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Electrical stimulation of the central nervous system is a promising alternative for the treatment of
pharmacoresistant epilepsy. Successful clinical and experimental stimulation is most usually carried out as con-
tinuous trains of current or voltage pulses fired at rates of 100 Hz or above, since lower frequencies yield contro-
versial results. On the other hand, stimulation frequency should be as low as possible, in order to maximize
implant safety and battery efficiency. Moreover, the development of stimulation approaches has been largely em-
pirical in general, while they should be engineered with the neurobiology of epilepsy in mind if a more robust,
efficient, efficacious, and safe application is intended. In an attempt to reconcile evidence of therapeutic effect
with the understanding of the underpinnings of epilepsy, our group has developed a nonstandard form of low-
frequency stimulation with randomized interpulse intervals termed nonperiodic stimulation (NPS). The rationale
was that an irregular temporal pattern would impair neural hypersynchronization, which is a hallmark of epi-
lepsy. In this review, we start by briefly revisiting the literature on the molecular, cellular, and network level
mechanisms of epileptic phenomena in order to highlight this often-overlooked emergent property of cardinal
importance in the pathophysiology of the disease. We then review our own studies on the efficacy of NPS against
acute and chronic experimental seizures and also on the anatomical and physiological mechanism of the method,
paying special attention to the hypothesis that the lack of temporal regularity induces desynchronization. We
also put forward a novel insight regarding the temporal structure of NPS that may better encompass the set of
findings published by the group: the fact that intervals between stimulation pulses have a distribution that fol-
lows a power law and thus may induce natural-like activity that would compete with epileptiform discharge
for the recruitment of networks. We end our discussion by mentioning ongoing research and future projects of
our lab.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

common therapeutic targets are the cortex surface, the cerebellum, ante-
rior nucleus of the thalamus, subthalamic nuclei, and the epileptogenic

Despite considerable development of both pharmacological and sur-
gical treatments, a large portion of patients with epilepsy cannot obtain
full control of their seizures [1,2]. In fact, optimistic statistics suggest
there are at least fifteen million individuals in the whole world
experiencing the neurobiological, economic, and social burden of
pharmacoresistant epilepsy [3,4]. Alternative therapeutic approaches
for refractory epilepsy are in obvious demand, and electrical stimulation
(ES) is a promising choice [5,6].

Therapeutic electrical stimulation may be applied to targets of both
the peripheral nervous systems — such as the vagus nerve [7] or the tri-
geminal nerve [8] — and the central nervous system (CNS). In the CNS,
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focus itself, including the amygdaloid complex and the hippocampus in
temporal lobe epilepsy [9]. Electrical stimulation is most commonly deliv-
ered as continuous or intermittent firing of square pulses of voltage or
current in a certain fixed rate or frequency [10]. Although parameters
vary a lot among different studies in humans and animal models, com-
mon values are units of volts or tens to hundreds of microamperes in am-
plitude and tens to hundreds of microseconds of pulse duration.
Moreover, high frequency stimulation (HFS), with firing rates above
130 Hz, are broadly accepted as anticonvulsant and thus used in medical
practice, while low-frequency stimulation (LFS; firing rates <20 Hz) is
seen as proconvulsant or of controversial results [11,12].

The prevalence of HFS in clinical approaches is not without concern,
since LFS would certainly be preferable because of the many advantages
of a lower transfer of energy to the tissue. First, an implantable
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stimulator running LFS would need a smaller battery that would last
longer, implying a less invasive surgery and fewer interventions for re-
placement. Second, a lower count of pulses per unit of time directly
translates to decreased charge density around electrode contacts. This
means improved therapeutic safety, since it reduces risks of
nonsurgical-related lesions, such as those resulting from heat and elec-
troporation. Also, LFS may be less prone to tissue habituation that re-
sults in loss of therapeutic effect in the long run. Finally, HFS,
particularly when applied to areas of the mesial temporal lobe, is the
protocol of choice for inducing long-term potentiation and kindling in
experimental epilepsy, both related to increases in neural excitability,
while LFS applied to the same areas has been described as an approach
to induce long-term depression that may underlie antiepileptogenic ef-
fects seen in some studies. But again, seizure-suppressing effects of LFS
are controversial at best [13-17].

It is thus of paramount importance for the advancement of
neurostimulation therapy regarding its efficacy, efficiency, safety, ro-
bustness, and scope of application, to be able to reconcile the evidences
of beneficial effects with the mechanisms of epilepsy, ictogenesis, and
seizure abatement [18]. Our group has been pursuing this goal for
more than a decade now by investigating an often-overlooked aspect
of epilepsy beyond ubiquitous hyperexcitability: neural
hypersynchronization. In 2009, we published, in a special edition of
this prestigious journal for the NEWroscience 2008 International Sym-
posium, evidence that a nonstandard form of LFS specially tailored to
break reverberation in neural networks and thus to suppress excessive
synchronization has a robust anticonvulsant effect in rats submitted to
a model of chemically induced acute seizures [19].

Much work has been done since then. Here, we review the progress
made in the science and technology behind this experimental therapeu-
tic approach, termed NPS (nonperiodic stimulation), by developing the
method and maximizing its effect, expanding its applications, and in-
vestigating its mechanisms. A review on the formal concept of neural
synchronization and the techniques to measure it is given, before pro-
ceeding to the description of the findings of the group and the current
understanding of the underpinnings behind the therapeutic effect of
NPS. We conclude by describing ongoing investigation and perspectives
of the work.

2. Some nuts and bolts of epilepsy: molecules, cells, and networks

A myriad of neurobiological factors from the molecular, to cellular,
and to network levels of brain organization underlie the cardinal feature
of hyperexcitability of epileptic neural tissue [20-24]. Among these, en-
hanced NMDA-mediated excitation [25] and decreased GABA-mediated
inhibition [26], probably resulting from status epilepticus (SE)-induced
trafficking of receptors through the membrane of postsynaptic neurons
[27,28], are of key importance to the unbalance between excitation and
inhibition, in favor of the former. Deficient potassium buffering, ion
transporter dysfunction [29], impaired glial function [30,31], cell swell-
ing [32], dendritic anatomical abnormalities [33], dendritic channelopa-
thy [34], and many others are additional contributing factors in the
plethora of neurobiological mechanisms underlying epilepsy. These
pathological changes add up to create a permanent state of hyperexcit-
able neural tissue prone to develop episodes of aberrant intense neural
activity: seizures. The dynamic transition from controlled hyperexcit-
ability to a seizure state and back is not yet fully understood, but seizure
onset and termination has been investigated and modeled as the move-
ment of a particle in a surface to and from distinct wells of attraction
representing the functional and the dysfunctional states, the separation
of which is much decreased in epilepsy [35-39]. For instance,
Suffczynski and colleagues have provided valuable insight on epileptic
phenomena while investigating in silico the transition between dynam-
ics underlying healthy spindle oscillations and dysfunctional spike and
wave discharges by a bistable neuronal network model [40].

After the threshold is crossed, aberrant epileptiform activity
spreads through both physiological pathways [22,41-43] and aber-
rant connections [44,45]. These neural networks are, thus, responsi-
ble for the propagation and sustaining of seizures [46-48] giving rise
to distinct electrophysiological and behavioral expressions accord-
ing to the substrates involved and the temporal coordination of
their mutual activation [49-51].

It becomes clear at this point that both the disease and its main ex-
pression are complex phenomena encompassing multiple neurobiolog-
ical factors in different levels of brain organization that demand
alternative investigative approaches that are up to the task [52-54]. In
this sense, it is important to understand that complex systems give
rise to emergent properties that may contribute to the understanding
of complex phenomena. One such feature is synchronism of brain
activity. In fact, this property has been described to be inherent to neural
networks in both homeostasis and dysfunction [55-57], including
epilepsy [58,59].

By this token, epilepsy can be understood as a dysfunction of
hypersynchronism (in most part at least). Although such understanding
has been put forward since seminal work of Penfield & Jasper [60] and
others, it has lacked a solid definition. Synchronization can thus be de-
fined as the mutual influence of two dynamical systems entrained in os-
cillatory activity [61-63]. This means that if two oscillators are
synchronized, at least a pair of any of their descriptors (amplitude,
phase, frequency, etc.), one of each dynamic, will show a mathematical
interrelationship of the form y = f(x) [59].

Synchronization in epilepsy has been observed in multiple forms in
different brain signals, such as noninvasive imaging, magnetoencephalog-
raphy, and most predominantly — given its high temporal resolution —
electroencephalography (EEG). A first evidence of neural synchronization
is the occurrence of epileptiform spikes, which by itself is an indicator of
simultaneous firing of neuronal populations making superficial synaptic
contacts [64]. Furthermore, synchronization can be inferred simply by
the spread and temporal locking of spikes among substrates of ictogenic
circuitry [44,51,65,66] or by several approaches of electrographic signal
processing, such as correlation measurements, partial directed coherence
[67], phase-locking [68-70], phase lag [71], phase synchronization [72],
cross-frequency coupling (CFC) [73-75], Granger causality [76], mutual
information [77], and others [57,78].

Of particular interest, ES of the brain has been related to neural
desynchronization [79,80]. On the other hand, the relationship between
epileptic phenomena and its suppression by ES with neural synchroniza-
tion and desynchronization, respectively, is not free of controversy, since
it seems that increases and decreases in the coupling of oscillation depend
on different factors, such as frequency of oscillation, instant in the course
of ictogenesis, and spatial scale — short versus long range [59,81].

With the specific goal of decreasing synchronization in the low fre-
quency range seen in animal models of generalized seizures [50], we de-
signed NPS and tested it with different parameters and in distinct
animal models of seizures and epilepsy, while, at the same time, inves-
tigating its therapeutic mechanism in face of the desynchronization hy-
pothesis. The following sections of this text describe published findings
and ongoing research of our group on the topic.

At this point, it is important to mention that two forms of NPS were
developed: NPS-IH and NPS-LH (reasons for acronyms will be clearer
later). Yet, only NPS-IH was shown to be effective and then it was
renamed to just NPS for simplicity reasons. Thus, usage of acronym
NPS here and in other publication of the group always implies the [H
variation, while the LH variation is described in extent: NPS-LH.

3. NPS: temporal pattern generation and parameters

A desynchronizing and antireverberation stimulation pattern should
have no regular temporal structure. Thus, all intervals between any two
firing pulses (IPI: interpulse interval) of NPS were randomized. To keep
it low energy, the stimulation pattern contained only four pulses per
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second in average. This frequency was based on common firing rates of
epileptiform spikes seen in animal models of acute seizures. To be able
to perform randomization on real time, the algorithm consisted of the
following steps: 1) randomize, from a uniform distribution, a timestamp
t1 between 0 and 940 ms; 2) wait until t1 and fire the first pulse; 3) ran-
domize a second timestamp t2 between t1 and 960 ms; 4) wait until t2
and fire the second pulse; 5) repeat steps 3 and 4 two more times, while
always increasing 20 ms to the end of the randomization period; 6) al-
ways check for IPI smaller than 20 ms and adjust to this value if neces-
sary. By following these steps, we guaranteed four pulses per second
with a real-time randomization of IPI always greater than 20 ms, so no
high frequency content was present; firing rate was, thus, always
<50 Hz.

This pattern of stimulation was also called restrictively randomized
(given that randomization period always depended on previous ran-
domization results) or even NPS-IH. The abbreviation IH stems from in-
verse histogram, since IPI distribution of this pattern can be fit with
great accuracy (R? = 0.9781; [19]) by an inverse function of the form:

where f(x) is the probability of an IPI of size x and k is a multiplicative
constant dependent only on the number of classification bins and the
number of stimulus pulses (Fig. 1B, panels g and h). This characteristic
has been proven to be of great importance (see Section 5.3). Considering
that the algorithm for the generation of the temporal pattern does not
allow frequencies over 50 Hz (or IPI < 20 ms), and that there are always
four pulses per each one-second time window, the domain of IPI values
is:

20 ms<x<1860 ms

Pulses were always square waves of 100 ps total duration, with cur-
rent amplitudes varying from 100 to 600 pA, according to animals' sus-
ceptibility (assessed prior to the experiments). This set of parameters
and the low frequency nature of NPS reduced charge per phase in a 1-
second period to as low as 0.1 puC, among the lowest levels found in lit-
erature and well below the safety limits [12].

Stimulation was applied to the amygdala (AMY) since 1) it is a major
player in seizure generation and spread [23]; 2) it processes incoming
information from polymodal areas through the entorhinal cortex, work-
ing as a gatekeeper to mesial temporal lobe circuitry; 3) it is extensively
connected to structures in the hindbrain, midbrain, and forebrain [82];
and 4) there are advantages in using the epileptogenic focus for stimu-
lation, including better neurosurgical safety and others. Stimulation tar-
get varied only when specifically investigating anatomic aspects of NPS.
In the same vein, some of its parameters varied in some studies to serve
the purpose of answering specific questions of each phase of the inves-
tigation (see next section).

4. NPS has anticonvulsant properties in acute and chronic seizures

The first steps were to test NPS against experimental seizures. A
common animal model for the screening of new drugs or novel thera-
peutics is the controlled intravenous infusion of pentylenetetrazole
(PTZ) [83]. It is a nonspecific GABA, receptor antagonist which, when
gradually administered, induces a condition of neural hyperexcitability
that starts in more susceptible areas, such as the limbic system, and
then progresses to the whole brain [49,84]. This ensures gradual recruit-
ment of structures into aberrant epileptiform activity, resulting in ani-
mals displaying a stereotypical sequence of convulsive behavior that
begins with facial automatisms, progresses to myoclonic jerks and fore-
limb clonus, and ends with generalized tonic-clonic seizures (GTCS).
Since PTZ infusion rate is controlled and constant, the time to evoke
each behavior corresponds to the amount of drug necessary to trigger

seizures (minimal or maximal) — also called PTZ threshold — and
variations of this parameter indicate an anticonvulsant or a convulsant
effect of a candidate treatment.

In a first study of our group, NPS was applied to the right basolateral
amygdala of male rats submitted to PTZ-induced acute seizures ([19];
Fig. 1A, but with no LFP recordings). Besides NPS-IH stimulated animals,
four additional experimental groups were carried out: 1) control with no
stimulation; 2) low-frequency (4 Hz) periodic stimulation (PS; Fig. 1B,
panels a and b); 3) burst stimulation consisting of four pulses with a
20 ms IPI (Fig. 1B, panels c and d); and 4) stimulation with a different algo-
rithm for randomization (also four pulses per second), called freely ran-
domized IPI or, yet, NPS-LH, because of the fact that the IPI histogram
can be fit by a linear equation of the form f(x) = A — kx (Fig. 1B, panels
eand f).

Results showed that NPS (particularly and only NPS-IH) has a robust
anticonvulsant effect on both forelimb clonus and GCTS, since PTZ
threshold was significantly increased for both behaviors (almost double
for GTCS) in animals submitted to such stimulation pattern, while other
stimuli displayed no effect or were even proconvulsant (PS; Fig. 1C).
Considering that every other important stimulation parameter (mean
pulse amplitude and duration, number of pulses per second, stimulation
site, mean animal weight, etc.) was the very same across all groups, we
concluded that the temporal pattern of stimulation is a key determinant
factor for the therapeutic effect. Curiously, only one form of randomiza-
tion (NPS-IH) displayed an anticonvulsant property. Although this still
remains to be fully understood, plausible neurobiological factors origi-
nating from independent sources of different neuroscience fields have
come to light recently with great explanatory potential. We will come
back to this later in the text.

Next, we sought to test NPS in a scenario that better mimics the
human condition. For this, we submitted animals to the experimental
model of temporal lobe epilepsy, represented by the late phase after
pilocarpine-induced status-epilepticus (SE). Pilocarpine (PILO) is a cho-
linergic agonist that, when administered in a massive bolus intraperito-
neal injection, induces SE which, in turn, if sustained for about 90 min or
more, will cause neuronal damage and consequently maladaptive cellu-
lar and network restructuring. The final result in the long run is a dys-
functional neural tissue sustaining a permanent condition of
hyperexcitability. Animals, thus, display spontaneous and recurrent sei-
zures with concomitant recruitment of mesiotemporal regions and the
limbic system [85-89].

In this study, our group applied NPS for 6 h (10 a.m. to 4 p.m.) during
four consecutive days right after four initial days of observation (no
stimulation), all of them in the late phase of the PILO model (45 days
after SE), while assessing number, duration, and severity (according to
Racine's scale) of seizures [90]. Compared with the control period
with no stimulation, NPS was able to significantly reduce the number
and duration of seizures, with a strong tendency to decrease severity
(Fig. 1D). Periodic stimulation was also applied to a different group of
animals in the same way NPS was: while results were not significant,
a trend to worsen seizures was observed. We considered these to be im-
portant results, since NPS was effective even when applied to dysfunc-
tional tissue. Not only does this support the possibility of a
translational study and application of NPS to human patients, but it
also suggests that its therapeutic mechanism is not lost in dysfunctional
hyperexcitable neural tissue.

Based on the rationale that NPS attains its therapeutic effect by
means of neural desynchronization, we then tested the effect of varying
key stimulation parameters in the suppression of acute PTZ-induced sei-
zure [91]. We analyzed the number of pulse phases (mono and bi-
phasic), stimulation side (right and left), number of sides (uni- and
bilateral), and synchronicity between hemispheres (synchronous and
asynchronous; Fig. 1E). All these variations were known to have differ-
ential effects regarding efficacy and site of neuronal activation, quality
of charge distribution, desynchronization power, etc. Data showed
that anticonvulsant power increases gradually if biphasic, bilateral,
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Fig. 1. Compilation of findings on the anticonvulsant effects of NPS. A) Wistar rats were submitted to PTZ-induced acute seizures while being treated with different temporal patterns of
stimulation. Latency to convulsive behavior and electrophysiological recordings were performed to assess anticonvulsant effect and functional correlates. Method for induction of
spontaneous and recurrent seizure by PILO is not shown. B) The different temporal patterns of stimulation used in this investigation, with IPI histograms at left and temporal
representations on the right. C) Results for PTZ-threshold to evoke forelimb clonus and GTCS. D) Results for number, duration, and severity of seizures in PILO animals treated with
NPS. D) Distinct variations of NPS. E) PTZ-threshold results for each variation.

(Adapted with permission from Cota et al. [19] and Oliveira et al. [90,91].)

and asynchronous features are added to the stimulation pattern, modeled as increases in spatial and temporal complexities of the pat-
resulting in almost a threefold increase of PTZ-threshold to evoke tern of stimulation, measured by, for instance, spectral entropy or Shan-
GTCS when compared with controls (Fig. 1F). If these additions are non entropy, a strong correlation between such measurements and the
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anticonvulsant power of different variations of NPS can be seen ([92] —
this issue).

Finally, we also studied if NPS was capable of impairing the progres-
sion of experimental epileptogenesis (transition of a healthy brain into a
hyperexcitable seizure-prone one). This is plausible, since the develop-
ment of the epileptic condition in a previously healthy brain may be
interpreted alternatively as neural plasticity underlying an aberrant
form of memory formation [93,94]. Memory formation is related to syn-
aptic weights, the modulation of which depends on the coincidence be-
tween firing of interconnected neurons. In turn, such coincidence has
been shown in silico to depend on the temporal structure of external
stimuli [95]. For this investigation, animals underwent fast electrical
kindling of the amygdala intertwined (or not) with NPS. Preliminary be-
havioral and electrographic results showed that NPS decreases the se-
verity of behavior and duration of seizures after kindling, which
suggest that NPS has also an antiepileptogenic effect (unpublished
results).

These lines of evidence, taken together, show that NPS has a robust
anticonvulsant effect against both acute and chronic seizures, while
suggesting that it also has antiepileptogenic effects. Results of the pilo-
carpine model show that the mechanisms of NPS are preserved in dys-
functional neural tissue, thus strengthening the possibility of
translational research. Finally, the method displays its greatest anticon-
vulsant power when applied biphasically, bilaterally, and
asynchronously.

5. Therapeutic mechanisms of NPS

As stated before, it has always been a main goal of this scientific en-
deavor not only to develop an efficacious ES method, but also to engi-
neer it with the neurobiology of epilepsy in mind, particularly
regarding the aspect of hypersynchronism among substrates of
ictogenic circuitry [96]. Distinct behavioral outcomes originating from
changing regular (PS) to irregular firing of pulses (NPS) and the fact
that NPS efficacy is increased by varying its parameters from mono- to
biphasic, uni- to bilateral, and synchronous to asynchronous (inter-
hemispheric synchronicity) may be seen as indirect evidences that, in
fact, the approach attains it therapeutic effect through neural
desynchronization. Yet, a more direct mechanistic investigation of
these issues was of paramount importance.

5.1. The importance of anatomy

A first attempt to understand the mechanism underlying NPS thera-
peutic effect and to test the desynchronization hypothesis was to assess
anatomic aspects regarding both 1) neural recruitment after application
of stimuli to the AMY and 2) conversely, behavioral outcome of varying
the substrate of application.

In the first case, functional magnetic resonance imaging (fMRI) was
performed in rats submitted to application of NPS or PS to AMY with or
without a controlled infusion of PTZ, using a 7 T horizontal small-bore
scanner, with fast spin-echo multislice sequence for structural images
and single-shot gradient-echo echo-planar sequence for functional im-
ages, both T-weighted [97]. Special carbon fiber stimulation electrodes
were developed to avoid imaging artifacts. As expected, PTZ induced
generalized activation in both stimulation protocols. On the other
hand, while PS reinforced ipsilateral activation (in regard to site of stim-
ulus application), NPS reduced it. Moreover, in PTZ-free animals, PS in-
duced activation of the mesiotemporal region (e.g., thalamus and
hippocampus) in the contralateral axis, and NPS recruited frontal
areas, especially the nucleus accumbens. This last result has been of par-
ticular interest, since the nucleus accumbens has been enrolled in epi-
leptic phenomena [98,99] and also has served as a target for
electrostimulation experimental therapies [100,101].

To test the importance of the anatomical target of NPS, the same pro-
tocol of Cota and colleagues was repeated [19], but stimuli were applied

also to the anterior nucleus of the thalamus (ANT) [102]. The choice of
ANT in this study is based on extensive previous literature showing
the efficacy of ES applied to this substrate [15,103-107]. Results for
the amygdala were the same as those obtained in a previous study of
the group. On the other hand, NPS applied to ANT showed an anticon-
vulsant effect only regarding GTCS, but not forelimb clonus. This differ-
ence may be explained by the involvement of both structures in each
type of seizure: while AMY participates in forebrain ictogenic circuits re-
lated to minimal (forelimb clonus) and modulates those of maximal
(GTCS) seizures, ANT is related only to midbrain and hindbrain general-
ized seizures [108-111]. Corroborating this understanding, while PS
showed a convulsant effect towards forelimb clonus when applied to
AMY, it showed no such effect when ANT was the target. Conversely,
PS at AMY had no effect at GCTS but it was anticonvulsant when applied
to ANT.

These results highlight the importance of anatomy in the mecha-
nism of ES in general and NPS in particular. Not only do different stim-
ulus patterns applied to the AMY induce differential neural
recruitment, but also the same pattern applied to different anatomical
substrates yields distinct behavioral outcomes. This corroborates the
notion that NPS has an effect on the network level of brain organization
and that the amygdala, but not the thalamus, is capable of producing dif-
ferent responses according to the temporal pattern of the presented
stimulus. This fact has been successfully used in a study relating
active-avoidance learning conditioned by temporally coded electrical
stimuli [112].

5.2. Multi-level desynchronization

In order to test the desynchronization hypothesis more specifically,
electrophysiological recordings had to be carried out simultaneously
to electrical stimulation in animals submitted to experimental models
of seizures and epilepsy. Different setups and signal processing strate-
gies allow inferences regarding synchronization levels in the microdo-
main (local neuronal populations and microoscillators), medium
range domain (neural networks), and macrodomain (coupling of
networks).

The first study of our group with such goal sought to better under-
stand the role of the nucleus accumbens in epileptic phenomena and in
the seizure-suppression mechanisms of NPS. Particularly, given the in-
triguing findings of our previous work [97], we wanted to test whether
the substrate might serve as an indirect pathway for desynchronization
of the forebrain. In order to do this, we submitted rats to the PTZ model
of acute seizures, with or without bilateral electrolytic lesion of the nu-
cleus accumbens and treated or not with NPS [113]. Evaluation of convul-
sive behavior — including PTZ threshold assessment — and concomitant
electrocorticographic (ECoG) recordings were carried out. Electrolytic le-
sion severely worsened PTZ-induced seizures, increasing duration of be-
havioral and electrographic manifestations, and decreasing PTZ
threshold. Nonperiodic stimulation treatment in these animals had no
overt effect whatsoever. In the same work, we assessed the occurrence
and morphology of epileptiform spikes in order to investigate synchroni-
zation levels of neuronal populations [64]. After detecting spikes with a
custom-build routine, total number, firing rate, amplitude, and slope of
spikes were computed. It turned out that the nucleus accumbens lesion
induced an increase in all these parameters, strongly suggesting an in-
crease in the synchronization in the activity of neuronal populations re-
sponsible for spike generation in cortical levels. Nonperiodic stimulation
in animals with intact brains (without nucleus accumbens lesion) showed
mild to nonexistent decreases in the same parameters.

We have been also investigating the effects of NPS directly in the
synchronization levels of neural networks. To do this, local field poten-
tials (LFP) have been recorded from the cortex, hippocampus, and thal-
amus of rats submitted to acute PTZ-induced seizures and treated or not
with NPS. To assess synchronization of a network, the level of epilepti-
form spike coincidence was measured by simply detecting the spikes
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and computing their cooccurrence ratio (within a given temporal win-
dow) between a pair of recorded channels. Stimulated animals showed
a consistently decreased level of ictal coincidence in several different
sizes of time-windows ([114] — this issue).

The same dataset has been used to investigate CFC that may reveal
synchronization levels between distinct circuits oscillating at different
velocities. For this, the modulation index (MI) has been applied to mea-
sure how much the phase of a slow-frequency oscillation is coupled to
the amplitude of a high frequency oscillation [115]. Untreated animals
injected with PTZ showed a gradual increase of MI for many different
pairs of frequencies throughout the controlled infusion period and be-
fore seizure onset. At the same time, MI of NPS-treated animals
remained in baseline levels for much longer. Moreover, Ml of treated an-
imals during ictal periods (forelimb clonus and GTCS) was lower in
comparison with that of nonstimulated rats ([116] — this issue). Curi-
ously, NPS also induced an increase of MI between specific pairs of fre-
quency bands in the higher portions of the spectrum.

Taken together, these results indicate that NPS does not exactly
desynchronize circuits but, actually, sustains synchronization at base-
line levels when the system is stressed with hypersynchronizing exter-
nal stimulus (such as administration of PTZ). Moreover, this effect is
observable in different levels of brain circuitry or domains: from local
populations to the coupling of distinct networks. Curiously, this syn-
chronization buffer effect is not ubiquitous in regard to the frequency
spectrum, and NPS may actually induce synchronization in higher fre-
quencies. Although a bit counterintuitive, this may actually be benefi-
cial, since synchronization in higher frequency oscillations have been
described also as a physiological rhythm in epilepsy [117]. Moreover,
as mentioned before, seizures are episodes of hypersynchronous neuro-
nal firing, but not in a ubiquitous fashion, and actually,
desynchronization can also be observed during ictogenesis [59].

5.3. Not every desynchronization is the same: novel insights into the temporal
structure of NPS

Nonperiodic stimulation was designed to lack rhythmicity and thus
to be antiresonating or desynchronizing. This was the reason behind
randomizing the intervals between stimulation pulses. In fact, NPS has
been described in some of our studies as temporally unstructured elec-
trical stimulation. The set of behavioral and electrographic evidences
gathered in the studies of the group seems to corroborate the notion
that the lack of rhythm in the stimulus may cause desynchronization
of ictogenic neural networks leading to the suppression of seizures.

On the other hand, this theoretical framework was unable to predict
some of the findings along the investigation, some of them being actu-
ally counterintuitive when seen from the straightforward “lack of tem-
poral regularity induces desynchronization” perspective. For instance,
when directly measured with electrophysiology, NPS seems to promote
rather a resistance to synchronization, acting like a buffer for the fea-
ture, instead of a more intuitive desynchronization. In addition, NPS ac-
tivates the nucleus accumbens (instead of desynchronizing or inhibiting
it) in seizure-free animals and also induces CFC in higher frequency
bands in animals submitted to PTZ-induced seizures. Finally, and
maybe most importantly, current theory does not allow the under-
standing of why the two different IPI randomization protocols used to
create NPS-IH and NPS-LH yield distinct therapeutic effects: the former
is efficacious and the latter is neutral.

In our 2009 study, we speculated that, while both forms of NPS were
sending random firing motifs to different microcircuits at distinct times,
thus promoting desynchronization, only NPS-IH was doing it with the
right frequency content, given that IPI distributions from the different
ES patterns have distinct counts of shorter and longer intervals. It is
clearer now that this is only partly true and that the efficacy of NPS in
the IH form relies much more on the shape of its IPI distribution than
on its frequency content. In fact, the shape of the IPI distribution of
NPS of the IH type is closely related to the spatial and temporal

organizations of the brain and also to features of many other complex
systems: they all obey a power law.

Mathematically, a power law can be stated as a relationship between
two variables y and fin the form of:

7
where 3 is a constant that can assume any nonnegative value. One
should notice that this is exactly the function that fits the IPI distribution
of NPS-IH, in the particular case of 3 = 1. The presence of a multiplica-
tive factor k in the fit of NPS-IH has no real relevance, since the behavior

of the power law is unchanged, or, as usually termed, it is scale-free. This
fact can be stated also as:

P(kf) = kPP(f)

where P(f) is the power law function of f. Also, it is important to notice
that, in turn, NPS-LH cannot be fit by such relation.

Power laws can be used to describe a myriad of phenomena of com-
plex systems in nature. For instance, it describes the distribution of as-
sets in the banking system worldwide, distribution of crater sizes in
the moon, distribution of the number of contacts in social networks, ci-
tations of scientific papers, and the frequency of words in a given idiom
[118]. In the brain, not only does neural tissue generate firing patterns
that can be modeled by power laws [119], but neural networks also
seem to better respond and process activity in this natural form [120],
implying that neural circuitry has evolved to better tune to the proper-
ties of the environment [121].

Responses of neural tissue to electrical stimulation varying in regular-
ity have been directly tested. In a pioneering work, Mainen and Sejnowski
observed spike trains in cortical neurons of rats elicited by injection of
constant or variable currents, using a slice preparation and somatic
whole-cell recordings in the current-clamp configuration. They found
that neurons respond with much greater reliability when submitted to
natural-like inputs distributed as filtered Gaussian noise (i.e., 1/f*) mim-
icking synaptic activity [122]. Inspired by this work, Gal and Marom
used joint input—output statistics to assess spike trains of single isolated
cortical neurons from newborn rats plated onto substrate-integrated mul-
tielectrode arrays (MEA) and submitted to different regimens of extracel-
lular electrical stimulation, according to the regularity of their IPI. The
stimulation pattern following a power law with unitary exponent (3 =
1) induced spike activity with greater reliability — as measured by the
correlation of firing rates of both input and output — in comparison
with stimuli with constant IPI, with IPI distributed as white noise, or
even those with IPI following a power law but with distinct values of 3
[123]. Finally, Scarsi and colleagues carried out a similar experiment
using in vitro culture of neurons plated onto MEA and stimulated with dif-
ferent temporal regularity to demonstrate that neuronal networks also
better follow stimuli with IPI distributed as a power law. Of particular in-
terest, they also tested different values of 3 and also of mean firing rates.
While the average frequency seems to play no relevant role, unitary expo-
nent was the one that induced the greatest reliability between input and
output activities [124].

Although such input-output relationship between stimulation and
neural activity has been described in the single neuron level or, at
most, in in vitro cultures of cells forming microcircuits, the idea may
be extrapolated to in vivo, large-scale network settings. By this token,
it is very plausible that NPS, as a natural-like, scale-free pattern of stim-
ulation following a power law of unitary exponent, may be easily proc-
essed in and recognized by neural networks organized in multiple levels
(from microdomain to large scale) in the brain. That would work even
in dysfunctional hyperexcitable tissue, given only that it can perform
its basic function, which is generally the case of patients with epilepsy.
In turn, such property would promote a widespread and naturally
desynchronized response that would compete with the pathological
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hypersynchronous epileptiform activity. Stimulation effects would thus
be expressed as a seizure suppression property behavior-wise. More-
over, such stimulation, instead of promoting increase or decrease of
any specific oscillation, would rather reestablish healthy patterns of
synchronism coordination that results from normal processing of infor-
mation in the brain. Electrophysiologically, this would be expressed as a
resistance to increase synchronism to aberrant levels and/or as a resto-
ration of synchronization patterns related to homeostasis. All these as-
pects have been observed directly or indirectly in our previous and
ongoing studies. Finally, this novel theoretical framework would help
explain the activation of the nucleus accumbens in seizure-free animals
submitted to NPS as seen in the fMRI study, given that the pattern may
represent natural-like activity with variability or, in other terms, that
seems like natural salience/novelty.

These are only speculations that still lack further evidence and a
more definite proof. They are being put forward exactly to create de-
bate. On the other hand, given that the theoretical framework of NPS
as a power-law scale-free stimulation needs fewer elements to explain
the set of evidences, Occam's Razor principle recommends a thoughtful
consideration (Fig. 2). In fact, much of the ongoing research and also fu-
ture work of our group is based upon this new reasoning.

6. Ongoing research and perspectives

An obvious step in NPS research is to apply it to patients with epi-
lepsy. In order to do it in the safest way possible, we have been studying
a myriad of neural functions in seizure-free rats submitted to such stim-
ulation. It is plausible that such stimulation will not cause a significant
side-effect since it emulates natural-like input. Using well-stablished

behavioral methods, we found (unpublished data) that NPS applied to
the amygdala has no overt significant impact on episodic memory, on
ambulation, on social interaction, and also on baseline levels of anxiety.
In the same study, another group of animals was submitted to long du-
ration (up to 9 days, 6 h per day) LFP recordings from structures known
to be involved in both epileptic phenomena and in the coordination of
the sleep-wake cycle. When recordings are assessed as state spaces
based on spectral content [125], data showed that sleep-wake cycle ar-
chitecture of stimulated animals does not differ from that of naive
animals.

If this theoretical framework that establishes NPS as a scale-free
natural-like input capable of restoring healthy levels of brain activity
and synchronization is in fact right, it becomes very plausible that the
approach may induce amelioration of symptoms in other neurological
disorders. For instance, it is known that generalized anxiety/stress and
related psychiatric disorders are the result of dysfunctional activity or,
more specifically, hyperfunction of the amygdala [126]. Preliminary
data (unpublished) from our lab have shown that restriction-induced
chronically stressed rats treated with NPS performed better in the
open-field and elevated plus maze tests.

Another interesting application field for NPS may be Parkinson's dis-
ease (PD). Being the result of neurodegeneration of dopaminergic cells
in the substantia nigra, PD is characterized by motor function impairment
such as postural instability, rigidity, tremors, and bradykinesia [127]. Elec-
trophysiologically, PD is marked by increases of synchronization in the
range observed in areas such as the subthalamic nuclei, globus pallidus
externus, and internus [128,129]; a rhythm with key roles in corticospinal
integration; and motor function in general [130,131]. In our lab, we are
currently reproducing well-stablished animal models of PD, such as

Fig. 2. Theoretical framework of NPS as scale-free temporal pattern that induces natural-like activity which, in turn, compete with epileptiform activity. Nodes (circles of different sizes)
represent microoscillators, while edges are functional connections between a pair of nodes. Long-range connections are omitted for simplicity but considered in this rationale. Natural
activity is depicted in shades of blue, while epileptiform activity in shades of red. A mix of them is represented in purple. Although the network in this figure is shaped like a human
brain, we intend no correspondence with human neuroanatomy. Row 1: a brain in homeostasis displays widespread normal activity with spatial and temporal structure of a power
law, together with normal levels of synchronization in its networks (triangles filled in blue). Row 2: ictogenesis induced by some endogenous (or exogenous) factor starts by a node
(in orange) entraining in aberrant activity that will gradually spread to its neighbors. When a circuit is formed (step 1), epileptiform activity ensues (yellow fillings) and first mild
motor manifestations are expressed (e.g., facial automatisms). Aberrant activity continues to spread, and when circuits encompassing major portions of the brain are entrained in
aberrant activity (step 2), more severe convulsive behavior is manifested (e.g., forelimb clonus). Finally, when all major portions of the brain are recruited by epileptiform activity
(step 3), generalized seizures occur. Row 3: when the epileptogenic focus is submitted to a pattern of stimulation that is not natural-like (e.g., NPS-LH), any effects gets territorially
restricted to the point of application (beige dot) and ictogenesis progresses virtually in the same manner. Row 4: when NPS is applied to the epileptogenic focus of a brain during
ictogenesis (purple circle), natural-like activity is spread through its connection and competes with epileptiform activity. Notice that, in each step, half of the nodes are recruited with
epileptiform activity and the other half with natural like activity. This impairs the recruitment of networks into aberrant hypersynchronous oscillations, delaying occurrence of
convulsion (steps 1 to 3). In every row, aberrant synchronization levels can be inferred by the number of circuit (triangle of nodes) filled with yellow. By this token,
electrophysiological results indicate a resistance against synchronization increases.
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application of electrolytic lesion or administration of 6-hidroxidopamine
to one or both sides of the substantia nigra [132,133] to pursue such
line of investigation. Since many of these alterations are also shared
with the motor deficit outcome from brain ischemia followed by reperfu-
sion, we may also follow a similar line of research using animal models in-
duced by bilateral carotid artery occlusion [134].

Finally, it is of paramount importance to thoroughly test the hypoth-
esis of NPS-induced natural-like activity suppressing epileptiform and
other aberrant activity as a key therapeutic mechanism. We believe in
silico investigation to be of central importance in this case. Particularly,
in silico investigation would be highly beneficial in the rapid and ethical
screening of variations of NPS (e.g., with different mean frequencies) or
even other forms of IPI randomization that follow distributions related
to the natural dynamics of the brain. In turn, not only would such
screening advance the search for the optimal strategy of stimulation,
but the comparison between distinct approaches may also provide in-
sights on the mechanisms underlying the therapeutic effect of nonstan-
dard stimulation and brain function in general. Alternatively, to close
the loop and apply activity-dependent stimulation [135], responsive
stimulation [136], or active probing for seizure detection or prediction
[137] may also be of great value.
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