amygdala-kindling mice. *PLoS One* 2016;11:e0153897. <https://doi.org/10.1371/journal.pone.0153897>.

[69] Garcia Dominguez L, Wennberg RA, Gaetz W, Cheyne D, Snead 3rd OC, Perez Velazquez JL. Enhanced synchrony in epileptiform activity? Local versus distant phase synchronization in generalized seizures. *J Neurosci* 2005;25:8077–84. <https://doi.org/10.1523/JNEUROSCI.1046-05.2005>.

[70] Majumdar K, Prasad PD, Verma S. Synchronization implies seizure or seizure implies synchronization? *Brain Topogr* 2014;27:112–22. <https://doi.org/10.1007/s10548-013-0284-z>.

[71] Yu H, Cai L, Wu X, Song Z, Wang J, Xia Z, et al. Investigation of phase synchronization of interictal EEG in right temporal lobe epilepsy. *Phys A Stat Mech Its Appl* 2018;492:931–40. <https://doi.org/10.1016/j.physa.2017.11.023>.

[72] Abreu R, Leal A, Lopes da Silva F, Figueiredo P. EEG synchronization measures predict epilepsy-related BOLD-fMRI fluctuations better than commonly used univariate metrics. *Clin Neurophysiol* 2018;129:618–35. <https://doi.org/10.1016/j.clinph.2017.12.038>.

[73] Guirgis M, Chinvarun Y, Carlen PL, Bardakjian BL. The role of delta-modulated high frequency oscillations in seizure state classification. *Conf Proc IEEE Eng Med Biol Soc* 2013;6595–8. <https://doi.org/10.1109/EMBC.2013.6611067>.

[74] Edakawa K, Yanagisawa T, Kishima H, Fukuma R, Oshino S, Khoo HM, et al. Detection of epileptic seizures using phase-amplitude coupling in intracranial electroencephalography. *Sci Rep* 2016;6:1–8. <https://doi.org/10.1038/srep25422>.

[75] Nariai H, Matsuzaki N, Juhász C, Nagasawa T, Sood S, Chugani HT, et al. Ictal high-frequency oscillations at 80–200 Hz coupled with delta phase in epileptic spasms. *Epilepsia* 2011;52:130–4. <https://doi.org/10.1111/j.1528-1167.2011.03263.x>.

[76] Bressler SL, Seth AK. Wiener-Granger causality: a well established methodology. *NeuroImage* 2011;58:323–9. <https://doi.org/10.1016/j.neuroimage.2010.02.059>.

[77] Zhang Z, Li JJ, Lu QC, Gong HQ, Liang PJ, Zhang PM. Interaction between thalamus and hippocampus in termination of amygdala-kindled seizures in mice. *Comput Math Methods Med* 2016;2016. <https://doi.org/10.1155/2016/9580724>.

[78] van Diesen E, Diederend SJH, Braun KPJ, Jansen FE, Stam CJ. Functional and structural brain networks in epilepsy: what have we learned? *Epilepsia* 2013;54:1855–65. <https://doi.org/10.1111/epi.12350>.

[79] Velasco M, Velasco F, Velasco AL, Brito F, Jiménez F, Marquez I, et al. Electrocortical and behavioral responses produced by acute electrical stimulation of the human centromedian thalamic nucleus. *Electroencephalogr Clin Neurophysiol* 1997;102:461–71. [https://doi.org/10.1016/S0013-4694\(96\)95203-0](https://doi.org/10.1016/S0013-4694(96)95203-0).

[80] Boon P, Vonck K, De Herdt V, Van Dycke A, Goethals M, Goossens L, et al. Deep brain stimulation in patients with refractory temporal lobe epilepsy. *Epilepsia* 2007;48:1551–60. <https://doi.org/10.1111/j.1528-1167.2007.01005.x>.

[81] Schindler K, Elger CE, Lehnertz K. Changes of EEG synchronization during low-frequency electric stimulation of the seizure onset zone. *Epilepsy Res* 2007;77:108–19. <https://doi.org/10.1016/j.eplepsyres.2007.09.011>.

[82] Mears D, Pollard HB. Network science and the human brain: using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease. *J Neurosci Res* 2016;94:590–605. <https://doi.org/10.1002/jnr.23705>.

[83] Velisek L, Kubova H, Pohl M, Stankova L, Mares P, Schickerova R. Pentylenetetrazol-induced seizures in rats: an ontogenetic study. *Naunyn Schmiedebergs Arch Pharmacol* 1992;346:588–91.

[84] Keogh BP, Cordes D, Stanberry L, Figler BD, Robbins C a, Tempel BL, et al. BOLD-fMRI of PTZ-induced seizures in rats. *Epilepsy Res* 2005;66:75–90. <https://doi.org/10.1016/j.eplepsyres.2005.07.008>.

[85] Clifford DB, Olney JW, Maniotis A, Collins RC, Zorumski CF. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. *Neuroscience* 1987;23:953–68. [https://doi.org/10.1016/0306-4522\(87\)90171-0](https://doi.org/10.1016/0306-4522(87)90171-0).

[86] Persinger MA, Makarec K, Bradley JC. Characteristics of limbic seizures evoked by peripheral injections of lithium and pilocarpine. *Physiol Behav* 1988;44:27–37.

[87] Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. *Behav Brain Res* 1983;9:315–35.

[88] Turski WA, Cavalheiro EA, Bortolotto ZA, Mello LM, Schwarz M, Turski L. Seizures produced by pilocarpine in mice: a behavioral, electroencephalographic and morphological analysis. *Brain Res* 1984;321:237–53. [https://doi.org/10.1016/0006-8993\(84\)90177-X](https://doi.org/10.1016/0006-8993(84)90177-X).

[89] Mello LE, Cavalheiro EA, Tan AM, Kupfer WR, Pretorius JK, Babb TL, et al. Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. *Epilepsia* 1993;34:985–95.

[90] de Oliveira JC, Medeiros D de C, de Souza e Rezende GH, Moraes MFD, Cota VR. Temporally unstructured electrical stimulation to the amygdala suppresses behavioral chronic seizures of the pilocarpine animal model. *Epilepsy Behav* 2014;36:159–64. <https://doi.org/10.1016/j.yebeh.2014.05.005>.

[91] de Oliveira JC, Maciel RM, Moraes MFD, Rosa Cota V. Asynchronous, bilateral, and biphasic temporally unstructured electrical stimulation of amygdala enhances the suppression of pentylenetetrazole-induced seizures in rats. *Epilepsy Res* 2018;146:1–8. <https://doi.org/10.1016/j.eplepsyres.2018.07.009>.

[92] Silva WS, de Oliveira JC, Cota VR. Complexity of different spatial and temporal patterns of non-periodic electrical stimulation, as assessed by Shannon and spectral entropies, correlates with their anticonvulsant power. *Epilepsy Behav. Spec. Ed. - NEWscience Int. Symp.*; 2019.

[93] Meadow KJ. The basic science of memory as it applies to epilepsy. *Epilepsia* 2007;48:23–5. <https://doi.org/10.1111/j.1528-1167.2007.01396.x>.

[94] Avanzini G, Forcelli P, Gale K. Are there really "epileptogenic" mechanisms or only corruptions of "normal" plasticity? In: Scharfman HE, Buckmaster PS, editors. *Issues in clinical epileptology: a view from the bench SE - 8*. Netherlands: Springer; 2014. p. 95–107. https://doi.org/10.1007/978-94-017-8914-1_8.

[95] Tass PA, Hauptmann C. Therapeutic modulation of synaptic connectivity with desynchronizing brain stimulation. *Int J Psychophysiol* 2007;64:53–61. <https://doi.org/10.1016/j.ijpsycho.2006.07.013>.

[96] de Castro Medeiros D, Moraes MFD. Focus on desynchronization rather than excitability: a new strategy for intraencephalic electrical stimulation. *Epilepsy Behav* 2014;38:32–6. <https://doi.org/10.1016/j.yebeh.2013.12.034>.

[97] Mesquita MBS, de Castro Medeiros D, Cota VR, Richardson MP, Williams S, Moraes MFD. Distinct temporal patterns of electrical stimulation influence neural recruitment during PTZ infusion: an fMRI study. *Prog Biophys Mol Biol* 2011. <https://doi.org/10.1016/j.pbiomolbio.2010.10.005>.

[98] Ribas V, Pereira De Vasconcelos A, Phâm-Lê BT, Ferrandon A, Marescaux C, Nehlig A, et al. Modifications of local cerebral glucose utilization in thalamic structures following injection of a dopaminergic agonist in the nucleus accumbens - involvement in antiepileptic effects? *Exp Neurol* 2004;188:452–60. <https://doi.org/10.1016/j.exrneuro.2004.04.020>.

[99] Long JJ, Ma J, Stan Leung L. Behavioral depression induced by an amygdala seizure and the opioid fentanyl was mediated through the nucleus accumbens. *Epilepsia* 2009;50:1953–61. <https://doi.org/10.1111/j.1528-1167.2009.02143.x>.

[100] Kowski AB, Voges J, Heinze H-J, Oltmanns F, Holtkamp M, Schmitt FC. Nucleus accumbens stimulation in partial epilepsy—a randomized controlled case series. *Epilepsia* 2015;56:e78–82. <https://doi.org/10.1111/epi.12999>.

[101] Schmitt FC, Voges J, Heinze H-J, Zaeble T, Holtkamp M, Kowski AB. Safety and feasibility of nucleus accumbens stimulation in five patients with epilepsy. *J Neurol* 2014;261:1477–84. <https://doi.org/10.1007/s00415-014-7364-1>.

[102] de Castro Medeiros D, Cota VR, da P Vilela MRS, Mourão FAG, Massenini AR, Moraes MFD. Anatomically dependent anticonvulsant properties of temporally-coded electrical stimulation. *Epilepsy Behav* 2012. <https://doi.org/10.1016/j.yebeh.2012.01.004>.

[103] Hodaie M, Wennberg RA, Dostrovsky JO, Lozano AM. Chronic anterior thalamus stimulation for intractable. *Epilepsy* 2002;43:603–8.

[104] Hamani C, Hodaie M, Chiang J, del Campo M, Andrade DM, Sherman D, et al. Deep brain stimulation of the anterior nucleus of the thalamus: effects of electrical stimulation on pilocarpine-induced seizures and status epilepticus. *Epilepsy Res* 2008; 78:117–23. <https://doi.org/10.1016/j.epilepsires.2007.09.010>.

[105] Kerrigan JF, Litt B, Fisher RS, Cranstoun S, French JA, Blum DE, et al. Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable. *Epilepsy* 2004;45:346–54.

[106] Lozano A, Krishna V. Brain stimulation for intractable epilepsy: anterior thalamus and responsive stimulation. *Ann Indian Acad Neurol* 2014;17:95. <https://doi.org/10.4103/0972-2327.128671>.

[107] Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. *Epilepsia* 2010;51:899–908. <https://doi.org/10.1111/j.1528-1167.2010.02536.x>.

[108] Hirsch E, Danober L, Simler S, Vasconcelos APDE. The amygdala is critical for seizure propagation from brainstem to forebrain. *Neuroscience* 1997;77:975–84.

[109] Marescaux C, Vergnes M, Kiesmann M, Depaulis A, Micheletti G, Warter JM. Kindling of audiogenic seizures in Wistar rats: an EEG study. *Exp Neurol* 1987;97: 160–8. [https://doi.org/10.1016/0014-4886\(87\)90290-1](https://doi.org/10.1016/0014-4886(87)90290-1).

[110] Dutra Moraes MF, Galvis-Alonso OY, Garcia-Cairasco N. Audiogenic kindling in the Wistar rat: a potential model for recruitment of limbic structures. *Epilepsy Res* 2000;39:251–9.

[111] Garcia-Cairasco N, Wakamatsu H, Oliveira JAC, Gomes ELT, Del Bel EA, Mello LEAM. Neuroethological and morphological (Neo-Timm staining) correlates of limbic recruitment during the development of audiogenic kindling in seizure susceptible Wistar rats. *Epilepsy Res* 1996;26:177–92. [https://doi.org/10.1016/S0920-1211\(96\)00050-2](https://doi.org/10.1016/S0920-1211(96)00050-2).

[112] Mourão FAG, Lockmann ALV, Castro GP, de Castro Medeiros D, Reis MP, Pereira GS, et al. Triggering different brain states using asynchronous serial communication to the rat amygdala. *Cereb Cortex* 2015;26:1866–77. <https://doi.org/10.1093/cercor/bhu313>.

[113] de Oliveira JC, Drabowski BMB, Rodrigues SMAF, Maciel RM, Moraes MFD, Cota VR. Seizure suppression by asynchronous non-periodic electrical stimulation of the amygdala is partially mediated by indirect desynchronization from nucleus accumbens. *Epilepsy Res* 2019;154:107–15. <https://doi.org/10.1016/j.eplepsires.2019.05.009>.

[114] Rodrigues SMAF, Oliveira JC, Maciel RM, Réboli LA, Cota VR. Non-periodic stimulation decreases ictal coincidence between neural substrates in pentylenetetrazole animal models. *Epilepsy Behav. Spec. Ed. - NEWroscience Int. Symp*; 2019.

[115] Tort ABL, Komorowski R, Eichenbaum H, Kopell N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. *J Neurophysiol* 2010;104:1195–210. <https://doi.org/10.1152/jn.00106.2010>.

[116] Oliveira JC, Rodrigues SMAF, Maciel RM, Réboli LA, Cota VR. Phase-amplitude coupling between neural oscillations is decreased by non-periodic electrical stimulation in epileptic seizures. *Epilepsy Behav. Spec. Ed. - NEWroscience Int. Symp*; 2019.

[117] Jefferys JGR, Menendez de la Prida L, Wendling F, Bragin A, Avoli M, Timofeev I, et al. Mechanisms of physiological and epileptic HFO generation. *Prog Neurobiol* 2012;98:250–64. <https://doi.org/10.1016/j.pneurobio.2012.02.005>.

[118] Newman MEJ. Power laws, Pareto distributions and Zipf's law. *Contemp Phys* 2005; 46:323–51. <https://doi.org/10.1080/00107510500052444>.

[119] Klaus A, Yu S, Plenz D. Statistical analyses support power law distributions found in neuronal avalanches. *PLoS One* 2011;6:e19779.

[120] Garcia-Lazaro JA, Ahmed B, Schnupp JWH. Tuning to natural stimulus dynamics in primary auditory cortex. *Curr Biol* 2006;16:264–71. <https://doi.org/10.1016/j.cub.2005.12.013>.

[121] Simoncelli EP. Vision and the statistics of the visual environment. *Curr Opin Neurobiol* 2003;13:144–9. [https://doi.org/10.1016/S0959-4388\(03\)00047-3](https://doi.org/10.1016/S0959-4388(03)00047-3).

[122] Mainen ZF, Sejnowski TJ. Reliability of spike timing in neocortical neurons. *Science* 1995;268:1503–6. <https://doi.org/10.1126/science.7770778>.

[123] Gal A, Marom S. Entrainment of the intrinsic dynamics of single isolated neurons by natural-like input. *J Neurosci* 2013;33:7912–8. <https://doi.org/10.1523/JNEUROSCI.3763-12.2013>.

[124] Scarsi F, Tessadori J, Chiappalone M, Pasquale V. Investigating the impact of electrical stimulation temporal distribution on cortical network responses. *BMC Neurosci* 2017;18:1–13. <https://doi.org/10.1186/s12868-017-0366-z>.

[125] Gervasoni D. Global forebrain dynamics predict rat behavioral states and their transitions. *J Neurosci* 2004;24:11137–47. <https://doi.org/10.1523/JNEUROSCI.3524-04.2004>.

[126] Diamond DM, Zoladz PR. Dysfunctional or hyperfunctional? The amygdala in post-traumatic stress disorder is the bull in the evolutionary China shop. *J Neurosci Res* 2016;94:437–44. <https://doi.org/10.1002/jnr.23684>.

[127] Gubellini P, Kachidian P. Animal models of Parkinson's disease: an updated overview. *Rev Neurol (Paris)* 2015;171:750–61. <https://doi.org/10.1016/j.neuro.2015.07.011>.

[128] Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson's disease. *Mov Disord* 2003;18:357–63. <https://doi.org/10.1002/mds.10358>.

[129] Schnitzler A, Gross J. Normal and pathological oscillatory communication in the brain. *Nat Rev Neurosci* 2005;6:285–96. <https://doi.org/10.1038/nrn1650>.

[130] Schoffelen J-M, Oostenveld R, Fries P. Neuronal coherence as a mechanism of effective corticospinal interaction. *Science* 2005;308:111–3. <https://doi.org/10.1126/science.1107027>.

[131] Sharott A, Magill PJ, Harnack D, Kupsch A, Meissner W, Brown P. Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. *Eur J Neurosci* 2005;21:1413–22. <https://doi.org/10.1111/j.1460-9568.2005.03973.x>.

[132] Gomes MZ, Del Bel EA. Effects of electrolytic and 6-hydroxydopamine lesions of rat nigrostriatal pathway on nitric oxide synthase and nicotinamide adenine dinucleotide phosphate diaphorase. *Brain Res Bull* 2003;62:107–15.

[133] Schwarting RK, Huston JP. The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. *Prog Neurobiol* 1996;50:275–331.

[134] Telles MVL, Nobre MEP, Alencar LP, de Siqueira KP, Borges AMFS. Prenatal curcumin administration reverses behavioral and neurochemical effects and decreases iNOS and COX-2 expressions in ischemic rat pups. *Int J Brain Sci* 2014; 2014:1–10.

[135] Averna A, Guggenmos D, Pasquale V, Semprini M, Nudo R, Chiappalone M. Neuroengineering tools for studying the effect of intracortical microstimulation. *Rodent Models. Conf Proc. Annu Int Conf IEEE Eng Med Biol Soc* 2018; 2018. p. 3076–9. <https://doi.org/10.1109/EMBC.2018.8512915>.

[136] Geller EB, Skarpaas TL, Gross RE, Goodman RR, Barkley GL, Bazil CW, et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. *Epilepsia* 2017;58. <https://doi.org/10.1111/epi.13740>.

[137] Medeiros DC, Oliveira LB, Mourão FAG, Bastos CP, Cairasco NG, Pereira GS, et al. Temporal rearrangement of pre-ictal PTZ induced spike discharges by low frequency electrical stimulation to the amygdaloid complex. *Brain Stimul* 2014;7: 170–8. <https://doi.org/10.1016/j.brs.2013.11.005>.