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Abstract 

Aspergillus fumigatus represents an ever-present threat for vulnerable 

individuals as fungal conidia are ubiquitous and are inhaled daily. Infection occurs 

when optimal conditions are present resulting in a range of disease states, primarily in 

the context of preexisting lung damage and immunosuppression. Despite the threat this 

species imposes it appears to be an accidental pathogen as its primary niche is as a 

saprophyte in decaying plant matter. Survival in the soil has shaped A. fumigatus traits 

that facilitate survival in human host. This existence also equipped A. fumigatus with 

an array of effectors that have cross-reactivity through targeting of conserved 

mechanisms which can be repurposed to survive in the human body. The human lung 

is a terminal host for fungal development and dissemination and as such the fungus can 

only aim to survive but not disseminate. The lung represents a hostile environment 

consisting of challenges from the innate immune response, nutrient limitation and 

competition with microorganisms competing for the same limited resources. The rates 

of A. fumigatus infections are increasing globally, compounded by climate change and 

the rise in drug resistant strain. Despite the growing burden of disease, the mechanisms 

governing host adaptation and persistence remain poorly elucidated. To examine the 

host adaptation processes occurring in the lung, phenotypic and proteomic analysis of 

A. fumigatus growth in response to isolated aspects of this environment was performed. 

Examination of A. fumigatus development using Galleria mellonella as an 

innate immune system analogue, patterns regarding fungal metabolic preferences and 

virulence factor production have been further characterised. Prolonged subculture of 

A. fumigatus within an agar system containing components of the immune response 

and the nutritional profile of G. mellonella identified reduced virulence and increased 

tolerance to oxidative stress and antifungal agents. These changes were governed by 

minor alteration to the fungal proteome, suggesting the requirements for survival as an 

environmental saprobe to persistence in a human host may not be a difficult transition. 

Examination of released fungal proteins in vivo in G. mellonella demonstrated an initial 

preference for carbon metabolism and an emphasis on amino acid metabolism in later 

stages of infection which may fuel the production of fungal secondary metabolites. 

Similar trends were observed in the ex-vivo pig lung (EVPL) model, an analogue of 

host lung tissue, where A. fumigatus induced immune activation and fibrosis within the 

tissue. Similar metabolic patterns and secondary metabolites were detected during 

colonisation in this model. Characterisation of fungal growth in response to bacterial 

lung pathogens identified secreted product of Klebsiella pneumoniae could induce 

secondary metabolite production including gliotoxin and inhibited fungal growth. 

Physical interaction with P. aeruginosa also demonstrated inhibited fungal 

development in the EVPL model. These studies provide key insight into the initial 

interaction of the fungus to its host and highlights key metabolic and fungal 

developmental factors integral to successful colonisation. These insights can be utilised 

in the development of next generation, more effective and specific antifungal agents to 

treat this deadly disease. 
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1.1 The Global burden of Fungal disease 

Fungi comprise a eukaryotic kingdom of life that diverged from a common 

ancestor with animalia over 1 billion years ago (Wang et al., 2023). Since this 

divergence this vast kingdom, ranging from single celled to complex multicellular 

organisms has impacted other organisms through complex relationships forged over 

evolutionary time (Bahram and Netherway, 2022). The vast reach of this kingdom can 

be partially attributed to the ability of its multicellular species to grow indefinitely as 

a cylindrical multinucleated cells known as hyphae. This morphology in addition to the 

extreme metabolic diversity observed in fungi enabled them to conquer numerous 

ecological niches (Naranjo‐Ortiz and Gabaldón, 2019). Microorganisms, including 

bacteria and fungi compete in the soil and other niches, and as a result they have 

evolved diverse range of effector molecules and strategies dominate their competitors. 

These include antibiotics, toxic proteins and nutrient sequestering molecules (Granato 

et al., 2019). These naturally occurring effectors have been harnessed and modified by 

humanity to combat life threatening diseases. Penicillin was first isolated from 

Penicillium rubens by Sir Alexander Fleming (Fleming, 1929). Other significant 

antibiotic classes isolated from fungi include cephalosporins, fusidans, fusafungin, and 

fumigacin (helvolic acid) (Sułkowska-Ziaja et al., 2023). 

Despite these benefits to humanity a small percentage of fungal species have 

the capacity to cause infections among vulnerable individuals. Among the estimated 

2.2 to 3.8 million fungal species on Earth (Hawksworth and Lücking, 2017), only 

several hundred cause disease in immunocompromised patients, and fewer can affect 

immunocompetent individuals (Köhler et al., 2015). This is often attributed to the 

coevolution of animals and fungi resulting in the development of a potent immune 

response as a result of constant exposure to microbes. This resistance to fungal 

pathogens observed in mammals is hypothesised to have created a “fungal filter” 

conveying evolutionary advantage to mammals enabling them to emerge as the 

dominant land species (Casadevall, 2012). Despite this, fungi have also adapted to 

overcome or persist in the presence of the immune response through growth in other 

host species including insects and amoebae before encountering and colonising 

humans hosts (Novohradská et al., 2017). This co-evolutionary process has selected 

for fungi with adapted traits that facilitate persistence despite the hostile environment 

present in human hosts. Some of these pathogenic fungi are commensals, found in 

the gastrointestinal tract and mucosal surfaces such as members of the Candida 
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genus (Gow and Hube, 2012). These species can outcompete other commensals or 

overgrow following antibiotic therapy resulting in opportunistic infection (Kumamoto 

et al., 2020). Others are environmental fungi that are inhaled or introduced to the body 

through wounds such as members of the Mucorales order and Aspergillus genus 

(Oliveira et al., 2023). 

The global burden of fungal disease is estimated to have an annual incidence 

of 6.5 million invasive fungal infections resulting in 3.8 million deaths, of which 

approximately 2.5 million were directly attributable to fungi (Denning, 2024). This 

would suggest that mortality associated with fungal disease is comparable to that of 

tuberculosis and 3 times higher than malaria (Bongomin et al., 2017). The number of 

at-risk individuals for fungal disease is likely to increase as the numbers of susceptible 

patients with HIV/AIDS, tuberculosis (TB), chronic obstructive pulmonary disease 

(COPD), asthma and cancers have increased (Burke et al., 2025; Goletti et al., 2025; 

Boers et al., 2023; Kim et al., 2025; Siegel et al., 2024). In addition, climate change 

has increased the geographical range of many fungal pathogens (George et al., 2025). 

The evolution of thermotolerance, in response to rising environmental temperatures 

correlated with the rise in emerging fungal pathogens such as that observed in Candida 

auris (Nnadi and Carter, 2021). The growing prevalence of fungal disease highlights 

the pressing need to understand the factors governing pathogenesis and persistence in 

human hosts. This understanding can be employed to develop more effective and 

specific antifungal agents to bolster the dwindling supply of effective antifungal 

therapies in order to protect vulnerable cohorts and stave off the rising tide of fungal 

disease. 
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Figure 1.1: Fungal pathogens designated as critical, high and medium priority by the 

World Health Organisation marking their route of exposure as either commensal or 

environmental in nature published by (Brown et al., 2019) 

1.1.1 Host adaptation within fungi 

Host adaptation can be defined as the ability of a pathogen to circulate and 

cause disease in a particular host population (Kingsley and Bäumler, 2000). This can 

include the assessment of factors such as colonisation, nutrient acquisition, and 

immune evasion (Barber and Fitzgerald, 2024). Host adaptation is typically shaped by 

the stressor and host antagonism that must be overcome in order for colonisation to be 

successful. Many fungal pathogens demonstrate traits indicating that host specific 

selection is occurring as exemplified by Aspergillus flavus whose genetic diversity 

significantly decreased following continued exposure to a host indicating host selection 

and genetic bottlenecking occurred (Scully and Bidochka, 2006). Other pathogens 

display specific immune evasion processes such as capsule shedding by Cryptococcus 

neoformans which was serial passaged in Galleria mellonella larvae resulting in 

downregulation of host haemocyte hydrogen peroxide production (Ali et al., 2020).
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Candida species, which are often commensals in the human body regulate specific 

sets of genes, associated with stress mitigation and metabolic pathways, in order to 

thrive in the human host. In addition to conferring metabolic flexibility and stress 

resistance, physiological reprogramming has been associated with enhanced virulence 

through impaired immune recognition, increased biofilm formation, and acquired 

antifungal tolerance (Alves et al., 2020). Understanding how these factors change in 

response to a host can provide insights into microbial strategies for colonisation and 

provide targets for more effective therapeutics. Similar host- adaptation strategies 

may be utilised by Aspergillus fumigatus during development in humans hosts and 

understanding these is crucial to overcoming its impact. 

1.2 Aspergillus fumigatus 

Aspergillus fumigatus is a filamentous fungus belonging to the subphylum 

Pezizomycotina, a group characterized by septate hyphae, each with a specialized pore 

and the ability to produce woronin bodies that can seal the pore if hyphae are damaged 

(Beck et al., 2013). The natural niche of A. fumigatus is composting plant-waste 

material in the soil, which is known to contribute to the species thermotolerance, up to 

70°C (Zhang et al., 2022). This fungus is highly evolved for success in colonising soil 

and withstanding competition, providing some strains with the ability to colonise and 

cause disease in a compromised human or animal hosts upon entering the lungs 

(Paulussen et al., 2016). A. fumigatus produces small asexual conidia that are readily 

dispersed in the environment, producing dense clouds of conidia containing up to 1x108 

conidia per cubic meter (Schiefermeier-Mach et al., 2025). A. fumigatus conidia are 

ubiquitous in the air and are found in all environments (Rhijn et al., 2025). Disturbance 

of soil such as construction work can increase the exposure risk and rate of aspergillosis 

since conidia are well adapted for airborne dissemination (Talento et al., 2019). The 

average size of these conidia is between 2 to 3 μm and it is estimated that the average 

human inhales hundreds of Aspergillus conidia daily (Takazono and Sheppard, 2017). 

The small size of the conidia facilitates deep penetration into the alveoli, whereas larger 

conidia of other fungi are readily removed by mucociliary clearance (Dagenais and 

Keller, 2009). A. fumigatus is an opportunistic pathogen of the human airway in 

specific patient cohorts but the process from development in the soil to persistence in 

the human body remains poorly elucidated. 
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1.2.1 Clinical manifestations of Aspergillus fumigatus infection 

A. fumigatus has been listed as a critical threat pathogen alongside Candida 

albicans, Candida auris and Cryptococcus neoformans (Figure 1.1) (WHO, 2022). A. 

fumigatus infection is primarily initiated following inhalation of fungal conidia 

followed by the host’s failure to clear the fungal burden. A. fumigatus is one of a few 

pathogens that can cause a range of clinical manifestations at both ends of the immune 

spectrum (Moldoveanu et al., 2021). There are three broad categories of pulmonary 

aspergillosis: allergic aspergillosis of which one form, Allergic bronchopulmonary 

aspergillosis (ABPA) is the most studied example, chronic pulmonary aspergillosis 

(CPA) and invasive pulmonary aspergillosis (IPA). The manifestation of disease is 

heavily influenced by the underlying host characteristics and the interaction between 

the fungus and the host and impacts on the lung can be distinguished through 

radiographical imaging (Figure 1.2) (Kanaujia et al., 2023). The widespread use of 

chemotherapeutic and immunosuppressive agents has resulted in increased ambiguity 

between these categorisations, resulting in increased overlap in their characteristics in 

some cohorts (Kanj et al., 2018). 

Allergic bronchopulmonary aspergillosis has an estimated global burden of 4.8 

million people (He et al., 2025). ABPA is characterised by hypersensitivity to A. 

fumigatus and is prevalent in patients with cystic fibrosis or asthma. The prevalence of 

ABPA is increased in patients with cystic fibrosis that have Pseudomonas aeruginosa 

in their sputum (Tarizzo et al., 2025). Such patients are susceptible due to 

compromised mucus clearance and airway obstruction which may favour germination 

of conidia and release of antigens resulting in airway inflammation and pathology (Lv 

et al., 2021). The immune response in ABPA is driven by T-helper cell-2 responses 

which do not eliminate A. fumigatus but drives acute but persisting inflammation 

associated with CXCR4+ granulocytes (Chatterjee et al., 2024). Failure to diagnose 

ABPA can result in preventable and irreversible lung damage, such as bronchiectasis 

and “honeycomb” pulmonary fibrosis (Greenberger, 2013). 

Unlike acute forms of aspergillosis including allergic and invasive infections 

which typically impact individuals with altered immune states, chronic pulmonary 

aspergillosis is a saprophytic infection that can impact immunocompetent individuals. 

Infected individuals are typically asymptomatic but have developed fungal masses in 

preexisting lung cavities and in rare cases these infections can progress into invasive 
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fungal disease (Pathak et al., 2011). It has been estimated that 1,837,272 cases of CPA 

arise annually from previous pulmonary tuberculosis cases. Moreover, approximately 

340,000 patients with CPA die within the first year of disease onset (Tashiro et al., 

2024) and impacts many more with other conditions characterised by lung damage 

(Denning et al., 2011). Lung cancer patients are also a vulnerable cohort with 

saprophytic fungal disease compounding lung pathology resulting in profound 

restrictive lung function and deterioration (Kim et al., 2022). 

Chronic pulmonary aspergillosis has several distinct clinical manifestations 

including aspergilloma, chronic cavitary pulmonary aspergillosis, chronic fibrosing 

pulmonary aspergillosis, Aspergillus nodules, and subacute invasive aspergillosis 

(Denning et al., 2016). These forms vary from one another, but all have a poor 

prognosis with a 1-year mortality rate ranging from 7-32% and a 5-year mortality range 

of 38-52% (Tashiro et al., 2024). Chronic infection and colonisation are initiated by 

conidial attachment and germination within damaged lung tissue. Conidia adhere to 

fibrinogen and laminin which are known to be deposited on wounded surfaces. Fungal 

attachment to these components is partially mediated by sialic acid residues and other 

proteins on the conidial surface (Santos et al., 2023). Following attachment, the fungus 

germinates inducing an inflammatory response but does not typically invade 

surrounding healthy tissue. Fungal hyphae, mucus and cellular debris contained within 

a fibrotic and thickened wall form a mass known as an aspergilloma, which becomes 

mobile within the cavity which can result in haemoptysis in patients (Tunnicliffe et al., 

2013). 

Invasive pulmonary aspergillosis is the most severe form of infection, resulting 

in rapid growth, invading healthy tissue and blood vessels and disseminates into 

numerous body sites (Challa, 2018). This form of disease primarily impacts severely 

immunocompromised patients, but also in critically ill patients and those with chronic 

obstructive pulmonary disease (Bao et al., 2017). Annually, over 2.1 million people 

develop invasive aspergillosis associated with chronic obstructive pulmonary disease, 

intensive care admittance, lung cancer, or haematological malignancy, with a crude 

annual mortality of 85·2% (Denning, 2024). The incidence of invasive disease is 

growing as the numbers of at-risk patients with impaired immune status continues to 

increase. Vulnerable cohorts include individuals with neutropenia, haematopoietic 

Stem Cell and solid-organ transplantation, prolonged therapy with high-dose 
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corticosteroids, haematological malignancy, cytotoxic therapy, advanced HIV/AIDS 

and chronic granulomatous disease (CGD) (Kousha et al., 2011). 

 

 

Figure 1.2: Radiographical images of different forms of pulmonary aspergillosis 

adapted from (Singh et al., 2023; Garg et al., 2022 and Panse et al., 2016). 

1.2.2 Host immune response to Aspergillus fumigatus 

The host elicits a range of defence mechanisms to mitigate the risk of infection 

upon inhalation of A. fumigatus conidia. These defences include physical barriers such 

as ciliated epithelial and mucus secreting cells that line the upper airways (Hewitt and 

Lloyd, 2021). The majority of inhaled conidia are trapped in the mucus produced by 

goblet cells and then actively transported by the beating of cilia for clearance by 

swallowing or expelled by coughing (Kuek and Lee, 2020). In addition, conidia can be 

phagocytosed and killed by host cells including epithelial cells which vastly outnumber 

professional phagocytic cells such as macrophages (Ben-Ghazzi et al., 2021). 

Epithelial cells can activate an immune response as demonstrated by human bronchial 

epithelial cells which induce a time-dependent synthesis of interleukin-8 in response 

to germinated Aspergillus elements but not resting conidia (Bigot et al., 2020). Conidia 

that bypass this barrier interact with type I and II pneumocytes in the alveoli. Type II 

pneumocytes secrete pulmonary surfactants (Cerrada et al., 2015). Surfactant protein 

D plays a crucial role in host immunity and has been demonstrated to enhance the 

clearance of inhaled conidia and specifically is protective against both allergic and 

invasive aspergillosis (Geunes-Boyer et al., 2010). Surfactant D reduces fungal growth 

and weakens the surface of fungal hyphae by increasing its permeability (Wong et al., 

2022). In addition, alveolar epithelial cells can bind to and phagocytose fungal 

conidia and stimulate a pro-inflammatory response through generation of IL-6
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            and CXCL8 (Paplińska-Goryca et al., 2013). 

Innate immune cells resident in the respiratory tract include alveolar 

macrophages and recruited neutrophils which can clear fungal conidia. Alveolar 

macrophages can phagocytose and degrade swollen conidia in the phagolysosomal 

compartment, preventing germination (Margalit and Kavanagh, 2015). 

Polymorphonuclear neutrophils constitute the largest population of intravascular 

phagocytes, the vascular network of the lung, particularly the capillaries are a reservoir 

of neutrophils, containing 40% of the body's total neutrophils (Anderson et al., 2014). 

Neutrophils are recruited to the lung following stimulation by fungal cell wall 

components but also the release of chemokines from alveolar macrophages such as 

CXCR2 and CXCL1 (Toya et al., 2024). Recruited neutrophils can phagocytose fungal 

conidia but can also eliminate A. fumigatus hyphae, by releasing the contents of their 

granules into the extracellular space. The primary granules released by neutrophils 

contain high concentrations of enzymes such as myeloperoxidase, elastase and 

cathepsin G (Sheshachalam et al., 2014). Secondary granules contain lactoferrin, 

neutrophil gelatinase-associated lipocalin, cathelicidin, and lysozyme (Heinekamp et 

al., 2015). These extracellular molecules have potent effects resulting in A. fumigatus 

clearance (Prüfer et al., 2014). These mechanisms along with the release of 

extracellular nets during NETosis enable inhibition of A. fumigatus following 

germination when the fungus is too large to phagocytose (McCormick et al., 2010). 

Importantly, opsonization, phagocytosis and killing by neutrophils is 

complement cascade dependent. The complement cascade is a series of tightly 

regulated reactions that occur in the blood resulting in pathogen clearance 

(Vandendriessche et al., 2021). The complement cascade can be activated through 

three major routes: classical, alternative and lectin pathways (Figure 1.3). Dormant 

conidia trigger the alternative pathway while exposure of cell wall polysaccharides as 

the conidia germinate triggers the classical/lectin pathway (Dellière and Aimanianda, 

2023). The classical complement pathway is the main initiator of complement 

activation on A. fumigatus swollen conidia and germ tubes (Braem et al., 2015). C1q 

is the target recognition protein of the classical complement pathway which indirectly 

recognizes pathogens through bound antibodies. The C1 complex is necessary to 

activate C4 and C2 leading to C3 convertase (van de Bovenkamp et al., 2021). C3 
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Convertase is a central step in the complement cascade as it activates C3 into C3b and 

C3a. C3b opsonizes A. fumigatus dormant conidia through RodA-rodlets and mycelia 

by binding to cell wall β-glucan and galactomannan (Wong et al., 2020). C5a and C5b 

are generated through cleavage of C5 by C5 convertase at a common checkpoint to all 

complement pathways. C5 cleavage could also result from a non-canonical pathway 

triggered by A. fumigatus swollen conidia or hyphae (Shende et al., 2022). 

 

 

Figure 1.3: Schematic of the Human complement cascade published by (Detsika et al. 2024) 

 

Dendritic cells and other professional antigen presenting cells bridge the innate 

and adaptive immune response against A. fumigatus by activating naïve CD4+ T-cells 

and triggering their differentiation into different lineages of effector cells following 

MHC class II activation and activity of secreted molecules (Ramirez-Ortiz and Means, 

2012). Following stimulation with A. fumigatus conidia, dendritic cells trigger the 

production of IL-12, which is the main cytokine inducing IFNγ-producing T-cells 

(Gilmour et al., 2024). Different subsets of dendritic cells have distinct responses to 
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the fungus producing pro-inflammatory cytokines IL-1β, TNFα, chemokines IL-8, 

CXCL1, as well as anti-inflammatory cytokines IL-4 and IL-10 specifically upon 

stimulation with hyphae (Shankar et al., 2024). TNFα released by dendritic cells can 

determine whether Th17 or Th2 responses are induced leading to either neutrophil or 

eosinophil-mediated inflammation (Dewi et al., 2017). A small number of conidia 

bypass the innate immune response to establish infection; the adaptive immune 

response provides further protection against these remaining conidia. Though less 

thoroughly examined, the role of the adaptive immune response to A. fumigatus 

appears to primarily bolster the innate response including the role of T-helper 1 cells 

in macrophage polarisation to a proinflammatory M1 phenotype (Mills, 2015). This 

feeds back to activate T cells through IL-12 production and antigen presentation 

(Muraille et al., 2014). T-helper 1 cells protect the host primarily through production 

of IFNγ which drives the activity of the innate immune cells (Ivashkiv, 2018). 

Invasive Aspergillus infection alters the population dynamics of T cells leading 

to a reduction in the percentage of cytotoxic CD8+ and CD28⁺CD8⁺ T-cells associated 

with higher risk and early mortality (Cui et al., 2013). Th17 T helper cells, known for 

their role in pro-inflammatory cytokine production also plays an important role in host 

defence against microorganisms, which is associated with neutrophil migration and 

increased inflammation (Fan et al., 2023). There is a fine balance between 

proinflammatory T-helper 1 and anti-inflammatory T-helper 2 populations in response 

to A. fumigatus that still is not fully elucidated in response to disease.The T- helper 2 

response is characterized by production of IL-4, IL-5, IL-13 and IL-10, which mediate 

anti-inflammatory responses, allergy, and fungal persistence in the lungs (León, 2023). 

B-cells are thought to play a less prominent role in the response to A. fumigatus as 

evidenced by the lack of literature examining their interactions. Studies in B cell- 

deficient mice which were infected with A. fumigatus demonstrated an element of 

passive immunity through transfer of antibodies but a compensatory increase in both 

innate and Th1-mediated resistance to infection was seen in B cell deficient mice 

(Singh et al., 2021). Despite this some studies have described B cell activation and 

antibody production following A. fumigatus exposure (Boita et al., 2015). The host 

immune response can also indirectly produce a hostile environment for A. fumigatus 

through increased temperature, production of antimicrobial peptides and production of 

reactive oxygen species (Duarte-Mata and Salinas-Carmona, 2023). The products are 

generated through the activity of enzymes. Enzymes involved in the production
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of reactive oxygen species during phagocytosis include myeloperoxidase (MPO) and 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase resulting in 

production of hypochloric acid and superoxide anions, respectively. These molecules 

are cytotoxic and result in clearance of A. fumigatus (Ulfig and Leichert, 2021). 

1.2.3 Aspergillus fumigatus virulence factors 

Despite the robust immune defences present in the host A. fumigatus remains 

capable of colonisation and growth within human hosts. A. fumigatus has been 

classified as an “accidental pathogen” as its evolution in its soil niche have equipped it 

with a vast arsenal of effectors that also impact colonisation within human hosts 

(Figure 1.4) (Price et al., 2024). This understanding arises from the fact that Aspergillus 

species are not dependent on their hosts for survival and that humans are a terminal 

host as the fungi cannot complete their life cycle inside this host (Lee et al., 2016). This 

indicates that their pathogenic effects are potentially accidental or opportunistic. To 

understand the evolution of pathogenicity in the Aspergillus genus, examination of 

traits that facilitate survival in the soil can provide insight into how some of them have 

rendered a few species capable of establishing infections in human hosts (Rokas et al., 

2020). There is still debate regarding if these mechanisms represent human host 

adaptation or if the fungus can employ these adaptations from the soil to persist in a 

new hostile environment. 

 

Figure 1.4: Forms of stress and competition in both the soil niche and the human airways 

highlighting the similarities in these environments (generated in Biorender) 
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A. fumigatus displays remarkable intrinsic thermotolerance and unlike other 

Aspergillus species, A. fumigatus can germinate under temperatures above 40°C, and 

its conidia remain viable up to 70°C (Fabri et al., 2021). This ability allows A. fumigatus 

to persist in the environment and is an essential determinant for its pathogenicity since it allows 

the fungus to develop at temperatures found before and during the infection of mammalian host 

and favours the persistence within the human lungs even at febrile temperature (Haas et al., 

2016). Thermotolerance has been attributed to the transcription factor HsfA which is increased 

in expression at 37ºC and contributes to cell wall maintenance reinforcing the role the cell wall 

plays in thermotolerance. This transcription factor also displays cross talk with heat shock 

proteins and the cell wall integrity pathway during the cell wall and heat stresses while also 

modulating lipid metabolism and iron homeostasis (Fabri et al., 2021). 

Adhesion to host tissue is an integral aspect of fungal virulence and is the first 

step of host colonisation. This interaction is primarily driven by sugar moieties on the 

surface of fungal conidia including the hydrophobic Rodlet layer which mediates 

adherence to host collagen (Croft et al., 2016), which is deposited during fibrosis 

(Jessen et al., 2021). Conidial adhesion has also been attributed to laminin binding 

facilitated by the extracellular thaumatin domain protein AfCalAp (Upadhyay et al., 

2009).There are many identified fungal adhesins including Asp f2 and a repeat-rich 

glycophosphatidylinositol-anchored cell wall protein, encoded by the CspA gene 

(Levdansky et al., 2010). In addition to adhesins secreted galactosaminogalactan and 

exopolysaccharide from hyphae can drive adherence to the host. 

Galactosaminogalactan requires deacetylation mediated by Agd3 for fungal adhesion 

and full virulence. Galactosaminogalactan mediated adhesion is regulated through the 

action of fungal epimerase uge3 and mediates adhesion to plastic, fibronectin and 

epithelial cells (Gravelat et al., 2013), it is also an essential component of the 

extracellular matrix making it important for biofilm formation (Earle et al., 2023). 

Tolerance to stresses experienced within the host including the immune 

response and oxidative stress are essential to fungal development in the host, these 

responses are often specific, multilayered and in many cases are evolutionarily 

conserved (Yaakoub et al., 2022). Macrophages serve as the first line of defence 

against A. fumigatus and phagocytose fungal spores and inhibiting spore germination 

to prevent the development of tissue-invasive hyphae through production of reactive 

oxygen species (Tanner and Rosowski, 2024; Hatinguais et al., 2021). Several factors 
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influence this interaction and A. fumigatus has been demonstrated to manipulate the 

host response to promote its own development. When A. fumigatus conidia are 

phagocytosed it induces mechanisms to protect itself including hyphal germination and 

production of dihydroxynaphthalene (DHN)-melanin to mitigate oxidative stress 

(Heinekamp et al., 2013). In alveolar macrophages germination and growth of conidia 

are significantly impaired, however about 60% of conidia and germlings can persist 

when surrounded by the host phagolysosome membrane and are not acidified, enabling 

hyphal development. The hyphae then escape in a non-lytic manner by fusing to the host 

plasma membrane (Seidel et al., 2020). The production of DHN-melanin has also been 

attributed to the survival in this harsh environment. This pigment is found in the outer 

layer of the conidial cell wall and interferes with endocytosis and acidification by 

impacting Rab5- and Vamp8-mediated endocytic trafficking, and cathepsin 

recruitment (Amin et al., 2014). Melanin’s mechanism of action has been attributed to 

remodelling the intracellular calcium machinery and preventing signalling through 

calmodulin. This process stimulates glycolysis and hypoxia inducible factor 1 resulting 

in fungal survival by blocking phagosome biogenesis and acidification of 

phagolysosomes (Gonçalves et al., 2020). 

Iron sequestering is essential for microbial growth and survival and to 

accomplish this A. fumigatus produces four siderophores, fusarinine C and its 

derivative triacetylfusarinine C are secreted for iron scavenging and acquisition and 

intracellular ferrichrome-type siderophores ferricrocin and hydroxyferricrocin for iron 

storage and handling (Misslinger et al., 2021). Siderophores may also play an 

important role in microbial warfare as chelation of environmental iron by siderophore- 

types that are not recognized by competitors might be used to starve competitors of 

iron (Haas, 2012). Iron sequestering can serve as a form of immunometabolism and 

can protect fungal conidia from host macrophages. A. fumigatus affects the regulation 

of macrophage iron homeostasis and innate immune effector pathways through 

production of iron chelating molecules called siderophores, resulting in increased 

survival following phagocytosis (Seifert et al., 2008). In addition, siderophore- 

mediated iron acquisition has been shown to be essential for virulence and is involved 

in fungal survival in peroxisomes and endosome-like vesicles (Moore, 2013). 

A. fumigatus also produces a suite of mycotoxin effectors that evolved as a 

result of microbial competition in the soil (Figure 1.5) (Pfliegler et al., 2020). The 
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targets of these toxins are highly conserved and as a result it is postulated that this 

conservation results in toxic effects on human cells, thus impacting fungal virulence. 

Several conidial and hyphal mycotoxins have been well characterised including 

gliotoxin, fumagillin, helvolic acid and Asp‐hemolysin (Paulussen et al., 2016). A. 

fumigatus can also produce a range of alkaloids, terpenes, sterols, quinones and 

benzophenones including less studied toxins such as fumitremorgin and fumigaclavine 

(Ibrahim et al., 2025). These toxins have various effects in the soil and in the host and 

can aid in fungal persistence in the host. 

Gliotoxin is the most studied mycotoxin produced by A. fumigatus and is a 

hydrophobic metabolite belonging to the Epidithiodioxopiperazine class of 

compounds. The mechanism of action is not fully understood but is thought to be 

associated with a disulfide bridge across the piperazine ring, which is essential for its 

toxicity (Scharf et al., 2016). Gliotoxin is recognised as a virulence factor and has been 

demonstrated to inhibit the activity of phagocytes and decrease the cytotoxic effects of 

T cells (Günther et al., 2024; Ye et al., 2021), however the specificity of this response 

is not well characterized. The connection to virulence and persistence in the host is 

compounded by the fact that 90% of clinical isolates from cancer and invasive 

aspergillosis patients produce gliotoxin, and rapid gliotoxin production is observed at 

37°C under conditions similar to the host lung environment (Gayathri et al., 2020). 

The production of gliotoxin is heavily influenced by zinc availability and is produced 

under zinc-limiting conditions. Dithiol gliotoxin has been demonstrated to have zinc- 

chelating properties (Traynor et al., 2021). This ability has been attributed to its 

cytotoxic effects of gliotoxin as it can sequester zinc from the environment resulting in 

starvation by neighbouring cells or directly strip zinc, iron and copper from bacterial 

species and potentially host cells (Downes et al., 2023). 

Fumagillin is a meroterpenoid toxin produced by hyphae that is known for its 

anti-angiogenic activity by binding to human methionine aminopeptidase (Lin et al., 

2013). Fumagillin contributes to tissue damage during invasive aspergillosis and thus 

it is probable that A. fumigatus progression through the lungs is supported through its 

production, combined with the secretion of lytic enzymes that allow fungal growth, 

angioinvasion and the disruption of the lung parenchymal structure (Guruceaga et al., 

2018). Fumagillin is produced in the early stages of colonisation and aids in evasion of 

the host immune response. Fumagillin inhibition of the NADPH oxidase complex 
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formation in neutrophils resulting in reduced superoxide production and degranulation 

(Fallon et al., 2010). Some studies also suggest that gliotoxin and fumagillin work 

synergistically as glutathione, the hall mark of cellular redox homeostasis, is affected 

by both mycotoxins resulting in the generation of intracellular reactive oxygen species 

inducing apoptosis (Gayathri et al., 2020). 

Pseurotin A is a unique spiro-heterocyclic γ-lactam alkaloid isolated from A. 

fumigatus (Abdelwahed et al., 2020), which has been demonstrated to induce 

immunomodulatory effects in the host by inhibiting immunoglobulin E function in 

response to hypoxic conditions (Ghazaei, 2017). A. fumigatus also produces ergot 

alkaloid compounds including festuclavine and fumigaclavine A, B and C present on 

fungal conidia (Robinson and Panaccione, 2015). Fumigaclavine C has been 

demonstrated to have potent anti-inflammatory properties including inhibiting the 

expression of s IL-1β, IL-2, IL-12α, IFN-γ, TNF-α in lymph node cells. In addition, it 

can attenuate TNFα production via the TLR4-NFκB signalling transduction pathway 

by decreasing expression of the p65 subunit of NF-κB (Bailly and Vergoten, 2020). 

Fumitermorgens are less studied ergot alkaloids derived from tryptophan, proline and 

mevalonic acid (Li, 2011). It has been reported that fumitremorgin A, B and C are 

neurotropic toxins that cause tremors, seizures, and abnormal behaviour in mice (Abad 

et al., 2010). Helvolic acid, produced by A. fumigatus is a potent antibacterial 

compound (Kong et al., 2018) which conveys advantage in the soil niche but has a dual 

function in slowing cilia beat frequency in the host reducing fungal clearance in a 

similar manner to gliotoxin and fumagillin (Kuek and Lee, 2020). The factors influence 

fungal persistence and virulence and protect the fungus from the effectors of the host 

immune response. 
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Figure 1.5: The role of selected secondary metabolites produced by A. fumigatus in 

the environment and in the human lung adapted from figure published by (Raffa et al., 

2019). 
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1.2.4 Aspergillus fumigatus response to stress 

The development of A. fumigatus in hostile environments, both in the soil and 

in a human host requires adaptation and mechanisms to mitigate against various forms 

of stress including hypoxic, osmotic and oxidative stresses (Ross et al., 2021). Many 

of these stressors are likely to be encountered in the host including hypoxia in damaged 

tissue following inflammation and necrosis (Gresnigt et al., 2016). To persist in this 

hypoxic environment the sterol regulatory element binding protein pathway which is 

regulated by the transcription factor SrbA is activated. This transcription factor is 

crucial for antifungal drug resistance and virulence as loss of SrbA results in complete 

loss of virulence in murine models of invasive pulmonary aspergillosis (Chung et al., 

2014). In low oxygen environments A. fumigatus has also been observed to increase 

expression of ergosterol biosynthetic genes and genes involved in cell wall 

maintenance (Puerner et al., 2023). 

To mitigate oxidative stress, typically induced by innate immune cells during 

infection, several effectors and enzymes are produced by the fungus including 

catalases, superoxide dismutases, elements of the thioredoxin and glutathione- 

glutaredoxin system, as well as the conidial pigment melanin. Importantly, oxidative 

stress response and iron metabolism are tightly linked (Emri et al., 2024). Iron overload 

can induce the formation of reactive oxygen species, but detoxification of these species 

through production of heme peroxidases, requires heme as a cofactor (Kurucz et al., 

2018). Oxidative stress mitigation can also fuel virulence as evidenced by oxrA which 

regulates catalase production in A. fumigatus. Deficiency of oxrA decreased the 

virulence of A. fumigatus and altered the host immune response resulting in reduced 

tissue damage (Zhai et al., 2021). Alterations to the mitochondrial electron transport 

chain can also influence susceptibility to oxidative stress and virulence. Loss of 

cytochrome C demonstrates increased resistance to external reactive oxygen species 

and macrophage killing while loss of alternative oxidase increased susceptibility to 

external reactive oxygen species and in vitro macrophage killing at the expense of 

virulence capacity (Grahl et al., 2012). 

Many substances target the fungal cell membrane or cell wall to damage the 

fungus. This type of stress is mitigated in fungi by the action of several conserved 

components: the cell integrity pathway, the HOG-MAPK cascade, which has evolved 

to compensate for osmotic stress, and the TOR and calcineurin phosphatase signalling 



20  

pathways (Hartmann et al., 2011). A. fumigatus MpkC and SakA, the homologs of the 

Saccharomyces cerevisiae Hog1 are important to adaptations to oxidative and osmotic 

stresses, heat shock, cell wall damage, macrophage recognition, and full virulence. 

They also play a role in the regulation of the response to cell wall damage, oxidative 

stress, drug resistance, and establishment of infection (Manfiolli et al., 2019). These 

factors and systems enable fungal persistence in host microenvironments and make it 

successful in various niches. 

1.2.5 Aspergillus fumigatus metabolism 

A. fumigatus is a successful species in a variety of niches which can be in part 

attributed to its metabolic flexibility, being able to thrive in diverse conditions and 

recycling organic carbon and nitrogen sources in its soil and persisting in the nutrient 

limited human body (Cramer, 2015). Nutritional versatility along with the evolution of 

means to acquire and utilise a wide array of nutrient sources during infection represent 

fundamental aspects of A. fumigatus pathogenicity (Feng et al., 2011). During invasive 

growth, the nutritional microenvironment can rapidly change depending on the stage 

of the infection (Obar et al., 2016). There is strong evidence that A. fumigatus can 

sustain itself and thrive in infected tissue, exploiting the lung as sole source of nutrients 

(Amich and Krappmann, 2012). This metabolism is partially driven by the release of 

enzymes and effectors such as siderophores to scavenge iron and the use of various 

transporter systems to enable the effective uptake and breakdown of products (Yoon et 

al., 2009). 

Host carbon sources used by A. fumigatus include glucose, lactate and acetate, 

whose availability largely depends on the host niche. In addition, potential nitrogen 

sources can also be broken down to be used as carbon sources and are available 

throughout the human host mainly in the form of proteins (Ries et al., 2018). Acetate 

is present in the body fluids and peripheral tissues and is metabolised under the 

regulation of the FacB transcription factor which is subject to carbon catabolite 

repression (Ries et al., 2021). Acquisition and subsequent metabolism of different 

carbon and nitrogen sources plays a crucial role in virulence of A. fumigatus, including 

the secretion of host tissue-damaging proteases and fungal cell wall integrity (Ries et 

al., 2019). Gliotoxin production has also been identified to be stimulated through 

access to simple, fermentable sugars such as glucose. An additional potential source 

of carbon is via the glyoxylate cycle. This pathway allows organisms to
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use lipids for the synthesis of carbohydrates to fuel development (Willger et al., 

2009). 

Another source of nutrients utilised by A. fumigatus during infection is amino 

acids. Fungal amino acid biosynthesis mediated by the Cross-Pathway Control system, 

a conserved regulatory circuit evolved to counteract conditions of nutritional stress 

(Bultman et al., 2017). This pathway can compensate for nutrient starvation by 

degradation of host proteins to acquire amino acids for protein biosynthesis 

(Krappmann and Braus, 2005). Fungi acquire amino acids from their environment 

either by transport processes, from precursors, which are derivatives of carbon and 

nitrogen primary metabolism, or from degradation of proteins which are no longer 

required under specific conditions or from destruction of host tissue (Braus et al., 

2004). Amino acid degradation through the methylcitrate cycle, essential for the 

degradation of propionyl-CoA, which is a degradation product of valine, methionine 

and isoleucine (Brock and Buckel, 2004) significantly influences fungal survival and 

virulence (Maerker et al., 2005). Methionine, a source of sulphur ions metabolism has 

been demonstrated to alter fungal growth and virulence (Scott et al., 2020). 

Degradation of tryptophan to kynurenines by Indoleamine 2,3-dioxygenases can drive 

the de novo synthesis of nicotinamide adenine dinucleotide under hypoxia or 

tryptophan abundance (Zelante et al., 2021). 

A. fumigatus produces all three aromatic amino acids through the shikimate– 

chorismate pathway (Figure 1.6), this pathway is not found in higher eukaryotes and 

has been considered a viable target for antifungal therapy (Choera et al., 2018). This 

pathway converts phosphoenolpyruvate and erythrose 4-phosphate to chorismite which 

is a precursor to the synthesis of a variety of aromatic compounds, such as p- 

aminobenzoic, 2,3-dihydroxybenzoic, prephenic and anthranilic acids (Khedr et al., 

2018). These amino acids are not only essential for growth and development but also 

the production of virulent secondary metabolites of the fungus. Pentafunctional AROM 

polypeptide interconverts metabolites of quinic acid in the shikimate pathway, to 

produce aromatic amino acids. Corruption of this pathway results in attenuated 

virulence in murine studies (Sasse et al., 2016). This confirms the importance of this 

pathway in A. fumigatus virulence and the drive in production of secondary 

metabolites harmful to the host. The downstream metabolites of tryptophan in A. 

fumigatus include the immunomodulatory kynurenine derived from indoleamine 2,3- 
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dioxygenase and toxins such as fumiquinazolines, gliotoxin, and fumitremorgins 

(Choera et al., 2018). 

 

 

Figure 1.6: Schematic of the shikimate pathway utilised by fungi to produce aromatic 

amino acids published by (Kuplińska and Rząd, 2021). 

Sulphur is another essential nutrient that A. fumigatus needs to acquire from the 

surrounding tissue during intrapulmonary growth. Sulphur is essential to the 

production of cysteine and methionine and the production of molecules including 

coenzyme-A, glutathione and iron-sulphur clusters (Amich et al., 2013). The proper 

regulation of sulphur metabolism is crucial for A. fumigatus virulence and persistence 

in host tissue and sulphur containing amino acids are required for virulence. 

Methionine synthase, an enzyme in the trans-sulfuration pathway, has been identified 

as a promising antifungal target (Scott et al., 2020). The assimilation of sulphur is 

regulated by the MetR transcription factor but dispensable for utilization of methionine 

and orchestrates the fungal response to sulphur starvation (Amich et al., 2013). 

The use of trace elements is also essential to fungal growth and virulence. These 

resources are often contested between microbe and the host and include iron, zinc, 

manganese, and copper. Iron metabolism is fuelled through high-affinity iron uptake 

mechanisms including reductive iron assimilation and siderophore-mediated iron 

acquisition (Schrettl and Haas, 2011). Iron serves as a cofactor for essential metabolic 

processes including the electron transport chain, amino acid metabolism, 
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DNA biosynthesis, sterol formation, and oxidative stress detoxification (Perez-Cuesta 

et al., 2021). Zinc is the second most prevalent transition metal in cells, after iron, and 

the second most abundant metal-cofactor of enzymes after magnesium. Zinc has been 

recognized for its structural and regulatory roles within cells, playing an essential role 

in immunomodulatory responses during host–pathogen interactions (Silva-Gomes et 

al., 2024). The metabolic plasticity and adaptability displayed by A. fumigatus and its 

ability to acquire resources form its environment facilitates its survival in the ever 

shifting and metabolite limited host microenvironment and is integral to understand its 

development and pathogenicity in a hostile environment. 

1.2.6 Current approaches to Aspergillus fumigatus treatment 

The current suite of antifungal compounds is limited and often accompanied by 

high toxicity to patients, elevated treatment costs, increased frequency of resistance 

rates, and the emergence of intrinsically resistant species (Souza et al., 2025). These 

compounds mainly target the fungal cell membrane or the cell wall. The three major 

classes of antifungal agents, utilised for A. fumigatus infection are triazoles, polyenes 

and echinocandins. These target ergosterol biosynthesis, fungal membrane formation 

and synthesis of the (1-3) β-D-glucan respectively (Cortés et al., 2019). 

Triazoles are a class of antifungal agent that are characterised by a triazole ring. 

These agents inhibit sterol 14-α-demethylase, an enzyme essential for ergosterol 

synthesis. These compounds disrupt the integrity of fungal cell membranes, leading to 

the accumulation of sterol intermediates that are toxic to the cell and have broad 

activity against fungal pathogens (Lal et al., 2025). A. fumigatus has an intrinsic 

tolerance to fluconazole, however voriconazole, itraconazole, posaconazole and 

isavuconazole are common drugs of choice for prevention and treatment of 

aspergillosis (Esquivel et al., 2015; Donnelley et al., 2016). 

Polyenes including Amphotericin B, nystatin and natamycin are used to treat 

various forms of A. fumigatus infection (Carolus et al., 2020). Amphotericin B is a 

cyclic heptaene produced by the Gram-positive bacterium Streptomyces nodosus 

(Zhang et al., 2020). Amphotericin B incorporates into the fungal lipid bilayer and 

binds to ergosterol. Ergosterol sequestration results in pore formation and leakage of 

monovalent ion and glucose. The rapid depletion of intracellular ions results in fungal 
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cell death. Amphotericin B exposure can also result in the accumulation of reactive 

oxygen species, resulting in DNA, protein, mitochondrial, and membrane damage 

resulting in fungal death (Xiaochun Wang et al., 2021). Amphotericin B is poorly 

tolerated by patients and alternative formulations including amphotericin B lipid 

complex and liposomal amphotericin B are more commonly used as they display 

reduced toxicity, facilitating the administration of higher doses, and improve treatment 

outcomes (Botero Aguirre and Restrepo Hamid, 2015). 

Echinocandins constitute an important class of antifungal agents, with three 

drugs currently approved for clinical use: caspofungin, micafungin and anidulafungin 

(Mroczyńska and Brillowska-Dąbrowska, 2020). These compounds are the modified 

products of non-ribosomal lipopeptides derived from filamentous fungi (Hüttel, 2021). 

Echinocandins target the fungal cell wall, specifically β-(1,3)-glucan synthase, a key 

enzyme involved in the development of fungal cells walls. Disruption of this enzyme 

leads to the destabilization of cell wall, causing fungal death (Szymański et al., 2022). 

A newly developed echinocandin, rezafungin which has a longer half-life and better 

safety profile compared to compounds in this class (Andes et al., 2025). Rezafungin 

also has activity against both azole-sensitive and azole-resistant strains of Aspergillus 

(Wiederhold et al., 2018). Rezafungin has exhibited in vivo activity in a murine model 

of azole-resistant disseminated invasive aspergillosis (Wiederhold et al., 2019). 

Despite these advantages echinocandins are fungicidal against most pathogenic yeasts 

but they are fungistatic against Aspergillus species and some other pathogenic 

filamentous fungi and thus clearance of filamentous fungi is dependent on host immune 

effectors (Aruanno et al., 2019). 

In addition to these well-established drug families other emerging classes with 

novel mechanisms have been developed. Manogepix is a first-in-class antifungal that 

inhibits the fungal Gwt1 protein, a conserved enzyme that catalyzes inositol acylation, 

an early step in the GPI-anchor biosynthesis pathway (Dai et al., 2024). Gwt1 is 

essential for trafficking and anchoring mannoproteins to the cell membrane and outer 

cell wall and since these mannoproteins are required for cell wall integrity, adhesion, 

pathogenicity, and evading the host immune system. As a result, inhibition of Gwt1 by 

manogepix has many physiological effects. Importantly, the closest mammalian 

ortholog, PIGW, is not sensitive to inhibition by manogepix (Shaw and Ibrahim, 2020). 

Manogepix has been proven to be effective against both itraconazole-sensitive and
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resistant A. fumigatus (Jørgensen et al., 2020). Another emerging class is the 

orotomide class of which the first member is olorofim which is a reversible inhibitor 

of dihydroorotate dehydrogenase, a key enzyme in the biosynthesis of pyrimidines 

(Oliver et al., 2016). Olorofim has activity against Mold species and thermally 

dimorphic fungi, including species that are resistant to azoles and amphotericin B, but 

lacks activity against yeasts and the Mucorales (Georgacopoulos et al., 2023). 

Olorofim has demonstrated strong inhibition during disseminated A. fumigatus and A. 

flavus infection in murine models (Seyedmousavi et al., 2019). 

1.2.7 Antifungal resistance in Aspergillus fumigatus 

Despite the wide array of antifungal agents available in the clinic A. fumigatus 

has developed mechanisms to circumvent their activity (Figure 1.7), and many of these 

mechanisms are conserved among pathogenic fungi (Nywening et al., 2020). There are 

two accepted origins for azole antifungal resistance: prolonged use of antifungals to 

treat patients with chronic A. fumigatus infection and increased use of agricultural 

fungicides against plant-pathogenic moulds with cross-activity against A. fumigatus 

(Guegan et al., 2021). Environmental fungicides containing active ingredients such as 

triazoles and their widespread distribution in the environment are the link between 

clinical and environmental antifungal resistant strains of A. fumigatus (Williams et al., 

2024). Resistance emerges following mutation of the cyp51A gene and the TR34/L98H 

and TR46/Y121F/T289A alleles in the cyp51A gene are the most common ones 

conferring pan-azole resistance with evidence that these mutations may have arisen in 

agricultural settings (Burks et al., 2021). In addition, once multidrug-resistant 

genotypes emerge in fungal pathogens, such genotypes can spread very quickly to other 

geographical regions and ecological niches through vegetative cells and airborne spores 

(Achilonu et al., 2024). The primary mechanism governing azole resistance is mutation 

or overexpression of the cyp51A gene reducing the affinity between the azole drug and 

its target or increasing the azole concentration required to inhibit fungal growth (De 

Francesco, 2023). Another mechanism to evade azoles is the overexpression of efflux 

pump systems which decrease the intracellular drug concentration, in A. fumigatus. 

The ABC transporter Cdr1B and MdrA were the only MFS transporters found to be 

related to azole resistance (Paul et al., 2017; Meneau et al., 2016). 
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Despite its long history of use resistance in A. fumigatus to amphotericin B 

remains uncommon but has been observed among Aspergillus terrei species, associated 

with the modulation of molecular chaperones, targeting reactive oxygen species by 

mitochondria and influencing cellular redox homeostasis (Blum et al., 2008). The rates 

of amphotericin B resistance in A. fumigatus is rising with as much as 27% of isolate 

in a Brazilian hospital demonstrating elevated MIC (Reichert-Lima et al., 2018). The 

mechanisms governing this resistance are poorly elucidated in A. fumigatus but RTaA 

was found to be increased specifically in response to polyenes amphotericin B and 

nystatin. Its overexpression results in modest resistance, indicating it could be a novel 

resistance mechanism (Abou-Kandil et al., 2025). Echinocandins only display 

fungistatic activity against Aspergillus species and is often used only in combination 

with a polyene or an azole to obtain synergistic effects (De Francesco, 2023). To 

date, echinocandin resistance is rarely found in Aspergillus species, although 

tolerance is observed through epigenetic alteration which, unlike resistance, is not the 

result of acquired mutations but driven by activation of stress responses. This is known 

as the paradox effect which describes decreased activity of the drug and recovery of 

fungal growth at increasing concentrations above a certain threshold. This paradoxical 

effect can be observed in ∼60% to 80% of A. fumigatus clinical isolates, occurring 

mainly in response to caspofungin, whereas this phenotype is usually absent with 

micafungin and anidulafungin or occurs only at higher concentrations (Aruanno et 

al., 2019). The paradoxical effect results in cell wall remodelling to compensate for 

the loss of β-1,3- glucan including inducing the increased expression of lchitin, 

chitosan, and highly polymorphic α−1,3-glucans, whose physical association with 

chitin maintains cell wall integrity and modulates water permeability while avoiding 

the activity of the drug. (Dickwella Widanage et al., 2024). Alteration to the β-(1,3)-

glucan synthase enzymes encoded by the fks1 gene induce echinocandin resistance in 

Candida species and point mutation can give rise to this resistance in A. fumigatus. A 

strain harbouring such a mutation was isolated in the clinic from a patient who initially 

failed azole and polyene therapy and subsequently failed echinocandin therapy 

(Jiménez-Ortigosa et al., 2017). 

Despite relatively recent advances in antifungal therapy resistance is likely to 

follow closely behind as A. fumigatus strains with acquired increased tolerance to 

olorofim has already been identified, associated with amino acid substitution in the 
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PyrE gene (Buil et al., 2022). This highlights the importance in the continued 

development of novel therapeutics and the requirement to understand mechanisms 

facilitating fungal disease in patients. The rise of fungal resistance is a growing concern 

as the effective defences continue to dwindle with only a few emerging options to take 

their place. This further emphasises the need to understand fungal development in vivo 

to develop effective strategies against these pathogens. 

 

Figure 1.7: Targets of antifungal agents Echinocandins, Azoles and Polyenes and 

some resistance mechanisms observed in fungal pathogens published by (Lee et al., 

2023) 
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1.3 Microbial interactions in the airways 

The human lung is constantly exposed to microbes through inhalation of 

various viruses, bacteria and fungi (Invernizzi et al., 2020). In susceptible individuals 

the airways can be colonised by a range of microbial pathogens which are in dynamic 

competition with the host and each other for dominance in the niche (Figure 1.8) 

(Gannon and Darch, 2021). The growing utilisation of immunomodulatory drugs and 

antibiotics result in increased fluctuation of the human airway microenvironment and 

as a result pulmonary bacterial-fungal coinfections have become more prevalent 

(Katsoulis et al., 2024). A recent study identified that bacterial coinfections was present 

in more than 40% of patients with fungal pneumonia, specifically in patients with 

underlying immune deficiency and the presence of pulmonary cavities (Zhao et al., 

2021). A. fumigatus infections typically occur in the context of preexisting conditions 

including in individuals who are more susceptible to bacterial infection such as cystic 

fibrosis patients or individuals with latent tuberculosis infection (Petrocheilou et al., 

2022; Magwalivha et al., 2025). As a result, A. fumigatus development and virulence 

can be shaped by interactions with other microorganisms within the human airways. 

In the context of coinfection these species must compete for nutrients and 

dominance in the niche, and many are equipped with virulence factors from co- 

evolution in the soil to inhibit their competitors (Rezzoagli et al., 2020). These species 

can interact directly through physical cell-cell interaction or indirectly through 

secretion of various effectors. These can include toxins, siderophores and small 

molecules that are involved in quorum sensing, environmental modifications and 

alterations in host responses (Peleg et al., 2010; Kramer et al., 2020). Pulmonary 

pathogens can also influence each other through production of volatile organic 

compounds (Margalit et al., 2022). These interactions are bidirectional and occur 

across kingdoms with bacteria heavily influencing fungal survival and vice versa and 

these interactions can be beneficial or antagonistic (Pawlowska, 2024). The 

microbiome can also influence patient susceptibility to fungal infection (Chow et al., 

2023). Some commensal bacterial taxa such as Prevotella and Veillonella species can 

protect against pathogenic fungi including Candida palmioleophila and Aspergillus 

species (Liu et al., 2021). 
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The competition for resources and nutrients is not only between competing 

pathogens but also between host cells and indigenous microbiota. Both host and 

microbial cells may potentially compete for growth-limiting resources. Metabolic 

alteration and strategies are crucial to survival and the microbiota may play a role in 

host metabolism (Costantini et al., 2024). A. fumigatus can influence this environment 

by inducing dysbiosis, shaping it towards a beneficial environment with increased 

availability of aromatic amino acids (Mirhakkak et al., 2023). Tryptophan is central to 

host and microbial interactions in the airway as it is utilised by the host and microbial 

competitors (Nunzi et al., 2025). Tryptophan can be produced by various bacteria 

through the indole pathway (Dong and Perdew, 2020) which can then be degraded by 

fungal enzymes when adapting to the host niche (Zelante et al., 2021). These 

interactions are an often overlooked but highly influential factors in A. fumigatus 

growth and virulence and should be factored in when examining these traits. 

 

 

Figure 1.8: Examples of interaction studies between A. fumigatus and bacterial 

pathogens K. pneumoniae and P. aeruginosa (generated in biorender). 

1.4 Klebsiella pneumoniae infections, virulence and coinfection 

Klebsiella pneumoniae is a Gram negative, rod shaped non-motile member of 

the Enterobacteriaceae family (Abbas et al., 2024). K. pneumoniae is an opportunistic 

pathogen and is a considerable cause of nosocomial infections, particularly in low and 

middle-income countries (Alcántar-Curiel et al., 2018). K. pneumoniae can cause a 
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range of infections at many distinct body sites such as urinary tract infections, 

meningitis, respiratory tract infections, pneumonia, bloodstream infections, and 

surgical site infections and predominantly affects neonates, the elderly, and 

immunocompromised individuals (Chang et al., 2021). K. pneumoniae is also 

responsible for community-acquired infections and a defining feature of these 

infections is their morbidity and mortality, and the Klebsiella strains associated with 

these infections are considered hypervirulent (Bengoechea and Sa Pessoa, 2018). 

Immunocompromised patients who are hospitalized and suffer from underlying chronic 

illnesses as well as elderly individuals are prone to be infected with K. pneumoniae as 

their immune system’s defences are low (Mohd Asri et al., 2021). Klebsiella infections 

are rare at any individual time point in cystic fibrosis patients. However, they are 

observed in almost 10% of a patient cohort followed longitudinally. K. pneumoniae is 

not a chronic coloniser of the cystic fibrosis airway like Pseudomonas aeruginosa but 

can influence infection outcome through production of carbapenemases which degrade 

type beta lactamases complicating therapy (Leão et al., 2011). 

Rates of K. pneumoniae antibiotic resistance has steadily increased, rendering 

infection by these strains challenging to treat (Santella et al., 2024). Virulent K. 

pneumoniae strains are significantly heterogenous making identification of virulence 

factors difficult although the bacterial capsule, lipopolysaccharide, fimbriae, and 

siderophores have been widely accepted to contribute to virulence (Paczosa and 

Mecsas, 2016). The bacterial capsule is significant in pathogenicity as it protects the 

bacteria from phagocytosis and can directly inhibit aspects of the host immune 

response. Several capsule types are associated with community-acquired invasive 

pyogenic liver abscess, septicemia, and pneumonia and others are predominantly 

detrimental to experimental infections in mice and are frequently associated with 

severe infections in humans (Riwu et al., 2022). Some K. pneumoniae 

lipopolysaccharide serotypes can modulate the host immune response leading to 

activation or immune evasion contributing to virulence (Bulati et al., 2021). K. 

pneumoniae adherence and biofilm formation are associated with fimbriae. The 

bacteria express at least three different fimbrial types: mannose-sensitive type 1 

fimbriae, mannose-resistant type 3 fimbriae, and the Escherichia coli (E.coli) common 

pilus (Alcántar-Curiel et al., 2018). Other structural components of the bacteria have 

been found to contribute to virulence including several outer membrane proteins.
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The outer membrane protein OmpA modulates the immune response, providing 

resistance against macrophage-dependent phagocytosis and the absence of OmpA, 

enhances susceptibility to antimicrobial peptides (Singh et al., 2025). Another 

important virulence factor is the production of siderophores for iron acquisition, 

enterobactin, yersiniabactin, salmochelin, and aerobactin are the main forms of 

siderophores expressed by K. pneumoniae. Enterobactin is highly conserved and 

distributed in all K. pneumoniae strains while the other siderophores are mainly 

expressed in hypervirulent isolates (Lan et al., 2021). 

K. pneumoniae is among the most common coinfection agents in chronic 

pulmonary aspergillosis patients (Akyıl et al., 2025) and was shown to be detrimental 

to patient outcomes (Bhatia et al., 2024). Interactions between these species have 

indicated inhibition of spore germination following physical interaction. This is 

thought to be driven by a stress response in the fungus as there is an increased 

expression of cell wall-related genes and decrease of hyphae-related genes resulting in 

suppression of filamentous growth (Nogueira et al., 2019). The interaction between 

these species remains poorly elucidated in the literature but could provide important 

insight into fungal development in the lung microenvironment. 

1.5 Pseudomonas aeruginosa infections, virulence and coinfection 

Pseudomonas aeruginosa is a Gram-negative, rod shaped, motile bacterial 

species belonging to the order Pseudomonadaceae. It is widely dispersed in the 

environment including in soil and water but is readily found in human and animal 

impacted environments (Diggle and Whiteley, 2020). P. aeruginosa has been 

identified as an opportunistic pathogen and is a major cause of hospital-acquired 

infections. P. aeruginosa infections primarily impact immunocompromised hosts, and 

chronic infections in patients with structural lung disease such as cystic fibrosis 

(Reynolds and Kollef, 2021). P. aeruginosa often displays multi-drug resistance due 

to its ability to rapidly mutate to gain resistance to antibiotics (Blomquist and Nix, 

2021). P. aeruginosa is a leading cause of bacteraemia and sepsis in neutropenic cancer 

patients and hospital-acquired pneumonia and respiratory failure (Albasanz- Puig et 

al., 2019; Nickerson et al., 2024). Chronic P. aeruginosa infections are a characteristic 

of individuals with cystic fibrosis and accounts for pulmonary failure that leads to death 

in these individuals (Wood et al., 2023). 
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P. aeruginosa possesses a large genome enabling great genetic diversity which 

facilitates the growth of the bacterium in diverse environments and production of a 

range of virulence factors and resistance mechanisms to persist in the human host 

(Sathe et al., 2023). Structural components of the bacteria associated with virulence 

include pili and membrane components. Attachment to the host is facilitated by type 

IV pilus which are associated with bacterial twitching and swarming motility and 

adhesion on various surfaces. These structures are involved in biofilm formation, 

regulation of virulence factors, and facilitate bacterial exchange of antibiotic resistance 

genes and confers resistance to host surfactant A (Ligthart et al., 2020; Tan et al., 

2013). Lipopolysaccharide can be found in all P. aeruginosa strains and represents an 

important immunomodulatory molecule that can stimulate the host immune response 

and neutrophils to release neutrophil extracellular traps to capture invading pathogens. 

Lipopolysaccharide can also protect bacteria from killing and pattern recognition 

following phagocytosis (Huszczynski et al., 2020). 

Secreted factors also heavily influence P. aeruginosa virulence and are 

distributed by a range of specialised secretion systems. Exopolysaccharides secreted 

by P. aeruginosa are crucial to biofilm formation and convey bacterial tolerance to 

harsh environments such as desiccation, oxidative stress, and host defences (Kaur and 

Dey, 2023) and has a secondary role as an adhesin contributing to bacterial persistence 

in the host (Myszka and Czaczyk, 2009). Siderophores released by P. aeruginosa are 

another virulence factor fuelling iron metabolism and microbial growth. Two 

siderophores are produced by P. aeruginosa pyoverdine and pyochelin are capable of 

stripping iron from host transferrin and lactoferrin to promote bacterial growth and are 

both required for full virulence of P. aeruginosa (Sass et al., 2020). 

P. aeruginosa is also equipped with a range of enzymes and toxins that 

facilitate tissue invasion and protect against the host immune response. Alkaline 

protease, secreted by the type I secretion system can degrade aspects of the immune 

response including IFN-γ and TNF-α, and aspects of the complement cascade resulting 

in immune evasion (Peignier and Parker, 2020). Protease IV, a serine protease can also 

degrade complement proteins C1q and C3, as well as fibrinogen, plasminogen, 

immunoglobulin G, and pulmonary surfactant proteins A, B, and D (Hastings et al., 

2023). P. aeruginosa elastase A and B also facilitate bacterial invasion through 

destruction of host elastin resulting in impaired lung function and haemorrhage 
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(Chadha et al., 2022). Elastase B is a potent modulator of the immune response 

including manipulation of neutrophils, macrophages, natural killer cells and T cells 

recruitment and activation (Cigana et al., 2021). Elastase B is more prevalent in early- 

stage colonisation in cystic fibrosis patients and once a chronic infection is established 

the elastase activity is significantly diminished (Llanos et al., 2023). Lipase A and 

phospholipase C can result in host tissue degradation by targeting the cell membrane 

and induce vascular permeability, organ damage and cell death (Qin et al., 2022; Singh 

et al., 2023). 

Toxins produced by P. aeruginosa exert a range of effects on the host including 

ExoS and ExoT which can disrupt the host actin cytoskeleton to interfere with cell-to- 

cell adhesion and induce apoptosis of host cells. ExoU is a potent phospholipase that 

causes rapid necrotic cell death (Hauser, 2009). In addition, exolysin can produce pores 

in host cells resulting in membrane permeabilization (Basso et al., 2017). Lipoxygenase 

can inhibit the expression of major chemokines and the subsequent recruitment of 

immune cells (Aldrovandi et al., 2018) and leukocidin demonstrates specific inhibition 

of leukocytes (Bouillot et al., 2020). Pyocyanin is a blue-green, redox-active pigment 

derived from chorismic acid produced by P. aeruginosa. The low molecular weight and 

zwitterionic properties of PCN are believed to permit the toxin to easily permeate cell 

membranes (Hall et al., 2016). It is crucial to virulence, serving as a redox-active 

secondary metabolite and a quorum sensing (QS) signalling molecule. Pyocyanin 

inhibits the growth of bacterial, fungal, and mammalian cells by inducing oxidative 

stress (Mudaliar and Bharath Prasad, 2024). 

P. aeruginosa and A. fumigatus represent the dominant bacterial and fungal 

pathogen in the airways of adults with cystic fibrosis. Coinfection occurs in an 

estimated 15.8% of Irish cystic fibrosis patients although a definitive number is 

difficult to determine (Keown et al., 2020). Coinfection is not associated with reduced 

lung function but typically requires additional IV antibiotics (Hughes et al., 2022). 

P. aeruginosa and A. fumigatus are ubiquitous microorganisms found in soil, water and 

plants and as such their interactions are ancient (Nazik et al., 2020). These interactions 

have been the focus for many studies including examination in culture which identified 

secreted products from A. fumigatus that can promote P. aeruginosa development and 

result in metabolic shifts including denitrification and amino acid metabolism but
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also induces a bacterial stress response (Margalit et al., 2020). In contrast exposure of 

A. fumigatus to P. aeruginosa cells results in increased secondary metabolite 

production including gliotoxin at the expense of fungal growth while exposure to 

secreted products has the opposite effect (Margalit et al., 2022). Interactions studies 

in Galleria mellonella larvae demonstrated increased mortality when the species 

coinfect and human bronchial epithelial cells produce more proinflammatory IL-6 

and IL-8 when coinfection occurs relative to mono-infections (Reece et al., 2018). 

Coinfection in an immunocompetent murine model with both pathogens isolated in 

agar beads demonstrated a proximity dependent microbial inhibition (Sass and 

Stevens, 2023). These studies have provided insights into specific aspects of the 

interaction between these two pathogens but often fail to demonstrate the host impact 

which plays a crucial role in shaping this interaction. 

1.6 The need for model systems to study fungal pathogens 

To fully understand the processes fungi utilize to infect susceptible individuals 

and to develop antifungal resistance it is essential to be able to study host-fungal 

interactions with both in vivo or in vitro model systems before applying findings to 

clinical use (Last et al., 2021). The scope and complexity of infection modalities and 

virulence capabilities of fungal pathogens and the range of susceptible hosts has 

resulted in a steady rise in the requirement for complex and diverse model systems 

(Torres et al., 2020). These systems enable the dissection of the fungal pathogenic 

processes in isolation, or in combination, providing key insights into adaptation 

processes occurring within the host. 

Model systems are crucial as they provide platforms through which the 

development and response of a pathogen to a given environment can be studied within 

a defined window of infection. Various model systems have been utilized to effectively 

isolate, predict, and understand aspects of host-pathogen interactions instead of 

studying them in uncontrolled conditions through observation of patients directly 

(Mukherjee et al., 2022). Models for understanding fungal pathogenesis have advanced 

dramatically, from simple in vitro studies to a wide range of in vivo techniques. The 

original in vitro models provided necessary insights into fungal-host interactions, but 

their inability to recreate the physiological complexity of entire organisms meant that 

these models had limitations (Luming Wang et al., 2024). These limitations highlighted 

the need to produce complex in vitro models, such as organoids and organ-on-chip
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systems, that provide a more accurate representation of human tissue structure and 

function. These new models have proven useful for understanding fungal mechanisms 

such as tissue invasion and immune evasion (Baran et al., 2022). In addition, in vivo 

models including mammalian and invertebrates such as insects or nematodes have 

facilitated better understanding of fungal pathogenicity and host responses. These 

developments represent a shift towards combining modelling approaches, to provide 

high-throughput and biologically accurate platforms from which to study fungal 

development in the host as well as the development and testing of effective antifungal 

therapies (Junqueira and Mylonakis, 2019) 

1.6.1 Mammalian models 

Rodents, particularly mice and rats, are the most frequently utilized vertebrate 

models due to their accessibility and anatomical, physiological and genetic similarity 

to humans (Bryda, 2013). Domesticated rats, Rattus norvegicus emerged as a 

pioneering animal model in the early twentieth century and were the first rodent species 

to be used for scientific purposes (Modlinska and Pisula, 2020). This system is still 

utilised but was eclipsed following the publication of the whole genome of the mouse 

(Mus musculus) in 2002 which opened up new avenues of genetic research and 

established its key place in modern biomedical research (Franco and Olsson, 2014). It 

has been estimated that 85% of publications regarding experimental aspergillosis 

utilized murine models (Desoubeaux and Cray, 2018). This is likely due to the 

accessibility of the model, and their body size, allowing for the use of a relatively large 

number of animals simultaneously under identical conditions, which can enhance the 

power of statistical analysis. In addition, the widespread use of genetically defined 

inbred murine strains, humanized mice, and gene knockout mice has enabled 

researchers to understand how pathogens cause disease, define the role of specific host 

genes in either controlling or promoting disease, and identify potential targets for the 

prevention or treatment of a wide range of infectious agents (Sarkar and Heise, 2019). 

Murine models were fundamental to early studies of the genetic and molecular 

origins of host resistance and the sensitivity of immunocompromised individuals to 

fungal infections. These insights included identifying the interaction of various 

immune effectors. Examination of the complement system in mice identified that C3 

knockout mice were highly susceptible to systemic infection by A. fumigatus, although 

C4 and complement factor B mutants show comparable susceptibility to the wild-type 
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mice. This suggested that specific factors are crucial to this response and that either the 

complement pathways display functional redundancy during infection or complement 

is activated non-canonically by A. fumigatus infection (Shende et al., 2022). Gene 

knockout experiments in mice have also highlighted that IL-6, IL-12, and IFN-γ were 

protective factors against A. fumigatus and that IL-17, TLR4, and TLR2 are crucial in 

the innate response. Aspergillus-infected TLR2 knockout mice have low TNFα and IL- 

12 levels as well as lower survival and higher tissue fungal burden when compared to 

immunocompetent mice (Desoubeaux and Cray, 2018). Murine models can also enable 

the study of Aspergillus infection in specific disease contexts including bacterial 

coinfection (Sass and Stevens, 2023), solid organ transplant (Herbst et al., 2013), 

chronic granulomatous disease (King et al., 2023) and cystic fibrosis (Bercusson et al., 

2025). Murine models are especially favoured when compared to many alternative and 

in vitro models for their ability to imitate human disease pathways and systemic or 

multi-organ infection pathologies allowing researchers to study the complicated 

dynamic of fungal infections and the host's immune system, in a controlled setting 

(MacCallum, 2013). Murine models also aid in the development of specific antifungal 

therapies that are more effective and less hazardous to humans (Lange and Inal, 2024). 

For example, the antifungal drug fosmanogepix, which has been shown to be effective 

in vivo in mouse and rabbit models against Candida species, Coccidioides immitis and 

Fusarium solani (Alkhazraji et al., 2020). 

Murine models do have limitations, including physiologic differences that limit 

how well mice reproduce key aspects of host–pathogen interactions and pathology. In 

addition, genetic differences between mice and humans can also interfere with a 

pathogen's ability to replicate or cause human-like disease outcomes in mice (Sarkar 

and Heise, 2019). Murine models demonstrate important physiological and biochemical 

variations from humans including the localisation of basal cells in the trachea and the 

abundance of bronchioalveolar stem cells rather than multi-ciliated cells in mice 

(Miller and Spence, 2017). In addition, Goblet cells are prevalent in the proximal 

human airway, but they primarily appear in mice following injury (Pardo- Saganta et 

al., 2013). The metabolome of mice also differs from humans containing significantly 

more fatty acids and lower acetate, asparagine, glutamate, lactate, lysine, myo-inositol, 

syllo-inositol, and valine concentrations (Benahmed et al., 2014). These alterations 

could influence fungal metabolism and colonisation. Murine models can also fail
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to replicate pivotal aspects of human diseases and infections such as aberrant abscess 

formation which occurs in murine lungs during Staphylococcus aureus infection 

(Cigana et al., 2018), but is rarely observed in human Cystic fibrosis patients 

(Patradoon-Ho and Fitzgerald, 2007). In addition, mammalian model systems are 

expensive to maintain, require high levels of expertise and are subject to strict ethical 

and legal regulations limiting the volume of output from these sources (Kiani et al., 

2022). These factors have emphasised the need to develop numerous alternative 

models to dissect aspects of host-fungal interaction in isolation or holistically. They 

are often used prior to studying them in more complex systems and have revolutionized 

novel antifungal screening practices (Hunter, 2022). 

1.6.2 In vitro cell models 

In vitro cell models enable researchers to have complete control of the 

conditions present in the experiment, such as oxygen and carbon dioxide concentration, 

temperature, pH, and nutrition availability (Klein et al., 2022). This level of control 

facilitates reproducible results and highlights the importance these factors play in the 

development of infection (Rafiq et al., 2022). The use of cultured cell lines or tissue is 

standard laboratory practice and facilitates the evaluation of aspects of host biology 

enabling researchers to study a complex interaction by dissecting it to its component 

parts. Additionally, in vitro models can include components of the host microbiota, 

including the addition of synthetic microbial consortium to mimic host microbiome in 

intestinal model systems (Calatayud et al., 2019) replicating the in vivo situation on 

skin and mucosal surfaces. A549 adenocarcinomic human alveolar basal epithelial 

cells, which have been utilized to examine Aspergillus colonization in the alveoli. This 

includes examination of how conidial surface proteins reprogram endosome pathways 

in mammalian cells, preventing conidial destruction following initiation of infection 

(Jia et al., 2023). 

Endothelial cell models aid in understanding how fungi such as Candida spp. 

and A. fumigatus penetrate vascular barriers, resulting in systemic infections. 

Interactions between fungi and endothelial cells can cause tissue damage and 

inflammation, both of which are common hallmarks of invasive fungal infections 

(Netea et al., 2015). Endothelial cell models are important for understanding how fungi 

enter the bloodstream and infect endothelial cells, leading to serious infections. They 

demonstrate how fungi disperse through blood vessels and the endothelial 
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damage that accompanies severe fungal infections. A. fumigatus demonstrates different 

mechanisms of invasion, magnitude of endothelial cell stimulation, and time course of 

endothelial cell damage when interacting with abluminal and luminal surfaces. These 

differences in the endothelial cell response suggest that there may be significant 

differences in the pathogenesis of invasive versus hematogenously disseminated 

aspergillosis (Kamai et al., 2009). 

Cells of the innate immune response such as macrophages, dendritic cells, and 

neutrophils play a pivotal role in the initial host's responses against fungal infections. 

Phagocytosis, cytokine production, recruitment and activation of other immune 

responses to fungal infections can be studied using in vitro models by examining each 

of these cell types in isolation (Lionakis et al., 2023). Cell lines including J774A.1, 

RAW 264.7, and THP-1 are often used to study macrophage - fungal interactions. 

Additionally, bone marrow-derived macrophages (BMDMs) from genetically 

engineered mice provide insight into specific immunological mechanisms involved in 

antifungal defence (Frank et al., 2018). The role of specific immunological effectors 

such as progranulin in attenuating the inflammatory response of A. fumigatus keratitis 

was characterized using RAW 264.7 cells where it was demonstrated to enhance the 

phagocytic activity against conidia (Qi et al., 2024). 

Despite these applications and advances, in vitro cell models have a major 

limitation as they are not able to replicate cell-cell interactions and they fail to 

demonstrate the conditions of cells in an organism, limiting the value of in vitro data 

to predict in vivo behaviour (Habanjar et al., 2021). Another limitation of cell culture 

is the expense and effort involved to obtain a relatively low number of cells. Cell 

culture approaches also lack complex connections found in whole organisms, such as 

those involving various cell types, tissues, and systemic immune responses (Kim et al., 

2023). More complex in vitro models include transwell systems, complex organ- on- 

chip models and 3D organoid systems. These offer varying levels of complexity and 

specificity to mimic human conditions and physiology (Mosig, 2016). Transwell plate 

systems have been utilized to study dendritic cell maturation (Lother et al., 2014) and 

the effects of mycotoxins including gliotoxin in disruption of the blood brain barrier 

integrity (Patel et al., 2018). The air-liquid interface model utilizes human
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bronchial epithelial cells at the air-liquid interface to simulate the bronchial epithelial 

barrier in the conductive zone of the respiratory tract. This provides novel insights 

into the molecular response of bronchial epithelial cells upon exposure to A. 

fumigatus conidia (Braakhuis et al., 2020). This model demonstrates some 

physiologically relevant responses to A. fumigatus infection including upregulation of 

apoptosis/autophagy, translation, unfolded protein response and cell cycle while the 

complement and coagulation pathways and iron homeostasis were downregulated 

(Toor et al., 2018). Despite the many uses and outputs from transwell model systems, 

they demonstrate low physiological relevance, are only beneficial when studying 

single cell types. In addition, migration and invasion assays can produce conflicting 

data making it difficult to relate data to clinically observed phenotypes and cellular 

behaviours (Katt et al., 2016). 

Organ on chip models represent the smallest functional entity of an organ as 

well as a versatile and promising resource to study host–pathogen interactions 

(Ahadian et al., 2018). The microfluidic devices are three-dimensional cell culture 

devices constructed of elastomers, glass or plastics. In such microfluidic devices, 

multiple cell types can be arranged in a 3D manner to mimic internal organ structures, 

allowing for the evaluation of cellular responses, cell-cell interactions, and organ 

structure disruptions. By perfusing air or culture medium through microfluidic devices 

with a micropump, cells can be exposed to shear stress mimicking air or blood flow 

(Yokoi et al., 2023). These microfluidic systems create conditions that are more 

physiologically relevant and can be considered humanized in vitro models. These 

systems offer controls over biologically relevant dynamics such as microenvironments, 

vascularization, near-physiological tissue constitutions and partial integration of 

functional immune cells (Alonso-Roman et al., 2024). The limitation of these systems 

is the inability to emulate multi-system interactions and pathogen dissemination. This 

has been by-passed by the combination of chip systems to simulate multi-organ cross 

communication in an enclosed microfluidic network (Luni et al., 2014). An invasive 

aspergillosis on chip system has been developed including epithelial, endothelial and 

immune cells demonstrating human cells inhibited the growth of the fungus, 

contributed to the release of proinflammatory cytokines and chemokines
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and demonstrated the in vitro activity of the antifungal drug caspofungin (Hoang et al., 

2022). 

Another advance in in vitro model utilisation was the development of 3D 

organoid systems which use stem cells to more accurately recreate the architecture and 

physiology of human organs with or without a 3D matrix support. These systems are 

self-organizing and can in some cases be histologically indistinguishable from the 

organs they mimic (Turco et al., 2017). These advances allow for more diverse cell 

types being studied simultaneously enabling the simulation of complex tissue 

structures (Huch and Koo, 2015). Organoids utilize human induced pluripotent stem 

cells which are differentiated through exposure to a variety of stimuli to produce 

complex tissues found in the organ of interest. Organoids offer a number of potential 

benefits over animal models including the ability to be derived from patient biopsies 

(Qu et al., 2024). They provide rapid and more robust outcomes compared to 

mammalian models and are a more accurate representation of human tissue and 

generate a larger quantity of material to work with when compared to animal models. 

These models have been utilized to study Toll-like receptor activation following A. 

fumigatus exposure in 3D lung models (Bosáková et al., 2023) and have been utilized 

to examine the response of A. fumigatus to P. aeruginosa within a realistic lung 

environment (Barkal et al., 2017). Organoids, like other in vitro models, have 

limitations including the lack of inter-organ communication and can only show certain 

aspects of the host response (Jensen and Little, 2023; Kim et al., 2020). Organoids and 

other in vitro systems also cannot mimic the host microbiome which is found at 

prominent sites of infection including the lungs and gastrointestinal tracts. This is 

because organoids are static and are prone to bacterial overgrowth and due to their 

nature require an aerobic environment, preventing the introduction of strictly anaerobic 

bacteria, thus failing to represent bacterial species that play a major role in relevant 

body sites (Poletti et al., 2020). 

1.6.3 Invertebrate model systems 

Many insect species can be utilized as in vivo models including Drosophila 

melanogaster (fruit fly) and Galleria mellonella (greater wax moth larvae) which have 

become valuable assets for the research community. Compared to conventional 

mammalian models, insects have advantages such as easier handling requirements, 

fewer expenses, and the absence of the need for ethical or legal approval (Drinkwater 
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et al., 2019). These models characterize the dynamic host responses including immune 

activation, migration and complete metabolic and nutritional composition which may 

not be fully captured in 2D model systems (Stewart Merrill et al., 2021). Insect models 

facilitate the study of systemic infection more readily than in vitro approaches (Ménard 

et al., 2021). These models are in accordance with the 3Rs principles of replacement, 

reduction, and refinement applied in animal research facilitating large- scale 

investigations (Franco and Olsson, 2014). The immune systems of D. melanogaster 

and G. mellonella are especially useful because they act in a similar manner to the 

innate immune system of mammals (Browne et al., 2013). This specificity enables an 

examination of the responses typically observed in the initial host-pathogen interaction, 

which is crucial in determining the establishment of infection and the downstream 

immune responses. 

D. melanogaster is the most widely employed insect model for genetic 

manipulation (Atoki et al., 2025). In many ways is the invertebrate counterpart to the 

murine model as both genomes were among the first to be fully sequenced and an array 

of mutants are readily available (Baenas and Wagner, 2019). Despite the availability 

of mutants and the compatibility with genetic manipulation D. melanogaster larvae are 

typically incubated at 25°C rather than 37°C, this is important as volatile organic 

compounds produced by A. fumigatus are significantly reduced at this temperature 

(Almaliki et al., 2021). Despite this limitation, the combination of Drosophila studies 

with other model organisms can generate valuable data regarding the immune response 

to human fungal pathogens. 

Galleria mellonella, the greater wax moth, is one of the most widely employed 

insect model for mycological research (Giamberardino et al., 2022). G. mellonella 

larvae can persist at 37°C making them more suitable than D. melanogaster for 

studying human pathogens. G. mellonella methodology is well established (Figure 1.9) 

and the model has been employed for molecular analysis including proteomics and 

transcriptomic analysis. G. mellonella immune cells share many features with 

vertebrate innate immune cells such as macrophages and neutrophils being capable of 

phagocytosis, encapsulation, and the generation of antimicrobial peptides (Smith and 

Casadevall, 2021). These processes have also been shown to be inhibited by the action 

of mycotoxins in a similar manner to that observed in human neutrophils (Fallon 
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et al., 2011). The reduced cost of larvae also enables the use of larger test populations 

resulting in more robust and statistically significant data. 

 

 

Figure 1.9: Overview of Galleria mellonella infection and haemolymph collection 

methodologies (generated in biorender). 

 

1.6.4 Galleria mellonella as a model of the innate immune response 

The utilisation of G. mellonella larvae as a model system is due to the structural 

and functional similarities between the insect immune response and the innate immune 

system of mammals (Browne et al., 2013). Insect haemocytes demonstrate specificity 

and capability to distinguish between classes of microorganisms inducing an 

appropriate response (Trevijano-Contador and Zaragoza, 2018). This recognition of 

infection is mediated through germ-line encoded pattern recognition receptors which 

recognise pathogen-associated molecular patterns (PAMPs) (Lin et al., 2020). These 

are homologous to those expressed on mammalian innate immune cells (Figure 1.10) 

resulting in signalling cascades initiating cellular and humoral immune responses 

including phagocytosis, nodulation, agglutination, encapsulation, and production of 

antimicrobial peptides (Lin et al., 2020). Fungal α- 1,3-glucan can be recognised by 

specific recognition proteins which induce antifungal humoral responses when G. 

mellonella larvae were exposed to Aspergillus niger resulting in increased expression 

of antifungal antimicrobial peptides galiomycin and gallerimycin (Stączek et al., 

2021). Haemocytes can produce superoxide when activated and have a comparable 

mechanism to the NADPH oxidase complex of human neutrophils (Bergin et al., 2005). 

The action of insect haemocytes could also be inhibited in a similar manner to 

neutrophils following exposure to the mycotoxins gliotoxin and fumagillin produced
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by A. fumigatus (Fallon et al., 2011). This similarity enables comparable results to be 

obtained to murine models with larval studies yielding data within two days 

compared to two months in murine studies (Firacative et al., 2020). 

 

 

Figure 1.10: Comparison of toll-like receptor signalling in G. mellonella compared to 

the gold standard murine model demonstrating their similarities (generated in 

biorender). 

1.6.5 Mechanisms employed by Fungi to Infect Galleria mellonella Larvae 

Virulence factors utilised in the colonisation of mammalian hosts are also important 

when colonising invertebrates. Siderophores are crucial for survival of A. fumigatus in 

G. mellonella as deletion of genes involved in siderophore biosynthesis rendered the 

fungus avirulent or reduced fungal virulence and the results were comparable with data 

obtained in murine studies (Slater et al., 2011). Adherence of A. fumigatus to host tissue 

is driven by the conserved C-terminal domain encoded by MedA which regulates 

conidiogenesis, adherence to host cells, and pathogenicity. Mutants lacking this region 

demonstrated impaired biofilm formation and reduced adherence capacity in 

pulmonary epithelial cells in vitro and reduced virulence in murine models of invasive 

aspergillosis and in G. mellonella larvae (Abdallah et al., 2012). In addition, conidial 

pigmentation, which protects against reactive oxygen species through melanin 

production can influence G. mellonella infection. Deletion of genes associated with 

melanin production results in highly virulent strains in G. mellonella larvae. It has been 

speculated that these mutants induce an exaggerated immune response of G. 

mellonella, possibly triggered by the altered surface properties of the colour mutant 

conidia, inducing an over-reactive immune response preventing conidial clearance
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(Jackson et al., 2009). 

 

Secreted aspartic proteases have been implicated as a virulence factor 

facilitating tissue invasion by fungal pathogens. CtsD, an aspartic protease distinct to 

A. fumigatus was examined as a virulence factor in G. mellonella larvae (Vickers et al., 

2007). Larvae infected with conidia had a higher mortality rate than larvae infected 

following treatment with an anti-CtsD antibody indicating the enzyme is produced and 

secreted during infection and has a potential role in facilitating virulence of the fungus 

in vivo (Vickers et al., 2007). Both fumagillin and gliotoxin affect the immune response 

of G. mellonella larvae and have been detected in larvae post infection. Fumagillin 

induces similar effects in insect haemocytes thus demonstrating further similarities 

mammalian and insect cells (Fallon et al., 2011). Gliotoxin can be quantified using 

HPLC in vivo and ex-vivo in Galleria larvae and the level of gliotoxin secretion was 

found to correlate with virulence in larvae whereas elastase, catalase and growth rate 

did not (Reeves et al., 2004). The similarity in both the fungal and the host response 

supports the suitability of G. mellonella larvae as an ethical model to examine fungal 

virulence factors. Despite being a suitable analogue of the human innate immune 

response, differences in the metabolite profile, the lack of an adaptive immune 

response and lack specific organ sites limit the translatability of findings from G. 

mellonella experimentation in isolation (Gallorini et al., 2024) but can be used in 

combination with other approaches to provide robust and meaningful data. 

1.6.6 The ex-vivo pig lung model as an analogue of host tissue 

The initial attachment and colonisation of host cells by A. fumigatus is 

facilitated by binding to extracellular matrix, and basal lamina components, which may 

not exposed in the healthy host (Bertuzzi et al., 2018). In some patients with an altered 

lung structure such as asthmatics or cystic fibrosis patients fungal spores can adhere to 

collagen and fibronectin fibres in the basal lamina facilitating its persistence and the 

development of fungal disease (Gago et al., 2019). The microbiome of the lung also 

plays an important role in the prevention of pulmonary aspergillosis as the components 

and metabolites of the microbiome can influence immune responses (Kolwijck and van 

de Veerdonk, 2014). Dysbiosis of the lung microbiome is related to the exacerbations 

of several respiratory diseases such as bronchiectasis, cystic fibrosis and chronic 

obstructive pulmonary disease (Cai et al., 2022). These factors are difficult to 

simulate in many models of fungal disease such as cell culture, organoids and 

murine models. 
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Pig lung models offer an alternative to murine studies and better demonstrate 

host responses due to their immunological and physiological similarities with humans 

(Meurens et al., 2012). The microbiome of healthy pig lungs also shows a similar 

phylum distribution to that found in human lungs (Beck et al., 2012; Huang et al., 

2018). In addition, the metabolome of pig lungs demonstrated a similar composition to 

that of humans, with the main difference being the concentration of some metabolites 

(Benahmed et al., 2014).The ex-vivo pig lung model (EVPL) offers a high- throughput, 

low-cost, and ethical model that closely mimics the lung environment (Figure 1.11) 

(Harrison et al., 2014). Lungs can be obtained from pigs slaughtered for commercial 

meat production and since little or no lung tissue is used in food production, lungs are 

classified as a waste product whose use does not raise ethical questions (Harrison et 

al., 2014). This model has been optimized to mimic factors observed in the cystic 

fibrosis airways and has been widely used to study bacterial pathogenicity (Harrison 

and Diggle, 2016) and antibiotic tolerance (Sweeney et al., 2021; Harrington et al., 

2020). This model has demonstrated strain-specific virulence differences, including 

quorum sensing-deficient mutants of P. aeruginosa demonstrating reduced damage to 

alveolar tissue (Harrison et al., 2014). It has also been demonstrated that the EVPL 

model shows in vivo-like aspects of P. aeruginosa gene expression and that the 

pathogen forms a biofilm using known in vivo pathways required during infection, 

resulting in the formation of clinically realistic structures not seen in other in vitro 

studies (Harrington et al., 2020; Harrington et al., 2022). The structural, biochemical 

and microbial similarities make the EVPL model attractive for adaptation and 

implementation for mycological infection studies. 
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Figure 1.11: Methodology for extraction, infection and assessment of ex-vivo pig lung 

explants (generated in biorender). 

1.6.7 A Combinational approach to disease modelling 

Infection pathology and microbial virulence in patients is complex and 

multifactorial (Kumari et al., 2021). As many model systems provide insight into 

specific aspects of a disease state or microbial virulence a combination of models is 

required to provide holistic insight into factors governing disease (Kaplan et al., 2024). 

The in-depth examination of specific factors in isolation and combining these results 

offers novel insight into processes occurring during human infection. The selection of 

models is influenced by the question posed and the strengths and weaknesses of each 

model must be carefully considered (Swearengen, 2018). Ex-vivo systems offer greater 

control over variables and higher throughputs when compared to in vivo animal models 

(Hao Wang et al., 2021). In vivo systems often offer more dynamic interplay with the 

pathogen of interest as the pathogen interacts with a diverse network of cells, tissues 

and organs and an active immune system (Bertorello et al., 2024). 

In this study the G. mellonella larvae model offers insight into the in vivo innate 

immune response which is the main source of antagonism against A. fumigatus during 

the early stages of colonisation. The larval model also enables simulation of systemic 

infection and behavioural outputs. This model cannot mimic host tissue or physiology 

which is why it has been combined with the ex-vivo pig lung model of infection. 



47  

The EVPL model offers insight into saprophytic infections in a realistic host tissue 

context through accurate emulation of tissue architecture, microbiome and immune 

antagonism. In combination these models provide insight into the response and 

adaptation of A. fumigatus to host immune antagonism and colonisation of host tissue. 

The isolation of these crucial aspects provides insights into the growth of A. fumigatus 

in vivo in a more focused and controllable, but dynamic environment. 

1.7 Omics approaches in mycology 

High throughput analysis has fundamentally altered biological research and 

facilitated in depth molecular analysis of the response of species to specific factors or 

environments (Khan et al., 2019). These high-throughput methodologies have been 

broadly coined as “omics” approaches and each focus on the extraction and analysis of 

various biological molecules including DNA, RNA, proteins, and metabolites 

(Subramanian et al., 2020). The widespread adoption of omics approaches by 

researchers has been facilitated by the development of more sensitive equipment, 

refined approaches and the ever-evolving suite of bioinformatics tools (Dai and Shen, 

2022). The expansion of this field in microbiology through application of proteomics, 

transcriptomics and metabolomics to study host-pathogen interaction has provided 

previously unobtainable insight into the mechanisms involved in these interactions (Al- 

Maleki et al., 2023) 

The first omics technology to appear in the literature was Genomics in 1987. 

This approach examines an organisms entire genome and goes beyond genetics by 

examining the interactions between genes within the genome and the environment 

rather than examination of a gene in isolation (Cordell, 2009; McColl et al., 2019). 

Genomic analysis can now be conducted on a vast scale due to the development of 

next-generation sequencing technologies with projects including sequencing of 

thousands of genomes (Alser et al., 2025). Advanced technology also enables 

functional genomic analysis to examine other aspects of the genome, such as how 

genes are differentially expressed, which transcription factors are bound, or how 

chromatin is formed and organized (Gürsoy et al., 2022). Pan-genomic analysis of 260 

genome sequences of A. fumigatus using a combination of population genomics, 

phylogenomics, and pan-genomics determined that there are high levels of 

recombination within the species. This study also identified that there are three primary 

clades defined by genes encoding diverse metabolic functions, hinting that population
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structure may be shaped by environmental niche occupation or substrate specificity, 

which may have implications for disease progression (Lofgren et al., 2022). 

Transcriptomics is one of the most developed fields in the post-genomic era. 

The transcriptome is defined as the complete set of RNA transcripts including mRNA, 

tRNA, rRNA and non-coding RNA in a specific cell type or tissue at a certain 

developmental stage and under a specific physiological condition (Dong and Chen, 

2013). While genomics provides insight into genes that are hypothetically involved in 

a response, transcriptomic analysis enables a deeper understanding of how a cell 

is functioning (Postel et al., 2022). Transcriptomics provides in-depth insight into the 

expression of genes in the cell, as each gene transcribed to produced multiple 

transcripts leading to a diverse set of functional molecules including splice variants 

providing insight beyond what a simple gene count could provide (Lowe et al., 2017). 

In vivo transcriptomics of A. fumigatus has also been used frequently to understand 

pathogenicity. The transcriptome obtained from conidia germinating in murine lungs 

with germlings obtained under in vitro conditions expected to match the in vivo 

environment confirmed that A. fumigatus encounters nutrient limitations as well as 

alkaline and oxidative stress during the early stages of infection (McDonagh et al., 

2008). Epigenomics is a step beyond transcriptomics and investigates DNA 

methylation variations and the functional consequences of the spatial behaviour of the 

DNA (Serafini et al., 2020). This approach has been utilised to demonstrate the role of 

EGR2 as a key proximal transcriptional activator and epigenomic marker in alveolar 

macrophage interactions (Kolostyak et al., 2024). 

Metabolomics investigates global metabolic alterations associated with 

chemical, biological, physiological, or pathological processes. These metabolic 

changes are measured with various analytical platforms including liquid 

chromatography-mass spectrometry, gas chromatography-mass spectrometry and 

nuclear magnetic resonance spectroscopy (Wishart et al., 2022). This approach can 

identify metabolites elevated in response to specific conditions including the role of 

glutathione, histidine, proline and tryptophan metabolism in reducing A. fumigatus 

damage resulting from exposure to cadmium (Tian et al., 2024). 

Proteomics offers insights beyond the static frameworks of genomics and 

transcriptomics facilitating the unravelling of the dynamic behaviour
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of proteins within the cell. Proteomics enables insight into protein–protein 

interactions and post- translational modifications representing critical layers of 

biological regulation which are often altered in disease states (Palabiyik and 

Palabiyik, 2025). Proteomics characterises the interactions, function and structure of 

the entire set of expressed proteins in a cell, tissue or organism. Proteomics provides a 

better understanding of the structure and function of the organism than genomics as it 

captures alteration in protein expression according to time and environmental 

conditions (Al-Amrani et al., 2021). Many proteomics approaches rely on mass 

spectrometry which measures the mass to charge ratio of ions and offers a 

comprehensive method for separation, identification and quantification of peptides 

from complex mixtures (Sinha and Mann, 2020). Proteomics is broadly divided into 

two approaches; discovery proteomics, which aims to identify and quantify as many 

proteins as possible in a sample, often using shotgun proteomics workflows and 

targeted proteomics in which predefined targets are quantified (Mendes and Dittmar., 

2022). 

Discovery proteomics is generally divided into three categories; Top-down 

proteomic in which a whole proteoform can be assessed, middle-down, in which large 

peptides produced by specific enzymatic digestion such as Glu-C to generate large 

peptides (>3 kDa) that are analyzed by mass spectrometry (MS). This method is useful 

for characterizing high-molecular-weight proteins and post-translational modifications 

that are difficult to detect by top-down proteomics (Takemori et al., 2024) and Bottom- 

up proteomics which utilises the advantages that peptides have over proteins, being 

more easily separated by reversed-phase liquid chromatography, ionize well, and 

fragment in a more predictable manner. This translates into a robust methodology that 

enables high-throughput analysis, allowing for identification and quantification of 

thousands of proteins from complex lysates (Dupree et al., 2020). Discovery 

proteomics can further be divided into two main approaches, gel based and gel free 

methods. Gel based methods facilitates the analysis of a small number of pre- 

fractionated targets, separated by size from complex mixtures of proteins enabling 

intact protein analysis. Efficiency of recovery of proteins from gels have complicated 

this approach (Takemori et al., 2020) but significant progress has recently been made 

with the development of PEPPI-MS (Passively Eluting Proteins from Polyacrylamide 

gels as Intact species for MS), an efficient passive extraction method for intact proteins 
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in gels (Takemori et al., 2022) breathing new life into this technique by overcoming 

the recovery challenges. Gel-free discovery proteomics, also called shotgun 

proteomics is characterised by the identification of digested peptides in a high- 

throughput bottom-up approach. This facilitates immediate protein identification, 

automation and ongoing advancement of data processing capacity (Ercan et al., 2023). 

This approach is further divided into data-dependent acquisition and data-independent 

acquisition. Data-dependent acquisition is particularly effective for capturing intense 

peptide ions, whereas data-independent acquisition excels in capturing low-intensity 

peptides (Liang et al., 2025). GeLC-MS, a multidimensional separation workflow, 

combines gel-based prefractionation with LC-MS, for deep Middle-down proteomics 

where only proteins in the desired molecular weight range are gel-fractionated and their 

Glu-C digestion products are analyzed giving great depth of read when compared to 

other approaches (Takemori et al., 2024) 

Targeted proteomics is a more specific approach to verify expected findings 

and is typically coupled with stable isotope labelling techniques involving the 

incorporation of stable isotopes into different samples, combining them for sample 

preparation and analysis, then distinguishing them in the mass spectrometer based on 

their m/z difference. Isotopic labelling allows for the direct comparison of different 

samples within the same run, thereby reducing variability and improving quantitative 

accuracy. The most commonly employed labels are isobaric tags for relative and 

absolute quantitation (iTRAQ), Stable Isotope Labeling by Amino Acids in Cell 

Culture (SILAC) or Tandem Mass Tag (TMT) (Zicong Wang et al., 2024). These 

approaches offer insight into specific aspects of microbial life and have varying levels 

of depth and outputs which are suited to answering different questions. 

It is widely accepted that multi-omics approaches offer a more accurate and 

comprehensive understanding of a system being studied as it profiles multiple levels 

of cellular response and the flow from one level of function to the next (Hasin et al., 

2017). This combinational approach provides a holistic view of the response of an 

organism or a system to various stimuli (Gutierrez Reyes et al., 2024). A multi-omics 

approach can be utilised to confirm results obtained in one approach or another 

providing a robust understanding of the response elicited in response to stimulation or 

interactions (Perakakis et al., 2018). However multi-omics is costly, time consuming 

and is beyond the access of many researchers (Chen et al., 2023) due to this constraint 

label-free quantitative proteomics was the main approach utilised in this study.
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1.7.1 Label-free quantitative proteomics 

Label-free quantitative proteomics offers a reliable, versatile, and cost- 

effective alternative to labelled quantitation (Neilson et al., 2011). This method 

determines quantitation by comparing the Mass spectrometer signal intensities of 

peptides across a set of samples. Specifically, it involves extracting MS1 

chromatographic peak areas and employing parallel reaction monitoring for MS2- 

based quantitation (Yu et al., 2022; Wippel et al., 2022). Quantification is based on the 

chromatographic peak intensities and spectral counting of identified proteins after MS2 

analysis (Geis-Asteggiante et al., 2016). Due to the lack of labelling and the fact that 

each sample is individually processed, the robustness and reproducibility of sample 

preparation are two of the most important aspects for a successful quantitative 

proteome analysis. As a result every step within the experimental pipeline is a potential 

source of error and can introduce several biases that might produce misleading results 

(Megger et al., 2013). Typical sample preparation involves cell lysis, protein reduction, 

alkylation and digestion, typically with trypsin and then rigorous clean up to remove 

impurities such as salts and remaining solid particles (Figure 1.12). Samples are then 

subjected to fractionation and separation of the tryptic digest via high performance 

liquid chromatography (Duong and Lee, 2023). 

 

 

Figure 1.12: Generic Label -free proteomics methodology (generated in biorender). 
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1.7.2 Proteomics as a tool for uncovering host adaptation processes 

Proteomics offers in-depth insights into the constant interactions between hosts 

and pathogens and can provide insight into the temporal and spatial expression of 

proteins during these interactions (Jean Beltran et al., 2017). The ability of a pathogen 

to survive in a hostile environment can be understood by examining changes at the 

protein level (Poirier and Av-Gay, 2015). Proteomics provides a rapid and effective 

platform to identify these changes, enabling the detection of alterations in protein 

abundance, quantifies protein secretion and release, measures an array of post- 

translational modifications that influence signalling cascades, and profiles protein– 

protein interactions (Sukumaran et al., 2021). Total extraction of protein from a system 

can enable identification and quantification of multiple species simultaneously in a 

single sample (Grassl et al., 2016). This can provide new insight into how the pathogen 

promotes invasion, and evasion of the host immune system, and simultaneously, 

profiles how the host responds to the attack and provides protection from the intruder 

(Jo, 2019; Sukumaran et al., 2019). Proteomics provides insight into changes in total 

protein profiles when an organism encounters environmental stress, elucidating 

changes to biological functions and metabolic networks (Guo et al., 2021). These are 

factors which are associated with host adaptation. This approach has been applied 

extensively to study bacterial, viral and fungal pathogens proving insight into various 

interactions between these species and their hosts and reveal insight into immune 

evasion processes elicited by these pathogens (Greco and Cristea, 2017; Torres- 

Sangiao et al., 2022). Understanding both sides of these interactions enables a basis for 

which to dissect and disrupt host evasion and pathogenesis resulting in the 

development of more effective and specific antimicrobial agents or drug target to better 

combat or prevent disease. 

1.8 Thesis objectives 

The primary objective of this research was to further our understanding of host 

adaptation processes exhibited by A. fumigatus through proteomic characterisation in 

response to various host environments and stressors. This study also aimed to 

understand the role of microbial interactions, which often occur in vulnerable patients 

and to understand how these interactions shape the outcome for the host. 
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The aims for this study were: 

 

1. To contribute to our understanding of host adaptation processes through 

generation and characterisation of an adapted A. fumigatus strain through 

subculturing on media containing host specific nutrients and stressors. The 

strain was also examined through proteomics to gain insight into protein 

changes governing any observed alterations 

2. To characterise the metabolic profile and secretome of A. fumigatus in a 

sublethal infection within the G. mellonella model. To conduct proteomic 

analysis on the haemolymph of infected larvae to understand what products are 

released by the fungus over the first 96 hours of infection while simultaneously 

characterising the response of the host at the peak of this infection. 

3. To characterise the response of A. fumigatus to secreted products of a common 

co-pathogen in the lung K. pneumoniae. The phenotype of A. fumigatus and the 

production of mycotoxins was assessed in addition to the proteomic response 

to the secreted products. The secretome of K. pneumoniae was also 

characterised through proteomic analysis to identify the causative agents of the 

fungal alterations. 

4. To characterise processes associated with tissue colonisation by A. fumigatus 

during saprophytic infection. This was conducted through adaptation of the ex- 

vivo pig lung (EVPL) model of infection. This provided novel insight into host 

metabolism and fungal virulence in the presence of a realistic analogue of 

decaying host tissue with a host microbiome, immune response and 3D 

architecture. 

5. The characterisation of the interactions between A. fumigatus and P. 

aeruginosa in a realistic host tissue context. To establish mono-infected and 

coinfected ex-vivo pig lung explants and conduct proteomic analysis to 

characterise how the three species interact. This provided novel insight into 

how the pathogens impact each other’s development and the response of the 

host to the pathogens in isolation and in combination. 
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Abstract 

 

Aspergillus fumigatus is an environmental saprophyte and opportunistic fungal 

pathogen of humans. The aim of the work presented here was to examine the effect of 

serially subculturing A. fumigatus on agar generated from Galleria mellonella larvae 

in order to characterize the alterations in the phenotypes that might occur. The passaged 

strains showed alterations in virulence, antifungal susceptibility, and in protein 

abundances that may indicate adaptation after 25 passages over 231 days on 

Galleria extract agar. Passaged strains demonstrated reduced virulence in G. 

mellonella larvae and increased tolerance to haemocyte-mediated killing, hydrogen 

peroxide, itraconazole, and amphotericin B. A label-free proteomic analysis of control 

and passaged A. fumigatus strains revealed a total of 3329 proteins, of which 1902 

remained following filtration, and 32 proteins were statistically significant as well as 

differentially abundant. Proteins involved in the response to oxidative stress were 

altered in abundance in the passaged strain and included (S)-S-oxide reductase (+2.63- 

fold), developmental regulator FlbA (+2.27-fold), and histone H2A.Z (−1.82-fold). 

These results indicate that the prolonged subculturing of A. fumigatus on Galleria 

extract agar results in alterations in the susceptibility to antifungal agents and in the 

abundance of proteins associated with the oxidative stress response. The phenomenon 

may be a result of selection for survival in adverse conditions and highlight how A. 

fumigatus may adapt to tolerate the pulmonary immune response in cases of human 

infection. 
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2.1 Introduction 

Aspergillus fumigatus is a ubiquitous soil-dwelling saprophyte and 

opportunistic fungal pathogen of humans (Mousavi et al., 2016). A. fumigatus has been 

labelled as an ‘accidental’ pathogen primarily due to its independence of a host for 

survival, and its pathogenic potential may have evolved to facilitate survival in the 

environment (Rokas et al., 2020). Virulence factors that facilitate infection in 

mammals include siderophore secretion, the ability to grow at 37 ºC, and the 

production of immunosuppressive toxins such as gliotoxin (Raksha et al., 2017). A. 

fumigatus can initiate growth within the host phagolysosome partially aided through 

the production of siderophores, and this process also occurs when A. fumigatus is 

engulfed by soil-dwelling amoebae (Van Waeyenberghe et al., 2013). Gliotoxin 

biosynthesis is thought to have evolved to combat free-living predatory amoebae 

during its saprophytic existence, posing a selection pressure on A. fumigatus (Hillmann 

et al., 2015). These adaptations may contribute to the ability of the fungus to colonize 

and disseminate in human hosts. 

In humans, aspergillosis can develop in neutropenic individuals, hematopoietic 

stem cell or solid organ transplant recipients, and patients on immunosuppressive 

therapy, and can manifest as a number of clinical conditions, ranging from allergic 

bronchopulmonary aspergillosis (ABPA) to acute invasive aspergillosis (Ben-Ami et 

al., 2010; El-Baba et al., 2020). ABPA occurs as a result of hypersensitivity to A. 

fumigatus and affects 2–3.5% of patients with asthma (Denning et al., 2013) in addition 

to approximately 10.5% of cystic fibrosis (CF) patients, of which about 10% are 

chronically colonized (Maleki et al., 2020; LiPuma, 2010). Patients can be 

simultaneously colonized with different A. fumigatus strains, not all of which have the 

ability to persist in the pulmonary microenvironment (LiPuma, 2010). A genotypic 

analysis demonstrated the persistence of A. fumigatus for at least 4.5 years within a CF 

patient, that persistent strains adapted to growth in hypoxic conditions, and that conidia 

were more sensitive to oxidative stress (Ross, 2022). Repeat isolation from a single 

host with chronic granulomatous disease with persistent and recurrent invasive 

aspergillosis over two years revealed that the strains were isogenic and demonstrated 

resistance to itraconazole (Ballard et al., 2018). 

Chronic pulmonary aspergillosis requires prolonged antifungal therapy, with a 

recommended minimum course of 4–6 months (Denning et al., 2016); therapy for up 



58  

to 12 months may be required to improve long-term survival (Im et al., 2021). The 

long-term persistence of A. fumigatus in the lungs raises the possibility that the 

phenotype of the infecting strain may alter or adapt to the host microenvironment. The 

characterization of aspergillomas revealed resistance following antifungal therapy 

emerging from genetic alterations occurring within a fungal mass from a single parent 

strain (Howard et al., 2013). An aspergilloma demonstrated an initial itraconazole MIC 

of 0.25 mg/L; after six months of antifungal therapy an MIC > 16 mg/L was evident, 

but after the cessation of therapy for four months the isolate MIC returned to 

0.5 mg/L (Chen et al., 2005). An analysis of A. fumigatus Af293 and CEA17, which 

share a 99.8% identical genome, demonstrated altered growth rates, virulence, and 

susceptibility to drug treatment and immune killing. The observed similarity in 

genomes and difference in phenotypes indicated that epigenetic alterations could be 

responsible for these physiological differences (Colabardini et al., 2022). Another 

possible cause of these variations could be the presence of single-nucleotide 

polymorphisms, insertions, and deletions, which have been demonstrated to greatly 

impact heterogeneity (Keller, 2017). 

The serial passaging of A. fumigatus on a murine lung homogenate medium 

revealed the selection of a rapidly germinating strain, after 13 passages, that produced 

an enhanced inflammatory response in mice. Genome sequencing revealed conserved 

mutations of the ssKA gene, which is part of the SakA mitogen-activated protein kinase 

(MAPK) stress pathway (Kirkland et al., 2021). Serial passaging can also be conducted 

in vivo, and insects serve as an excellent model in which to passage as they are simple 

to maintain and inoculate, have short life cycles, and are easily manipulated (Scully and 

Bidochka, 2006). Galleria mellonella larvae are a well-characterized model for 

studying bacterial and fungal pathogenesis due to the strong similarities between the 

insect immune response and the innate immune response of mammals in addition to 

the ability to grow at 37 ºC (Curtis et al., 2022; Trevijano-Contador and Zaragoza, 

2018). Due to the similarities in the immune response, the preparation of agar from 

these larvae would contain products found in the human innate immune response, 

allowing for insights into how these products may shape fungal responses to the lung 

microenvironment. The serial passaging of Cryptococcus neoformans in 

G. mellonella larvae for 15 passages resulted in the generation of a distinct phenotype, 

which grew faster in hemolymph but was more susceptible to hydrogen peroxide in 
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vitro, killed fewer murine macrophages, and produced a smaller fungal burden in 

human macrophages ex vivo compared to the parental strain (Ali et al., 2020). 

Haemocytes exposed to the passaged strains produced less hydrogen peroxide, and a 

histopathological analysis also indicated that the passaged strain increased larval 

nodulation (Ali et al., 2020). The serial passaging of Aspergillus flavus in G. mellonella 

larvae demonstrated that the genetic diversity of the passaged strain decreased 

significantly, which emphasizes the impact that the host exerts on shaping the 

evolution of a pathogen population in vivo (Scully and Bidochka, 2006). 

G. mellonella larvae are susceptible to infection with A. fumigatus, and 

previously published results show a strong correlation with those obtained in mammals 

(Slater et al., 2011). Larvae infected with A. fumigatus show many of the symptoms 

evident in infected mammals, including the development of granulomas and the in vivo 

production of toxins (Sheehan et al., 2018). The aim of the work presented here was to 

characterize the effect of prolonged subculturing on Galleria extract agar on the 

virulence and antifungal response of A. fumigatus. 

2.2 Materials and Methods 

2.2.1 Aspergillus fumigatus Culture Conditions 

Aspergillus fumigatus ATCC 26933 was cultured for 72 h at 37 ºC on malt 

extract agar (MEA) (Oxoid, Basingstoke, UK) plates following point inoculation. 

Czapek–Dox broth (Duchefa Biochemie, Haarlam, The Netherlands) (50 mL) was 

inoculated with A. fumigatus conidia at an initial density of 1 x105 conidia/mL and 

grown at 37 ºC for 72 h at 200 rpm in an orbital incubator. The wet biomass of mycelia 

was weighed at 72 h following filtration through Miracloth (Millipore, Millipore, MA, 

USA). 

2.2.2 Generation of passaged strains of Aspergillus fumigatus 

Gallerial extract agar (termed GEA20) was produced by grinding 20 G. 

mellonella larvae in 20 µL of sterile phosphate-buffered saline (PBS) via the use of a 

sterile mortar and pestle. The extract was centrifuged at 538x g for 5 min to remove 

particulate matter, and 20 mL of the supernatant was added to 80 mL of autoclaved 

agar (2 g w/v) supplemented with 0.1 g (w/v) of glucose, allowed to cool prior to 

addition, and 100 µL of penicillin–streptomycin (pen–strep) (Merck, Branchburg, NJ, 

USA) (10,000 U/10 mg/mL). A. fumigatus conidia were point inoculated onto GEA20 
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plates and incubated at 37 ºC until growth reached the edge of the agar plate, which 

took an average of 9.24 days before subculturing onto fresh GEA20 plates. Three 

strains were selected after being serially passaged for a total of 25 passages over 231 

days, and referred to as A25, C25, and E25. Control strains were serially sub-cultured 

on MEA plates for the same period of time. 

2.2.3 Virulence assessment of passaged strains in vivo 

Six instar larvae of G. mellonella (Livefoods Direct Ltd., Sheffield, UK) were 

stored at 15 ºC prior to use. Twelve larvae weighing 0.2–0.3 g, without signs of 

melanization, were inoculated with 20 mL of PBS containing 5 x105 control or 

passaged A. fumigatus conidia via intra-hemocoel injection using a 26 G 1 mL syringe 

(Terumo, Tokyo, Japan). The larvae were placed in 9 cm Petri dishes and incubated at 

37 ºC. Larval viability was assessed over 72 h. Experiments were performed on four 

independent occasions. 

2.2.4 Haemocyte kill assay 

Hemolymph (500 µL) was extracted from G. mellonella larvae and haemocytes 

were harvested by centrifugation at 8609 x g for 8 min. Cell-free haemolymph was 

retained on ice. Haemocytes were resuspended in 500 mL of sterile PBS and 

enumerated using a haemocytometer. The conidia of control and passaged A. fumigatus 

strains were harvested and resuspended in cell-free haemolymph for 30 min at 37 ºC. 

The opsonized conidia were harvested and resuspended in 500 µL of sterile PBS. 

Conidial and haemocyte suspensions were mixed in a ratio of 1:1 (approximately 5 x106 

haemocyte and conidia) in a final volume of 1 mL in a 50 mL Falcon tube (Sarstedt, 

Numbrecht, Germany) and incubated at 37 ºC and 200 rpm. A 20 µL aliquot was taken 

at 20-minute intervals and serially diluted for plating on MEA plates in triplicate. 

Fungal colonies were enumerated to assess viability after incubation at 37 ºC for 24 h. 

2.2.5 Susceptibility testing 

Hydrogen peroxide (Sigma, St. Louis, MO, USA) was serially diluted in 

Sabouraud dextrose broth (SDB) (Oxoid, Hampshire, UK) on a 96-well plate (Corning, 

Corning, NY, USA) to produce a concentration range between 30.62 and 245 mM. 

Amphotericin B (Sigma, St. Louis, MO, USA) and itraconazole (Sigma, St. Louis, MO, 

USA) were serially diluted in SDB, producing ranges of 0.78 to 6.25 mg/mL and 7.81 

to 62.5 µg/mL, respectively. Conidia from the control and passaged strains were
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harvested and enumerated. Aliquots (100 µL) of conidia were added to each well of a 

96-well plate (Corning, Corning, NY, USA) to provide a concentration of 1 x 105 

conidia per well. Plates were incubated at 37 oC and growth was assessed at 24 h at 

600 nm using a plate reader (Bio-Tek Synergy HT, Somerset, NJ, USA). 

2.2.6 Gliotoxin extraction and quantification 

A. fumigatus cultures (n = 3) were grown in 50 mL of Czapek–Dox broth for 

72 h. The supernatant was filtered through Miracloth, and 20 mL of supernatant was 

mixed 1:1 with chloroform for 2 h at room temperature. The chloroform fraction was 

stored at -20 ºC overnight and samples were dried through rotary evaporation in a 

Büchi rotor evaporator (Brinkmann Instruments, Brea, CA, USA). Samples were 

dissolved in 500 µL of methanol and stored at -20 ºC. Gliotoxin was detected by reverse 

phase HPLC (RP-HPLC; Shimadzu, Columbia, MD, USA). The mobile phase was 

34.9% (v/v) acetonitrile (Fisher Scientific, Waltham, MA, USA), 0.1% (v/v) 

trifluoroacetic acid (TFA), (Sigma Aldrich, St Louis, MO,USA) and 65% (v/v) HPLC- 

grade water (ddH2O). Samples (20 µL) were loaded onto an Agilent ZORBAX SB- 

Aq 5 µm polar LC column and quantified based on the standard curve generated using 

gliotoxin standards dissolved in methanol ranging from 6.25 to100 mg/mL. 

2.2.7 Total secreted siderophore quantification 

A. fumigatus cultures (n = 3) were grown in 50 mL of Czapek–Dox broth for 

72 h. Siderophore activity in supernatants was determined via the use of a SideroTec 

HiSens assay (Accuplex, Maynooth, Ireland). Briefly, 100 μL of sample was added to 

a 96-well microplate followed by the addition of 100 μL of a ready-to-use detector. 

After 10 min of incubation at 37 °C, the plate was read on a fluorescent reader (360 

excitation/460 emission). The siderophore concentration was determined by using 

desferoxamine as a reference standard 

2.2.8 Protein extraction and purification from A. fumigatus hyphae 

Protein extractions were performed as outlined previously (Margalit et al., 

2022). A. fumigatus mycelia of control and passaged strain E25 (n = 3 per group) were 

grown for 72 h at 37 °C in Czapek–Dox media. Mycelium was harvested by filtration, 

snap-frozen in liquid nitrogen, and ground to a fine dust in a mortar via the use of a 

pestle. A lysis buffer (8 M urea, 2 M thiourea, and 0.1 M Tris-HCl (pH 8.0) dissolved 

in HPLC-grade ddH2O), supplemented with protease inhibitors (aprotinin, leupeptin, 

pepstatin A, tosyllysine chloromethyl ketone hydrochloride (TLCK) (10 µg/mL), and 
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phenylmethylsulfonyl fluoride (PMSF) (1 mM/mL)), was added (4 mL/g of hyphae). 

The lysates were sonicated (Bandelin Senopuls), three times for 10 s at 50% power. 

The cell lysate was subjected to centrifugation (Eppendorf Centrifuge 5418) for 8 min 

at 14,500× g to pellet cellular debris. The protein concentration was quantified by the 

Bradford method and samples (100 µg) were subjected to overnight acetone 

precipitation. Samples were subjected to centrifugation at 14,500× g for 10 min to 

pellet proteins, acetone was removed, and the pellet was resuspended in a 25 µL sample 

resuspension buffer (8 M urea, 2 M thiourea, and 0.1 M Tris-HCl (pH 8.0) dissolved 

in HPLC-grade ddH2O). A 2 µL aliquot was removed from each sample for 

quantification via the Qubit quantification system (Invitrogen, Waltham, MA, USA). 

Ammonium bicarbonate (Ambic) (125 µL, 50 mM) was added to the remaining 

samples, which were subjected to reduction via the addition of 1 µL of 0.5 M 

dithiothreitol and incubated at 56 °C for 20 min, followed by alkylation with 0.55 M 

iodoacetamide (IAA) at room temperature in the dark for 15 min. Proteins were 

digested via the addition of 1 µL of sequence-grade trypsin (Promega) (0.5 µg/µL), 

supplemented with 1 µL of Protease Max Surfactant Trypsin Enhancer (Promega 1% 

w/v), and incubated at 37 °C for 18 h. Digestion was quenched via the addition of 1 µL 

of TFA incubated at room temperature for 5 min. Samples were subjected to 

centrifugation at 14,500× g for 10 min prior to clean-up using C18 spin columns 

(Pierce). The eluted peptides were dried via the use of a SpeedyVac concentrator 

(Thermo Scientific (Waltham, MA, USA) Savant DNA120) and resuspended in 2% 

(v/v) acetonitrile and 0.05% (v/v) TFA aided by sonication for 5 min. The samples were 

centrifuged to pellet any debris at 14,500× g for 5 min, and 2 µL from each sample was 

loaded onto the mass spectrometer. 

2.2.9 Mass spectrometry 

Purified peptide extracts (2 μL containing 750 ng protein) were loaded onto a 

Q Exactive mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) using 

a 133 min reverse-phase gradient, as per previous methods (Margalit et al., 2020). Raw 

MS/MS data files were processed through the Andromeda search engine in MaxQuant 

software v.1.6.3.4 110 using a Neosartorya fumigata reference proteome obtained from 

a UniProt-SWISS-PROT database to identify proteins (9647 entries, downloaded July 

2022). The search parameters followed those described in (Margalit et al., 2020). 
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2.2.10 Data analysis 

Perseus v.1.6.15.0 was used for the analysis, processing, and visualization of 

data. Normalized LFQ intensity values were used as the quantitative measurement of 

protein abundance. The data matrix generated was filtered to remove contaminants, 

and peptides were identified by site. LFQ intensity values were log2-transformed, and 

each sample was assigned to its corresponding group (control and E25). Proteins not 

found in all replicates in at least one group were omitted from further analysis. A data- 

imputation step was conducted to replace missing values with values that simulate 

signals of low-abundance proteins chosen randomly from a distribution specified by a 

downshift of 1.8 times the mean standard deviation of all measured values and a width 

of 0.3 times this standard deviation. Principal component analysis (PCA) was plotted 

using normalized intensity values. The proteins identified were then defined using a 

Perseus annotation file (downloaded in July 2022) to assign extract terms for biological 

process, molecular function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

names. 

To visualize the differences between two samples, pairwise Student’s t-tests 

were performed using a cut-off of p < 0.05 on the post-imputation dataset. Volcano 

plots were generated by plotting the log2 fold change on the x-axis against the log p- 

values on the y-axis for each pairwise comparison. Statistically significant and 

differentially abundant (SSDA) proteins (ANOVA, p < 0.05) with a relative fold 

change greater than ±1.5 were retained for analysis. SSDA proteins were z-score 

normalized and then used for hierarchical clustering to produce a heat map. Identified 

SSDAs could then be assessed using Uniprot codes generated by Perseus to gain 

insights into their roles within the cells. The mass spectrometry proteomics data have 

been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et 

al., 2021) partner repository with the dataset identifier PXD036787. 

 

 

2.2.11 Statistical analysis 

Results from the phenotypic testing were assessed in Graphpad Prism Version 

8.0.1. A 2-way ANOVA analysis or multiple paired t-tests were performed for the 

binary comparison of passaged and control A. fumigatus strains. Significance was set 

at p < 0.05. Proteomic analysis was conducted in Perseus V.1.6.15.0, as described 

above. 
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2.3 Results 

2.3.1 Characterisation of growth characteristics of serially subcultured A. 

fumigatus strains 

At the end of 25 passages, A. fumigatus conidia were isolated from GEA20 

plates by washing with PBS/tween, and an aliquot of a diluted culture (5 × 106/mL) 

was used to point inoculate MEA plates so that radial growth could be measured over 

48 h at 37 °C. The results indicated no significant difference in the growth of the three 

passaged strains compared to the control (Figure S2.1). Conidia were also used to 

inoculate a flask of Czapex–Dox broth at a density of 1 × 105/mL as well as incubated 

at 200 rpm and 37 °C for 72 h. At the end of the incubation period the mycelial wet 

biomass of the serially sub-cultured strains was not significantly different to that of the 

control (Figure S2.2). The gliotoxin concentration of culture filtrates at the end of 72 h 

was higher in the passaged strains than in the control, but only passaged strain A25 

showed a significant result (p = 0.01) (Figure S2.3). There was no difference in the 

secreted siderophore concentrations between the control and passaged A. fumigatus 

strains (Figure S4). Pen–strep (0.1% v/v) was used in the GEA20 plates to prevent the 

overgrowth of bacteria from the G. mellonella digestive tract. The exposure of A. 

fumigatus to pen–strep did not affect the radial growth rate (Figure S2.5), and strains 

that were serially passaged on MEA agar plates containing 0.1% (v/v) pen–strep 

showed no significant alteration in their tolerance of hydrogen peroxide (Figure S2.6) 

or amphotericin B (Figure S2.7), but did demonstrate increased susceptibility to 

itraconazole (Figure S2.8), which was not observed in the GEA- passaged strains. 

2.3.2 Passaged A. fumigatus strains show reduced virulence in G. mellonella 

larvae 

G. mellonella larvae were inoculated via an intra-hemocoel injection with the 

conidia (1 × 105/20 μL) of control or passaged A. fumigatus strains, and viability was 

assessed over 72 h (Figure 2.1). Infection with the control strain resulted in 30% 

mortality at 48 h compared to 5–8% mortality due to the passaged strains. By 72 h, the 

larvae infected with the control A. fumigatus conidia showed 44% mortality, compared 

to a mortality rate of 21–25% in the larvae infected with the conidia from the passaged 

strains (** p = 0.004 for A25 and C25; * p = 0.0106 for E25 relative to the control). 
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Figure 2.1: Response of larvae to infection by the conidia of control and passaged A. 

fumigatus strains. Larvae were infected with the conidia as described, and their survival 

was monitored over 72 h. Passaged strains showed significantly reduced virulence at 

72 h ((A25, * p = 0.0458; C25 and E25, ** p = 0.042. Logrank (Mantel– Cox) test). 

The response of the conidia from the control and passaged strains to G. 

mellonella haemocytes was assessed. Haemocytes were extracted from the larvae as 

described and mixed with haemolymph-opsonized conidia in a ratio of 1:1 at 37 °C. 

The viability in the conidia was assessed by serially diluting and plating them onto 

MEA plates. The results indicate that the haemocytes killed 92.8% of the control A. 

fumigatus conidia by 40 min and 98.04% by 100 min (Figure 2.2). In contrast, the 

conidia of the passaged strains were significantly less susceptible to haemocyte- 

mediated killing, demonstrating a 9.19–41.37% kill rate at 40 min and a 36.78–52.84% 

kill rate at 100 min (**** p < 0.0001 at both time points). 
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Figure 2.2: Response of A. fumigatus conidia to haemocyte-mediated killing. The 

conidia of A. fumigatus passaged and control strains were exposed to G. mellonella 

haemocytes ex vivo. The passaged strains demonstrated significantly increased 

tolerance to immune cell killing at 40 min (**** p < 0.0001) and 100 min (**** p < 

0.0001), determined by a one-way ANOVA followed by pair-wise multiple 

comparisons using the Tukey test. 

 

 

2.3.3 Passaged A. fumigatus strains show altered susceptibility to Antifungal 

agents 

In order to confirm the tolerance to oxidative stress indicated in Figure 2.2, the 

susceptibility of the conidia of control and passaged A. fumigatus strains to hydrogen 

peroxide, as well as the antifungal agents amphotericin B and itraconazole, was 

assessed as described. The passaged strains showed increased growth in the presence 

of hydrogen peroxide compared to the control A. fumigatus strain at concentrations 

from 30.62 to 245 mM, with a significant increase in the growth of the E25 strain at 

concentrations of 30.62, 61.25, and 245 mM (*** p < 0.0001) (Figure 2.3A). All 

passaged strains demonstrated significantly increased growth at amphotericin B 

concentrations of 0.78–3.125 mg/mL compared to the control (**** p < 0.0001) 

(Figure 2.3B). The passaged strains showed significantly increased growth at all of the 

itraconazole concentrations tested (Figure 2.3C). 



67  

 

 

Figure 2.3: Analysis of the response of control and passaged A. fumigatus conidia to 

hydrogen peroxide, amphotericin B, and itraconazole Passaged A. fumigatus conidia 

demonstrated significantly increased tolerance to (a) hydrogen peroxide (strain E25 at 

concentrations of 122.5, 62.5 and 30.62 mM Amphotericin B (**** p < 0.0001)); (b) 

amphotericin B at concentrations of 3.12–0.78 mg/mL in all of the passaged strains 

compared to the control (**** p < 0.0001); and (c) itraconazole in all of the passaged 

strains compared to the control with C25 at 62.5 µg/mL (*** p = 0.0017) and all other 

strains as well as concentrations (**** p < 0.0001) determined by a one-way ANOVA 

followed by pair-wise multiple comparisons using the Tukey test for each treatment 

dose (* p = 0.01, ** p = 0.001). 
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2.3.4 Proteomic characterisation of Passaged A. fumigatus strain E25 

A quantitative proteomic analysis was employed to identify alterations in the 

proteome of passaged strain E25 that might explain the altered susceptibilities to 

haemocyte-mediated killing and the antifungal agents described above. In total, 3329 

proteins were detected, of which 1902 remained following filtering. Thirty-two 

proteins were statistically significant and differentially abundant (SSDA) (Table 2.1). 

The heat map of proteins altered in abundance indicates a clear difference between the 

control and passaged strains (Figure 2.4). Proteins such as polyadenylation factor 

subunit CstF64 (+3.58-fold) and nuclear cap-binding protein subunit 2 (+2.47-fold), 

involved in mRNA stability, were increased in abundance in the passaged strain. 

Peptide-methionine (S)-S-oxide reductase (+2.63-fold) and developmental regulator 

FlbA (+2.27-fold), involved in the response to oxidative stress, were also increased in 

abundance in the passaged strains. Proteins decreased in abundance in the passaged 

strain included zinc/cadmium resistance protein (−5.17-fold), translation initiation 

regulator (Gcn20) (−1.96-fold), and glucose repressible protein Grg1 (−1.87-fold). In 

addition, nucleoporin NUP49/NSP49 (−2.24-fold), guanyl-nucleotide exchange factor 

(Sec7) (−1.76-fold), and histone H2A.Z (−1.82-fold) were also decreased in abundance 

(Figure 2.5). The results indicate that passaged strain E25 showed some alterations in 

the proteome, and those that are present may contribute to the increased tolerance to 

oxidative stress. 
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Table 2.1: All proteins detected to be statistically significant and differentially 

abundant in passaged strain E25 relative to the control A. fumigatus strain. 
 

Protein Name Gene Name Peptides Sequence 
Coverage 

(%) 

Score Fold 

Change 

Polyadenylation factor subunit 

CstF64, putative 
AFUA_2G09100 3 18.9 17.95 3.58 

Complex I intermediate associated 

protein (Cia30), putative 

AFUA_3G06220 4 15.2 14.82 3.44 

KH domain protein AFUA_4G07220 6 19.1 22.51 3.04 

Uncharacterized protein AFUA_3G08440 3 22.6 9.074 2.77 

50S ribosomal protein L3 AFUA_4G06000 4 20.5 19.30 2.77 

Peptide-methionine (S)-S-oxide 
reductase 

AFUA_2G03140 3 49.1 26.35 2.63 

Nuclear cap-binding protein subunit 

2 
AFUA_2G08570 5 25 7.55 2.46 

Post-SET domain-containing protein AFUA_6G10080 2 23.3 8.33 2.28 

Developmental regulator FlbA AFUA_2G11180 4 7.4 10.65 2.27 

Thiamine biosynthetic bifunctional 

enz, putative 

AFUA_2G08970 8 27.2 19.26 2.11 

RING-type E3 ubiquitin transferase AFUA_2G11040 4 29.2 6.07 1.88 

Small nuclear ribonucleoprotein E AFUA_7G05980 4 32.6 9.08 1.81 

Phosphatidylglycerol/phosphatidylin 

ositol transfer protein 
npc2 10 35.4 29.44 1.74 

DlpA domain protein AFUA_4G10940 5 23.4 15.65 1.64 

RSC complex subunit (RSC1), 

putative 
AFUA_3G05560 4 7.8 9.43 1.63 

Probable mannosyl-oligosaccharide 
alpha-1,2-mannosidase 1B 

mns1B 14 47.5 64.36 1.60 

ATP-dependent RNA helicase dbp2 dbp2 17 43 109.23 −1.53 

Rhomboid protein 2 rbd2 2 15.4 19.36 −1.69 

Integral ER membrane protein Scs2, 
putative 

AFUA_4G06950 9 40.2 53.75 −1.75 

Translation elongation factor eEF-3, 

putative 

AFUA_7G03660 68 77.1 323.31 −1.76 

Guanyl-nucleotide exchange factor 

(Sec7), putative 

AFUA_7G05700 8 5.8 27.80 −1.76 

Histone H2A.Z htz1 6 51.4 65.54 −1.82 

Glucose repressible protein Grg1, 
Putative 

AFUA_5G14210 2 34.8 68.31 −1.87 

Translation initiation regulator 
(Gcn20), putative 

AFUA_4G06070 9 20.2 37.21 −1.96 

ANK_REP_REGION domain- 
containing protein 

AFUA_5G14930 20 48 190.54 −1.98 

Nucleoporin NUP49/NSP49, putative AFUA_6G10730 4 10.8 10.05 −2.24 

Aminotransferase, putative AFUA_6G02030 6 23 16.58 −2.26 

GABA permease (Uga4), putative AFUA_4G03370 4 8.9 12.47 −2.72 

U5 snRNP complex subunit, putative AFUA_7G02280 7 32.6 19.75 −3.14 

Zinc/cadmium resistance protein AFUA_2G14570 1 3 9.01 −5.17 

Uncharacterized protein AFUA_1G16030 16 38.2 62.94 −6.54 
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Figure 2.4: Heat map showing protein clustering between control and passaged A. 

fumigatus strain E25. Shotgun quantitative proteomic analysis of passaged strain and 

control mycelia grown in Czapex–Dox broth for 72 h. Two-way unsupervised 

hierarchical clustering of the median protein expression values of all statistically 

significant differentially abundant proteins. Hierarchical clustering (columns) 

identified two distinct clusters comprising the three replicates from their original 

sample groups. 



71  

 

 

Figure 2.5: Volcano plots showing alterations in protein abundance in control and 

passaged A. fumigatus proteomes. Volcano plot of all identified proteins based on 

relative abundance differences between passaged strains and control mycelia. Volcano 

plots showing the distribution of quantified proteins. Proteins above the line are 

considered statistically significant (p value < 0.05), and those to the right and left of 

the vertical lines indicate relative fold changes greater than 1.5-fold. 

2.4 Discussion 

To examine the factors facilitating the selection and persistence of A. fumigatus 

in a host, in vivo or in vitro serially passaging can be employed to impose specific 

conditions for prolonged periods of time. The selective serial culturing of an organism 

can result in genetic modifications as the organism responds to a given environmental 

pressure (Scully and Bidochka, 2006). To facilitate prolonged passaging and overcome 

the relatively short lifespan of G. mellonella larvae, an agar system was formulated. 

The results presented show that the prolonged subculturing of A. fumigatus on GEA20 

plates selected strains showing reduced virulence in G. mellonella larvae but with 

greater tolerance of haemocyte-mediated killing as well as hydrogen peroxide, 

amphotericin B, and itraconazole. Reduced virulence was not a result of altered growth, 

as control and passaged strains grew at the same rate (Figures S2.1 and S2.2). In 

addition, only one passaged strain demonstrated significant alterations in gliotoxin 

production (Figure S2.3), and there was no significant alteration in siderophore 

secretion (Figure S2.4). A small number of changes in the proteome was detected in 

passaged strain E25 (Table 2.1), and those proteins increased in abundance, such as 

peptide-methionine (S)-S-oxide reductase (+2.63-fold) and developmental regulator 

FlbA (+2.27-fold), coupled with the reduced abundance of histone H2A.Z (−1.82-

fold) could have contributed to the observed tolerance of oxidative stress.
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FlbA negatively affects the responses of detoxification to reactive oxygen species 

(ROS) as well as gliotoxin and negatively regulates GliT expression. The absence of 

FlbA increased ROS accumulation in hyphae, which elevates the expression of ROS 

scavengers such as catalase and superoxide dismutase (Shin et al., 2013). H2A.Z has 

been found to be involved in genome stability, DNA repair, and transcriptional 

regulation across eukaryotes. In Neurospora crassa, H2A.Z regulates the oxidative 

stress response (Chen and Ponts, 2020). H2A.Z antagonizes CPC1 binding to restrict 

cat-3 expression in a normal setting, whereas under oxidative stress H2A.Z is 

removed from chromatin, leading to a rapid and full activation of cat-3 transcription, 

enhancing the capacity of resistance to physiological stimuli (Dong et al., 2018). 

Proteomic evidence also indicates that these alterations have not arisen as a result of 

starvation or nutrient deprivation, as proteins involved in the starvation response, 

such as zinc/cadmium resistance protein (−5.17-fold), expressed in low-iron 

environments (Vicentefranqueira et al., 2018), and glucose repressible protein grg1 

(−1.81-fold), which is expressed in low-nutrient environments (Xie et al., 2004), were 

reduced in abundance. 

The data presented here indicate that the prolonged subculturing of A. 

fumigatus on GEA20 plates resulted in the selection of phenotypically fit variants that 

could persist in the culture conditions and withstand oxidative stress. The proteomic 

analysis of the passaged and control strains indicated alterations primarily involved in 

mRNA stability and oxidative stress tolerance. The results suggest that culture 

conditions may serve as a selective bottleneck, as previously demonstrated in work 

conducted with A. flavus (Scully and Bidochka, 2006). In addition, C. neoformans 

strains passaged in G. mellonella larvae demonstrated increased oxidative stress 

tolerance by downregulating hydrogen peroxide production via the shedding of the 

immunomodulatory capsule (Ali et al., 2020). In the work presented here, the passaged 

A. fumigatus strains also demonstrated increased tolerance to oxidative stress, further 

emphasizing the importance of these mechanisms. Itraconazole and amphotericin B, 

which target the fungal cell membrane, affect fungal redox homeostasis by increasing 

intracellular ROS production. These responses were abolished via the inhibition of 

mitochondrial respiratory complex I, which suggests that mitochondrial complex I is 

the main source of deleterious ROS production in A.fumigatus challenged with
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antifungal compounds (Shekhova et al., 2017). Interestingly, the proteomic analysis 

indicated an increased expression of complex I intermediate associated protein 

(+3.44-fold) independent of exposure to any antifungal agent. Previous work has 

shown that the exposure of Candida albicans to hydrogen peroxide for 60 min 

increased tolerance to caspofungin through the simultaneous activation of the Cap 

and Hog pathways (Kelly et al., 2009), indicating that prior exposure to elevated 

internal ROS could be attributed to reduced susceptibility to amphotericin B and 

itraconazole. The production of ROS by the innate immune response is crucial to 

protection against colonization. The ability of A. fumigatus to adapt and persist in the 

presence of these stressors and innate immune products could play a role in 

influencing antifungal susceptibility and response to the immune cells in vivo. 

2.5 Conclusion 

The data presented here suggest that prolonged subculturing on GEA20 plates 

can alter the phenotype and proteome of A. fumigatus. The passaged strains 

demonstrated reduced virulence in vivo and increased tolerance to haemocyte- 

mediated killing, hydrogen peroxide, itraconazole, and amphotericin B. This tolerance 

may be due to the proteomic alterations evident in the passaged strains conferring 

tolerance to oxidative stress. Prolonged A. fumigatus colonization in vivo may also lead 

to strains better adapted to the pulmonary environment as well as those that display 

enhanced tolerance to antifungal agents. Such a process may have implications for 

human health, as inadvertent selection for drug-tolerant and persistent strains could 

complicate therapy. 
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Abstract 

Introduction: The fungal pathogen Aspergillus fumigatus can induce prolonged 

colonization of the lungs of susceptible patients, resulting in conditions such as allergic 

bronchopulmonary aspergillosis and chronic pulmonary aspergillosis. 

Hypothesis: Analysis of the A. fumigatus secretome released during sub-lethal 

infection of G. mellonella larvae may give an insight into products released during 

prolonged human colonisation. 

Methodology: Galleria mellonella larvae were infected with A. fumigatus, and the 

metabolism of host carbohydrate and proteins and production of fungal virulence 

factors were analysed. Label-free qualitative proteomic analysis was performed to 

identify fungal proteins in larvae at 96 hours post-infection and also to identify changes 

in the Galleria proteome as a result of infection. 

Results: Infected larvae demonstrated increasing concentrations of gliotoxin and 

siderophore and displayed reduced amounts of haemolymph carbohydrate and protein. 

Fungal proteins (399) were detected by qualitative proteomic analysis in cell-free 

haemolymph at 96 hours and could be categorized into seven groups, including 

virulence (n = 25), stress response (n = 34), DNA repair and replication (n = 39), 

translation (n = 22), metabolism (n = 42), released intracellular (n = 28) and cellular 

development and cell cycle (n = 53). Analysis of the Gallerial proteome at 96 hours 

post-infection revealed changes in the abundance of proteins associated with immune 

function, metabolism, cellular structure, insect development, transcription/translation 

and detoxification. 

Conclusion: Characterizing the impact of the fungal secretome on the host may 

provide an insight into how A. fumigatus damages tissue and suppresses the immune 

response during long-term pulmonary colonization. 
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3.1 Introduction 

Aspergillus fumigatus is a ubiquitous environmental fungus and a significant 

pathogen capable of producing a variety of pulmonary infections in susceptible patients 

(Seif et al., 2022). The most serious form of infection is invasive aspergillosis, and this 

can induce a mortality rate of 50 % in neutropenic patients and 90 % in stem cell 

therapy recipients (Naaraayan et al., 2015). Prolonged fungal colonization is a common 

characteristic of allergic bronchopulmonary aspergillosis (ABPA), which typically 

affects those with hyperactive immune responses, such as asthma or cystic fibrosis 

(Eraso et al., 2020). ABPA is characterized by repeated exacerbations arising from 

Aspergillus sensitization resulting in severe immune response and inflammation 

leading to haemoptysis or, in severe cases, lung collapse (Agarwal et al., 2023). The 

development of ABPA depends upon fungal persistence and non- lethal colonization 

despite intense inflammatory cell infiltration driven by a number of fungal virulence 

factors including secreted proteases capable of detaching cells from the basement 

membrane leading to altered epithelial integrity (Wark, 2004). In the case of pre- 

existing lung damage or modest immunosuppression, chronic pulmonary aspergillosis 

(CPA) can occur. CPA is characterized by slow progressive destruction of lung 

parenchyma and recurrence upon discontinuation of antifungal therapy. The condition 

often results in cavity formation or expansion of pre- existing cavities from previous 

insults (Bongomin et al., 2020). Damage caused to the lung tissue, commonly 

following tuberculosis infection, facilitates saprophytic colonization (Bongomin, 

2020). A. fumigatus produces a range of enzymes, toxins and small molecules that 

facilitate the growth and survival of the fungus in the environment, and these may 

facilitate persistence in the host. The thermotolerance of A. fumigatus may have 

evolved to allow survival in its environmental niche, and this is facilitated by the thick 

conidia walls coupled with transcriptional regulation of heat shock response proteins 

in response to the loss of cell wall integrity (Fabri et al., 2021). A. fumigatus produces 

low- molecular- mass ferric- iron- specific chelators known as siderophores, which are 

upregulated during iron starvation and are integral to fungal virulence (Aguiar et al., 

2022). Siderophores such as fusarine C, and its acetylated form triacetylfusarine C, 

capture extracellular iron, while ferricrocin may be intracellular and involved in iron 

distribution and storage (Schrettl et al., 2010). The conidial siderophore 

hydroxyferricrocin plays a crucial role in iron storage, germination and oxidative stress 

resistance (Schrettl et al., 2008). Gliotoxin, an immunosuppressive 
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epipolythiodioxopiperzine toxin, can induce apoptosis in neutrophils, which are an 

important part of the immune response to fungal infection (König et al., 2019). 

Gliotoxin and fumagillin may damage lung epithelial cells by producing reactive 

oxygen species (Gayathri et al., 2020). 

Galleria mellonella larvae are widely used for assessing the virulence of 

bacterial (Asai et al., 2023) and fungal (Curtis et al., 2022) pathogens and for assessing 

the in vivo efficacy and toxicity of antimicrobial agents (Tsai et al., 2016). The use of 

G. mellonella larvae provides results comparable to those obtained using mammals 

(Brennan et al., 2023; Slater et al., 2011) due to the many structural and functional 

similarities between the insect immune response and the innate immune response of 

mammals (Browne et al., 2013). Such similarities include the presence of pattern 

recognition receptors, which can induce signalling cascades initiating cellular and 

humoral immune responses such as phagocytosis, nodulation, agglutination, 

encapsulation, coagulation and the production of antimicrobial peptides and enzymes 

(Lin et al., 2020). Larvae can be maintained at 37 °C, enabling analysis of temperature- 

dependent virulence factors (Firacative et al., 2020). G. mellonella larvae are 

susceptible to infection with a variety of fungal pathogens, including Candida albicans 

(Vertyporokh and Wojda, 2020), Madurella mycetomatis (Sheehan et al., 2020) and 

A. fumigatus (Durieux et al., 2021), and symptoms demonstrate strong similarities to 

those evident during mammalian infection. While G. mellonella larvae have many 

advantages as a convenient, easy- to- use in vivo model, previous work has often used 

lethal doses of pathogens (Figueiredo-Godoi et al., 2019; Jemel et al., 2023). 

In the present work, the secretome produced by A. fumigatus during sublethal 

colonization of G. mellonella larvae was monitored as this might provide an insight 

into the processes that occur during long- term colonization of human tissue by A. 

fumigatus. 
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3.2 Materials and methods 

3.2.1 A. fumigatus culture conditions 

A. fumigatus ATCC 26933 was cultured for 72 hours at 37 °C on Malt extract 

agar (Oxoid) plates following point inoculation. Conidia were harvested by washing 

plates with sterile PBS supplemented with 0.1 % (v/v) Tween 20 (Sigma Aldrich, 

USA) and enumerated using a haemocytometer. 

3.2.2 Virulence assessment of A. fumigatus in vivo 

Sixth instar larvae of G. mellonella (Livefoods Direct Ltd, Sheffield, England) 

were stored at 15 °C prior to use. Larvae (n = 20) weighing 0.2–0.3 g without signs of 

melanization were inoculated with 20 µl PBS containing 1×105, 1×106 or 1×107 A. 

fumigatus conidia via intra-haemocoel injection using a 26G 1 ml syringe (Terumo). 

Larvae were placed in 9 cm petri dishes and incubated at 37 °C. Larval viability was 

monitored over 96 hours. In all subsequent experiments, 1×105 conidia/larva was used 

as the inoculation dose. 

3.2.3 Assessment of larval movement 

The movement of larvae infected with 1×105 A. fumigatus conidia at 24, 48, 72 

and 96 hours post-infection was assessed via the FIMTrack method (Maguire et al., 

2017; Risse et al., 2013) using frustrated total internal reflection of infrared light in 

acrylic glass. Images were captured via Basler acA2040-90uc camera in a dark room 

and with a frequency of one frame per second for 600 s. The scale factor was 80 

pixels/cm. Images were processed by FIMTrack v2 Windows (×86) software 

(downloaded from http://fim.uni-muenster.de/). Data gathered from the software were 

processed and visualized in Prism 8.0.1 (USA GraphPad). 

3.2.4 Quantification of total protein and carbohydrate in larval haemolymph 

Haemolymph was extracted from larvae infected with 1×105 A. fumigatus 

conidia at 24-hour intervals over 96 hours and diluted 50× in Milli-Q water. The total 

protein concentration was measured according to the Lowry method using a 

commercial kit (DC Protein Assay, Bio-Rad, Hercules, CA, USA). Bovine serum 

albumin (Sigma-Aldrich, St. Louis, MO, USA) was used as a standard, and the 

absorbance was measured with Multiscan GO (ThermoFisher Scientific, Waltham, 

MA, USA) spectrophotometer at 700 nm. The concentration of total carbohydrates was 

determined by the anthrone method (Carroll et al., 1956). Specifically, 50 µl of 40× 

diluted haemolymph was used per reaction, and absorbance was measured at 

http://fim.uni-muenster.de/)
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620 nm with a spectrophotometer Sense (Hidex, Turku, Finland). The concentration 

of total carbohydrates was calculated according to a calibration curve prepared with 

glucose (Sigma-Aldrich, St. Louis, MO, USA) as a standard 

3.2.5 In vivo gliotoxin extraction and quantification 

G. mellonella larvae were infected with 1×105 A. fumigatus conidia. Larvae (n 

= 25) were flash frozen in liquid nitrogen at 24, 48, 72 and 96 hours post-infection and 

ground using a mortar and pestle. The material was transferred with 5 ml of 6 M 

hydrochloric acid (HCl) to a centrifuge tube, and the mortar was washed twice with 5 

ml volumes of HCl. Chloroform (25 ml) was added to the tube, which was mixed 

constantly for 30 min. Chloroform fraction was extracted and mixed with another 

25 ml of chloroform; the process was repeated, and the chloroform fractions were 

pooled. The chloroform fraction was stored at −20 °C overnight, and the lipid fraction 

was removed. The samples were dried in a Büchi rotor evaporator (Brinkmann 

Instruments). Samples were dissolved in 500 µl methanol and stored at −20 °C for 

further use. Gliotoxin was detected by reverse-phase HPLC (Shimadzu) and quantified 

through the generation of a standard curve using gliotoxin standards (100, 50, 25, 12.5 

and 6.25 µg ml−1) dissolved in methanol. The mobile phase consisted of 34.9 % (v/v) 

acetonitrile (Fisher Scientific), 0.1 % (v/v) trifluoroacetic acid (Sigma Aldrich) and 65 

% (v/v) HPLC-grade water (ddH2O). Sample (20 µl) was loaded onto an Agilent 

ZORBAX SB-Aq 5 µm polar LC column. 

3.2.6 Total secreted siderophore quantification 

Siderophore activity in haemolymph was determined using SideroTec HiSens 

assay (Accuplex, www.accuplexdiagnostics.com). Briefly, 100 µl of haemolymph 

from infected larvae (n = 3) diluted 1/10 in PBS was added to a 96-well microplate 

followed by the addition of 100 µl of the ready-to-use detector. After 10 min incubation 

at 37 °C, fluorescence was measured on a fluorescence reader (Bio-Tek Synergy HT) 

using the emission/excitation filter 360/460 nm. Siderophore concentration was 

quantified using deferoxamine as a reference standard 

3.2.7 Protein extraction 

G. mellonella larvae (n = 3) infected with 1×105 A. fumigatus conidia and a 

PBS control were bled via the third left thoracic leg at 96 hours post-infection yielding 

40 µl haemolymph per larva. The pooled haemolymph was centrifuged at 10 000 g, 

and the cell-free haemolymph was diluted 1/5 in sterile PBS. Protein concentration 

http://www.accuplexdiagnostics.com/
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was determined using the Qubit quantification system (Invitrogen, Waltham, MA, 

USA). An aliquot containing 55 µg of protein was purified and digested using filter- 

aided sample preparation (Wiśniewski, 2019). Briefly, samples were mixed with 200 

µl 8 M urea in the filter unit and spun at 14 000 g for 30 min. An additional 200 µl was 

added and spun again, and the flowthrough was discarded. Iodoacetamide (100 µl, 0.05 

M) was added, and samples were mixed at 600 rpm in a thermomixer for 1 min and 

incubated for 20 min at room temperature without mixing. Urea (100 µl) was added, 

and samples were centrifuged at 14 000 g for 15 min; this step was repeated. 

Ammonium bicarbonate (100 µl, 0.05 M) was added, and samples were centrifuged at 

14,000 g for 15 min; this step was repeated. A digestion buffer containing 

0.4 µg ml−1 trypsin, 0.05 % protease max and 0.05 M ammonium bicarbonate was 

added to give a final trypsin to protein ratio of 1 : 40. Samples were incubated for 

18 hours in a humidified chamber at 37 °C. Samples were transferred to fresh collection 

tubes; 40 µl ammonium bicarbonate was added, and the samples were centrifuged for 

10 min at 14,000 g and acidified with acidification buffer (1 : 10 ratio; 78 % LC-MS- 

grade water, 20 % acetonitrile and 2 % trifluoracetic acid). 

3.2.8 Proteomic analysis 

Of the digested protein, 600 ng was loaded onto a Q Exactive (ThermoFisher 

Scientific) high-resolution mass spectrometer, which was connected to a Dionex 

Ultimate 3000 (RSlCnano) chromatography system. An increasing acetonitrile 

gradient was used to separate the peptides in the samples. This gradient was created on 

a 50-cm EASY-Spray PepMap C18 column with a 75 mm diameter using a 133- min 

reverse-phase gradient at a flow rate of 300 nl min−1. The data were obtained, while 

the mass spectrometer was functioning in an automatic-dependent switching mode. 

Qualitative analysis of the fungal and larval protein content of the cell-free 

haemolymph was investigated using Proteome Discoverer 2.5 and Sequest HT 

(SEQUEST HT algorithm; Thermo Scientific). Identified proteins were searched 

against the UniProtKB database A. fumigatus, 9647 entries, (UP000002530) and G. 

mellonella, 18,342 entries, (UP000504614). Search parameters applied for protein 

identification were as follows: (i) enzyme name – trypsin, (ii) an allowance of up to 

two missed cleavages, (iii) peptide mass tolerance set to 10 ppm, (iv) MS/MS mass 

tolerance set to 0.02 Da, (v) carbamidomethylation set as a fixed modification and (vi) 
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methionine oxidation set as a variable modification. Peptide probability was set to high 

confidence (with an FDR ≤0.01 % as determined by Percolator validation in Proteome 

Discoverer). Peptides identified by two or more unique peptides were retained for 

analysis. 

3.2.9 Data analysis 

Data gathered from the analyses were processed and visualized in Prism 8.0.1 

(USA GraphPad). Survival curves of Aspergillus-infected larvae were compared to the 

survival of the PBS-injected group using the Mantel–Cox test. All other data were 

assessed for normality and homogeneity of variance, followed by one-way ANOVA 

with post hoc Dunnett’s test comparing data from all treated groups to the control 

group. The changes in proteins and carbohydrates between PBS-injected and 

Aspergillus-injected groups were compared by unpaired t-tests at each time of sample 

collection. Results with P-values less than 0.05 were considered statistically 

significant. 

3.3 Results 

3.3.1 Virulence of A. fumigatus in G. mellonella larvae 

G. mellonella larvae were infected with A. fumigatus conidia at an initial dose 

of 1×105, 1×106 or 1×107 per larva and incubated at 37 °C for 96 hours. Larvae infected 

with 1×107 A. fumigatus conidia showed 0 % survival at 48 hours, while those infected 

with 1×106 conidia/larva showed 85 % (17/20) survival at 48 hours and 35 % (7/20) 

survival at 96 hours. Larvae infected with 1×105 conidia/larva showed 100 % (20/20) 

survival at 48 hours and 90 % (18/20) survival at 96 hours (Figure 3.1). 
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Figure 3.1: Dose-dependent survival of G. mellonella larvae infected with A. 

fumigatus, demonstrating a significant reduction in survival at 96 hours at 

concentrations of 1×106 and 1×107 (***P < 0.001) determined by log-rank (Mantel– 

Cox) test. 

FIMTrack analysis was performed to monitor the activity of larvae infected 

with a dose of 1×105 conidia/larva. The results showed that after infection, the larvae 

continued to move; however, the rate of movement was significantly reduced at 48 (P 

= 0.0046), 72 (P = 0.0038) and 96 hours (P = 0.0018) when compared to control larvae 

(Figure 3.2). For all subsequent experiments, only larvae that had been infected with 

1×105 conidia/larva and showing signs of viability at 96 hours were used. 
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Figure 3.2: FIMTrack analysis of larval movement over time following infection with 

1×105 conidia, demonstrating a significant reduction in larval movement at all 

timepoints post 48 hours (P < 0.05) determined by Dunnett’s multiple comparisons test 

3.3.2 Metabolite concentrations in larvae post A. fumigatus infection 

The carbohydrate concentration of haemolymph collected from larvae infected 

with 1×105 conidia/larva was lower than that of control larvae at 48 (P = 0.000373), 

72 and 96 hours (Figure 3.3). However, the protein content remained relatively 

constant until showing a statistically significant decrease at 96 hours (P = 0.000124) 

(Figure 3.4). 
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Figure 3.3: Assessment of haemolymph carbohydrate content post-infection with 

1×105 A. fumigatus conidia. Significant reduction in host carbohydrate content 48 

hours post-infection (P = 0.0003) determined by unpaired t-test (n = 7–15 individual 

larvae per group). The experiment was conducted in three independent replicates. 
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Figure 3.4: Assessment of haemolymph protein content post-infection with 1×105 A. 

fumigatus conidia. Significant reduction in host protein content 96 hours post- infection 

(P = 0.0001) determined by unpaired t-test (n = 7–15 individual larvae per group). The 

experiment was conducted in three independent replicates. 
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3.3.3 Gliotoxin quantification in G. mellonella larvae post A. fumigatus infection  

               The gliotoxin in larvae infected with 1×105 conidia/larva was determined 

and indicated a steady increase over the course of the experiment with a 

concentration of 5.41±1.57 µg/larva being recorded at 48 hours and 16.96±1.66 

µg/larva 96 hours (P = 0.0003) (Figure 3.5). 

 
 

 

 

 

Figure 3.5: Quantification of gliotoxin in Galleria infected with 1×105 A. fumigatus 

conidia, demonstrating significant increase production at 72 (**P = 0.02) and 96 (***P 

= 0.0006) hours post-infection when compared to the initial detection of 24 hours post- 

infection determined by Dunnett’s multiple comparisons test. 

 

 

3.3.4 Siderophore quantification in G. mellonella larvae post A. fumigatus 

infection 

The fungal siderophore concentration was also assessed and revealed a 

concentration of 5.54 ± 0.33 µg/larva at 48 hours and 12.59 ± 0.70 µg/larva at 96 hours 

(P < 0.0001) (Figure 3.6). 
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Figure 3.6: Quantification of total siderophore concentration detected in Galleria 

haemolymph infected with 1×105 A. fumigatus conidia, demonstrating significantly 

increased production at 48 hours (P = 0.009) and all subsequent timepoints post- 

infection as determined by Dunnett’s multiple comparisons test. 

3.3.5 Proteomic analysis of A. fumigatus during larval infection 

Qualitative proteomic analysis of cell-free haemolymph from control larvae 

revealed 22 Aspergillus proteins, which were removed from subsequent analysis 

(Table S3.1, available in the online Supplementary Material), whereas larvae infected 

with 1×105 conidia/larva for 96 hours revealed 339 A. fumigatus proteins (>2 unique 

peptide hits). Of these, 243 were well characterized and could be divided into 7 

categories with assigned functions (Figure 3.7). Virulence-associated proteins (n = 25) 

(Table S3.2.1) included non-ribosomal peptide synthase 13, O-methyltransferase 

af390-400 and dual-functional monooxygenase/methyltransferase psoF. Stress 

response proteins (n = 34) (Table S3.2.2) included proteins associated with 

environmental and drug-mediated stress, including glutathione S-transferase, HSP 70, 

PAB1-binding protein and ABC multidrug transporter A-2, atrI and H. Proteins 

associated with DNA repair/replication (n = 39) (Table S3.2.3) included fungal- 

specific transcription factor, kinetochore protein fta7, DNA polymerase and RAD52 

DNA repair protein RDAC. Proteins associated with translation (n = 22) (Table S3.2.4) 

included elongation factor G, RNA-binding protein and RNA-dependent RNA 

polymerase. Proteins associated with metabolism (n = 42) (Table S3.2.5) included 

T
o

ta
l 
s
id

e
ro

p
h

o
re

 s
e
c
re

ti
o

n
 (

n
g

/l
a
rv

a
) 



91  

pyruvate carboxylase, trehalase, UTP-glucose-1-phosphate uridylyltransferase and 

tryptophan synthase. Released intracellular proteins (n = 28) (Table S3.2.6) include 

mitochondrial carrier protein, nuclear pore complex subunit NUP 192 and vacuolar 

ABC heavy metal transporter. Proteins associated with the cell cycle/cell development 

(n = 53) (Table S3.2.7) included cell cycle checkpoint protein Rad 17, meiosis protein 

ME12 and chitin synthase. Many of the proteins identified at this timepoint were 

associated with fungal secondary metabolism: non-ribosomal peptide synthetase 13, 

O-methyltransferase af390-400, pentafunctional AROM polypeptide, toxin 

biosynthesis protein (Tri7), putative and cytochrome P450 monooxygenase helB2. 

 

 

Figure 3.7: Pie chart summarizing high-confidence qualitative A. fumigatus protein 

detections categorized into seven subcategories: virulence (n = 25), stress response (n 

= 34), DNA repair and replication (n = 39), translation (n = 22), metabolism (n = 42), 

released intracellular (n = 28) and cellular cycle and development (n = 53) proteins. 

3.3.6 Proteomics analysis of G. mellonella response to infection 

Qualitative proteomic analysis of cell-free haemolymph from control larvae 

revealed 215 G. mellonella proteins (>2 unique peptide hits), and of these, 171 were 

well characterized (Table S3.3.1a). In contrast, larvae infected with 1×105 

conidia/larva for 96 hours revealed 671 proteins, of which 532 were well characterized 

(Table S3.3.2a). Identified proteins could be divided into seven categories with 

assigned functions: immune function (38 in control, 52 in infected), metabolism
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 (36 in control, 118 in infected), cellular structure (22 in control, 97 in infected), 

insect development (42 in control, 90 in infected), movement (6 in control, 39 in 

infected), transcription/translation (13 in control, 90 in infected) and detoxification 

(14 in control, 46 in infected) (Figure 3.8a). Due to the importance of these proteins 

in the context of infection, the immune function proteins were further subdivided into 

11 subcategories, and the greatest differences in protein abundance between the 

control and infected larvae were AMP(antimicrobial peptides) (4 control, 9 infected 

larva), inflammation (3 control, 6 infected), nutrient reservoir (7 control, 5 infected) 

and pathogen binding (2 control, 7 infected) (Figure 3.8b, Tables S3.3.1b and S3.3.2b). 

 

 

Figure 3.8: Bar graph summarizing (a) high-confidence qualitative G. mellonella 

protein detections categorized into seven subcategories in control larvae and in larvae 

at 96 hours post-infection. (b) Immune proteins further subdivided into 11 

subcategories, and the greatest differences in protein abundance between the control 

and infected larvae were AMP (antimicrobial peptides), inflammation, nutrient 

reservoir and pathogen binding. 

3.4 Discussion 

Prolonged colonization of pulmonary tissue is a feature of ABPA and CPA, and 

results in exaggerated immune responses and tissue damage (Davda et al., 2018; Earle 

et al., 2023). In the work presented here, G. mellonella larvae were infected with a 

sublethal dose of A. fumigatus conidia, and the development of the fungus within the 

host was monitored as it might give an insight into the fungal–host interactions during 

prolonged colonization of human tissue. Infection of larvae with a dose of 1×105 

conidia/larva resulted in only 10 % mortality at 96 hours (Figure 3.1). The remaining 

live larvae continued to move, although at a slower rate, when compared to the control 

cohort (Figure 3.2). Fungal colonization of larvae resulted in the production of
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gliotoxin and siderophore, and the metabolism of host carbohydrates and proteins in 

the haemolymph. Qualitative proteomic analysis revealed a wide range of fungal 

proteins in the cell-free haemolymph at 96 hours, and these may have been released 

from the cell wall/conidia surface (e.g. beta-N-acetylglucosaminidase putative and 

chitin synthase) produced as a result of hyphal lysis (e.g. nuclear pore complex subunit 

Nup192 and sorting nexin-4) or secreted (e.g. pectin methylesterase), in addition to 

those released as a result of innate immune killing by the host. Understanding the 

impact of these and other proteins on the host may provide new insight into fungal– 

host interaction. 

Hyphal development by A. fumigatus has been associated with the induction of 

inflammation, increased CD4/CD8 ratio and Th2 cell differentiation, promoting a 

proinflammatory environment (Luo et al., 2022). ABPA is characterized by an 

exaggerated Th2-mediated response, triggering the release of inflammatory cytokines 

and growth factors leading to airway hyperresponsiveness, goblet cell hyperplasia and 

subepithelial fibrosis (Chotirmall et al., 2013). The detection of class V myosin 

(Myo4), putative (Table S3.2.7) at 96 hours indicates that hyphal development was 

actively occurring within infected larvae (Figure. S3.1). Class V myosin is required for 

hyphal extension, septation, conidiation and conidial germination (Renshaw et al., 

2016). In addition, chitin synthase and chitin synthase ChsE (Table S3.2.7) are 

essential for hyphal development and were also detected in the proteomic screen. 

Chitin synthase has been attributed to hyphal development and virulence in murine 

corneal infection (de Jesus Carrion et al., 2019). Analysis of the G. mellonella 

proteomics results identified increased abundance of proteins associated with 

inflammation at 96 hours, including inter-alpha-trypsin inhibitor heavy chain H4- like 

isoform X6 and leukotriene A-4 hydrolase-like protein. ITIH4 is linked to cell 

proliferation, as well as migration during the acute-phase inflammatory response, and 

serves a role in inflammatory and infectious responses, particularly in bacterial 

bloodstream infection (Ma et al., 2021). Leukotriene A-4 hydrolase-like protein is an 

important inflammatory modulator, both promoting production of the pro- 

inflammatory mediator leukotriene B4 but also degrading the neutrophil 

chemoattractant Pro-Gly-Pro (PGP) which could reduce inflammation (Lee et al., 

2022; Low et al., 2017). The production of antimicrobial peptides such as cecropin-d- 

like peptide and gloverin-like protein- and fungal-specific recognition such as beta- 
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1,3-glucan-binding protein-like isoform X2 was increased, indicating activation of an 

immune response of A. fumigatus proliferation. 

Several A. fumigatus proteins involved in enzymatic degradation of tissue 

which may facilitate host colonization and tissue damage were detected. Proteins such 

as d-lactate dehydrogenase, aldehyde dehydrogenase, beta-glucosidase and trehalase 

may be involved in metabolizing tissue (Tables S3.2.5 and S3.2.7). The major sugar in 

insect haemolymph is trehalose; therefore, the detection of trehalase indicates the 

active metabolism of the larval haemolymph carbohydrate (Figure 3.3) (Shukla et al., 

2015). Several identified proteins displayed protease activity (ATP-dependent Clp 

protease, putative, intermembrane space AAA protease IAP-1, calpain-like protease 

PalBory and intermembrane space AAA protease IAP-1) (Tables S3.2.1 and S2.6) and 

could have a role in metabolizing the protein content of insect haemolymph (Figure 

3.4). Detection of transcriptional activator of proteases prtT (Table S3.2.1) in the cell- 

free haemolymph could indicate that proteases are actively involved in the early steps 

of sublethal fungal colonization. PrtT is integral to the infection processes as it 

mediates the expression of extracellular proteases that are involved in the penetration 

of the pulmonary epithelium (Hagag et al., 2012). Protease-dependent changes to the 

host cellular actin cytoskeleton can lead to cell peeling and death (Sharon et al., 2009). 

The combination of enzymatic and physical disruption to host membranes during tissue 

invasion has been identified as the causal agent of haemoptysis in aspergillosis patients, 

typically arising from bronchial blood vessel damage (Kousha et al., 2011). 

Analysis of the G. mellonella proteome at 96 hours indicated the release of 

tissue-specific proteins into cell-free haemolymph, indicating tissue damage, which 

can be a hallmark of A. fumigatus infections (Okaa et al., 2023). These proteins include 

tropomyosin-1 isoform X1, troponin T, skeletal muscle isoform X1 and myosin heavy 

chain muscle isoform X10. Troponin T is used as a biomarker in human diseases 

involving tissue degradation (Tanindi and Cemri, 2011). It has recently been identified 

that tissue damage may be mediated by immune response dysregulation driven by 

secondary metabolites produced during hyphal development through mediation of the 

PacC regulator, which mediates expression of over 250 secreted proteins, including 

proteases prtT and nonribosomal peptide synthetase GliP, essential for gliotoxin 

production, of which evidence of expression was evident in our study and that these 

molecules work synergistically to drive host epithelial damage (Okaa et al., 2023).
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In addition, allergens can promote a proinflammatory state, driving tissue 

remodelling. These include Hsp70 family protein, which was detected in our analysis 

(Table S3.2.2), and Hsp70 is a known fungal allergen classified as an IgE reactive 

cytosolic protein from germinating conidia (Singh et al., 2010). Many other allergens 

may aggravate asthma symptoms and, in combination with the ability of A. fumigatus 

to colonize the airways, could drive the sustained release of allergens (Namvar et al., 

2022). 

Several pathogenic Aspergillus species produce secondary metabolites from 

aromatic amino acids, including fumiquinazoline and fumitremorgin, which can be 

derived from tryptophan (Choera et al., 2018). Nonribosomal peptide synthetase 13 

and tryprostatin B 6-hydroxylase were detected (Table S3.2.1), and both are involved 

in fumitremorgin production. This mycotoxin elicits tremorgenic effects resulting in 

tremors, seizures and abnormal behaviour in mice (Maiya et al., 2006), and 

fumitremorgin could be responsible for reduced movement of G. mellonella larvae 

(Figure 3.2). Non-ribosomal peptide synthetase fmqA was also detected and is 

involved in fumiquinazoline C production, a conidia-associated metabolite with anti- 

phagocytic properties (Rocha et al., 2021). fmqA is required to produce 

fumiquinazoline metabolites because it condenses antranilic acid, l-tryptophan and l- 

alanine in the presence of ATP to form fumiquinazoline C (Rocha et al., 2021). 

Many of the above products are derived from aromatic amino acids, which can 

be synthesized through the Shikimate pathway (Sasse et al., 2016). The detection of 

pentafunctional AROM polypeptide (Table S3.2.1) along with other aromatic amino 

acid biosynthesis proteins as shown in the STRING analysis (Figure S3.2) indicates 

that this pathway may be involved in the virulence of A. fumigatus in vivo. Another 

detected protein involved in virulence was indoleamine 2,3-dioxygenase subfamily 

(IDO) (Table S3.2.1). It is a key enzyme important in immune homeostasis and 

converts tryptophan to kynurenine and related metabolites. This enzyme is an essential 

component of host responses to Aspergillus and can be exploited by this pathogen as a 

method of immune evasion (Romani et al., 2009). IDO inhibits macrophage 

recruitment and phagocytosis in A. fumigatus keratitis and is involved in M1 

macrophage polarization (Jiang et al., 2020). 
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Gliotoxin is a secondary metabolite implicated in fungal virulence, and the 

toxicity is attributed to the presence of a disulfide bridge across a piperazine ring. The 

toxin serves many functions, including oxidative stress homeostasis (Traynor et al., 

2021) and suppressing the activity of the NADPH oxidase complex in neutrophils 

(Abad et al., 2010) and in insect haemocytes (Renwick et al., 2006). The secretion of 

this toxin may suppress the local immune response, enabling the continued persistence 

of A. fumigatus. The detection of gliotoxin is clinically relevant as indicated by 

numerous studies characterizing its role in immunomodulation (Ries et al., 2020). The 

concentration detected in this study (Figure 3.5) at 72 hours (14.2 ± 3.6 µg /larva) was 

higher than that detected at 72 hours in A. fumigatus-infected murine lung tissue (6– 8 

µg g−1) (Ali and Abdallah, 2022; Abdallah and Ali, 2022). 

Siderophore concentration also increased over time and reached a level of 

12.59 ± 0.70 µg /larva at 96 hours (Figure 3.6). Siderophores are small iron-chelating 

molecules that play an essential role in acquiring iron which is essential for fungal 

growth. The release of iron from the host through haemolysis can bolster fungal growth 

and development through acquisition by siderophores (Michels et al., 2022). Proteomic 

analysis detected proteins associated with siderophore production and activity, such as 

non-ribosomal peptide synthetase sidC involved in ferricrocin synthesis (Hissen et al., 

2005), and fusarinine C esterase SidJ (Table S3.2.1), which hydrolyses internalized 

siderophores (Gründlinger et al., 2013). SidC is involved in conidial iron storage 

required for germ tube formation, asexual sporulation, catalase A activity and virulence 

(Schrettl et al., 2007). 

Cell wall-associated proteins in the cell-free haemolymph included chitin 

synthase, chitin synthase ChsE, alpha 1, 2 mannosidase and conidial pigment 

polyketide synthase alb 1 (Table S3.2.1). Conidial pigment polyketide synthase alb1 is 

associated with the production of DHN-melanin. DHN-melanin disruption results in 

the formation of smooth conidia and subsequently increases phagocytosis by 

neutrophils. Deleting alb1 deletion results in a significant loss of virulence in murine 

models (Tsai et al., 1998). 

The wide range of secondary metabolites produced by A. fumigatus and 

biological processes occurring in infected larvae could physically and enzymatically 

damage tissue, sequester nutrients, alter larval behaviour and suppress the immune 
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response of the host. The results presented here demonstrate that even in the absence 

of larval death, A. fumigatus produces a wide range of potent metabolites and proteins, 

which have the capacity to damage host tissue or alter the immune response. Prolonged 

colonization of pulmonary tissue by A. fumigatus may lead to the release of similar 

metabolites that may have adverse effects on the host and may facilitate long-term 

fungal persistence. 
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Abstract 

 

Aspergillus fumigatus is an opportunistic fungal pathogen capable of inducing 

chronic and acute infection in susceptible patients. A. fumigatus interacts with 

numerous bacteria that compose the microbiota of the lung, including Pseudomonas 

aeruginosa and Klebsiella pneumoniae, both of which are common isolates from cystic 

fibrosis sputum. Exposure of A. fumigatus to K. pneumoniae culture filtrate reduced 

fungal growth and increased gliotoxin production. Qualitative proteomic analysis of 

the K. pneumoniae culture filtrate identified proteins associated with metal 

sequestering, enzymatic degradation and redox activity, which may impact fungal 

growth and development. Quantitative proteomic analysis of A. fumigatus following 

exposure to K. pneumoniae culture filtrate (25% v/v) for 24 h revealed a reduced 

abundance of 1,3-beta-glucanosyltransferase (−3.97 fold), methyl sterol 

monooxygenase erg25B (−2.9 fold) and calcium/calmodulin-dependent protein kinase 

(−4.2 fold) involved in fungal development, and increased abundance of glutathione 

S-transferase GliG (+6.17 fold), non-ribosomal peptide synthase GliP (+3.67 fold), O- 

methyltransferase GliM (+3.5 fold), gamma-glutamyl acyltransferase GliK (+2.89 

fold) and thioredoxin reductase GliT (+2.33 fold) involved in gliotoxin production. 

These results reveal that exposure of A. fumigatus to K. pneumoniae in vivo could 

exacerbate infection and negatively impact patient prognosis 
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4.1 Introduction 

A wide range of microbes can be present in the lung as commensals or 

pathogens, and there is significant microbial diversity present (O’Dwyer et al., 2016). 

There is reduced microbial diversity in the sputum of patients with acute exacerbations 

of chronic obstructive pulmonary disease, indicating a poor prognosis, and the 

presence of Staphylococcus and absence of Veillonella in sputum is associated with a 

high one-year mortality risk in patients (Leitao Filho et al., 2019). In addition, 

coinfection with Pseudomonas aeruginosa and Aspergillus fumigatus has been 

implicated in a worsened disease state in Cystic Fibrosis (CF) patients, with each 

species stimulating the growth and colonisation of the other (Keown et al., 2020). The 

bacterium Klebsiella pneumoniae and the fungus A. fumigatus are commonly isolated 

from the lungs of CF patients (LiPuma, 2010), indicating a similar interaction could 

occur, impacting disease development in patients. 

K. pneumoniae is a Gram-negative rod-shaped bacterium that is responsible for 

approximately one-third of all Gram-negative infections worldwide (Navon- Venezia 

et al., 2017). Pneumonia caused by K. pneumoniae is characterised by a strong 

inflammatory response which is due to the production of pro-inflammatory cytokines 

in addition to high neutrophil and macrophage counts (Vieira et al., 2016). Within the 

host, K. pneumoniae is found in the gastrointestinal tract and the upper respiratory tract, 

where it is most frequently acquired through nosocomial acquisition (Fodah et al., 

2014). The first report of a CF patient becoming infected with a colistin-resistant strain 

of K. pneumoniae was in 2014 (Delfino et al., 2015), and since then, the number of 

reports of critically ill patients becoming infected with such strains has increased. 

The filamentous fungus A. fumigatus is widespread in the environment and can 

cause three types of infection in susceptible individuals. Allergic bronchopulmonary 

aspergillosis (ABPA) arises due to an allergic immune response to A. fumigatus 

stimulating T-helper cells to recruit immune cells, particularly eosinophils, resulting in 

inflammation of pulmonary tissue. Patients with asthma or CF are among the most 

susceptible to this form of aspergillosis, and early diagnosis of the disease is important 

for avoiding complications such as pulmonary fibrosis (Lattanzi et al., 2020). Chronic 

pulmonary aspergillosis (CPA) occurs when pre-damaged pulmonary tissue becomes 

colonised by A. fumigatus (Schweer et al., 2014). The colonisation results in the 

formation of an aspergilloma, or fungal ball, which can result in severe haemoptysis
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 (Kradin and Mark, 2008). Invasive aspergillosis is the most serious form of 

aspergillosis, with a one-year survival rate for solid organ transplant patients of 59%, 

while the rate for stem cell transplant recipients can be as low as 25% (Webb et al., 

2018). Patients suffering from neutropenia were once considered to be the main target 

group for this type of aspergillosis; however, non-neutropenic patients such as 

transplant patients, AIDS patients and ICU patients are also susceptible to infection 

(Bassetti et al., 2018). 

The interaction between A. fumigatus and P. aeruginosa has been characterised 

previously, indicating decreased fungal growth and increased gliotoxin production in 

the presence of bacterial cells. In contrast, exposure of A. fumigatus hyphae to P. 

aeruginosa culture filtrate led to increased growth and decreased gliotoxin production 

(Margalit et al., 2022), and secreted products of A. fumigatus can promote P. 

aeruginosa growth in nutrient-poor conditions (Margalit et al., 2020). K. pneumoniae 

is often found in polymicrobial interactions with A. fumigatus within the lung, and 

these interactions may be antagonistic or synergistic (Dees et al., 2014). For example, 

K. pneumoniae is capable of inhibiting spore germination and hyphal development in 

different Aspergillus spp., and this effect was dependent upon the direct physical 

interaction between the bacteria and the fungus (Nogueira et al., 2019). A. fumigatus 

and K. pneumoniae can co-exist in the lungs of immunocompromised patients, but 

the interaction between these two pathogens is poorly characterised. 

The aim of the work presented was to characterise the effect of K. pneumoniae 

culture filtrate on the growth and proteomic response of A. fumigatus, as this might 

give an insight into an important bacterial-fungal interaction in the lungs of infected 

patients. 

4.2 Materials and Methods 

4.2.1 A. fumigatus Growth Conditions 

Aspergillus fumigatus ATCC 26933 was grown on malt extract agar plates at 

37 °C for a minimum of 96 h, and conidia were harvested by washing with 0.1% (v/v) 

Tween-20 and phosphate buffered saline (PBS-T). Czapek–Dox liquid medium 

(Duchefa Biochemie) (50 mls) was inoculated with conidia at a density of 1.2 × 

106/mL. 
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4.2.2 Preparation of the Bacterial Culture Filtrate 

K. pneumoniae ATCC 13439 was grown on nutrient agar plates for 96 h. 

Czapek–Dox broth was inoculated with bacteria and incubated at 37 °C and 200 rpm 

for 96 h. Cells were harvested by centrifugation for 15 min at 1258× g at room 

temperature, and the culture filtrate was filter sterilised using 0.45 μm filtropur S 

filters. Culture filtrates were stored at −20 °C until required. 

4.2.3 Assessment of Fungal Biomass 

A. fumigatus was grown for 48 h in Czapek–Dox broth prior to the addition of 

K. pneumoniae culture filtrate or PBS (n = 3) at a concentration of 25% v/v. The 

cultures were incubated at 37 °C and 200 rpm. The mycelia were harvested after 24 h 

using Miracloth (Millipore). The wet weight of the mycelia was then measured using 

a weighing scale and expressed as weight in grams. 

4.2.4 Gliotoxin Extraction and Quantification by RP-HPLC 

K. pneumoniae culture filtrate was added to the 48 h old A. fumigatus cultures 

at a final concentration of 25% v/v and incubated at 37 °C and 200 rpm for a further 24 

h. Culture filtrate (20 mL) was mixed continuously with an equal volume of chloroform 

for 2 h. The chloroform layer was removed and evaporated to dryness, and the extract 

was dissolved in 500 μL HPLC grade methanol. Gliotoxin was quantified using 

Reverse-Phase HPLC. The mobile phase was 34.9% (v/v) acetonitrile, 0.1% (v/v) 

trifluoroacetic acid (TFA) and 65% (v/v) HPLC-grade deionised water. Gliotoxin 

extract (20 μL) was injected into an Agilent ZORBAX SB-Aq 5 μm polar LC column. 

A standard curve of peak area vs. gliotoxin concentration was generated using gliotoxin 

standards (Merck) dissolved in HPLC-grade methanol. 

4.2.5 Extraction of Protein from K. pneumoniae Culture Filtrate 

K. pneumoniae was grown for 96 h in Czapex Dox broth. Cells were harvested 

by centrifugation for 15 min at 1258× g at room temperature. The culture filtrate was 

passed through a 0.45 mm filtropur S filter. The culture filtrate was centrifuged at 

14,500× g for 10 min to remove any remaining debris, and protein was acetone 

precipitated overnight at a ratio of 1:5 culture filtrate to acetone. Samples were 

processed in the same manner as the fungal mycelial samples for proteomic analysis. 
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4.2.6 Protein Extraction from A. fumigatus Exposed to Bacterial Culture 

Filtrate 

A. fumigatus cultures (48 h growth) were supplemented with K. pneumoniae 

culture filtrate (25% v/v) for 24 h at 37 °C in Czapek–Dox media (n = 3 per group). 

Hyphae were harvested by filtration, snap-frozen in liquid nitrogen and ground to a 

fine dust in a mortar using a pestle. Lysis buffer [8 M urea, 2 M thiourea, and 0.1 M 

Tris-HCl (pH 8.0) dissolved in HPLC-grade dH2O], supplemented with protease 

inhibitors [aprotinin, leupeptin, pepstatin A, Tosyllysine Chloromethyl Ketone 

hydrochloride (TLCK) (10 µg/mL) and phenylmethylsulfonyl fluoride (PMSF) (1 

mM/mL)] was added (4 mL/g of hyphae). The lysates were sonicated (Bandelin 

Senopuls) three times for 10 s at 50% power. The cell lysate was subjected to 

centrifugation (Eppendorf Centrifuge 5418) for 8 min at 14,500× g to pellet cellular 

debris. The protein concentration was quantified by the Bradford method, and samples 

(100 µg) were subjected to overnight acetone precipitation. 

4.2.7 Label-Free Mass Spectrometry (LF/MS) 

Following centrifugation for 10 min at 14,500× g, acetone was removed, and 

the protein pellet was resuspended in 25 µL sample resuspension buffer (8 M urea, 2 

M thiourea, 0.1 M tris-HCL (pH 8.0) dissolved in HPLC grade dH2O). An aliquot of 5 

µL was removed from each of the samples and quantified by the Qubit quantification 

system (Invitrogen). Ammonium bicarbonate (125 µL, 50 mM) was added to the 

remainder of the samples. Reduction of the sample was initiated by adding 1 µL 0.5 M 

dithiothreitol (DTT). The protein samples were then incubated for 20 min at 56 °C 

before alkylation with 2.7 µL 0.55 M iodoacetamide; this occurred at room temperature 

in the dark for 15 min. Protease max surfactant trypsin enhancer (Promega) (1 µL, 1% 

w/v) and sequence grade trypsin (ThermoFisher Scientific, Cork, Ireland) (0.5 µg/µL), 

were added to the proteins, respectively, and incubated for 18 h at 37 °C. TFA (1 µL, 

100%) was added to each sample to end digestion. The samples were incubated for 5 

min at room temperature and centrifuged for 10 min at 14,500× g. Samples were 

purified for mass spectrometry using C18 spin columns as per the manufacturer’s 

instructions. A speedy vac concentrator was used to dry the peptides, and samples were 

resuspended in 2% v/v acetonitrile and 0.05% v/v TFA and sonicated for 5 min to help 

with this resuspension. The resulting final peptide concentration was (750 ng/2 µL). 
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4.2.8 Mass Spectrometry and the Parameters for A. fumigatus and K. 

pneumoniae Culture Filtrate Proteomic Data Procurement 

The digested K. pneumoniae culture filtrate sample (500 ng) or A. fumigatus 

protein samples (750 ng) were each loaded onto a QExactive (ThermoFisher Scientific) 

high-resolution mass spectrometer which was connected to a Dionex Ultimate 3000 

(RSlCnano) chromatography system. An increasing acetonitrile gradient was used to 

separate the peptides in the samples. This gradient was created on a 50 cm EASY- 

Spray PepMap C18 column with a 75 mm diameter using a 133 min reverse phase 

gradient at a flow rate of 300 nL/min. All of the data were obtained while the mass 

spectrometer was functioning in an automatic dependent switching mode. A 

quantitative analysis of the A. fumigatus proteome after exposure to bacterial culture 

filtrate was conducted using MaxQuant version 1.5.3.3 (http://www.maxquant.org) 

(accessed on 14 September 2022) using the settings outlined previously (Margalit et 

al., 2022). The search algorithm Andromeda included in the MaxQuant software was 

incorporated in the correspondence between MS/MS data and the Uniprot-SWISS- 

PROT database Neosartorya fumigata reference proteome obtained from a UniProt- 

SWISS-PROT database to identify proteins (9647 entries, downloaded July 2022). K. 

pneumoniae culture filtrate was analysed through proteome discoverer v 2.5, and 

proteins were searched against the UniProtKB database (Klebsiella Pneumoniae strain 

342, 5738 entries, downloaded September 2022). 

4.2.9 Data Analysis of A. fumigatus and K. pneumoniae Culture Filtrate 

Proteomes 

Qualitative analysis of the proteome of the K. pneumoniae culture filtrate was 

investigated using Proteome Discoverer 2.5 and Sequest HT (SEQUEST HT 

algorithm; Thermo Scientific). Identified proteins were searched against the 

UniProtKB database (Klebsiella Pneumoniae strain 342, 5738 entries, accessed 16 

September 2022). Search parameters applied for protein identification were as follows: 

(i) enzyme name—trypsin, (ii) an allowance of up to two missed cleavages, 

(iii) peptide mass tolerance set to 10 ppm, (iv) MS/MS mass tolerance set to 0.02 Da, 

(v) carbamidomethylation set as a fixed modification and (vi) methionine oxidation set 

as a variable modification. Peptide probability was set to high confidence (with an FDR 

≤ 0.01% as determined by Percolator validation in Proteome Discoverer). Peptides 

identified by 2 or more unique peptides were retained for analysis. 

http://www.maxquant.org/
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Perseus v.1.6.15.0 was employed to analyse A. fumigatus proteomic data, as 

well as to process and visualise the data. Measurement of protein abundance was based 

on normalised LFQ intensity values. The data was initially filtered for the removal of 

contaminants before LFQ intensity values were Log2 transformed, and each sample 

was placed in its relative group. Proteins which were not found in three out of three 

replicates in at least one group were excluded from further analysis. Normal intensity 

values were also used for principal component analysis (PCA). Proteins which were 

distinctively expressed in one group compared to another or those which were 

completely absent in one group were noted and included for all further analysis. Gene 

Ontology (GO) mapping was also conducted using the UniProt gene ID to gain more 

knowledge about the biological processes and molecular processes of the identified 

proteins. To gain a better visualisation of the variances between the samples, pairwise 

student T-tests were conducted for all data using a cut-off of p < 0.05. The generation 

of a volcano plot was done by plotting the log2 fold change values on the x-axis and 

the log p-values on the y-axis, which allowed for pairwise comparison. The top 20 most 

increased and decreased in abundance proteins identified in the groups were included 

in these volcano plots. The mass spectrometry proteomics data have been deposited to 

the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2021) partner 

repository with the dataset identifier PXD037833. 

4.3 Results 

4.3.1 Analysis of the Effects of K. pneumoniae Culture Filtrate on A. fumigatus 

Exposure of 48 h old A. fumigatus to K. pneumoniae culture filtrate (25% v/v) 

for 24 h led to a decrease in fungal biomass (1.23 ± 0.20 g vs. 0.81± 0.12 g p = 0.03) 

(Figure 4.1A) and a large increase in gliotoxin secretion with a 371.55% increase (p = 

0.01) (Figure 4.1B). 
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Figure 4.1: Analysis of the effects of K. pneumoniae culture filtrate on A. fumigatus 

mycelial growth (A) and Gliotoxin production (B) K. pneumoniae culture filtrate (25% 

v/v) or PBS (control)was added to 48 h old A. fumigatus and wet weight were recorded 

after 24 h growth (n = 3). Error bars represent SD. * p = 0.03 (B) Gliotoxin 

concentration was assessed by Reverse-Phase HPLC (n = 3), and error bars represent 

SD. * p = 0.01. 

4.3.2 Characterisation of K. pneumoniae Culture Filtrate 

Qualitative proteomic analysis of K. pneumoniae culture filtrate revealed the 

presence of 160 high-confidence proteins (Table S4.1), of which 35 were identified as 

having possible antifungal effects (Table 4.1). These could be subdivided into six 

categories; structurally bound (3 proteins), membrane-associated proteins (10 

proteins), virulence-associated proteins (3 proteins), proteins with enzymatic activity 

(8 proteins), metal binding proteins (5 proteins) and proteins with detoxification 

activity (6 proteins). 
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Table 4.1: Proteins identified in K. pneumoniae culture filtrate with potential 

antifungal activity 
 

Protein Name Uniprot 
Code 

Unique 
Peptides 

% 
Coverage 

Function 

Outer membrane protein A B5XY48 8 22.28 Membrane 

proteins Outer membrane protein X B5XYT0 7 39.76 

Outer membrane protein C B5XNZ9 7 21.48 

Penicillin-binding protein activator 

LpoA 
B5XSZ6 5 9.54 

OmpA family protein B5XN00 3 24.54 

Penicillin-binding protein activator 

LpoB 

B5XXG6 2 16.74 

OmpA family protein B5XVK9 3 28.75 

LPS-assembly protein LptD B5Y1Z1 3 5.37 

MrkF protein B5XUK5 2 16.33 

LPS-assembly lipoprotein LptE B5XZR3 2 13.26 

Elongation factor Tu B5XN88 10 40.35 virulence 
Elongation factor Ts B5Y1K1 2 12.01 

Tol-Pal system protein TolB B5XZC1 6 24.18 

Pectinesterase B5XZ84 7 22.01 Enzymatic 

activity Autonomous glycyl radical cofactor B5XNF9 6 51.18 

Protease VII B5RKF2 6 25.72 

Periplasmic serine endoprotease 
DegP-like 

B5Y1K8 6 15.93 

Enolase B5XV19 6 21.06 

Endolyticpeptidoglycan 

transglycosylase RlpA 
B5XZS1 5 15.06 

Beta-lactamase B5XQY6 4 11.88 

Prephenate dehydratase/arogenate 
dehydratase 

B5XVG4 3 16.60 

Metal-binding protein B5XZ21 6 39.35 Metal binding 

High-affinity zinc uptake system 

protein ZnuA 

B5XQ08 5 25.47 

Copper homeostasis protein CutF B5Y1H9 3 16.81 

Iron uptake system component EfeO B5XXM1 3 10.4 

Thiol:disulfide interchange protein B5XZJ6 4 31.40 

Alkyl hydroperoxide reductase C B5XZT7 4 35.82 Detoxification 
Thioredoxin B5XYY8 5 51.37 

Acriflavine resistance protein A B5Y0P5 3 9.57 

Thiol peroxidase B5XRV9 3 32.14 

Alkyl hydroperoxide reductase C B5Y0Z0 3 35.82 

Glutathione ABC transporter, 
periplasmic glutathione-binding 
protein 

B5XYQ7 2 2.92 

Inhibitor of vertebrate lysozyme B5Y004 2 15.54 

Putative lipoprotein B5XUP5 1 36.1 Structurally 

bound Outer membrane protein A B5XY48 6 19.1 

Chaperone protein DnaK B5Y242 2 2.7 
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4.3.3 Analysis of the Effect of K. pneumoniae Culture Filtrate on the A. 

fumigatus Proteome 

Label-free mass spectrometry was employed to characterise the proteomic 

response of A. fumigatus following exposure to K. pneumoniae culture filtrate for 24 

h. In total, 1960 proteins were identified, and 111 proteins were identified as being 

statistically significant (p < 0.05) differentially abundant (SSDA), having a fold change 

greater than ±1.5 (Table S4.2). A principal component analysis (PCA) was conducted 

on all significant proteins to identify distinct proteomic differences between each of the 

groups. The PCA indicates that the A. fumigatus exposed to the K. pneumoniae culture 

filtrate displays a distinct proteomic pattern when compared to control samples (Figure 

4.2A). Hierarchal clustering carried out in Perseus highlights the clear differences in 

protein abundance between the control and the A. fumigatus culture that was exposed 

to the K. pneumoniae culture filtrate. These differences in protein abundance are 

highlighted in a heat map (Figure 4.2B), with blue indicating proteins with increased 

abundance and orange indicating proteins with decreased abundance, respectively. 

 

Figure 4.2: Principal component analysis of A. fumigatus after exposure to K. 

pneumoniae culture filtrate (25% v/v) (green) and control A. fumigatus (red). (B) 

Heatmap generated through Two-way unsupervised hierarchical clustering of the 

median protein expression values of all statistically significant differentially abundant 

proteins. 
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A volcano plot was generated by way of pairwise t-tests (p < 0.05) to determine 

the proteins which increased and decreased in abundance between control A. fumigatus 

samples and A. fumigatus exposed to K. pneumoniae culture filtrate (Figure 4.3). When 

analysing samples of A. fumigatus exposed to the K. pneumoniae culture filtrate, a 

significant increase in the relative abundance of proteins associated with secondary 

metabolism, in particular, proteins associated with gliotoxin biosynthesis was observed 

(Table 4.2), i.e., glutathione S-transferase GliG (+6.17 fold increase), non- ribosomal 

peptide synthase GliP (+3.67 fold), O-methyltransferase GliM (+3.5 fold), gamma- 

glutamyl acyltransferase GliK (+2.89 fold) and thioredoxin reductase GliT (+2.33 

fold). In addition, ribonuclease mitogillin was increased in abundance by 

+4.9 fold. Fibrinogen C-terminal domain-containing protein and polysaccharide 

deacetylase family protein were increased by +63.3 fold and +6.9 fold, respectively, 

and both have been implemented in adherence to the lung epithelium. Decreased 

abundance of methyl sterol monooxygenase erg25B (−2.9 fold) and 

calcium/calmodulin-dependent protein kinase (−4.2 fold) indicates a decrease in fungal 

cell division (Table 4.3). Deoxyribose-phosphate aldolase was decreased in abundance 

by −2.3 fold and played a role in gluconeogenesis and lipid biogenesis. Protein 

synthesis was also affected by a decrease in the abundance of the 60 S ribosomal 

protein L22 and aspartyl aminopeptidase (−2.9 fold). 
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Figure 4.3: Volcano plot showing the distribution of statistically significant and 

differentially abundant (SSDA) proteins which have a −log (p-value) > 1.3 and 

difference +/−0.58. A. fumigatus exposed to K. pneumoniae culture filtrate compared 

to control A. fumigatus. 

Table 4.2: The Top 20 proteins most increased in abundance in A. fumigatus after 

exposure to K. pneumoniae culture filtrate for 24 h. 
 

Number Fold 

Change 

Protein Name Protein 

IDs 

Unique 

Peptides 

Sequence 

Coverage 

[%] 

1 63.39 Fibrinogen C-terminal domain-containing 

protein 

Q4W8X0 3 38.5 

2 7.88 SGL domain-containing protein Q4WP91 4 15 

3 6.93 Polysaccharide deacetylase family protein Q4WUN9 9 48.7 

4 6.17 Glutathione S-transferase gliG A4GYZ0 18 73.3 

5 5.81 ABM domain-containing protein Q4WG08 2 24.3 

6 5.80 Endonuclease/exonuclease/phosphatase 

family 

Q4WKR6 8 31.9 
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7 5.04 D-xylose reductase (NAD(P)H) Q4WI64 10 38.6 

8 4.96 Ribonuclease mitogillin P67875 6 44.9 

9 4.86 Amine oxidase Q4WFX6 16 46 

10 4.79 DUF4468 domain-containing protein Q4WMI8 9 49.7 

11 4.42 DUF907 domain protein Q4WHA4 1 3 

12 3.67 Nonribosomal peptide synthetase gliP Q4WMJ7 14 14.2 

13 3.51 O-methyltransferase gliM Q4WMJ5 12 32.9 

14 2.98 Oxidoreductase, short-chain Q4WUP1 5 40.5 

15 2.89 Gamma-glutamyl cyclotransferase gliK E9R9Y3 2 16.8 

16 2.50 GPI anchored serine-threonine rich protein Q4WTF2 2 34.5 

17 2.50 Phosphatidylglycerol/phosphatidylinositol 

transfer 

Q4X136 11 46.9 

18 2.35 Cache_2 domain-containing protein Q4WYY2 4 50.8 

19 2.34 Thioredoxin reductase gliT E9RAH5 20 85.9 

20 2.33 Cell wall protein PhiA Q4WF87 6 73 

 

Table 4.3: The Top 20 proteins most decreased in abundance in A. fumigatus after 

exposure to K. pneumoniae culture filtrate for 24 h. 
Number Fold 

Change 

Protein Name Protein 

IDs 

Unique 

Peptides 

Sequence 

Coverage 

[%] 

1 −6.30 HYPK_UBA domain-containing protein Q4WPC3 2 17.7 

2 −5.49 Methyltransferase Q4X081 4 30.3 

3 −4.20 Calcium/calmodulin dependent protein 

kinase 

Q4WXH7 7 25.1 

4 −4.05 Elongation of fatty acids protein Q4WEE9 4 16 

5 −3.97 1,3-beta-glucanosyltransferase Q4WBF7 4 8.9 

6 −3.96 Protein DOM34 homolog Q4WI62 7 26.6 
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7 −3.86 Short chain dehydrogenase helC Q4WR19 7 37.7 

8 −3.84 Polyketide transferase af380 Q4WAY4 8 47.9 

9 −3.42 BTB/POZ domain protein Q4WFH8 6 32 

10 −3.02 Methyltransferase psoC Q4WB00 21 71.2 

11 −2.86 Methylsterol monooxygenase erg25B Q4W9I3 3 13.9 

12 −2.86 DUF948 domain-containing protein Q4WXM0 4 42.3 

13 −2.85 Cytochrome P450 monooxygenase helB1 Q4WR17 9 20.5 

14 −2.83 Aspartyl aminopeptidase Q4WX56 5 23.4 

15 −2.80 Protostadienol synthase helA Q4WR16 14 28.2 

16 −2.80 Signal recognition particle 54 kDa protein Q4WEQ8 3 11.5 

17 −2.79 Tripeptidyl-peptidase sed4 Q4WQU0 3 8.1 

18 −2.64 60S ribosomal protein L22, putative Q4WYA0 7 52.1 

19 −2.58 Amino acid permease (Gap1), putative Q4WG99 12 19 

20 −2.46 3-ketosteroid 1-dehydrogenase helE Q4WR24 6 18.3 
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4.4 Discussion 

The aim of the work presented here was to characterise the response of A. 

fumigatus to K. pneumoniae culture filtrate, as this might give an indication of the in 

vivo interaction between the fungus and bacteria. The culture conditions were designed 

to represent conditions within the immunocompromised lung by exposing A. fumigatus 

to the K. pneumoniae culture filtrate as opposed to bacterial cells. Czapek– Dox was 

chosen for this investigation as this medium provides both a low-nutrient and high- 

nitrogen environment, which are characteristics of immunocompromised lungs (Line 

et al., 2014; Lu et al., 2018). 

The results demonstrated that exposure to the K. pneumoniae culture filtrate 

inhibited the growth of A. fumigatus and induced increased secretion of gliotoxin. 

Previously, an examination of the interaction between K. pneumoniae cells and A. 

fumigatus demonstrated a reduction in spore germination and hyphal development 

which was dependent upon direct physical interaction between bacterial and fungal 

cells (Nogueira et al., 2019). Exposure of Penicillium verrucosum to actinobacter- 

species cell-free supernatant also resulted in stimulation of ochratoxin A production 

and inhibition of fungal growth (Campos-Avelar et al., 2020). Aspergillus flavus 

exposed to culture filtrate of Streptomyces spp. also showed reduced growth and 

elevated secretion of aflatoxin B1 (Campos-Avelar et al., 2021). 

Analysis of the K. pneumoniae culture filtrate identified 160 high-confidence 

proteins (Table S4.1), of which 35 were identified to have possible effects on fungal 

development (Table 4.1) and three of which (putative lipoprotein, outer membrane 

protein A and chaperone protein DnaK) were also bound to the fungal mycelia. Outer 

membrane protein A is essential for A. baumannii cell attachment to Candida albicans 

filaments and A549 human alveolar epithelial cells (Gaddy et al., 2009) and has been 

demonstrated to induce leaky barriers in murine lungs and human A549 cells without 

affecting cell viability (Zhang et al., 2022). Elongation factor Tu was identified in the 

K. pneumoniae culture filtrate is involved in bacterial virulence and is associated with 

adhesion to host extracellular matrix components. Secretion of EF- Tu increased after 

Heliobacter pylori infection, suggesting that H. pylori secrete EF- Tu to facilitate 

attachment to host cells (Chiu et al., 2017). 

The ability of the K. pneumoniae culture filtrate to inhibit fungal growth could 

have also arisen as a result of enzymatic activity. DegP-like periplasmic serine 
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endoprotease is a highly conserved periplasmic protease found in most Gram-negative 

bacteria. This protease is involved in the degradation of denatured or aggregated 

protein within the cell envelope in Escherichia coli (Jones et al., 2001; Zhang et al., 

2019). Protease VII (OmpT), an aspartic protease, was identified in the culture filtrate 

and is associated with the inhibition of coagulation and antimicrobial peptide 

production (Sabotič and Kos, 2012). 

Redox-active components and enzymes in the K. pneumoniae culture filtrate 

could also affect fungal growth and mycotoxin production. Thiol:disulfide interchange 

protein DsbA plays a role in oxidising the formation of disulfide bonds (Denoncin and 

Collet, 2013). Thiol:disulfide interchange protein DsbA may be implemented in the 

oxidation of gliotoxin’s disulfide bond, increasing its biological accumulation and 

activity (Bernardo et al., 2003). Alkyl hydroperoxide reductase C was identified in 

the K. pneumoniae culture filtrate and catalyses the reduction of hydrogen peroxide, 

organic hydroperoxides and thioredoxin in HeLa cells (Choi et al., 2007). 

The non-siderophore iron uptake component EfeO was identified in the K. 

pneumoniae culture filtrate, and this is a component in the main ferrous iron transport 

system that is present in both pathogenic and non-pathogenic microbes (Lau et al., 

2016). In addition, the high-affinity zinc uptake system protein ZnuA in K. pneumoniae 

culture filtrate is essential in acquiring zinc at the interface between bacteria and 

mammalian cells and counteracting host depletion mechanisms (Neupane et al., 2019). 

It has been previously demonstrated that zinc limitation results in increased gliotoxin 

production and the growth-limiting effects of exogenous gliotoxin are relieved by the 

presence of zinc in media (Traynor et al., 2021). In addition, certain genes of the 

gliotoxin biosynthetic cluster, including gliZ, are regulated by ZafA, which is the zinc- 

responsive transcription factor that controls the adaptive response to zinc starvation in 

A. fumigatus (Vicentefranqueira et al., 2018). Analysis of P. aeruginosa culture filtrate, 

which also affected fungal growth and secondary metabolism, identified a similar 

protein profile to that found in this work (Margalit et al., 2022). P. aeruginosa culture 

filtrate contained chaperone protein DnaK and components involved in the uptake of 

nutrients, including ferric iron-binding periplasmic protein HitA. Detoxification 

proteins such as thiol:disulphide interchange protein DsbA and thioredoxin reductase 

were found in both culture filtrates. Despite these similarities, K. pneumoniae culture 

filtrate promoted gliotoxin biosynthesis, while P. aeruginosa inhibited it. 



121  

 

A. fumigatus exposed to the K. pneumoniae culture filtrate demonstrated a 

reduction in growth and a shift towards secondary metabolism, particularly through the 

increased secretion of gliotoxin. Gliotoxin biosynthesis is mediated by a gene cluster 

consisting of 13 genes. Proteomic analysis revealed that five proteins involved in the 

biosynthesis of gliotoxin were increased in abundance; glutathione S-transferase (+6.17 

fold), non-ribosomal peptide synthase (+3.67 fold), O-methyltransferase (+3.5 fold), 

gamma-glutamyl acyltransferase (+2.89 fold) and thioredoxin reductase (+2.33 fold). 

The increase in gliotoxin production may be attributed to the physical binding of outer 

membrane protein A, due to its ability to induce leakage in epithelial cells (Zhang et 

al., 2022) in a similar manner to fungistatic concentrations of amphotericin 

B which increases A. fumigatus permeability and stimulates de novo gliotoxin 

biosynthesis (Reeves et al., 2004). 

There was also an increase (+63.3 fold) in the abundance of fibrinogen C- 

terminal domain-containing protein, and this could indicate increased virulence and 

adhesion to lung epithelium. Asthmatic lungs have damaged bronchioloalveolar 

epithelium, and fibrinogen deposits form at the surface of wounded epithelia, which 

facilitate microbial attachment (Upadhyay et al., 2012). A. fumigatus also 

demonstrated increased binding affinity to fibrinogen compared with less pathogenic 

Aspergillus spp., suggesting that adhesion to the extracellular matrix may be important 

in disease pathogenesis (Wasylnka and Moore, 2000). Polysaccharide deacetylase 

family protein was increased in abundance (+6.9 fold) and is associated with adherence 

as proteins with similar domains, such as Agd3, are part of a group of metal- dependent 

polysaccharide deacetylases, which have been shown to remove N- or O- linked acetate 

groups from chitin, peptidoglycan, acetylxylan, and poly-β-1,6-N- acetylglucosamine, 

deletion of agd3 was associated with a reduced adherence and virulence in murine 

models of invasive aspergillosis, indicating reduced fungal burden (Lee et al., 2016). 

The proteome of A. fumigatus exposed to K. pneumoniae culture filtrate also 

showed a reduced abundance of several proteins; 1,3 beta glucanosyltransferase was 

reduced in abundance by −3.9 fold and plays a role in cell wall biogenesis (Gastebois 

et al., 2010). The membrane protein methyl sterol monooxygenase erg25B, essential 

for ergosterol biosynthesis (Alcazar-Fuoli et al., 2008), was reduced by −2.9 fold, 
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calcium/calmodulin-dependent protein kinase was reduced by −4.2 fold and is essential 

for fungal nuclear cell division and hyphal development in Aspergillus nidulans 

(Alcazar-Fuoli and Mellado, 2013). Deoxyribose-phosphate aldolase was reduced in 

abundance by −2.3 fold and had a role in gluconeogenesis and the glyoxylate cycle 

(Dayton and Means, 1996). Decreased abundance of methyltransferase LaeA-like 

putative protein −2.16 fold could explain the downregulation of proteins associated 

with specific secondary metabolites (Vorapreeda et al., 2021), including helvolic acid 

and fumagillin. Proteins associated with helvolic acid biosynthesis, including 

cytochrome P450 monooxygenase helB1 (−2.8 fold), short chain dehydrogenase helC 

(−3.8 fold), protostadienol synthase helA (−2.8 fold) and 3-ketosteroid 1- 

dehydrogenase helE (−2.4 fold) were decreased in abundance and the fumagillin 

associated protein polyketide transferase af380 (−3.8 fold) was also decreased in 

abundance (Keller et al., 2006; Lin et al., 2013). 

 

This study provides evidence that exposure of A. fumigatus to K. pneumoniae 

culture filtrate results in a reduction in growth but an increase in gliotoxin production 

and in the abundance of associated proteins. The clinical implications of these 

alterations could inhibit the ability of the patient to mount an effective immune 

response to A. fumigatus infection resulting in more severe symptoms and an increase 

in mortality. This work provides novel insights into an important bacterial-fungal 

interaction that occurs in the lungs of immunocompromised patients. Understanding 

the extent and importance of such microbial interactions can help to identify better 

therapeutic strategies for the control of pulmonary infections in susceptible patients. 
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Abstract 

 

Aspergillus fumigatus is an opportunistic fungal pathogen of the human airway 

that can cause a variety of chronic infections, typically in the context of pre-existing 

lung damage. The interaction of A. fumigatus with ex-vivo pig lung (EVPL) samples 

was characterized at the proteomic level to provide insights into how the fungus may 

interact with pulmonary tissue in vivo. This model has many advantages, because pigs 

share 90% immunological homology with humans and display many anatomical 

similarities. EVPL also retains resident immune cells, has richer cellular complexity 

compared to in-vitro models, and has a microbiome. Label-free quantitative proteomic 

analysis identified the metabolism and development of A. fumigatus on the EVPL 

alveolar sections; at 48 h, there was an increased abundance of proteins associated with 

carbon metabolism (e.g., malate dehydrogenase (+ 8.2 fold increase)), and amino acid 

metabolism and biosynthesis (e.g., 5-methyltetrahydropteroyltriglutamate-- 

homocysteine S-methyltransferase, (+5.04 fold)) at 72 h. Porcine tissue remained 

responsive to the pathogen with proteins that increased in abundance associated with 

innate immune recruitment (e.g., protein S100-A8 (+28.5 fold) and protein S100-A9 

(calgranulin-B) (+7.25 fold) at 24 h, while proteins associated with neutrophil 

degranulation (e.g., elastase, neutrophil (-2.74 fold)) decreased in abundance. At 96 h, 

the infected tissue demonstrated enhanced abundance of fibrotic markers (e.g., fibrillin 

1, collagen type IV alpha 1 chain, and alpha 2 chain, increased by +16.44, +15.42 and 

+11.95 fold respectively). These results validate the use of this model for studying 

pathogen-host interactions and highlight how A. fumigatus interacts with pulmonary 

tissue during colonization. 
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5.1 Introduction 

The filamentous fungus Aspergillus fumigatus is an environmental saprophyte 

and opportunistic pathogen in the human airway (van de Veerdonk et al., 2025). Many 

infections caused by A. fumigatus are chronic, with chronic pulmonary aspergillosis 

affecting approximately 1.8 million patients annually, with an 18.5% mortality rate. 

Fungal asthma, which has been partially attributed to Aspergillus exposure, affects an 

estimated 11.5 million people, resulting in 46,000 deaths annually (Denning, 2024). A 

common underlying factor in many chronic infections is pre-existing lung damage, 

inflammation and cavitation caused by Chronic obstructive pulmonary disease 

(COPD), pulmonary tuberculosis, cystic fibrosis, bronchiectasis, thoracic radiotherapy, 

and allergic bronchopulmonary aspergillosis (Janssens et al., 2024). The initial 

attachment and colonization of the lung by fungi is facilitated by interactions with the 

components of the host extracellular matrix and basal lamina (Gago et al., 2019). 

Various conditions, including cystic fibrosis (CF) and asthma, result in the deposition 

of collagen and fibronectin, which can serve as substrates for fungal conidia adhesion 

(Lambrecht and Hammad, 2012; Sheppard, 2011). The complex interplay between A. 

fumigatus and its host has been partially elucidated through clinical studies and the 

utilization of diverse in vitro and in vivo model systems (Dagenais and Keller, 2009). 

Despite this, these model systems frequently fail to fully demonstrate the intricacies of 

human airway infections and, as a result, often fail to achieve the clinical phenotypes 

observed in the clinic (Cornforth et al., 2020; Roberts et al., 2015). Murine models have 

been the focus of the majority of aspergillosis in vivo studies because of the observed 

similarities in physiology and pathology in addition to genomic similarities (Resendiz- 

Sharpe et al., 2022) however, they demonstrate considerable heterogeneity in their 

susceptibility to infection (Desoubeaux and Cray, 2018). In addition, despite the fact 

that rodents and human lungs contain many of the same cell types, the anatomy of the 

lung varies. Human lungs contain basal cells throughout the trachea and bronchi, 

whereas murine basal cells are only found in the trachea. There is also no evidence that 

human lungs possess a bronchioalveolar stem cells population as the majority of cells 

in the human proximal airway are multi-ciliated cells, whereas club cells are more 

abundant in rodents (Miller and Spence, 2017). Goblet cells are prevalent in the 

proximal human airway, but they primarily appear in mice following injury (Pardo- 

Saganta et al., 2013). The chemical composition of murine lung tissue and airway 

surface liquid is also distinct from that of human airways (Walsh et al., 2024).
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The human lung metabolome was distinguishable from the murine metabolome in 

terms of trimethylamine N-oxide, betaine, carnitine, and glycerophosphocholine, 

which are present in mice but not in the human lung. In addition, fatty acid 

concentrations are significantly higher in rodent lungs than in human lungs. Acetate, 

asparagine, glutamate, lactate, lysine, myo-inositol, syllo-inositol, and valine 

concentrations were considerably lower in murine lungs than in human lungs. The 

metabolome of pig lungs demonstrated a similar composition to that of humans, with 

the main difference being the concentration of some components (Benahmed et al., 

2014). This difference may contribute to the failure of murine models to replicate 

pivotal aspects of human diseases and infections such as aberrant abscess formation 

which occurs in murine lungs during Staphylococcus aureus infection (Cigana et al., 

2018), but is rarely observed in human CF patients (Patradoon-Ho and Fitzgerald, 

2007). Clinically relevant lumen colonization with preferential localization as 

multicellular aggregates in mucus was observed in bronchiolar pig lung sections, which 

better recapitulates what is observed in human biopsies (Sweeney et al., 2021). 

Many alternative model systems have been employed to study fungal 

pathogenesis, including insect mini models such as Galleria mellonella larvae 

(Champion et al., 2016), cell culture (Perez-Nadales et al., 2014), and organoid models 

(Fusco-Almeida et al., 2023). G. mellonella is the most utilized insect model for fungal 

infection studies, and larvae are easy to inoculate and exhibit a dynamic response to 

pathogens, comparable to the innate immune response in humans (Gallorini et al., 

2024). In addition, G. mellonella larvae infected with fungal pathogens show structures 

characteristic of human infection, including granuloma development during A. 

fumigatus infection (Sheehan et al., 2018) and grain formation during Madurella 

mycetomatis infection (Sheehan et al., 2020). The Galleria infection model has 

demonstrated excellent correlation with experiments that assessed the virulence of 

Candida albicans and Pseudomonas aeruginosa in mice (Brennan et al., 2002; Miyata 

et al., 2003). The major limitation of the use of G. mellonella larvae is the lack of an 

adaptive immune response and organs, such as the lungs, which limits the model to the 

study of invasive and bloodstream infections (Curtis et al., 2022). 

Complex tissue models and organoids show a considerable increase in utility 

compared with 2D cell culture studies (Hoang et al., 2022; Dichtl et al., 2024). 

Although the complexity of organoids has increased, they are unable to accurately 
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reproduce the pathological characteristics of the human lung, including angioinvasion. 

The human lung is composed of over 40 different cell types (Varghese et al., 2022), 

and current hPSC-derived lung organoids remain incomplete because they lack many 

lung components, such as vasculature and complex immune cell diversity (Du et al., 

2023). In addition to these limitations organoid models require specialist tissue culture 

facilities and techniques and can be expensive; therefore, they are a relatively low 

throughput approach for infection studies (Aguilar et al., 2021). Lung damage is a 

common precursor to many forms of aspergillosis; as many three-dimensional 

organoids are derived from human pluripotent stem cells they tend to resemble the 

foetal lung, they may not be suitable to mimic these conditions (Du et al., 2023). 

Pig lung models have been developed in an attempt to overcome many of these 

limitations owing to their immunological and physiological similarities with humans, 

and the microbiome of healthy pig lungs shows a similar phylum distribution to that 

found in human lungs (Beck et al., 2012; Huang et al., 2018). The ex-vivo lung 

perfusion model (EVLP) demonstrated pathogen- and virulence factor-specific 

responses to Klebsiella pneumoniae infection in a whole lung system with whole blood 

perfusion and ventilation over 4 hours postmortem (Dumigan et al., 2019). Despite the 

successful implementation of this model, it requires a large amount of space and 

specialized equipment and skills. The ex-vivo pig lung model (EVPL) offers a high- 

throughput, low-cost, and ethical model that closely mimics the lung environment 

(Harrison et al., 2014). Lungs can be obtained from pigs slaughtered for commercial 

meat production from butchers or abattoirs and since little or no lung tissue is used in 

food production, lungs are classified as a waste product whose use does not raise ethical 

questions (Harrison et al., 2014). This method was first developed by Williams & 

Gallagher, who collected lungs from commercial abattoirs and used tissue sections to 

study Mycoplasma infection (Williams and Gallagher, 1978; Williams and Gallagher, 

1978). This model was then optimized to mimic CF airways and used to study bacterial 

pathogenicity (Harrison and Diggle, 2016) and antibiotic tolerance (Sweeney et al., 

2021; Harrington et al., 2020). This system involves the excision of multiple sections 

of the bronchiolar or alveolar tissue from the lungs of a single donor. These can be 

inoculated with pathogens and various endpoints can be examined. This model has 

demonstrated strain-specific virulence differences, including quorum sensing-deficient 

mutants of Pseudomonas aeruginosa demonstrating reduced damage to alveolar tissue
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 (Harrison et al., 2014). It has also been demonstrated that the EVPL model shows in 

vivo-like aspects of P. aeruginosa gene expression and that the pathogen forms a 

biofilm using known in vivo pathways required during in vivo infection, resulting in 

the formation of clinically realistic structures not seen in other in vitro studies 

(Harrington et al., 2020; Harrington, Allen, et al., 2022). 

Once inhaled, Aspergillus conidia that are not cleared by mucociliary elevators 

encounter epithelial cells or alveolar macrophages (Richardson et al., 2019). These 

conidia are often deposited in the bronchioles and alveolar spaces because of the small 

size of the fungal conidia (2–3 μm), which is ideal for deep infiltration into alveolar 

spaces (Dagenais and Keller, 2009). We combined alveolar sections of pig lung tissue 

with standard tissue culture medium to assess the tractability of this model for working 

with fungi and to mimic human tissue in the absence of any underlying conditions that 

radically alters lung chemistry (Ersoy et al., 2017). We examined the development of 

A. fumigatus in this physiologically sustainable and ethical model to gain insight into 

how the host and the pathogen respond to each other during the early stages of fungal 

infection. 

5.2 Materials and Methods 

5.2.1 Aspergillus fumigatus culture conditions and conidial preparation 

Aspergillus fumigatus ATCC 26933 was cultured for 72 h at 37 °C on malt 

extract agar (MEA) (Oxoid, Basingstoke, UK) following point inoculation. The 

conidia were harvested by washing with phosphate-buffered saline supplemented with 

0.1% (v/v) Tween-20 (PBS-T), and the suspension was washed three times with PBS. 

Conidia were enumerated using a haemocytometer and diluted to a final concentration 

of 1x107 conidia/ml 

5.2.2 Preparation of ex-vivo pig lung sections 

Alveolar tissue sections were prepared as described (Harrison et al., 2014), with 

some modifications. Whole lungs from four individual pigs with attached tracheae 

were collected from a local abattoir within an hour of slaughter and were transported 

on ice to Maynooth University. The pleural surface of the caudal lobe was sterilized by 

briefly touching it with a hot palette knife, and ~5 mm-deep strips of alveolar tissue 

were cut from the sterilized surface using a mounted razor blade. These were washed in 

a 50/50 mixture of RPMI 1640 (Gibco) and Dulbecco's modified Eagle medium



133  

 [DMEM] (Gibco) supplemented with 10 µg/ml amphotericin B to remove any 

environmental fungi. The strips were cut to 125 mm3 explants and washed twice in a 

50/50 mix of RPMI 1640 and Dulbecco's modified Eagle medium (DMEM) 

supplemented with 50 µg/mL ampicillin to reduce bacterial load (components of the 

pig lung microbiome or environmental contaminants). The tissue sections were washed 

in the RPMI/DMEM mixture and UV sterilized for 5 min before being placed on a pad 

of 400 µL RPMI/DMEM solidified with 0.8% agarose in a 24 well tissue culture plate. 

The sections were inoculated using a 25G needle dipped into the prepared A. fumigatus 

conidia suspension (standardised to 1 x 107/ml) and used to inoculate the surface of the 

section to deposit fungal spores. The sections were suspended in 500μl RPMI/DMEM. 

The sections were covered with a breathable membrane (Breathe-easy sealing 

membrane, Diversified Biotech, USA) before incubation in a 6% CO2 incubator at 37 

°C to match the physiological carbon dioxide levels observed in the alveoli 

(Abolhassani et al., 2009). Sterilized solidified malt extract agar (MEA, Oxoid) was 

aseptically cut into the same dimensions (5 × 5 × 5 mm) as EVPL tissue and used as a 

control for fungal growth. 

5.2.3 Quantification of fungal burden 

Infected tissue sections were removed from the 24 well plate with sterilized 

forceps at 24-hour intervals and washed in sterile PBS prior to transfer into 2 ml 

Eppendorf tubes with 1 ml of lysis buffer and a 3 mm chrome stainless steel ball 

bearing. The tissue was homogenised using a tissue lyser (TissueLyser II, Qiagen, 

Germany) at 30.0 frequency 1/s for 40 seconds. Lysate (100 µL) was diluted and plated 

onto MEA plates in triplicate and incubated at 37 °C overnight. The colony-forming 

units (CFU) were enumerated. The average number of colonies resulting from each 

treatment was determined and a 2-way ANOVA analysis was performed. Figures were 

generated using Prism v8.01. Images of infected tissue were viewed at 40x 

magnification using a brightfield microscope (Olympus CH20). 

5.2.4 Proteomic extraction from infected tissue sections 

Infected and control EVPL sections were removed from 24 well plate and 

washed with PBS. The sections were transferred to 2 ml Eppendorf tubes with 1 ml of 

lysis buffer (8 M urea, 2 M thiourea, and 0.1 M Tris-HCl (pH 8.0) dissolved in HPLC- 

grade ddH2O), supplemented with protease inhibitors (aprotinin, leupeptin, pepstatin 
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A (10 µg/mL), and phenylmethylsulfonyl fluoride (PMSF) (1 mM/mL)). Tissue 

sections were homogenized as previously described. The lysates were sonicated 

(Bandelin Senopuls) three times for 10 s at 50% power. The cell lysate was centrifuged 

(Eppendorf Centrifuge 5418) for 8 min at 14,500× g to pellet cellular debris. Lysate 

(200 µL) was precipitated with acetone for 18 hours at -20 °C. Samples were subjected 

to centrifugation at 14,500× g for 10 min to pellet proteins, acetone was removed, and 

the pellet was resuspended in 50 µL sample resuspension buffer (8 M urea, 2 M 

thiourea, and 0.1 M Tris-HCl (pH 8.0) dissolved in HPLC-grade ddH2O), of which 40 

µL was digested. A 2 µL aliquot was removed from each sample prior to digestion for 

quantification using the Qubit quantification system (Invitrogen, Waltham, MA, USA). 

Ammonium bicarbonate (250 µL, 50 mM) was added to 40 µL, which was subjected 

to reduction via the addition of 2 µL of 0.5 M dithiothreitol and incubated at 56 °C for 

20 min, followed by alkylation with 0.55 M iodoacetamide at room temperature in the 

dark for 15 min. Proteins were digested by adding 2 µL of sequence- grade trypsin 

(Promega) (0.5 µg/µL), supplemented with 2 µL of Protease Max Surfactant Trypsin 

Enhancer (Promega) (1% w/v), and incubated at 37 °C for 18 h. Digestion was 

quenched by the addition of 2 µL of trifluoroacetic acid (TFA) and incubated at room 

temperature for 5 min. The samples were centrifuged at 14,500× g for 10 min prior 

to clean-up using C18 spin columns (Pierce). The eluted peptides were dried using a 

SpeedyVac concentrator (Thermo Scientific (Waltham, MA, USA) Savant DNA120) 

and resuspended in 2% (v/v) acetonitrile and 0.1% (v/v) formic acid to yield a final 

concentration of 375ng/µL aided by sonication in a water bath for 5 min. The samples 

were centrifuged to pellet debris at 14,500× g for 5 min, and 2 µL of each sample was 

loaded onto the mass spectrometer. 

5.2.5 Mass spectrometry 

Purified peptide extracts (2 μL containing 750 ng protein) were loaded onto a 

Dionex UltiMate 3000 RSLCnano system equipped with an Easy-Spray C18 HPLC 

column (Thermoscientific) connected to a Q Exactive Plus Hybrid Quadrupole- 

orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) and eluted 

at a flow rate of 0.3 µL per minute using a reverse phase 133 minute gradient. A scan 

range of 200-1600 M/Z with a resolution of 70,000, was used. The top 15 ions were 

selected from each MS scan with an isolation window of 2 M/Z for fragmentation and 

an MS/MS scan in the range of 200-2000 M/Z with a resolution of 17,500. Raw
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MS/MS data files were processed using the Andromeda search engine in MaxQuant 

software v.1.6.3.4 110 using a Neosartorya fumigata reference proteome obtained from 

a UniProt-SWISS-PROT (The UniProt Consortium, 2025) database to identify 

proteins (9647 entries, downloaded July 2022) or the Sus scorfa reference proteome 

(46,174 entries, downloaded December 2023) respectively. 

5.2.6 Data analysis 

Proteomic data analysis was performed as described (Curtis et al., 2023), with 

some modifications. Perseus v.1.6.15.0, was used for data analysis, processing, and 

visualization. Normalized LFQ intensity values were used to quantitatively measure 

protein abundance. The generated data matrix was filtered to remove contaminants. 

LFQ intensity values were log2-transformed, and each sample was assigned to its 

corresponding group matching the time point at which they were collected. Proteins 

that were not found in all replicates in at least one group were omitted from further 

analysis. A data-imputation step was conducted to replace missing values with values 

that simulate signals of low-abundance proteins chosen randomly from a distribution 

specified by a downshift of 1.8 times the mean standard deviation of all measured 

values and a width of 0.3 times this standard deviation. Principal component analysis 

(PCA) was performed using normalized intensity values. The identified proteins were 

then defined using a Perseus annotation file to assign extract terms for biological 

process, molecular function, and Kyoto Encyclopaedia of Genes and Genomes 

(KEGG) names. To visualize the differences between two samples, pairwise Student’s 

t-tests were performed using a cut-off of P< 0.05 on the post-imputation dataset. 

Volcano plots were generated by plotting the log2 fold change on the x-axis against the 

log p-values on the y-axis for each pairwise comparison. Statistically significant and 

differentially abundant (SSDA) proteins (ANOVA, P< 0.05) with a relative fold 

change greater than ±1.5 were retained for analysis. SSDA proteins were z-score- 

normalized and then used for hierarchical clustering to produce a heat map. Identified 

SSDAs were then assessed using Uniprot codes generated by Perseus, and pathway 

analysis was performed using ShinyGO (Ge et al., 2020) to gain insights into their roles 

within the cells. The mass spectrometry proteomics data were deposited in the 

ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2021) partner 

repository with the dataset identifier PXD060389. 
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5.3 Results 

5.3.1 Confirmation of Aspergillus fumigatus growth on EVPL tissue 

MEA cubes (n = 3) and EVPL explants (n = 3) for each time point were 

inoculated with A. fumigatus conidia and incubated at 37 oC and 6% CO2. Visual 

inspection of agar cubes revealed the growth of A. fumigatus at 24h and this increased 

until 96 h when conidiation was evident (Fig 5.1A). In contrast, there was a small 

amount of visible A. fumigatus growth on the EVPL explants at 24 h, but more 

extensive fungal growth was evident at 48 h. After 96 h, a large A. fumigatus colony 

was observed on the surface. Fungal growth was also assessed by quantifying the 

number of colony-forming units (CFU) per treatment (Fig 5.1B). The growth on the 

MEA cubes and EVPL explants was initially comparable, but there was a significantly 

(P = 0.002) lower fungal CFU at 72 h in the EVPL relative to the MEA cubes with 

1.2×105 CFU on the MEA cube compared to 1.5×104 CFU detected in the EVPL 

section. The growth on the EVPL was comparable to that on the MEA cubes at 96 h, 

with approximately 1.4×105 CFU/section (Fig 5.1). A. fumigatus hyphae were visible 

in the infected tissue (Fig 5.1C). 

 

 

Figure 5.1: Phenotypic analysis and confirmation of fungal growth on agar and ex- 

vivo pig lung explants. (A) Representative image of sections at each 24 hour interval 

imaged via dissection microscope. (B) Graph of fungal burden calculated from agar 

and EVPL explants showing a significant decrease in CFU at 72 hours (P=0.002) 

calculated by two-way ANOVA. (C) Microscopy image of hyphal growth on an EVPL 

section at 40x magnification. 
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5.3.2 Proteomic analysis of alterations in A. fumigatus proteome during growth 

on EVPL tissue 

Quantitative proteomic analysis was used to characterize the changes in the 

fungal proteome during colonization of EVPL explants. The fungal proteomes (n = 3) 

at each time point were characterized, and these were well separated, as seen in the 

PCA and heatmap (Fig 5.2 A and B). Changes in the relative abundance of fungal 

proteins were compared with those of the A. fumigatus proteome at 24h. At 48 h post- 

infection, 15 proteins were significantly increased in abundance and 17 were 

significantly decreased (Table S1). Many proteins that showed an increase in 

abundance were associated with carbon metabolism, including glyceraldehyde-3- 

phosphate dehydrogenase (+10.90 fold). Glyceraldehyde-3-phosphate dehydrogenase 

expression is associated with conidial germination, is expressed on the hyphal surface, 

and has been speculated to aid fungal adherence to host tissue (Shankar et al., 2018). 

Phosphoglycerate kinase (+3.60 fold) is involved in carbon metabolism but is also part 

of the Afpes1 NRPS cluster involved in fumigaclavine C biosynthesis (Owens et al., 

2014). There was also increased abundance of fungal allergens, such as large ribosomal 

subunit protein P2 (60S acidic ribosomal protein P2) (AfP2) (allergen Asp f 8) (+6.99 

fold) and superoxide dismutase [Mn], mitochondrial (allergen Asp f 6) (+4.40 fold) 

which may be involved in inducing an immune response within the tissue (Liu et al., 

2023). Proteins decreased in abundance at 48 h, including malate synthase and 

dihydrolipoyl dehydrogenase (-3.47 and -3.86 fold, respectively), which are involved 

in alternative metabolic processes (Table S1). Gene enrichment analysis indicated that 

carbon metabolism was enhanced, and amino acid metabolism was decreased at this 

timepoint (Fig S5.1). 
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Figure 5.2:(A) Principal component analysis of A. fumigatus proteins at 24, 48, 72 and 

96 hours demonstrating good separation in the proteome at each timepoint. (B) 

Heatmap generated through Two-way unsupervised hierarchical clustering of the 

median protein expression values of all statistically significant differentially abundant 

proteins. 

At 72 h post-infection, 66 proteins were significantly increased in abundance 

relative to that at 24 h, and no proteins were significantly decreased (Table S2). Many 

proteins that increased in abundance were associated with amino acid biosynthesis and 

metabolic processes, including aconitate hydratase, mitochondria (+ 6.26 fold), 5- 

methyltetrahydropteroyltriglutamate--homocysteine S-methyltransferase (+5.04 

fold), 4-aminobutyrate aminotransferase (+2.80 fold), and acetohydroxy-acid 

reductoisomerase (+1.97 fold), which have also been implicated in fungal iron 

homeostasis (Fazius et al., 2012; Grynberg et al., 2001; Long et al., 2018). A 

significant increase in abundance was observed for the 14-3-3 family protein ArtA, 

putative (+35.63 fold). ArtA is a regulatory protein associated with the response to 

oxidative stress (Blachowicz et al., 2019). There was also a significant increase in the 

abundance of large ribosomal subunit protein P1 (60S acidic ribosomal protein P1) 

(AfP1) (+19.17 fold) and large ribosomal subunit protein P2 (60S acidic ribosomal 

protein P2) (AfP2) (allergen Asp f 8) (+18.42 fold) indicating enhanced translation and 

protein biosynthesis (Table S2). Gene enrichment analysis indicated elevated 

biosynthesis and metabolism of amino acids at this time (Fig S5.2). 

At 96 h post-infection, 44 proteins were significantly increased in abundance 

relative to that at 24 h, and two proteins were significantly decreased (Table S3). 
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Proteins increased in abundance, including asp-hemolysin (+6.49 fold), and dipeptidyl- 

peptidase 5 (+11.67 fold) at 72 hours and +9.61 fold at 96 h, and are known to be 

induced in murine infection (Wartenberg et al., 2011; Guruceaga et al., 2018). 

Thioredoxin reductase gliT, involved in self-protection during gliotoxin production 

and oxidative stress mitigation (Ries et al., 2020) was increased (+5.97 fold). Short- 

chain dehydrogenase, which was previously shown to be induced by gliotoxin 

exposure (Doyle et al., 2018), increased by +9.21 fold at 72 hours and +17.37 fold at 

96 h. Woronin body major protein hexA, involved in physical stress meditation through 

septal pore formation and virulence (Beck et al., 2013), increased in abundance at 72 

(+11.73 fold) and 96 (+9.86 fold) hours, indicating the occurrence of host-induced 

damage. Proteins that decreased in abundance at 96 h were triosephosphate isomerase 

(-2.09 fold), involved in glucose metabolism, and phytanoyl-CoA dioxygenase family 

protein (-2.31 fold), and similar proteins are known to be involved in the production of 

fungal toxins, including verruculogen (Owens et al., 2014), typically expressed during 

the early stages of infection. Gene enrichment analysis (Fig S5.3) highlighted the 

increased expression of proteins associated with ascorbate and aldarate metabolism, 

beta-alanine metabolism, fatty acid degradation, glycolysis/gluconeogenesis, 

tryptophan metabolism, and degradation of valine, leucine, and isoleucine, all of which 

have been demonstrated to be enhanced following A. fumigatus exposure to human 

dendritic cells (Srivastava et al., 2019). 

Some A. fumigatus proteins were detected at two or more sampling timepoints 

(Table 5.1), These proteins including the suspected allergen 60S ribosomal protein L12 

(Saxena et al., 2003), detected at 48 and 72 hours post infection. Other proteins were 

consistently increased in abundance at all three time points and included cyanovirin-N 

domain-containing protein, which increased +13.14-, +18.00 and +23.01 fold at 48, 72, 

and 96 h, respectively. This protein belongs to a family of highly conserved proteins 

that are known to bind strongly to mannose, potentially enhancing fungal attachment 

to the host (Koharudin et al., 2008) and affecting the morphology of PBMCs (Huskens 

et al., 2008). Mannose-dependent C type lectin interactions have been shown to be 

impeded by cyanovirin-N (Driessen et al., 2012) and as such consistent expression of 

this protein could indicate its role in immune evasion by A. fumigatus. 
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Table 5.1: Statistically significantly and differentially abundant Aspergillus fumigatus 

proteins associated with virulence or involvement in eliciting an immunological 

response within the host detected at two or more timepoints relative to a 24-hour 

sample. 

 

protein ID Protein 
name 

48 
hours 

72 
hours 

96 
hours 

Superoxide dismutase [Mn], mitochondrial 
(EC 1.15.1.1) (allergen Asp f 6) 

Q92450 4.40 9.29 N/A 

14-3-3 family protein ArtA, putative Q4WI29 -2.14 35.63 N/A 

60S ribosomal protein L12 Q4WK81 -3.15 3.15 N/A 

Malate synthase (EC 2.3.3.9) Q4WD53 -3.47 3.47 N/A 

Phytanoyl-CoA dioxygenase family protein Q4WZT3 -4.03 N/A -2.31 

Acyl CoA binding protein family Q4X164 N/A 13.93 11.24 

Woronin body major protein hexA Q4WUL0 N/A 11.73 9.86 

Dipeptidyl-peptidase 5 (EC 3.4.14.-) 
(Dipeptidyl-peptidase V) (DPP V) (DppV) 

P0C959 N/A 11.67 9.61 

Short chain dehydrogenase, putative (EC 
1.-.-.-) 

Q4WPB8 N/A 9.21 17.37 

Thioredoxin Q4WV97 N/A 3.21 5.26 

Cyanovirin-N domain-containing protein Q4WKJ1 13.14 18.00 23.01 

Glyceraldehyde-3-phosphate 

dehydrogenase (EC 1.2.1.12) 

Q4WE70 10.90 30.96 33.92 

Malate dehydrogenase (EC 1.1.1.37) Q4WE70 8.20 23.43 11.52 

Large ribosomal subunit protein P2 (60S 
acidic ribosomal protein P2) (AfP2) 
(allergen Asp f 8) 

Q9UUZ6 6.99 18.42 12.60 

Enolase (EC 4.2.1.11) (2-phospho-D- 
glycerate hydro-lyase) (2-phosphoglycerate 
dehydratase) (allergen Asp f 22) 

Q96X30 6.08 12.98 13.54 

Methyltransferase psoC (EC 2.1.1.-) 

(Pseurotin biosynthesis protein C) 

Q4WB00 5.63 6.80 6.77 

Alanine transaminase (EC 2.6.1.2) Q4WN34 3.81 8.60 4.92 

G-protein complex beta subunit CpcB Q4WQK8 3.73 6.12 4.40 

 

 
The G-protein complex beta subunit CpcB was also detected at all time points 

(+3.73-, +6.12 and +4.40 fold, at 48, 72, and 96 h, respectively) and plays an essential 

role in cellular growth, spore germination, and conidiation (Cai et al., 2015). 

Methyltransferase psoC increased +5.63-, +6.80 and +6.77 fold, respectively, and is 

involved in the synthesis of pseurotin A, which can suppress RankL-induced oxidative 

stress (Chen et al., 2019). Enolase was increased by +6.08-, +12.98 and +13.54 fold, 

respectively, and is involved in glycolysis It has been identified as a potential inhibitor 

of the human complement cascade by binding to Factor H, FHL-1, C4BP, and 

plasminogen (Dasari et al., 2019). 
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5.3.3 Characterisation of proteomic alterations in EVPL tissue during A. 

fumigatus colonisation 

The pig proteome (n = 3) at each time point during infection was characterized, 

and these were well separated, with clear differences between infected and uninfected 

tissue, as shown in the PCA and heatmap with some overlap observed at later time 

points (Fig 5.3 A and B). The early response to infection elicited many changes in the 

porcine proteome, indicating a dynamic response to A. fumigatus (Fig 5.4 A and B). At 

24 h post-infection, 123 proteins were significantly increased in abundance in infected 

EVPL tissue, and 212 were decreased relative to uninfected tissue (Table S4). Protein 

S100-A8 and protein S100-A9 (calgranulin-B) were increased in abundance (+28.25 

and +7.25 fold, respectively), and S100A8/A9 plays a critical role in modulating the 

proinflammatory response by stimulating leukocyte recruitment and inducing cytokine 

secretion (Wang et al., 2018; Singh and Ali, 2022; Xia et al., 2024). Costar family 

protein ABRACL was increased in abundance in the infected tissue (+18.58 fold) and 

is associated with immune cell infiltration (Liu et al., 2022). Carbonic anhydrase 4 was 

also increased +10.09 fold and was expressed on IL-5- activated eosinophils, indicating 

that an allergic response could be elicited at this timepoint (Wen et al., 2014). 

Tetraspanin was increased in abundance +5.49 fold in the infected tissue and is 

involved in forming functional interactions with prominent leukocyte receptors 

including MHC molecules (Lu et al., 2020; van Spriel and Figdor, 2010). Gene 

enrichment analysis indicated enrichment in antigen processing and presentation, 

particularly through MHC class II, phagosome, and neutrophil extracellular trap 

formation, indicating that an active immune response was induced within the infected 

tissue (Strickland et al., 2022; Thrikawala et al., 2024) (Fig S5.4). Proteins decreased 

in abundance, including pulmonary surfactant-associated protein A1 isoform X2 (- 

115.77 fold) which is integral to prevent airway collapse and is known to bind to fungal 

carbohydrates, enhancing fungal phagocytosis (Carreto- Binaghi et al., 2016). The 

levels of surfactant protein A are decreased in the lungs of patients with CF, Acute 

respiratory distress syndrome and further chronic lung diseases (Heinrich, 2011). This 

can be attributed to neutrophilic recruitment factors including cathepsins which can 

degrade pulmonary surfactant A (Rubio et al., 2004). Dipeptidyl peptidase 1 (cathepsin 

C) and cathepsin S were increased 1.53 and 1.71 fold respectively at 24 hours post 

infection. Cathepsin C has been demonstrated to be involved in inflammation and 

pathogenesis in both acute and chronic disease (Aghdassi et al., 2024).
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Cathepsin S has been demonstrated to directly cleave surfactant protein A and has 

been implicated in lung injuries and tissue remodelling associated with CF (Lecaille 

et al., 2013). Prophenin and tritrpticin precursor (C6) (- 26.95 fold), antibacterial 

protein (cathelicidin antimicrobial peptide preproprotein) (- 18.02 fold), lipocalin 2 (-

13.68 fold), proteinase 3 (-12.00 fold) and elastase, neutrophil expressed (- 2.74 fold) 

were decreased in abundance in the infected tissue and are involved in neutrophil 

activity and degranulation (Wessely-Szponder et al., 2010; Liu et al., 2021; Du et al., 

2021; Espinosa and Rivera, 2016; Stockley et al., 2013). Gene enrichment analysis 

(Fig S5.4) also highlighted decreases in proteins associated with the citrate cycle and 

amino acid degradation indicating the infected tissue is less metabolically active 

which is similar to that observed in murine models of invasive pulmonary 

Aspergillosis (Kale et al., 2017). 

 

 

Figure 5.3:(A) Principal component analysis of Sus scrofa proteins at 24, 48,72 and 

96 hours demonstrating good separation in the proteome at each timepoint (B) 

Heatmap generated through Two-way unsupervised hierarchical clustering of the 

median protein expression values of all statistically significant differentially abundant 

proteins. 
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Figure 5.4: Volcano plots showing the distribution of statistically significant and 

differentially abundant (SSDA) proteins which have a −log (p-value) > 1.3 and 

difference +/−0.58. (A) Sus scrofa infected lung explants with A. fumigatus compared 

to uninfected lung explants at 24 hours and (B) Sus scrofa infected lung explants with 

A. fumigatus compared to uninfected lung explants at 48 hours. 

At 48 h, 88 proteins were increased in abundance, and 351 proteins were 

decreased in abundance in the infected tissue (Table S5). Heat shock 70 kDa protein 6 

was increased by +125.30 fold, and this protein is induced during stress and has been 

associated with the infiltration of immune cells (Llewellyn et al., 2023; Zhou et al., 

2022). Importin subunits alpha, KPNA3 and KPNA4 were increased by +6.92 and 

+4.99 fold, respectively, and are essential for TNF-alpha-stimulated NF-kappaB 

p50/p65 heterodimer translocation into the nucleus (Fagerlund et al., 2005). KPNA4 

expression was also positively correlated with the infiltration of CD8+ T cells, B cells, 

dendritic cells, CD4+ T cells, neutrophils and macrophages (Xu et al., 2021). Marginal 

zone B-and B1-cell-specific protein (MZB1) and Histone H3.3 also increased in 

abundance (+4.10 and +4.52 fold, respectively), and these proteins play a role in the 

humoral immune response and are involved in differentiation to plasma cells. Histone 

H3.3 is involved in maintaining B-cell and CD8+ T-cell function and prevents 

premature hematopoietic stem cell exhaustion and differentiation into granulocyte- 

macrophage progenitors (Guo et al., 2022). The first markers of pulmonary fibrosis 

were detected at this timepoint, including indolethylamine N-methyltransferase (+4.17 

fold), associated with myofibroblast formation (Zabihi et al., 2024; Schipke et al., 

2021), nestin (+4.17 fold), which is expressed in myofibroblasts and has a pro-fibrotic 

function by facilitating Rab11-dependent recycling of TGF-β receptor I (Wang et al., 

2022). TGF-β was significantly enhanced at 24 h post-infection (+2.70 fold). 
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Proteins decreased in abundance at 48 h, including histone H2A (-78.18 fold) 

which plays a role in double-strand break repair (Dickey et al., 2009). FLII actin 

remodelling protein was also decreased -29.04 fold, and knockouts of this protein have 

been associated with increased numbers of myofibroblasts (Cameron et al., 2016) 

(Table S5). There is also evidence of disruption of the epithelial tight junction with 

reduced abundance of junctional adhesion molecule A (-3.54 fold) and claudin 18 (- 

2.97 fold) both integral to epithelial integrity (Czubak-Prowizor et al., 2022; Kotton, 

2018). Complement factor B (C3/C5 convertase) and Complement C3 decreased in 

abundance (-2.58 and -2.04 fold, respectively), indicating that immune evasion induced 

by the fungus could be occurring(Dasari et al., 2019). Other known complement 

evasion mechanisms observed in A. fumigatus include recruitment of the human 

plasma regulators factor H, FHL-1, C4BP, and plasminogen and pentraxin-3 and 

ficolin-2 (Dasari et al., 2018), none of which were significantly altered in our analysis. 

The secretion of proteases alp1 and mep1 has also been shown to degrade or cleave 

complement factors (Shende et al., 2018). These were also not detected in either the host 

or pathogen analysis presented. This implies enolase is a potent inhibitor of this cascade 

or other factors yet to be identified are involved in the evasion observed in this study. 

Gene enrichment analysis (Fig S5.5) demonstrated a response to fungal infection with 

enriched pathways, including leukocyte transendothelial migration and chemokine 

signalling pathways, while metabolism was decreased (i.e., 2- oxocarboxylic acid 

metabolism and propanoate metabolism). Elevated levels of propanoate and its 

byproduct methylmalonic acid can induce a pro-fibrotic phenotype in both epithelial 

cells and fibroblasts by activating the canonical transforming growth factor-β/Smad 

pathway (Xu et al., 2024). 

The later response to infection elicited many changes in the tissue proteome, 

supporting the impact A. fumigatus primarily associated with tissue remodelling and 

fibrosis (Fig 5.5 A and B) (Table S6). At 72 h post-infection, 346 proteins were 

increased in abundance and 356 were decreased in abundance. There is further 

evidence of tissue remodelling and fibrosis with transforming growth factor beta-1- 

induced transcript 1 protein increased +7.06 fold, indicating that TGF-β could drive 

fibrosis following fungal infection. Many components of the extracellular matrix 

associated with fibrosis were significantly increased in abundance, including fibrillin 

1 (+151.93 fold), collagen type IV alpha 2 chain (+26.94), alpha 1 chain (+24.92), 
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alpha 4 chain (+21.14), and alpha 3 chain (+10.67) (Olivieri et al., 2010). There is 

evidence of an immune response to fungal infection due to the increased abundance of 

proteins associated with MHC class II signalling, including SLA class II 

histocompatibility antigen DQ haplotype C alpha chain (+7.04 fold) (Techakriengkrai 

et al., 2021). MHC class II, DM beta (major histocompatibility complex, class II, DM 

beta) (+2.83 fold), and ABC-type antigen peptide transporter (TAP2) (+2.71 fold) are 

involved in antigen processing and presentation and T cell activation (Mantel et al., 

2022). 

 

 

Figure 5.5: Volcano plots showing the distribution of statistically significant and 

differentially abundant (SSDA) proteins which have a −log (p-value) > 1.3 and 

difference +/−0.58. (A) Sus scrofa infected lung explants with A. fumigatus compared 

to uninfected lung explants at 72 hours and (B) Sus scrofa infected lung explants with 

A. fumigatus compared to uninfected lung explants at 96 hours. 

Glutathione-S transferase (-16.87 fold) was decreased in abundance at 72 h and 

is involved in phase II metabolism and is also an important mediator of normal lung 

growth (van de Wetering et al., 2021). The complement system was again observed to 

be compromised, with a variety of associated proteins reduced in abundance, including 

ficolin 2 (-14.64 fold), complement C3 (-1.97 fold), complement C4A (Rodgers blood 

group) (-2.46 fold), complement factor H (-2.97 fold), complement C5 (-3.42 fold) and 

complement factor B (C3/C5 convertase) (-6.76 fold). Gene enrichment analysis (Fig 

S5.6) highlighted an increase in ECM receptor expression, indicating fibrosis and 

tissue remodelling, in addition to increased expression of proteins associated with gap 

junctions, indicating recovery from increased permeability. Gene enrichment analysis 

also indicated a decrease in the abundance of proteins associated with glyoxylate
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and dicarboxylate metabolism, glycolysis/gluconeogenesis, and the pentose 

phosphate pathway, supporting the fact that the infected tissue was less metabolically 

active than the healthy control (Fig S5.6). 

At 96 h post-infection, 258 proteins were increased in abundance and 308 were 

decreased (Table S7). Proteins associated with fibrosis, such as fibrillin 1, collagen 

type IV alpha 1 chain, and alpha 2 chain, were increased by +16.44, +15.42, and 

+11.95, respectively, at 96 h. Collagen type VI alpha 1 chain (+14.16 fold), and alpha 

2 chain (+12.37 fold) are associated with pulmonary fibrosis and tissue remodelling, 

and are elevated in numerous fibrotic conditions (Schaefer et al., 2020; Mouraux et al., 

2018). In addition, laminin subunit alpha 3, detected at +14.17 fold and +13.78 fold at 

72 and 96 h, respectively, is increased in pulmonary fibrosis (Morales-Nebreda et al., 

2015). Proteins associated with immune activity include serine- and arginine- rich 

splicing factor 3 (+15.10 fold) and expression of which is associated with immune 

infiltration (Li et al., 2023). SLA class II histocompatibility antigen, DQ haplotype C 

alpha chain (+6.34 fold) and ABC-type antigen peptide transporter (tap2) (+5.18 fold), 

MHC class II histocompatibility antigen SLA-DRB1 (+2.43 fold) and SLA-DRA 

(+2.12) involved in antigen presentation which were also detected at the 72 hours. 

Mesencephalic astrocyte-derived neurotrophic factor was found to be decreased - 

19.02 fold, deficiency of this protein in macrophages promoted macrophages to M1 

differentiation in lung tissue, contributing to inflammation and aggravated lung injury 

in mice (Shen et al., 2022). Despite this, other protein changes indicate fungal 

antagonism of the inflammatory response, with a decrease in allograft inflammatory 

factor 1 (-14.12 fold). AIF1 promotes macrophage activation and regulates immunity 

by mediating the differentiation and function of dendritic cells (Elizondo et al., 2019). 

Syntaxin 3 was also decreased by-14.21 fold and is required for the maximal release 

of IL-1α, IL-1β, and IL-12, and is involved in MMP-9 exocytosis during gelatinase 

degranulation (Naegelen et al., 2015), again indicating that neutrophil activity is 

impaired by A. fumigatus. In addition, copper transport protein ATOX1 was decreased 

11.25 fold, deficiency of this protein was shown to reduce recruitment of 

monocytes/macrophages and is associated with impaired angiogenesis and wound 

healing (Das et al., 2016). Gene enrichment analysis (Fig S5.7) also highlighted 

increased ECM alterations and proteins associated with focal adhesion, indicating 
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tissue damage. Aspects of the complement cascade are also observed as being 

compromised in addition to the phagosome, both of which are immune mechanisms 

known to be inhibited by A. fumigatus through the action of enolase and gliotoxin, 

respectively. 

5.4 Discussion 

The initial establishment of A. fumigatus infection and host adaptation 

processes have not been fully characterized. Understanding these processes could shed 

light on the diverse spectrum of infections caused by A. fumigatus and may provide 

insights into how to detect and treat these infections more effectively. A variety of 

model systems have been developed to characterize the development of A. fumigatus 

in vitro and the results have been useful for understanding how the fungus may interact 

with pulmonary tissue in vivo. Compared to the more commonly used model 

organisms, pig lungs demonstrate a higher degree of similarity to human lungs, sharing 

similarities in metabolic composition, overall physiology, anatomy, and immunology 

(Benahmed et al., 2014; Meurens et al., 2012). The EVPL system has previously been 

developed to mimic human airways in CF and has successfully demonstrated clinically 

realistic biofilm structures (Harrington et al., 2020; Harrington, Littler, et al., 2022), 

providing insight into how antibiotic tolerance is affected by growth on a realistic lung 

substrate (Harrington et al., 2021). The EVPL model is best suited to study saprophytic 

or chronic infections such as chronic pulmonary aspergillosis but may not be suitable 

for studying invasive infections as there are no other tissues to disseminate into. In 

addition, proteomic signals indicate adaptive immune activation but as the tissue is 

isolated and non-resident recruitment cannot occur, understanding the impact of these 

signals later in the infection process remains elusive. The timeframe in which the 

experiments can be conducted is also limited as the tissue cannot be kept for long 

periods while murine studies can be conducted over a longer timeframe. The EVPL 

model offers a greater cellular complexity to that observed in epithelial models while 

demonstrating similar responses including TGF-β production in human primary 

bronchial epithelial cells following exposure to A. fumigatus (Barros et al., 2022). 

Epithelial cell models lack the cellular complexity and cell- cell interaction that were 

observed in the explant model. Most in vitro studies on A. fumigatus pathogenesis have 

focused on one host cell type, but rarely capture the interactions that
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would occur in a multi-cell system as present in the host lung (Bouyssi et al., 

2023). 

In this study, the EVPL model was successfully adapted for studying A. 

fumigatus colonisation. Alveolar tissue sections were combined with commonly 

available tissue culture media (1:1 mixture of RPMI and DMEM). This medium was 

used in the first publications exploring the potential use of post-slaughter pig lung 

tissue as an ex-vivo infection model and was shown to allow long-term culture of pig 

tissue (Williams and Gallagher, 1978). Furthermore, tissue culture media has been 

proposed as an improved medium for clinically predictive antimicrobial susceptibility 

testing (Ersoy et al., 2017). There is a plethora of more tailored, chemically defined 

media available that have been designed to mimic human airway secretions in health 

and diseases, including conditions that predispose individuals to A. fumigatus infection, 

such as CF with various media developed to mimic this condition (Ruhluel et al., 2022; 

Aiyer and Manos, 2022) and future work could combine these with EVPL to study A. 

fumigatus in conditions that mimic the host environment found in specific infection 

contexts. However, in the first exploration of A. fumigatus growth and metabolism in 

EVPL, we elected to use a general-purpose, widely accessible, and cheap growth 

medium to facilitate model adoption and gain a first look at how this pathogen acts in 

settings that are more human-like than in vitro or mouse models. 

Visual inspection of the tissue and agar sections confirmed the ability of the 

fungus to grow on both the substrates. There was a significant reduction in the growth 

on the tissue explant compared to the agar control and this is likely to have occurred as 

a result of immune antagonism occurring within the tissue as observed in the proteomic 

results, which would not be present in the agar control. In addition, the increased 

complexity of the metabolic profile between the two substrates could have delayed the 

growth at this timepoint. Proteomic analysis of the fungus indicated an increased 

abundance of proteins associated with growth and carbohydrate metabolism at 48 h, 

whereas at 72 and 96 h, proteins associated with amino acid metabolism were increased 

in abundance. Glyceraldehyde-3-phosphate dehydrogenase expression is associated 

with conidial germination, is expressed on the hyphal surface, and phosphoglycerate 

kinase is also involved in carbon metabolism, but is also involved in fumigaclavine C 

biosynthesis (Owens et al., 2014). Amino acid metabolism and biosynthesis
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were more prevalent at 72 h post-infection with aconitase hydratase,5- 

methyltetrahydropteroylreiglutamate-homocysteine S-methyltransferase, 4- 

aminobutyrate aminotransferase, and acetohydroxy-acid reductoisomerase involved in 

the biosynthesis of lysine, methionine, and glutamate L-isoleucine, respectively, all of 

which were significantly increased in abundance. Amino acid metabolism and the 

shikimate pathway have been identified as markers of clinical isolates (Mirhakkak et 

al., 2023) indicating EVPL induces A. fumigatus to behave in a manner similar to that 

observed in clinical isolates. Malate dehydrogenase detected at 48, 72, and 96 h, is 

involved in carbon metabolism and is a component of the methylcitrate cycle, an 

alternative metabolic pathway that plays an important role in the metabolism of 

propionyl-CoA, a byproduct of amino acids, odd-chain fatty acids, and certain 

intermediate metabolites (Silva et al., 2023). This pathway is the link between the TCA 

and glyoxylate cycles in fungi and carbon assimilation by A. fumigatus in vivo (Huang 

et al., 2023). This pathway is required for fungal survival and pathogenicity, the 

deletion of which reduces virulence in murine and insect models (Ibrahim-Granet et 

al., 2008; Maerker et al., 2005). 

A range of virulence factors and potential host antagonistic mechanisms were 

increased in abundance, including fungal allergens at 48 h, such as large ribosomal 

subunit protein P2 (60S acidic ribosomal protein P2) (AfP2) (allergen Asp f 8) and 

mitochondrial superoxide dismutase [Mn] (allergen Asp f 6), which may induce the 

immune response observed within the tissue (Liu et al., 2023). These allergens can 

directly disrupt the integrity of the epithelium and elicit the production of pro- 

inflammatory cytokines and fibrogenic growth factors. Several cytokines and 

chemokines have been implicated in the immune response to Aspergillus infection 

(Shankar et al., 2024) and this model may have applications in characterising which 

may shed new insight into their roles in the response to fungal infection. The ensuing 

recruitment of immune cells and further leakage of plasma proteins would support the 

development of a cycle of inflammation, fibrin deposition and structural changes 

(Namvar et al., 2022). Mycotoxin production can also impact the host invasion process, 

as evidenced by thioredoxin reductase gliT, detected at 96 hours, and methyltransferase 

psoC, detected at all time points, involved in gliotoxin and pseurotin A production, 

respectively. Interestingly, fungal enolase, which increased in abundance at all time 

points, acts as an inhibitor of the human complement cascade (Dasari et al., 2019).
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This pathway has been demonstrated to be compromised within the pig proteome, 

supporting the role of this protein in immune evasion. The results indicate that the 

fungus is capable of growing on the EVPL tissue and metabolizing the substrate, but 

the fungus is under stress with evidence of hyphal damage, as evidenced by the 

formation of the Woronin body and the production of numerous detoxification 

enzymes. 

Proteomic changes in infected EVPL tissues indicate the induction of an 

immune response. S100-A8 and protein S100-A9 (Calgranulin-B) were increased in 

abundance at 24 h, which stimulate leukocyte recruitment and induced cytokine 

secretion (Wang et al., 2018; Singh and Ali, 2022; Xia et al., 2024). There is also 

evidence of an initial allergic response possibly induced by the expression of allergens, 

as carbonic anhydrase 4 was also increased in abundance and expressed in IL-5- 

activated eosinophils. In murine studies, carbonic anhydrase 4 was enhanced following 

an allergic insult with A. fumigatus, resulting in increased airway epithelial cell 

differentiation, anion exchange, and keratinization (Wen et al., 2014). Proteins 

associated with degranulation decreased in abundance in the infected cohort, including 

prophenin and tritrpticin precursor (C6), proteinase 3, elastase, and neutrophil 

expression, indicating specific immune evasion induced by the fungus. At 48 h, there 

is further evidence of a mounted immune response as importin subunit alpha KPNA3 

and KPNA4 were increased in abundance and are essential for TNF-alpha-stimulated 

NF-kappaB p50/p65 heterodimer translocation into the nucleus (Fagerlund et al., 

2005). A. fumigatus can be detected by Dectin-2 expressed on alveolar macrophages 

via Syk, which results in Nf-KB activation (Sun et al., 2014). MZB1 was also increased 

in abundance and was expressed on plasmacytoid dendritic cells, which facilitates 

interferon alpha production following TLR9 stimulation (Kapoor et al., 2020). 

The first markers of pulmonary fibrosis were detected at 48 hours including 

indolethylamine N-methyltransferase and nestin (Wang et al., 2022). At later time 

points, there were more prominent markers of pulmonary fibrosis and tissue 

remodelling, consistent with the situation in immunocompetent mice, where collagen 

accumulation is reported following infection (Guirao-Abad et al., 2024; Labram, 

2017). This may be driven by transforming growth factor beta-1-induced transcript 1 
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protein increased +7.06 fold as overexpression of TGF-β is known to induce collagen 

deposition in mice (Hillege et al., 2020). Many components of the extracellular matrix 

increased in abundance during fibrosis and are associated with the establishment of 

invasive fungal diseases. The increased expression of ECM components could also 

facilitate the covering of fungal hyphae by the extracellular matrix (Loussert et al., 

2010). This can lead to the formation of aspergillomas where the hyphae are embedded 

together in this dense extracellular matrix whereas in invasive aspergillosis hyphae are 

individually engulfed in the matrix (Müller et al., 2011).The extracellular matrix 

coating protects the fungus against host immune effectors as well as antifungal drugs 

(Muszkieta et al., 2013). Protein associated with T cell activation was also found to be 

increased in abundance, possibly mediated by the NF-KB activation observed 

previously. This indicates that both innate and adaptive immune responses are active 

within the tissue. The complement system was compromised, with a variety of 

associated proteins being reduced in abundance relative to the control. There is further 

evidence of fibrosis at 96 h post infection with fibrillin 1, collagen type IV, and type 

VI being significantly increased in abundance (Klingberg et al., 2013; Hansen et al., 

2022). Aspects of an adaptive immune response are present, including SLA class II 

histocompatibility antigen, DQ haplotype C alpha chain, and ABC-type antigen 

peptide transporter (TAP2) involved in antigen presentation at 96 hours. Prothymosin 

alpha was decreased in abundance by -42.09 fold potentially occurring as a result of 

cleavage to its bioactive form, thymosin α1, which has also been shown to enhance 

maturation of dendritic cells exposed to A. fumigatus. This effect was shown to be p38 

MAP kinase/NF-κB-dependent and required Toll-like receptor 9 signalling 

(Armstrong-James and Harrison, 2012). Some aspects of the immune response 

appeared to be inhibited by the presence of A. fumigatus evidenced by the decreased 

abundance of allograft inflammatory factor 1 (-14.12 fold). AIF1 promotes 

macrophage activation and NO production and regulates immunity by mediating the 

differentiation and function of dendritic cells (De Leon-Oliva et al., 2023). Leishmania 

parasites inhibit AIF1 to effectively evade immune responses and avoid an 

inflammatory response (da Silva et al., 2021), and it is possible Aspergillus may utilize 

a similar mechanism to protect itself from inflammatory markers. Syntaxin 3 also 

decreased by-14.21 fold and was involved in degranulation (Naegelen et al., 2015), 

again indicating that neutrophil activity is impaired by A. fumigatus. 
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In a previous study of P. aeruginosa infection of bronchioles using EVPL with 

medium that mimics CF mucus, transcriptomic analysis showed an absence of pig 

mRNA (Harrington et al., 2022). This suggests that, in that study, the host tissue was 

unresponsive to infection. There are two key differences in the present study that may 

explain this active host response. First, we used alveolar tissue, which provides a much 

greater number of host cells than bronchiolar epithelium and may contain alveolar 

immune cells. Second, in the present study, we were able to obtain lungs immediately 

after slaughter from the abattoir, rather than via a commercial butcher, which 

necessitates a delay between slaughter and lab use of at least 24-48 hours. 

The results presented here highlight the response of porcine lung tissue to A. 

fumigatus infection in a complex biologically relevant model that demonstrates many 

of the patterns observed in in vivo models, as well as clinically. The model 

demonstrates both innate and adaptive immune responses, tissue remodelling, and 

fibrosis in response to fungal infection and demonstrates responses observed in allergic 

and invasive aspergillosis. This study provides insights into the initial host- pathogen 

interactions and highlights the importance of various metabolic processes for 

A. fumigatus colonization of the host, as well as supporting the role of various virulence 

factors in the establishment of infection. The tissue response to infection provides 

information on the importance of various immunological effectors and potential targets 

for fungal antagonism and demonstrates the role of A. fumigatus in the establishment 

of lung remodelling and fibrosis within the airways. These molecular patterns may 

provide insight into the initial host-pathogen interactions occurring in the human host 

and provide molecular targets for therapeutics in the future. 
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Abstract 

 

Pseudomonas aeruginosa and Aspergillus fumigatus represent the dominant 

bacterial and fungal pathogen in the airways of adults with cystic fibrosis. 

Understanding how these species interact with the host and with each other may 

provide insight into pathology and microbial succession and potentially highlight more 

efficient therapeutics. The ex-vivo pig lung model is suitable for studying host 

responses to pathogens in an ethical and high-throughput manner due to its rich cell 

complexity and anatomical and immunological similarity to humans. Proteomic 

analysis of coinfected alveolar lung explants identified reduced virulence capacity of 

A. fumigatus in competition with P. aeruginosa with reductions in abundance of 

dipeptidyl-peptidase 5 (-10.30 fold) and thioredoxin reductase gliT (-11.72 fold) and a 

reduction in amide biosynthetic processes. P. aeruginosa flourished in coinfection 

proliferating in the tissue and increasing protein translation and amino acid 

biosynthesis and cellular nitrogen utilisation. This is supported by metataxonomic 

analysis which demonstrates that A. fumigatus promotes proliferation of 

pseudomonadota and P. aeruginosa specifically in coinfected explants. Examination 

of changes in the host proteome indicated specific nutritional utilisation with A. 

fumigatus inducing greater complement activation and potential utilisation of amino 

acids to fuel growth. P. aeruginosa infection induced greater natural killer cell toxicity 

and potential butanoate metabolism from the host. Greater inflammation and immune 

activation were observed in coinfected samples relative to their respective mono- 

infected tissue explants, potentially driven by the loss of elastase LasB in coinfection. 

Coinfection also resulted in the reduction of iron sequestering molecules such as 

ferritin and lactotransferrin indicating elevated bioavailability of iron which can further 

fuel P. aeruginosa virulence. 

Importance: 

The lungs of cystic fibrosis (CF) patients are frequently colonised by the fungus 

Aspergillus fumigatus and the bacterium Pseudomonas aeruginosa. Previous work has 

shown that P. aeruginosa predominates when co-cultured with A. fumigatus in cell 

culture and murine systems. In this work the interaction of these pathogens while 

coinfecting ex vivo pig lung samples was characterised and demonstrated the 

proliferation of P. aeruginosa populations during infection. Quantitative proteomic 

analysis revealed greater tissue inflammation and immune activation in coinfected 

samples relative to mono-infected samples. The results presented here give an insight 

into how these two pathogens may interact in the CF lung and highlight potential 

targets for novel antimicrobial therapies. 



165  

6.1 Introduction 

The human lung is constantly exposed to microbial colonisation through 

inhalation of various viruses, bacteria and fungi (Invernizzi et al., 2020). In most cases 

these microbes are eliminated or inactivated by the host’s defences including clearance 

by coughing, pulmonary macrophages, the ciliary beat of respiratory tract cells, and 

inhibition by alveolar surfactants (Li et al., 2024). However, in vulnerable patients 

including immunocompromised individuals and patients with cystic fibrosis (CF), the 

airway can be colonised by a range of microbial pathogens which are in dynamic 

competition with the host and each other for dominance in the niche (Gannon and 

Darch, 2021). Pseudomonas aeruginosa and Aspergillus fumigatus are ubiquitous 

microorganisms found in soil, water and plants (Nazik et al., 2020). These species are 

opportunistic pathogens and are equipped with various virulence factors to aid in 

colonisation of the airway by suppressing or evading aspects of the host immune 

defences and dominate other species attempting to do the same. These species represent 

the principal bacterial and fungal pathogen in the airways of CF adults and neutropenic 

individuals (Keown et al., 2020) and are considered to have the most devastating 

impacts on a patient’s health (Mayer-Hamblett et al., 2014; Amin et al., 2010). 

Approximately 15.8% of CF patients are coinfected with A. fumigatus and P. 

aeruginosa (Zhao et al., 2018) and these patients have a poorer prognosis and a greater 

requirement for intravenous antibiotics (Hughes et al., 2022). 

Both species can adopt acute, high-virulence infection phenotypes, resulting in 

severe host tissue damage and inflammation, but are also capable of switching to a 

chronic infection phenotype characterised by reduced virulence but tenacious 

persistence and drug tolerance. Understanding how this switch happens is important in 

the context of CF lung disease, especially with relevance to the acute exacerbations that 

punctuate periods of stable infection and result in severe reductions in lung function 

(Stanford et al., 2021), and with relevance to the ability of A. fumigatus to trigger a 

hypersensitive allergic response (Bouyssi et al., 2023). The role of interactions between 

coinfecting pathogens in determining overall infection phenotype has long been a matter 

of investigation in CF microbiology (Zhao et al., 2012; O’Brien and Fothergill, 2017). 

Interactions between these two pathogens have been examined in culture, 

revealing that secreted products from A. fumigatus result in P. aeruginosa proliferation 



166  

and increased expression of proteins associated with denitrification, stress response, 

replication, amino acid metabolism and efflux pumps (Margalit et al., 2020). Exposure 

of A. fumigatus hyphae to P. aeruginosa cells induced increased production of 

gliotoxin and a decrease in fungal growth. In contrast, exposure of A. fumigatus hyphae 

to P. aeruginosa culture filtrate led to increased growth and decreased gliotoxin 

production (Margalit et al., 2022). This interaction has been studied in Galleria 

mellonella larvae where sublethal A. fumigatus infection resulted in increased mortality 

in subsequent P. aeruginosa infection and there was a strain specific response in human 

bronchial epithelial cells when coinfected with the two pathogens resulting in increased 

proinflammatory IL-6 and IL-8 production (Reece et al., 2018). Coinfection in an 

immunocompetent murine model with both pathogens isolated in agar beads 

demonstrated close proximity of the pathogens is disadvantageous for A. fumigatus 

whereas a larger separation had no effect on fungal burden (Sass and Stevens, 2023). 

The aim of the work presented here was to establish whether A. fumigatus influences 

P. aeruginosa virulence in an ex-vivo tissue model with a resident microbiome. 

 

The ex vivo pig lung (EVPL) model offers an ethical, high-throughput approach 

to examine microbial response to host tissue and resulting pathogenesis (Harrington et 

al., 2020). Sections of pig alveolar tissue combined with synthetic CF mucus have been 

employed to demonstrate that LasR mutant P. aeruginosa grows as well as or better 

than the wild-type strain in the explant replicating results from the clinic where this 

mutant is frequently isolated in chronically infected CF lungs (Harrison et al., 2014). 

The EVPL model, combining pig bronchiolar tissue with synthetic CF mucus, also 

gives a better representation of Staphylococcus aureus pathology compared to murine 

models as mice typically develop S. aureus induced abscesses which are rare in human 

patients and these do not occur in the EVPL explants (Sweeney et al., 2021). The 

microbiome of healthy pig lungs shows a similar phylum distribution to that found in 

human lungs (Huang et al., 2018). The microbiome remains difficult to produce in 

many models employed to study microbial virulence including 2D culture and 

organoids (Poletti et al., 2020) but it plays a crucial role in shaping both P. aeruginosa 

and A. fumigatus development and virulence (Nguyen et al., 2016; Popovic et al., 2023; 

Nikitashina et al., 2025) including the degradation of host factors such as mucin which 

can impact P. aeruginosa attachment (Flynn et al., 2016; Herrmann et al., 2024).
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Understanding how P. aeruginosa and A. fumigatus influence microbiota dysbiosis 

alone and in combination may provide key insight into the impacts these species can 

have in isolation and in combination on the host. In this work label free quantitative 

proteomic analysis was utilised to examine the interaction of P. aeruginosa and A. 

fumigatus with host tissue in pig alveolar tissue sections in tissue culture media, and 

to characterise the host response to each pathogen in mono-infection and coinfection. 

In addition, the proteomic response of A. fumigatus and P. aeruginosa during 

coinfection was also assessed. Metataxanomic analysis was also employed to assess 

alterations in the host microbiome as a result of mono and co- infection. 

6.2 Results 

6.2.1 Visual confirmation of tissue pathology 

EVPL sections mono-infected with P. aeruginosa at 96 h displayed a green 

colour indicating production of pyocyanin (Figure 6.1). Tissue mono-infected with A. 

fumigatus displayed fungal growth on the surface. There was less visible fungal growth 

and green pigmentation on the co-infected tissue sections indicating a distinct 

pathology relative to the mono-infected explants. 

 

 

Figure 6.1: Representative image of various treatments at 96 hours post inoculation; 

uninfected control, A. fumigatus mono-infected, P. aeruginosa mono-infected and A. 

fumigatus and P. aeruginosa coinfected explants at 20x magnification. 

6.2.2 Initial amplicon analysis 

The lung microbial community diversity was examined by amplifying the V3- 

V4 region of the 16S rRNA gene and the eukaryotic ITS2 region. There was a single 

time point (96 hours) and five treatments in total. (A) Unwashed control, (B) washed 

control, (C) P. aeruginosa mono-infected, (D) A. fumigatus mono-infected and (E) P. 

aeruginosa and A. fumigatus coinfection. Each treatment was sequenced in triplicate 
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resulting in 15 individual samples for the downstream 16S and ITS2 analysis 

respectively. To ensure sampling depth was sufficient to capture the full community 

diversity Alpha rarefaction curves were undertaken. Both 16S and ITS2 rarefaction 

curves were close to reaching a plateau suggesting that our samples contained most of 

the potential community richness (Figure S1). 

After filtering, the number of Tags across all fifteen 16S samples ranged from 

54,299 to 63,876 and after OTU clustering, the OTU number ranged from 108 to 213 

(Table 6.1). Across all 16S samples, 18 Bacterial phyla corresponding to 17 Genera 

were identified (Table S6.1). Only 8 unique Bacterial species were identified, with the 

majority of OTUs being unassigned at the species level (except in treatments C and E 

(Table S6.1). When examining the corresponding samples for high quality ITS2 Tags 

only samples D and E reported ITS2 Tags (samples D3 and E2 did not have tags). The 

number of tags ranged from 66,110 to 66,147 and after OTU clustering, the OTU 

number ranged from 19 to 48 (Table 6.1). The vast majority (>99.99%) of Tags were 

mapped back to A. fumigatus (Table S6.2). Overall, the lack of ITS2 Tags in treatments 

A, B and C indicates that no Fungal species were found in the lung tissue prior to 

infection with A. fumigatus. 
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Table 6.1: OTU statistics 
 

16S Samples Sample Tag number OTU number 

 

Unwashed Control 

A1 59981 163 

A2 60006 164 

A3 61045 160 

 

Control 

B1 63876 165 

B2 56647 151 

B3 62257 108 

 

P. aeruginosa infection 

C1 63241 139 

C2 59125 213 

C3 60142 139 

 

A. fumigatus infection 

D1 63495 183 

D2 61589 145 

D3 54961 171 

 

Coinfection 

E1 56894 168 

E2 60026 147 

E3 54299 209 

ITS2 Samples Sample Tag number OTU number 

A. fumigatus infection 
D1 66147 19 

D2 66132 28 

Coinfection 
E1 66138 30 

E3 66110 48 

 

6.2.3 Sus scrofa lung tissue microbiome 

Below we report the relative abundance of Bacterial phyla and genera for five 

different lung tissue treatments in triplicate. The visualisation of these can be seen in 

Figure 6.2 and the raw data is located in (Table S6.1). For clarity, relative abundance 

is a quantitative measure and corresponds to the total number (abundance) of OTUs of 

a particular kind which is present in a sample, relative to the total number of OTUs in 

that sample. 
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Figure 6.2: Metataxonomic analysis of infected explants (i) Phylum level relative 

abundance of Bacterial OTUs found in five lung tissue treatments A: unwashed tissue, 

B: washed tissue, C: P. aeruginosa infection, D: A. fumigatus infection, E: coinfection. 

Note only top 4 phyla are shown (>99% of OTUs). Corresponding (ii) Genus level 

relative abundance and (iii) Species level relative abundance are also shown 

In all five treatment types, three Bacterial phyla represent the majority (>99%) 

of observed OTUs (Figure 6.2(i)) and (Table S6.1). The Pseudomonadota phylum 

dominates representing 83.61%, 80.04%, 66.96%, 87.22% and 86.51% of all OTUs in 

treatments A, B, C, D and E respectively. The next two abundant phyla are the 



171  

Bacillota (9.75%, 8.14%, 24.83%, 4.83%, 7.97%) and the Bacteroidota (4.48%, 

11.68%, 8.06%, 7.14%, 5.12%). The relatively lower abundance of Pseudomonadota 

species (66.96%) in treatment C is noteworthy as it shows a decrease in the overall 

abundance of Pseudomonadota species when P. aeruginosa is added to the tissue 

indicating that it may be suppressing the growth of other closely related species (genus- 

level identification confirms that Pseudomonas was only present in appreciable amounts 

when we inoculated it, see below). Similarly, the relative higher abundance (24.83%) 

of Bacillota species is also of interest as it indicates that infection with P. aeruginosa 

alone, promotes outgrowth of members of the Bacillota phylum. 

Although the relative abundance of phyla between treatments is relatively 

stable, different genera within phyla seem to be favoured under certain treatment 

conditions. For example, when comparing the two controls (A vs B), we see that the 

Escherichia genus is most abundant (80.25%) in the unwashed control (A) relative to 

the washed control (B) where it only accounts for 19.06% of species whereas members 

of the Actinobacillus genus are now the most abundant (53.13%) (Figure 6.2(ii)) and 

(Table S6.1). The Escherichia genus is also most abundant (73.99%) in treatment D 

(infection with A. fumigatus alone). When tissue is mono-infected with P. aeruginosa 

(treatment C), unsurprisingly we see an increase in the relative abundance of members 

of the Pseudomonas genus (31.81%) relative to the controls (0.02%, 0.17%) although 

it is still not the most abundant genus (Escherichia, 33.92%). There is also a marked 

increase in the relative abundance of members of the Suipraeoptans genus (Phylum 

Bacillota) indicating that P. aeruginosa infection alone promotes the growth of 

members of this genus. Significantly, when examining treatment E (coinfection) we 

observe that the relative abundance of Pseudomonas species increases to 49.69% and 

outcompetes all other genera (Figure 6.2(iii)) and (Table S6.1). The relative abundance 

of Suipraeoptans is also significantly reduced (0.04%). Therefore, there appears to be 

a synergistic effect in coinfections where the presence of A. fumigatus promotes the 

growth of Pseudomonas species and allows it to become the dominant genus. Closer 

inspection of the species level taxonomy of our OTUs shows that all members of the 

Pseudomonas genera are P. aeruginosa. 
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6.2.4 Characterisation of A. fumigatus Proteome from coinfected explants 

relative to that from mono-infected tissue 

Proteomic analysis of A. fumigatus from tissue coinfected with P. aeruginosa 

relative to tissue mono-infected with A. fumigatus demonstrated clear separation 

between the groups (Figure 6.3a) and identified 379 fungal proteins of which 41 

proteins were classified as statistically significant and differentially abundant (SSDA) 

(Figure 6.3b). Only one protein was significantly increased in abundance, 60S 

ribosomal protein L30, putative (+13.12 fold) in the coinfection A. fumigatus sample 

relative to the mono-infection. 60S ribosomal protein L30 was increased in early-stage 

hyphal germination (Jia et al., 2020) and was highly detected in murine models and 

human invasive pulmonary aspergillosis (Machata et al., 2020). Thirty nine fungal 

proteins were significantly decreased in abundance including aldehyde dehydrogenase 

(-40.48 fold) associated with response to hypoxia and heat shock (Escobar et al., 2018) 

and was mutated in azole resistant strains isolated from chronically infected patients 

(Hagiwara et al., 2014). In addition, proteins associated with virulence were decreased 

in abundance including dipeptidyl-peptidase 5 (-10.30 fold) and thioredoxin reductase 

gliT (-11.72 fold). Gene enrichment analysis of the A. fumigatus database indicated 

biological processes associated with nitrogen including S-adenosylmethionine 

metabolism, protein peptidyl-prolyl isomerisation and amide biosynthetic processes 

are compromised following coinfection with P. aeruginosa, all indicating reduced 

fitness of A. fumigatus as a result of this interaction (Figure S2). 
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Figure 6.3: (A) Principal component analysis of A. fumigatus proteins grown on ex- 

vivo pig lung explants in mono-infection (Green) and coinfection (Red) demonstrating 

good separation in the proteome between conditions. (B) Volcano plots showing the 

distribution of statistically significant and differentially abundant (SSDA) proteins 

which have a −log (p-value) > 1.3 and difference +/−0.58. 

 

6.2.5 Analysis of changes in P. aeruginosa Proteome from coinfected explants 

relative to mono-infected samples 

Proteomic analysis of P. aeruginosa in a coinfection with A. fumigatus and P. 

aeruginosa from mono-infected explants show clear distinction from one another 

(Figure 6.4a) and identified 642 proteins of which 40 proteins were SSDA (Figure 

6.4b). Thirty-two P. aeruginosa proteins were significantly increased in abundance in 

the coinfection group compared to mono-infection and these included a large number 

of small ribosomal subunit proteins including bS16 (+ 3.11 fold), uS17 (+ 2.92 fold), 

uS5 (+ 2.66 fold) and bS6 (+ 2.30), indicating elevated translation occurring as a result 

of exposure to A. fumigatus. In addition, proteins involved with regulation of amino 

acids and their amide derivatives in P. aeruginosa were increased in abundance 

including glutathione hydrolase proenzyme (+1.73 fold). Serine 

hydromethytransferase 3 (GlyaA3) (+2.32 fold) catalyses the reversible conversion of 

serine and glycine and is the main source of single carbon atoms required for synthesis 

of purine and methionine (Wang et al., 2023). Pterin-4-alpha-carbinolamine 

dehydratase (phhB) (+2.93 fold) which catalyses the dehydration step in the cyclic 

regeneration of tetrahydrobiopterin (BH4), an essential cofactor required for the 

phenylalanine hydroxylase reaction (Song et al., 1999). Gene enrichment analysis of 

P. aeruginosa in coinfected explants highlighted an increase in pathways associated 

with nitrogen metabolism and utilisation including translation, amide biosynthetic 
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processes and cellular nitrogen compound biosynthetic processes, suggesting 

increased cellular activity related to protein synthesis and nitrogen utilisation (Figure 

S3). 

Eight proteins were significantly decreased in abundance in P. aeruginosa 

during coinfection and these included elastase LasB (-6.04) which is associated with 

virulence. Elastase LasB is capable of degrading the extracellular matrix including 

elastin, collagen types III and IV, laminin, fibronectin, and vitronectin of host cells 

(Yang et al., 2015). Additionally, 5-aminovalerate aminotransferase DavT was 

decreased -4.35 fold in coinfection relative to mono-infection, and is involved in lysine 

catabolism (Yamanishi et al., 2007), potentially indicating competition during 

coinfection for host amino acids such as lysine whose bioavailability is limited in the 

lung, and its presence fuels A. fumigatus virulence (Schöbel et al., 2010). 
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Figure 6.4: (A) Principal component analysis of P. aeruginosa proteins grown on ex- 

vivo pig lung explants in mono-infection (Blue) and coinfection (Red) demonstrating 

good separation in the proteome between conditions. (B) Volcano plots showing the 

distribution of statistically significant and differentially abundant (SSDA) proteins 

which have a −log (p-value) > 1.3 and difference +/−0.58. 

6.2.6 Sus scrofa proteome in various infection states relative to control 

Proteomic analysis of the EVPL explants identified 3183 proteins in total, 130 

S. scrofa proteins were significantly altered in abundance in the A. fumigatus mono- 

infected tissues relative to the control, 371 were significantly altered in the P. 

aeruginosa mono-infected tissues relative to the control and 133 were significantly 

altered in abundance in the coinfected tissues relative to the control (Figure 6.5a and 

b). 
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Figure 6.5: (A) Principal component analysis of S. scrofa proteins in control (Black 

circle) or infected with A. fumigatus mono-infection (white square), P. aeruginosa 

mono-infection (White Square) and coinfection (Black Square) demonstrating good 

separation in the proteome between conditions. (B) Heatmap generated through Two- 

way unsupervised hierarchical clustering of the median protein expression values of 

all statistically significant differentially abundant proteins. 

6.2.7 Proteomic response of Sus scrofa to A. fumigatus mono-infection relative 

to control 

Proteomic analysis demonstrated significant differences between A. fumigatus 

mono-infected explants compared to the control (Figure 6.6a). Fifty five S. scrofa 

proteins were increased in abundance and these included many proteins associated with 

fibrosis and tissue remodelling such as collagen type VI alpha 1,2,3 and 6 chains 

increased +6.11, +5.75, +4.02, +13.97 and +10.55 fold, respectively, and these have 

been identified as inducing fibrosis (Williams et al., 2022). Plasminogen activator 

inhibitor 1 (+3.67 fold) is the main inhibitor of the plasminogen activator system, 

which blocks fibrinolysis and promotes extracellular matrix accumulation in tissues 

(Ghosh and Vaughan, 2012). There was increased abundance of CD9 molecule (+2.54) 

which is associated with antifungal extracellular vesicles released by 

polymorphonuclear leukocytes during A. fumigatus infection (Visser et al., 2024). 

Complement factor H (+2.45 fold) and complement factor B (+2.05 fold), both of 

which are involved in the alternative pathway indicate some activation during infection 

(Kang et al., 2024; Kavanagh et al., 2025). Gene enrichment analysis of A. fumigatus 

mono-infected explants (Figure 6.6b) indicates alterations to the extracellular matrix 

and highlights the activation of the complement and coagulation cascade.
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Seventy five proteins were significantly decreased in abundance relative to the 

control, and included arachidonate 5-lipoxygenase (Alox5) (- 4.15 fold) which is a 

key regulator of leukotriene biosynthesis and is required for neutrophil recruitment 

activation in the lungs during invasive pulmonary aspergillosis (Caffrey-Carr et al., 

2018). Gene enrichment analysis also highlighted decreased metabolic activity in 

fungal infected tissue including the citrate cycle and valine, leucine and isoleucine 

degradation and propanoate metabolism indicating reduced metabolic activity in the 

host tissue following fungal infection. 2-oxocarboxylic acid metabolism was also 

decreased in abundance which is involved in branched amino acid biosynthesis (Figure 

6.6b). 
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Figure 6.6: (A) Volcano plot of S. scrofa proteins in response to A. fumigatus mono- 

infection relative to uninfected explants showing the distribution of statistically 

significant and differentially abundant (SSDA) proteins which have a −log (p-value) 

> 1.3 and difference +/−0.58. (B) Gene enrichment analysis highlight KEGG pathways 

increased and decreased in response to A. fumigatus infection relative to healthy control 
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6.2.8 Proteomic response of Sus scrofa to P. aeruginosa mono- infection relative 

to control 

Proteomic analysis demonstrated significant differences between P. 

aeruginosa mono-infected explants compared to the control (Figure 6.7a). Two 

hundred and twenty-two S. scrofa proteins were increased in abundance in the infected 

tissue compared to the control. There was a significant increase in the abundance of 

extracellular matrix proteins indicative of tissue fibrosis with collagen type VI alpha 

chains 1, 2, 3 and 6 increased +16.97, 14.93, 9.78 and 15.57 fold, respectively. In 

addition, collagen type IV alpha chains 1, 3 and 4 were also increased +27.27, +52.19 

and +26.63 fold, respectively. There is evidence of immune antagonism occurring as a 

result of bacterial infection with a + 9.32 fold increase of protein S100-A11 

(Calgizzarin) (Protein S100-C) which is released by neutrophils via NETosis and 

stimulates an inflammatory response through stimulation of IL-6 and Tumour necrosis 

factor (Navrátilová et al., 2021). Gene enrichment analysis of P. aeruginosa mono- 

infected EVPL tissue (Figure 6.7b) also indicated natural killer cell mediated 

cytotoxicity. Natural killer cell cytotoxicity was supported by detection of integrin 

subunit alpha L (+2.31 fold), a gene specifically associated with natural killer cell 

tissue residency (Hegewisch-Solloa et al., 2021) and cellular repressor of E1A 

stimulateds 1 (Creg1) increased + 6.39 fold which is localised to the endosomal- 

lysosomal compartment where it promotes lysosomal biogenesis, acidification and 

degradation (Liu et al., 2021). 
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Figure 6.7: (A) Volcano plot of S. scrofa proteins in response to P. aeruginosa mono- 

infection relative to uninfected explants showing the distribution of statistically 

significant and differentially abundant (SSDA) proteins which have a −log (p-value) 

> 1.3 and difference +/−0.58. (B) Gene enrichment analysis highlight KEGG pathways 

increased and decreased in response to P. aeruginosa infection relative to healthy 

control 
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P. aeruginosa can induce a hypoxic microenvironment (Schaible et al., 2012). 

This may be occurring as gene enrichment analysis highlights HIF-1α signalling, which 

is known to be upregulated in response to bacterial infection (Kiani et al., 2021). This is 

supported by detection of signal transducer and activator of transcription 3 (STAT3) 

(+1.72 fold) which in combination with HIF-1α cooperatively mediate the 

transcriptional and physiological responses to hypoxia (Dinarello et al., 2023). Heme 

oxygenase 1 (+1.68 fold) a stress induced enzyme that is induced by HIF-1α in hypoxic 

conditions (Dunn et al., 2021) was also detected supporting the induction of hypoxia 

as a result of bacterial infection. 

One hundred and forty-nine S. scrofa proteins were significantly decreased in 

abundance during P. aeruginosa mono-infection relative to the controls. Fibromodulin 

(keratan sulfate proteoglycan fibromodulin) was decreased -24.87 fold and this has an 

important role in regulating TGF-β1 signalling by sequestering the active form of this 

growth factor in the extracellular matrix and the complement cascade. Complement 

component 1 Q subcomponent-binding protein, mitochondrial was decreased in 

abundance -2.15 fold. Fibromodulin also interacts with the complement factor H (- 

2.41 fold) and C4b-binding protein (C4BP) (-4.21), inhibitors of the complement 

system, limiting complement activation to the early part of the classical pathway. Gene 

enrichment analysis of the proteomic response of host tissue to P. aeruginosa mono- 

infection indicated reduced metabolic activity including butanoate metabolism, valine 

leucine and isoleucine degradation, propanoate metabolism and citrate cycle. 

Butanoate metabolism is associated with chronic persistence of P. aeruginosa in 

hypoxic biofilm as it is required for promoting planktonic cells to the biofilm state and 

could serve as a marker for biofilm development (Abdelhamid and Yousef, 2024) 

(Figure 6.7b). 

6.2.9 Proteomic response of Sus scrofa to co-infection infection relative to 

control 

Proteomic analysis demonstrated significant differences between A. fumigatus 

and P. aeruginosa coinfected explants compared to the control (Figure 6.8a). Eighty- 

three S. scrofa proteins were increased in abundance including histone H3 (+58.27 

fold), which is known to be released during NETosis (Grilz et al., 2019) a process 

induced by both P. aeruginosa (Yoo et al., 2014) and A. fumigatus (McCormick et al., 

2010). Complement factor B and H were increased +1.84 fold and +1.83 fold, 
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respectively, in coinfected explants relative to the control, indicating activation of the 

alternative complement cascade. Natural killer cell mediated cytotoxicity may also be 

activated in coinfection as cellular repressor of E1A stimulated 1 (Creg1) was 

increased +6.54 fold in coinfected EVPL explants. In addition, protein-tyrosine- 

phosphatase (EC 3.1.3.48) encoded by the gene PTPN6 was increased +1.78 fold in 

P. aeruginosa mono-infection and + 1.70 fold in coinfected EVPL respectively. 

PTPN6 has been identified as playing a role in natural killer cells, T cell regulation 

and differentiation, and the JAK-STAT pathway (Zhong et al., 2025). 

Fifty S. scrofa proteins were significantly decreased in abundance in the 

coinfected EVPL explants relative to the controls. Many of these proteins are involved 

in metabolic processes including valine leucine and isoleucine degradation including 

3-hydroxyisobutyrate dehydrogenase (-1.52 fold) and acyl-CoA dehydrogenase family 

member 8 (-2.49 fold) (Meyer et al., 2021; Sabbagha et al., 2011). Gene enrichment 

analysis of coinfected explants (Figure 6.8b) highlighted 2-oxocarboxylic acid 

metabolism, only detected in A. fumigatus mono-infection and glyoxylate and 

dicarboxylate metabolism, only detected in P. aeruginosa mono-infection were also 

detected in coinfected EVPL indicating a combined impact on the host tissue when 

both species are present and a unique pathology with shared attributes of both 

components has been identified. 
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Figure 6.8: (A) Volcano plot of S. scrofa proteins in response to A. fumigatus and P. 

aeruginosa coinfection relative to uninfected explants showing the distribution of 

statistically significant and differentially abundant (SSDA) proteins which have a −log 

(p-value) > 1.3 and difference +/−0.58. (B) Gene enrichment analysis highlight KEGG 

pathways increased and decreased in response to coinfection relative to healthy control 
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6.2.10 Analysis of Sus scrofa proteome in coinfected EVPL relative to mono- 

infected explants 

When comparing the S. scrofa proteome in the coinfected EVPL explants to A. 

fumigatus mono-infected samples, 79 S. scrofa proteins were significantly increased in 

abundance and 19 proteins were significantly decreased (Figure 6.9a). Arachidonate 5- 

lipoxygenase was increased (+4.77 fold), and the production of arachidonate 5- 

lipoxygenase may induce a proinflammatory state (Steinhilber et al., 2010). 

Myeloperoxidase was increased +1.96 fold. Collagen type VI alpha 3 chain (-17.16 

fold) is a microfibrillar component of the extracellular matrix and is essential for the 

stable assembly process of collagen VI (Wang and Pan, 2020). Cingulin was decreased 

-2.38 fold relative to that in A. fumigatus mono-infected EVPL tissue. Cingulin is an 

adaptor protein, involved in the organization of the tight junctions and participates in 

endothelial barrier function (Tian et al., 2016; Schossleitner et al., 2016). 

Seventy-four proteins were significantly increased in abundance, and 35 

proteins were significantly decreased in the coinfection EVPL tissue relative to P. 

aeruginosa mono-infection (Figure 6.9b). Fibromodulin (keratan sulfate proteoglycan 

fibromodulin), involved in complement activation increased +14.27 fold in the 

coinfection tissue. There is also evidence of a more potent activation of the adaptive 

immune response with Janus kinase and microtubule interacting protein 1 increased + 

11.15 fold (Libri et al., 2008). In addition, basal cell adhesion molecule was increased 

+5.23 fold relative to that P. aeruginosa mono-infected tissue, and it induces leukocyte 

recruitment resulting in a proinflammatory microenvironment (Huang et al., 2014). 

There is also evidence that fibrosis is occurring more prominently in coinfected EVPL 

tissue relative to P. aeruginosa mono-infection with fibrinogen beta and gamma chains 

increased +2.05 and +2.04 fold, respectively. These proteins polymerise with 

fibrinogen alpha chain following to produce an insoluble fibrin matrix and are known 

to be elevated in murine models of pulmonary fibrosis (Lu et al., 2021; Principi et al., 

2023). Proteins decreased in abundance in the coinfected EVPL tissue relative to P. 

aeruginosa mono-infection indicate reduction in proteins associated with iron 

sequestering and storage. Ferritin light chain (Ferritin L subunit) and lactotransferrin 

(lactoferrin), were decreased -16.50 fold and -1.55 fold, respectively. 

Eleven proteins were SSDA in the coinfected EVPL tissue relative to both 

mono-infected samples, 10 proteins increased and 1 decreased in abundance. Histone 
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H3 was increased + 18.37 fold and this protein is known to be released during NETosis 

(Grilz et al., 2019) a process induced by both P. aeruginosa (Yoo et al., 2014) and A. 

fumigatus (McCormick et al., 2010). Prophenin-2 (C12) (PF-2) (PR-2) (Prophenin-1- 

like) increased +8.77 and +12.54 fold relative to that in EVPL A. fumigatus and P 

.aeruginosa mono-infected, respectively. Prophenin 2 is released by leukocytes during 

degranulation. Interleukin-6 was also increased + 3.28 fold relative to that in A. 

fumigatus infected EVPL and + 2.44 fold relative to P. aeruginosa infection. IL-6 has 

a pivotal role in protective immunity against Aspergillus in mice (Heldt et al., 2017). 

The only protein decreased in abundance in the coinfected EVPL tissue compared to 

both mono-infected samples was peroxisomal bifunctional enzyme (multifunctional 

enzyme 1, coded by EHHADH), and this was decreased -2.30 fold relative to that in 

A. fumigatus mono-infection and -3.66 fold relative to that in P. aeruginosa mono- 

infection. EHHADH is primarily expressed on macrophages and was downregulated 

in patients with neutrophilic asthma and was significantly decreased in non- 

eosinophilic asthma patients and positively correlates with airflow limitation (Chen et 

al., 2024). 

 

 

Figure 6.9: (A) Volcano plot of S. scrofa proteins in response to A. fumigatus relative 

to coinfection and (B) P. aeruginosa relative to coinfection showing the distribution of 

statistically significant and differentially abundant (SSDA) proteins which have a 
−log (p-value) > 1.3 and difference +/−0.58. 
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6.3 Discussion 

In CF patients P. aeruginosa and A. fumigatus are the dominant species of their 

respective kingdoms and can have detrimental impacts on the host. Their prevalence 

and the frequency of co-colonisation suggest they can potentially interact in the CF 

lung (Amin et al., 2010; Al Shakirchi et al., 2021; Chesshyre et al., 2024; Hong et al., 

2020; Nayir Buyuksahin et al., 2022), but the available literature does not present a 

clear picture of how co-colonisation affects infection virulence. The work presented 

here provides novel insights into how these pathogens interact in an ex-vivo pig lung 

model with a resident microbiome. A major advantage of ex vivo models to study the 

interactions of these pathogens is their ability to reflect the complex architecture of the 

lung both in terms of topography and richness of cell types (Grassi and Crabbé, 2024). 

The general anatomic features of the porcine airways are similar to those in the human, 

with some minor exceptions (Rogers et al., 2008). For these reasons the EVPL model 

serves as a promising model to characterise host factors that form the environment in 

which P. aeruginosa and A. fumigatus compete for dominance and can influence their 

interactions. In a previous study, we used alveolar tissue sections from freshly- 

slaughtered pigs to reflect the ability of A. fumigatus to infect the lower airways and 

showed that combining this with tissue culture media supported the survival of the 

tissue for the duration of lab experiments, allowing us to assess the changes in both 

host and pathogen proteome over 96 hours (Curtis et al., 2025). We have now built on 

this work by exploring co-culture of A. fumigatus and P. aeruginosa in the same model 

conditions. 

Visual assessment of infected explants indicated competition between 

pathogens in the co-infected samples (Fig 1). Metataxonomic analysis of these explants 

identified a dynamic microbial community resident within the tissue and demonstrated 

that both pathogens alter the host microbiome when present in isolation and in 

combination. P. aeruginosa mono-infection results in decreased abundance of 

Pseudomonadota species indicating it outcompetes closely related species while 

promoting colonisation of Bacillota (formerly firmicutes) species. A. fumigatus mono- 

infection also alters the host microbiome resulting in promotion of Pseudomonadota 

phylum, but more specifically the genus Escherichia. Further work would be needed 

to assess how changes in relative abundance of the endogenous microbiota constituents 

relate to increases versus decreases in cell numbers. Despite this, we can clearly
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conclude that when in coinfection, P. aeruginosa dominates much more prominently 

than it does in mono-infection. This confirms that A. fumigatus can facilitate P. 

aeruginosa dominance in the airway. The mechanism behind this dominance can be 

elucidated by examining the proteomic changes elicited in each species during their 

interaction. 

Proteomic analysis of A. fumigatus in coinfection relative to mono-infection 

revealed a reduction in the abundance of proteins associated with virulence. Virulence- 

associated A. fumigatus proteins that altered in abundance included di-peptidyl- 

peptidase 5 (-10.30 fold) and thioredoxin reductase gliT (-11.72 fold). Dipeptidyl- 

peptidase 5 is not essential for pathogenicity but may function as part of a concerted 

action or contributing to the infection process and was induced during infection 

(Wartenberg et al., 2011; Guruceaga et al., 2018). Thioredoxin reductase gliT is 

associated with self-protection against Gliotoxin was decreased in abundance which 

could indicate reduced gliotoxin production as deletion of this gene has been shown to 

completely disrupt gliotoxin secretion (Schrettl et al., 2010). In addition enolase, 

previously demonstrated to inhibit the complement cascade (Dasari et al., 2019) was 

decreased (-4.63 fold) in A. fumigatus in coinfected sections. Proteins associated with 

numerous processes involving nitrogen utilisation were also decreased in abundance 

in coinfection as identified by gene enrichment analysis including, S- 

adenosylmethionine metabolism including adenosylhomocysteinase (-2.85 fold) and 

S-adenosylmethionine synthase (-4.40 fold) indicating competition for sulphur 

containing amino acids cysteine and methionine, both of which have been associated 

with fungal growth and virulence in the host (Amich et al., 2016). 

P. aeruginosa cysteine metabolism was enhanced in coculture with A. 

fumigatus (Margalit et al., 2020). Amide biosynthetic processes were also 

compromised following coinfection with P. aeruginosa indicating reduced nitrogen 

availability for the fungus which is crucial to protein synthesis and fungal development 

and virulence (Krappmann and Braus, 2005). All of these factors indicate reduced 

availability of key nutrients, potentially because of competition from P. aeruginosa, 

possibly weakening A. fumigatus. This is supported by an increase in similar processes 

in P. aeruginosa in coinfection relative to mono-infection such as small ribosomal 

subunit proteins, indicating elevated translation occurring as a result of exposure to A. 

fumigatus. In addition, proteins involved with regulation of amino acids and their 
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amide derivatives in P. aeruginosa were increased in abundance including serine 

hydromethytransferase 3 (GlyaA3) (+2.32 fold) and glutathione hydrolase proenzyme 

(+1.73 fold) also annotated as periplasmic gamma-glutamyltranspeptidase encoded by 

the ggt gene. This enzyme catalyzes the transfer of γ-glutamyl groups from donor 

molecules to target or acceptor substrates including amino acids and peptides. This 

enzyme may have a role in glutamate-related metabolism in Pseudomonas (Lundgren 

et al., 2021). 

In Coinfection with A. fumigatus there was a significant decrease in elastase 

LasB (-6.04 fold) which is associated with acute virulence and is the most abundant 

protease produced by P. aeruginosa (Sun et al., 2020). LasB is also a potent immune 

evasion molecule in chronic infections through its ability to manipulate host responses 

(Suarez-Cuartin et al., 2017). Paradoxically, the strong inflammatory responses to P. 

aeruginosa are often associated with bacterial persistence and tissue damage (Lin and 

Kazmierczak, 2017) and lasR, which regulates LasB loss of function mutants 

frequently arise in chronically infected CF patients and are associated with greater 

neutrophilic inflammation and immunopathology in both murine models and human 

patients (LaFayette et al., 2015). The decreased abundance of elastase (LasB) (-6.04 

fold) in the coinfection group indicates this phenomenon could be occurring in the lung 

explants, driving inflammatory responses at the expense of A. fumigatus clearance. 

This is supported by the increased detection of arachidonate 5- lipoxygenase, a key 

regulator of leukotriene biosynthesis and is required for neutrophil recruitment 

activation in the lungs during invasive pulmonary aspergillosis (Caffrey- Carr et al., 

2018). This protein was increased in abundance in coinfected (+4.77 fold) tissue 

relative to A .fumigatus mono-infected explants. This protein was identified as being 

decreased in A. fumigatus mono-infected explants (-4.15 fold) relative to control and is 

a target of immune evasion by A. fumigatus through production of gliotoxin which has 

been shown to inhibit Leukotriene A4 Hydrolase (Günther et al., 2024; König et al., 

2019). 

In response to A. fumigatus mono-infection many porcine proteins associated 

with lung fibrosis were increased in abundance including collagen type VI alpha chains 

which are known to be deposited during tissue fibrosis (Mereness and Mariani, 2021). 

This is further supported by the increase in transforming growth factor-beta- induced 

protein ig-h3 (+1.71 fold), a pro-inflammatory marker (Kim et al., 2016) which
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is induced by TGF-β. This suggests A. fumigatus infection is inducing tissue 

remodelling and an inflammatory environment within the host. The reduction in 

numerous metabolic processes in the host including valine, leucine and isoleucine 

degradation including methylmalonate-semialdehyde dehydrogenase (-1.91 fold) and 

3-Hydroxyisobutyryl-CoA hydrolase (-2.22 fold), crucial for valine degradation 

(Dobrowolski et al., 2020; Çakar and Görükmez, 2021) indicated reduced metabolic 

activity in the host tissue following fungal infection. 2-Oxocarboxylic acid metabolism 

was also compromised including Branched-chain-amino-acid aminotransferase (-1.75 

fold), involved in the initial catalysis of branched-chain amino acid (Cao et al., 2024) 

and Isocitrate dehydrogenase [NAD] subunit (-2.20 fold) which catalyses the 

conversion of isocitrate to α-ketoglutarate to fuel the TCA cycle (Chotirat et al., 2012). 

The biosynthesis of the branched aliphatic proteinogenic amino acids valine, leucine, 

and isoleucine also depend on precursors produced from 2- oxocarboxylic acid 

metabolism (Kirschning, 2022). Amino acid metabolism is known to stimulate A. 

fumigatus virulence and this would suggest that A. fumigatus degrades host proteins to 

scavenge for nutrients (Hartmann et al., 2011). A. fumigatus relies heavily on the amino 

acids valine, isoleucine, and methionine as carbon sources during invasive aspergillosis 

(Ibrahim-Granet et al., 2008), which was also decreased in abundance in the infected 

explants. The catabolism of host amino acids leads to the accumulation of propionyl- 

CoA, which is incorporated as pyruvate into the primary metabolism via the 

methylcitrate cycle-a pathway closely linked to the TCA cycle (Garbe and Vylkova, 

2019). 

Many extracellular matrix component proteins were increased in abundance in 

P. aeruginosa mono-infected tissue including type VI but also type IV collagen chains 

which are elevated in response to epithelial damage (Urushiyama et al., 2015). 

Fibroblasts enhanced the expression of α1 and α2 chains of type IV collagen after 

transforming growth factor-β1 stimulation (Urushiyama et al., 2015). There was also 

evidence of Natural killer cell mediated toxicity. Natural killer cells directly kill 

extracellular P. aeruginosa through a contact-dependent process that requires 

granzyme induced ROS production (Feehan et al., 2022). Host proteins decreased in 

abundance during P. aeruginosa mono-infection indicate utilisation of host nutrients 

in a similar manner to A. fumigatus infection but also displays elements of immune 

evasion with evidence of degradation of complement factors including complement 
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component 1 Q subcomponent-binding protein, mitochondrial was decreased in 

abundance -2.15 fold, complement factor H (-2.41 fold) and C4b-binding protein 

(C4BP) (-4.21). P. aeruginosa elastase can destroy several complement proteins, 

including cell-bound C3 and fluid phase C9, and inactivate others, including fluid 

phase C2, C4, C6, and C7. C1q and C3 were degraded by both elastase and alkaline 

protease derived from P. aeruginosa (Hastings et al., 2023). Fibromodulin (keratan 

sulfate proteoglycan fibromodulin) was also decreased -24.87 fold and activates the 

classical and alternative pathways of complement via direct binding to complement 

elements C1q and C3b. Mice lacking fibromodulin displayed abnormal wound healing, 

which correlates with elevated inflammatory cell infiltration and accelerated epithelial 

cell migration and increased type I TGF-β receptor levels in individual inflammatory 

cells at wound sites (Zheng et al., 2016). 

The decrease in the abundance of LasB was specific to coinfection with A. 

fumigatus indicating specific response and consequences within the host. This suggests 

that P. aeruginosa could be manipulating the host immune response to outcompete A. 

fumigatus. Decreased expression of valine degradation methylmalonate-semialdehyde 

dehydrogenase (-5.55 fold) and 3-hydroxyisobutyryl- CoA hydrolase (-2.71 fold) 

similarly to A. fumigatus infection but to a more significant factor. P. aeruginosa mono- 

infected tissue also highlights butanoate metabolism including a decrease in Succinate- 

semialdehyde dehydrogenase (-4.13 fold) and Succinyl-CoA:3-ketoacid coenzyme A 

transferase 1 is annotated as part of the pathway (Zhang and Yang, 2022). Butanoate 

metabolites, particularly acetoin, is associated with chronic persistence of P. 

aeruginosa in hypoxic biofilm as it is required for promoting planktonic cells to the 

biofilm state (Abdelhamid and Yousef, 2024). Reduction in host Butanoate metabolism 

could indicate leaching specific nutrients from the host to fuel its own chronicity. 

Histone H3 was significantly increased in abundance in coinfected explants 

relative to uninfected controls (+58.27 fold) and is known to be released during 

NETosis (Grilz et al., 2019) a process induced by both P. aeruginosa and A. fumigatus. 

There was less prominent expression of collagen subunits potentially indicating 

reduced remodelling occurring in the coinfection when compared to each species 

colonisation in isolation. The proteome of the coinfected explants also indicated a 

mixed phenotype when compared to mono-infection with complement activation, as 
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observed in A. fumigatus infection and Natural killer cell cytotoxicity, as observed in 

P. aeruginosa infection, both occurring when the species coinfect the lung. The 

decrease in metabolic processes indicate competition over some nutrients including 

propanoate and Valine leucine and isoleucine but also specific alterations including 2- 

Oxocarboxylic acid metabolism, only detected in A. fumigatus infection and 

Glyoxylate and dicarboxylate metabolism, only detected in P. aeruginosa infection 

were also detected indicating a combination impact on the host tissue when both 

species are present and a unique pathology with shared attributes of both components 

has been identified. 2-Oxocarboxylic acid metabolism can stimulate A. fumigatus 

development and the glyoxylate and dicarboxylate metabolism pathway allows P. 

aeruginosa to grow on limited carbon sources by synthesizing macromolecules from 

two-carbon compounds such as ethanol and acetate Additionally, the glyoxylate cycle 

is up-regulated in P. aeruginosa under conditions of oxidative stress and antibiotic 

stress, which induces oxidative stress (D’Arpa et al., 2021). 

When comparing coinfected explants to A. fumigatus mono-infection there is 

further evidence of elevated inflammation including increased abundance of 

myeloperoxidase (+1.96 fold), also detected to be increased +2.92 fold in P. 

aeruginosa mono-infected explants but decreased -3.62 fold in A. fumigatus mono- 

infected explants relative to the control. Myeloperoxidase is a potent inhibitor of both 

A. fumigatus (Balloy and Chignard, 2009) and P. aeruginosa (Dickerhof et al., 2019). 

There was a decrease in proteins associated with tissue structure in the coinfected tissue 

relative to A. fumigatus mono-infected tissue. Collagen type VI alpha 3 chain (- 17.16) 

is a microfibrillar component of the extracellular matrix and is essential for the stable 

assembly process of collagen VI (Wang and Pan, 2020). 

There is evidence of potent activation of the adaptive immune response in 

coinfected explants. Janus kinase and microtubule interacting protein 1 was increased 

+11.15 fold relative to P. aeruginosa mono-infection. Induction of Jakmip1 occurs 

upon TCR/CD28 stimulation and parallels induction of effector proteins, such as 

granzyme B and perforin (Libri et al., 2008). In addition, basal cell adhesion molecule 

was increased +5.23 fold relative to P. aeruginosa mono-infected tissue, which was 

also increased +1.69 fold in A. fumigatus mono-infected tissue and decreased -4.43 

fold in P. aeruginosa mono-infected explants relative to uninfected controls, 

respectively. This protein drives leukocyte recruitment resulting in a proinflammatory 
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microenvironment (Huang et al., 2014) indicating increased inflammation and immune 

recruitment during coinfection. In coinfection EVPL samples Interleukin-6 was also 

increased in abundance relative to both mono-infections, increased +3.28 fold relative 

to A. fumigatus mono-infection and +2.44 fold relative to P. aeruginosa mono- 

infection. IL-6 has a pivotal role in protective immunity against A. fumigatus infection 

in mice (Heldt et al., 2017). Elevated IL-6, high local neutrophil counts and lung 

oedema were characteristic signs of a temporary decline in lung function and correlate 

with signs of histologic inflammation in response to P. aeruginosa infection 

(Wölbeling et al., 2011). 

Proteins decreased in abundance in the coinfected EVPL tissue relative to P. 

aeruginosa mono-infected tissue include proteins associated with iron sequestering 

and storage. Ferritin light chain (Ferritin L subunit) (-16.50 fold), an iron-binding 

protein was found to be decreased in A. fumigatus infection in air-liquid interface 

models, which results in an increased amount of free iron available to the fungus (Toor 

et al., 2018). Lactotransferrin was also decreased -1.55 fold and it is released by 

neutrophils typically in response to inflammation and has potent antifungal activity via 

iron and fungal siderophore sequestration (Zarember et al., 2007; Leal et al., 2013). 

Lactoferrin levels were found to be decreased in CF patients with P. aeruginosa 

infection (Rogan et al., 2004). This would suggest elevated iron availability during 

coinfection relative to P. aeruginosa mono-infection and weakening of host defences 

against both pathogens. Iron availability has been identified as being crucial for A. 

fumigatus proliferation and plays a pivotal role in fungal virulence (Moore, 2013). 

There is evidence suggesting that immunocompromised patients with iron-overload 

after transplantation are at high risk of developing invasive aspergillosis (Matthaiou et 

al., 2018). 

6.4 Conclusion 

Proteomic analysis of coinfection between A. fumigatus and P. aeruginosa in a 

realistic host model provides new insight into how the species interact and the 

consequences of these interactions for the host. P. aeruginosa dominates in coinfection 

at the expense of A. fumigatus as supported by metataxonomic analysis where A. 

fumigatus induces dysbiosis favouring growth of Pseudomonadota and P. aeruginosa 

specifically. This seems to be driven by competition over nitrogen, sulphur and iron 

nutrient sources. P. aeruginosa appears to induce a more potent 
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pro-inflammatory microenvironment through loss of LasB expression which can aid 

in the clearance of their fungal competitor. Our work clearly demonstrates that single 

and dual infections of these two important pathogens have distinct pathologies within 

the EVPL tissue, inducing fibrosis and distinct immune responses. A mixed result 

was observed in coinfected explants indicating dynamic interactions between the host 

and the pathogens in isolation or in combination. 

6.5 Materials and Methods 

6.5.1 Aspergillus fumigatus culture conditions and conidial preparation 

Aspergillus fumigatus ATCC 26933 was cultured for 72 h at 37 °C on malt 

extract agar (MEA) (Oxoid, Basingstoke, UK) following point inoculation. The 

conidia were harvested by washing with phosphate-buffered saline supplemented with 

0.1% (v/v) Tween-20 (PBS-T), and the suspension was washed three times with PBS. 

Conidia were enumerated using a haemocytometer and diluted to a final concentration 

of 1x107 conidia/ml 

6.5.2 Pseudomonas aeruginosa culture conditions and liquid suspension 

preparation 

Pseudomonas aeruginosa (PAO1) was cultured for 24 h at 37 °C on Nutrient 

agar plates (Oxoid, Basingstoke, UK). A single colony from the plate was isolated with 

an inoculating loop and placed into 1ml of sterile PBS to generate a bacterial 

suspension with a density of approximately 1.1x109 cells/ml. 

6.5.3 Preparation of ex-vivo pig lung sections 

Lungs from a single pig were collected from a local abattoir within an hour of 

slaughter and transported on ice to Maynooth University. The respiratory zone of the 

lung (tissue rich in alveolae) was processed into tissue explants (5×5×5 mm) as 

previously described (Harrison et al., 2014) with the following changes. Unprocessed 

control sections (n=3) were removed following surface sterilisation of the pleura, 

which served as untreated controls for metataxonomic analysis. Control EVPL explants 

(n=3) were sham inoculated with a needle dipped into PBS. Infected EVPL sections 

(n=3) were inoculated with A. fumigatus conidia via a needle dipped in a 1x107 

conidia/ml suspension, and other tissue samples (n=3) were inoculated with P. 

aeruginosa suspension (approximately 1.1x109/ml) in a similar manner. Coinfected 

explants (n=3) were inoculated with two single inoculations with each pathogen 

immediately adjacent to each other. All sections were suspended in 50/50 mixture of 
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RPMI (Gibco, UK) and DMEM (Gibco, Miami) and incubated at 6% CO2 and 37 °C 

for 96 hours. RPMI/DMEM was used for this experiment for consistency with our 

previous work (Curtis et al., 2025). 

6.5.4 Visualisation of tissue pathology 

Infected tissue explants were removed from the 24 well plate with sterilized 

forceps at 96 hours post infection. The explants were washed in sterile PBS prior to 

visualisation at 40x magnification using a brightfield microscope (Olympus CH20). 

6.5.5 DNA Extraction, Library Preparation, and Sequencing 

Genomic DNA was extracted from 200 µl of EVPL lysate from unprocessed 

and processed control lung isolates as well as mono-infected P. aeruginosa sections, 

mono-infected A. fumigatus sections and sections coinfected with P. aeruginosa and 

A. fumigatus. The extraction was conducted using the DNeasy PowerSoil Pro Kit 

(QIAGEN) according to manufacturer’s instructions. DNA concentration and purity 

values were analysed with a Nanodrop 2000 Spectrophotometer (ThermoFisher 

Scientific). A total of 30 ng of qualified genomic DNA was used as input for PCR 

amplification using either 16S rRNA gene or ITS2 region fusion primers. Amplified 

products were purified using Agencourt AMPure XP beads, eluted in Elution Buffer, 

and subsequently labelled for library construction. The quality and concentration of 

the libraries were assessed using an Agilent 2100 Bioanalyzer. Libraries that met the 

quality thresholds were sequenced on the DNBSEQ platform by BGI. The resultant 

sequences were filtered and classified using their standard bioinformatics pipeline 

described below. All raw sequences have been deposited to the NCBI under Bioproject 

accession PRJNA1279114, Biosample accession SAMN49395613 and SRA 

accessions SRX29229626- SRX29229644. 

6.5.6 Sequence Data Processing and Quality Control 

 

Raw reads were processed to obtain high-quality clean sequences. Filtering was 

carried out using iTools Fqtools fqcheck (v0.25) (Dinov et al., 2008), readfq (v1.0), 

and Cutadapt (v2.6) (Martin, 2011), with the following criteria. Reads with an average 

Phred quality score below 20 across a 25 bp sliding window were truncated, subsequent 

reads trimmed to less than 75% of their original length were discarded. Adapter- 

contaminated reads (≥15 bp overlap with ≤3 mismatches) were also removed. Any reads 

containing ambiguous bases (N) or low-complexity reads (≥10 consecutive identical
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bases) were excluded. Demultiplexing was completed using in-house BGI scripts. For 

both 16S and ITS2 libraries, paired-end reads with overlapping regions were merged 

into consensus tags using FLASH (v1.2.11) (Magoč and Salzberg, 2011). The merging 

required a minimum overlap of 15 bp overlap and a maximum mismatch rate of 10%. 

 

6.5.7 OTU Clustering and Chimera Removal 

 

High-quality tags were clustered into Operational Taxonomic Units (OTUs) at 

a 97% similarity threshold using USEARCH (v7.0.1090) (Zhou et al., 2024) with the 

UPARSE algorithm. Representative sequences were identified for each OTU. 

Chimeric sequences were identified and filtered using UCHIME (v4.2.40) (Edgar et 

al., 2011). 16S sequence chimeras were screened against the GOLD database 

(v20110519) (Mukherjee et al., 2017). ITS2 chimeras were removed based on 

comparisons to the UNITE database (v20140703) (Abarenkov et al., 2024). The 

remaining clean tags were mapped back to the OTU representative sequences using the 

USEARCH GLOBAL algorithm to quantify OTU abundances. 

 

6.5.8 Taxonomic Annotation 

 

Taxonomic classification of representative OTU sequences was performed 

using the RDP Classifier (v2.2) (Wang et al., 2007) with a confidence threshold of 

0.6. Bacteria and Archaea (16S) were classified using Greengenes (v202210) 

(DeSantis et al., 2006) and RDP (Release 19) (Wang and Cole, 2024). Fungi (ITS2) 

were classified using the UNITE database (Version 10) (Abarenkov et al., 2024). 

OTUs without taxonomic assignment were excluded from further analysis. 

6.5.9 Proteomic extraction 

Control, mono-infected and co-infected EVPL explants (n = 3 of each) were 

washed in PBS following incubation for 96 hours at 6% CO2 at 37 °C. Proteins were 

extracted and purified as previously described (Curtis et al., 2025). 

6.5.10 Mass spectrometry 

Proteomic analysis was conducted using a Vanquish Neo UHPLC system 

(Thermo Fisher Scientific), equipped with an EASY-Spray PepMap Neo column (2 

μm, C18, 0.075 x 500 mm) and coupled with an EASY-Spray source to an Orbitrap 

Ascend mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). Dried 
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peptides were dissolved in Mobile Phase A (2% acetonitrile, 0.5% Trifluoracetic acid 

and 97.5% water) to give a final concentration of 375ng/µl. The injection volume was 

set to 2 µl. After ‘Automatic’ loading, peptides were eluted using a 90-minute gradient 

with Mobile Phase A and Mobile Phase B (80% acetonitrile in water and 0.1 % formic 

acid) at a flow rate of 300 nL/min. The linear gradient was delivered from 2% to 40% 

Mobile Phase B over 80 minutes and from 40% to 90% Mobile Phase B over 10 

minutes followed by column wash and equilibration. Data-dependent acquisition was 

performed using Xcalibur (v4.7) and Orbitrap Tribrid Series instrument control 

software v4.2.The mass spectrometry parameters were set as follows: for the MS1 full 

scan, an Orbitrap resolution of 120,000 (at m/z 200), a scan range of m/z 375 to 1500, 

Automatic gain control (AGC) of 8 × 105, and maximum injection time Auto were 

used. Filters included MIPS, minimum intensity threshold of 5.xe3, include charge 

states 2-6, and dynamic exclusion of 60 seconds. For MS2 scans, Precursor ions were 

quadrupole isolated (m/z 1.6) and fragmented with an HCD (higher-energy collisional 

dissociation) NCE of 30%. Fragment ions were detected in the ion trap set to scan rate 

of Rapid, a scan range of m/z 110 to 2000, AGC target of 1 × 104, and a maximum 

injection time set to Auto. Precursor ions were fragmented using high-energy 

collisional dissociation (HCD) mode with a normalized collision energy of 30%. The 

AGC and maximum injection time were set to 1 × 104, respectively. Additionally, 

dynamic exclusion was set to 60s, and the isolation window was set to 1.6 m/z. The 

duty cycle was set to max cycle time of 2 seconds 

6.5.11 Data analysis 

A quantitative analysis of EVPL tissue, A. fumigatus and P. aeruginosa was 

conducted using MaxQuant version 2.5.2.0 (http://www.maxquant.org). Raw MS/MS 

datafiles were processed using the Andromeda search engine in MaxQuant software 

v.1.6.3.4 110 using the Sus scorfa reference proteome (46,174 entries, downloaded 

December 2023), a Neosartorya fumigata reference proteome obtained from a 

UniProt-SWISS-PROT (The UniProt Consortium, 2025) database to identify proteins 

(9647 entries, downloaded July 2022) or the P. aeruginosa reference proteome (5563 

entries, downloaded October 2024) respectively. The following search parameters 

were used: first search peptide tolerance of 20 ppm, second search peptide tolerance of 

4.5 ppm with cysteine carbamidomethylation as a fixed modification and N- 

acetylation of protein and oxidation of methionine were set as variable modifications 

http://www.maxquant.org/


197  

and a maximum of two missed cleavage sites were allowed. The False discovery rate 

(FDR) for peptides and proteins was set to 1% and was estimated following searches 

against a target-decoy database. Peptides with minimum length of 7 amino acids were 

considered for identification and proteins were only considered identified when 

observed in three replicates of one sample group. Proteomic data analysis was 

performed in Perseus v.1.6.15.0, for data analysis, processing, and visualization as 

described (Margalit et al., 2020). The mass spectrometry proteomics data have been 

deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 

2021) partner repository with the dataset identifier (PXD065657). 
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7.1 General discussion 

Aspergillosis has been globally acknowledged as a serious health concern due 

to rising rates of immunosuppression, antifungal resistance, and its increased 

geographical distribution as a result of climate change. The vulnerable patient cohort 

of A. fumigatus infections is constantly increasing, with more people living with pre- 

existing lung damage, compounded by the wider prescription of immunosuppressive 

agents (Joshi, 2024; Martinson and Lapham, 2024). This coupled with the growing 

range of A. fumigatus as a result of climate change has resulted in increased occurrence 

of disease (George et al., 2025). In addition, antifungal resistance against first-line 

therapeutics including triazoles represents a steadily growing challenge in the clinic. 

Despite this, the mechanisms governing the underlying resistance phenotypes are not 

fully elucidated (Kang et al., 2025). 

A. fumigatus infections are opportunistic and require specific conditions to 

develop and persist in the lung (Paulussen et al., 2016). The human body is constantly 

exposed to A. fumigatus conidia from the environment. The average adult is estimated 

to inhale more than 100 conidia daily with only one required to initiate infection in a 

vulnerable individual (Ortiz et al., 2022). Once the prerequisite conditions are present 

A. fumigatus can cause a range of devasting clinical manifestations which are highly 

dependent on the host’s physiological and immunological status. This range of 

manifestations and the role of the host in shaping the form of disease present, 

complicates the understanding of host adaptation processes and fungal pathogenesis. 

A. fumigatus virulence is complex and cannot be attributed to a single trait or 

factor. Many of these traits may have arisen from challenges observed in the soil niche 

such as nutrient limitation, adaptation to stress and competition with microorganisms 

and predatory amoeba (Askew, 2008; Earle et al., 2023). These factors include 

mechanisms for nutrient acquisition and production of enzymes and mycotoxins and 

stress mitigation. The development and activity of many of these traits in the soil could 

imply off target effects and cross-reactivity are responsible for their impact on the 

human host, classifying A. fumigatus as a true “accidental pathogen” of humans. One 

example of this is gliotoxin, which was identified as a virulence factor in many models 

and experimental settings. Gliotoxin has long been classified as a virulence factor due 

to its immunosuppressive effects on macrophages and neutrophil recruitment (Schlam 
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et al., 2016; König et al., 2019). Despite this, gliotoxin is also produced in the soil 

where it has amoebicidal activities against the natural fungal predator Dictyostelium 

discoideum (Hillmann et al., 2015). Much of the basic machinery and signal 

transduction pathways of phagocytosis are evolutionarily conserved between amoeba 

and vertebrate macrophages, reflecting the ancient origins of this process (Gaudet et 

al., 2016). This exemplifies the potential that gliotoxin toxicity has arisen in the soil 

niche and its role in human colonisation can be attributed to cross reactivity resulting 

in inhibition of human immune cells, although this is not conclusive. 

Moreover, humans are considered to be a terminal host as A. fumigatus does 

not complete its lifecycle and does not display well developed mechanisms for 

dispersal once infection has been established (Hui et al., 2024). This complicates our 

understanding of the disease as traits facilitating host-adaption and acquisition of 

antifungal resistance would become more prevalent in the clinic through transmission 

from patient to patient (Verweij et al., 2020). The traits that enable survival of specific 

conidia in the presence of the host following inhalation from the environment also 

poses questions of fitness. Are specific conidia capable of adapting to persist in 

pressures exerted in the host environment? The alternative explanation is that the host 

simply serves as a selective bottleneck for strains already adapted to persist in the harsh 

environment imposed by the host (Ballard et al., 2018). To understand the development 

of A. fumigatus in the host and examine these adaptation processes, systems must be 

developed to faithfully replicate the host environment or specific aspects of the host 

environment to assess how the fungus persists. 

The work presented here utilised the G. mellonella larval model to emulate 

innate immune responses during chronic fungal infection and in host selection. The 

fungus was subjected to prolonged subculture on a bespoke agar containing the 

immune products and nutrients present within G. mellonella larvae. This approach was 

adopted to by-pass the short lifespan of the larvae following infection (Tsai et al., 2016) 

and enable analysis of host selection from a single parent strain. Similar work was 

conducted in vivo using the pathogenic yeast Cryptococcus neoformans in G. 

mellonella larvae for 15 passages resulting in the generation of a strain that grew faster 

in haemolymph but displayed altered susceptibility to hydrogen peroxide and was less 

virulent (Ali et al., 2020). Aspergillus flavus, demonstrated reduced genetic 

heterogeneity following cycling in G. mellonella (Scully and Bidochka, 2006). These 
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studies demonstrated fungal in host-adaptation and a potential shift towards persistence 

and chronicity. Our results demonstrated similar processes occurring in A. fumigatus 

giving rise to different phenotypes following 25 cycles on the galleria extract agar over 

231 days. This indicates that the agar was imposing a selection pressure on A. fumigatus 

resulting in a shift towards persistence in the host. There was also variation in the 

phenotype among the passaged strains, indicating many adaptations can enable 

persistence in the host. These strains demonstrated similar growth rates and virulence 

in vivo but varied in gliotoxin production and antifungal susceptibility. The adapted 

strains demonstrated altered susceptibility to various stressors including increased 

persistence in the presence of host immune cells and altered susceptibility to oxidative 

stress and antifungals including itraconazole and amphotericin B. In a similar response 

to that observed in C. neoformans (Ali et al., 2020) all adapted strains demonstrated 

reduced virulence in the host despite these adaptations indicating a shift towards 

chronicity could be occurring. 

The most significant alteration was observed in the E lineage which was 

selected for proteomic analysis. The small number of alterations detected indicated an 

increased abundance of proteins associated with oxidative stress mitigation. Proteomic 

analysis also identified that changes were not likely to have occurred as a result of 

nutrient limitation. This would suggest host metabolism or utilisation of nutrients from 

the host can fuel fungal development and fungal adaptation to products of the innate 

immune response. The strains also demonstrated a rapid emergence of antifungal 

tolerance, despite being derived from a treatment naïve parental strain. It is postulated 

that this resistance can be attributed to decreased expression of mitochondria complex 

I intermediate associated protein and histone H2A.Z, which regulates catalase 

production. Mitochondria complex I is the main source of reactive oxygen species 

generation in response to antifungal treatment (Shekhova et al., 2017). Production of 

reactive oxygen species by the innate immune response and fungal adaptations to 

persist in the presence of these stressors could influence antifungal susceptibility and 

response to the immune cells in vivo, offering an alternative explanation for the 

development of treatment tolerance in the clinic as this tolerance emerged in a similar 

time frame to clinically recommended treatment duration. 

This study indicated that in the context of chronic infection the host 

microenvironment serves as a selective bottleneck of a heterogeneous environmental 
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inoculum resulting in effective colonisation of the host by the fittest subpopulation and 

only minor changes can convey this fitness and these can be acquired rapidly. 

Understanding these alterations in the proteome and the consequences they can have 

in the clinic is crucial to understanding host adaptation and the rate at which it occurs. 

The findings of this study also replicated what has been observed in the clinic where 

isolates from patients with aspergillomas were found to be significantly less genetically 

variable, indicating that aspergillomas may form following selection for strains fit prior 

to prolonged colonisation (Howard et al., 2013). 

Expanding on this work, a sublethal A. fumigatus infection was established in 

vivo in G. mellonella larvae to characterise the response of the fungus to innate immune 

antagonism experienced during initial host colonisation but also to assess the host 

proteomic response to infection. This study provides a deeper insight into products 

released by A. fumigatus during infection and the kinetics of virulence factor 

production. It also enabled simultaneous profiling of the proteomic response of the 

pathogen and the host during the early stages of chronic infection. During the early 

stages of infection there was initial utilisation of carbohydrates and then a shift towards 

protein metabolism, particularly amino acid metabolism at 72 hours post infection. 

This is also when detection of fungal effectors including gliotoxin and siderophore 

production was most prominent suggesting metabolism is tied to fungal virulence. 

Qualitative proteomic analysis which identified the markers of other mycotoxins 

including fumitremorgin and fumiquinazoline C. Many of these effectors are derived 

from aromatic amino acids, which can be synthesized through the Shikimate pathway 

(Sasse et al., 2016). The detection of pentafunctional AROM polypeptide along with 

other proteins associated with aromatic amino acid biosynthesis suggest that this 

pathway may be involved in the virulence of A. fumigatus in vivo. This exemplifies 

that metabolism of the host protein heavily shapes the production of fungal toxins and 

fuels fungal development beyond 48 hours of infection. 

Examination of the response of the infected larvae relative to uninfected 

controls demonstrated aspects of morbidity, melanisation and reduced mobility. The 

larval proteome displayed increased abundance of proteins associated with metabolism 

and detoxification. There was also more potent activation of the immune response 

primarily associated with antimicrobial peptide production, inflammation and 

pathogen binding. There was a decrease in proteins associated with nutrient 
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reservoirs indicating the fungus can corrupt these pathways to access host nutrients. 

There was evidence of tissue-specific proteins being released into cell-free 

haemolymph indicating tissue damage, including troponin T which is used as a 

biomarker in human diseases involving tissue degradation (Tanindi and Cemri, 2011). 

These results highlight the innate immune antagonism elicited within the host and the 

impact that it can have on fungal development and production of secondary 

metabolites. 

The results obtained in the G. mellonella infection model identified that A. 

fumigatus can survive on nutrients present within the host and requires only minor 

proteomic alterations to persist in the presence of products of the innate immune 

response. The studies also provide insight into the production of various fungal factors 

such as mycotoxins and siderophores and how their production can be influenced by 

fungal metabolism from host resources. The results also support genome-wide analysis 

findings that indicate capacity to utilise aromatic amino acids as a key identifier of A. 

fumigatus virulence (Mirhakkak et al., 2023). We have identified how this may be 

important in virulence as in G. mellonella larvae this metabolism coincides with the 

production of various amino acid derived virulence factors including siderophores and 

mycotoxins. The analysis of both sides of the host- pathogen interactions is crucial to 

provide insight into the consequences of the production of these molecules and the 

roles they have in facilitating fungal growth and survival within the host. These studies 

also identified that the host may exert selection pressure on the fungus and that products 

of the host immune response can contribute to antifungal tolerance in a treatment naïve 

isolate. This is likely to occur through cross- reactivity in the off-target effects of 

antifungals, inducing reactive oxygen species production in the fungus. Both effectors 

induce an evolutionary ancient mechanism of oxidative stress mitigation and thus 

chronic exposure to the products of the innate immune response could aid in the 

development of in-host tolerance to antifungal agents governed at the protein level, 

even in treatment naïve strains. This furthers our understanding of antifungal tolerance 

development within patients in the context chronic infection. 

The host microenvironment in which A. fumigatus must develop is not sterile 

and as a result A. fumigatus must compete for resources and space with other 

microorganisms from the host microbiome and other invading pathogens. This is 

similar to its survival in the soil niche. The impact of microbial antagonism on A. 
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fumigatus development has often been overlooked and warrants further study. K. 

pneumoniae is a common co-pathogen with A. fumigatus in cystic fibrosis (CF) patients 

(Akyıl et al., 2025). The spatial arrangements and product exchanges during 

polymicrobial interactions are determining factors in the regulation of host 

microenvironment, impacting nutrient availability, distribution of microbial species 

and immune responses (Bitencourt et al., 2024). To assess these interactions in a 

spatially independent manner, A. fumigatus was exposed to the secretome of K. 

pneumoniae in culture. This provides insight into the impact that this bacterial species 

can have on the fungus independent of physical interaction. 

K. pneumoniae was grown for 96 hours to produce a culture filtrate which 

would contain secreted products but also products released during bacterial death 

which could interact with A. fumigatus in the lung microenvironment. Proteomic 

analysis of the culture filtrate identified 35 proteins which could alter fungal 

development. Three of these, a putative lipoprotein, outer membrane protein A and 

chaperone protein DnaK were physically bound to the fungal mycelia. These proteins 

were demonstrated to induce leakage in various other species and likely result in pore 

formation in the fungal membrane. The culture filtrate also contained enzymes 

associated with the bacterial cell wall and proteases which could potentially impact 

fungal activity. Proteins in the culture filtrate could also result in nutrient sequestering 

including non-siderophore iron uptake component EfeO and the high-affinity zinc 

uptake system protein ZnuA indicate metal starvation could be occurring. The culture 

filtrate significantly reduced fungal growth while promoting a shift towards secondary 

metabolism, particularly through the increased secretion of gliotoxin. Proteomic 

analysis of A. fumigatus exposed to the supernatant supports this as there was a 

significant increase in five out of thirteen proteins in the gliotoxin biosynthesis cluster. 

This would indicate that A. fumigatus is weakened through interactions with K. 

pneumoniae as it cannot grow as effectively but this growth inhibition results in the 

production of secondary metabolites that can be deleterious for the host and potentially 

fuel bacterial persistence through induced immunosuppression. The increase in 

gliotoxin production may be attributed to the physical binding of bacterial chaperones 

increasing A. fumigatus permeability and stimulating de novo gliotoxin biosynthesis 

(Reeves et al., 2004). It has been previously demonstrated that zinc limitation results 
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in increased gliotoxin production and the growth-limiting effects of exogenous 

gliotoxin are relieved by the presence of zinc in media (Traynor et al., 2021). 

In addition to the significant increase in gliotoxin which can have severe 

consequences on the hosts ability to mount an effective immune response (Ye et al., 

2021) other factors influencing fungal interaction with the host were altered. 

Fibrinogen C-terminal domain-containing protein was the most significantly increased 

protein. This implies increased capacity to bind to the host extracellular matrix as 

fibrinogen deposits form at the surface of wounded epithelia in asthmatic individuals 

and when lung damage is present (Upadhyay et al., 2012). These alterations in response 

to secreted microbial products in the absence of a host highlight the impact these 

interactions can have in shaping fungal virulence. These results also demonstrate that 

A. fumigatus is a weak competitor when exposed to products of bacterial pathogens as 

its development is severely hampered. In other studies of K. pneumoniae physical 

interaction was found to inhibit fungal germination (Nogueira et al., 2019). Similar 

results were obtained when A. fumigatus was exposed to P. aeruginosa culture filtrate 

which also affected fungal growth and secondary metabolism, identifying a similar 

protein profile to that found in the current work (Margalit et al., 2022). P. aeruginosa 

culture filtrate also contained the chaperone protein DnaK and proteins associated with 

uptake of nutrients, including ferric iron-binding periplasmic protein HitA. Despite 

these similarities, K. pneumoniae culture filtrate promoted gliotoxin biosynthesis, 

while P. aeruginosa inhibited it (Margalit et al., 2022). These results highlight the 

importance of the microbial component of the host microenvironment and the value of 

replicating it where possible to understand fungal adaptation and colonisation in human 

patients. 

To gain further insight into A. fumigatus host interactions with aspects of 

human airway colonisation the ex-vivo pig lung (EVPL) model was adapted for fungal 

development, as a model of lung physiology and architecture. The tissue also retains a 

host microbiome which is difficult to emulate in in vitro systems. A time course 

analysis was conducted to characterise the proteome of A. fumigatus during the first 96 

hours of growth on alveolar explants of a pig lung grown in culture conditions. This 

analysis also facilitated simultaneous characterisation of the host response during 

infection. 
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A. fumigatus demonstrated reduced growth on the lung explants at 72 hours 

post infection compared to an agar control indicating increased challenge when 

growing on a realistic host tissue compared to standard culture medium. This can be 

attributed to the complex nutritional profile of the tissue but also immune antagonism 

occurring within the tissue. In a similar pattern of growth to what was observed in G. 

mellonella larvae, proteomic analysis of A. fumigatus indicated an increased abundance 

of proteins associated with growth and carbohydrate metabolism at 48 hours, whereas 

at 72 and 

96 hours, proteins associated with amino acid metabolism were increased in 

abundance. This further supports the role of amino acid metabolism and biosynthesis 

in supporting fungal virulence. This is further supported by gene enrichment analysis 

at 96 hours post infection highlighted the increased abundance of proteins associated 

with ascorbate and aldarate metabolism, beta-alanine metabolism, fatty acid 

degradation, glycolysis/gluconeogenesis, tryptophan metabolism, and degradation of 

valine, leucine, and isoleucine. These have all been demonstrated to be enhanced 

following A. fumigatus exposure to human dendritic cells (Srivastava et al., 2019). 

There was also similarity to the G. mellonella experiments regarding 

secondary metabolite production being prominent in the later stages of colonisation on 

the EVPL tissue. The kinetics of mycotoxin production, including gliotoxin was 

confirmed through proteomic analysis. Other factors associated with virulence, 

including some factors not observed in larvae, were detected in the EVPL model. 

Pseurotin A production, as evidenced by detection of methyltransferase psoC and 

fungal enolase, and these were significantly increased in abundance at all time points. 

Fungal enolase has been identified as an inhibitor of the human complement cascade 

(Dasari et al., 2019). Other factors influencing colonisation were detected including 

fungal allergens, proteins associated with adherence and markers of fungal stress 

mitigation. In a similar manner to that observed in G. mellonella in vivo infection 

fungal allergens were detected and these can induce an immune response in the host 

(Liu et al., 2023). In addition, Cyanovirin-N domain-containing protein was also 

significantly increased in abundance at all timepoints. This protein may serve as a 

novel adhesin in A. fumigatus through strong interactions to mannose residues, 

potentially enhancing fungal attachment to the host (Koharudin et al., 2008; Driessen 

et al., 2012). Despite this range of effectors being produced there is also evidence of 

fungal stress responses indicating hostility in the tissue. There was evidence of hyphal 
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damage, exemplified by the detection of hexA associated with woronin body formation 

and the production of numerous detoxification enzymes. These markers indicate host 

antagonism is retained within the explants, and these factors can impede fungal 

development in a similar manner to that which is observed in the human lung. 

The ability of A. fumigatus to induce and alter an immune response and persist 

despite the production of various antifungal responses is further supported when 

examining the proteome of the explant in response to infection. This includes detection 

of markers of leukocyte recruitment and activation in the initial 48 hours post- 

infection. There is also evidence of an initial allergic response possibly induced by the 

expression of allergens, as carbonic anhydrase 4, expressed in IL-5-activated 

eosinophils was increased in abundance. In murine studies, carbonic anhydrase 4 was 

enhanced following an allergic insult with A. fumigatus (Wen et al., 2014). There was 

evidence of activation of the adaptive immune response with importin subunit alpha 

KPNA3 and KPNA4 increased in abundance and these are essential for TNF-alpha- 

stimulated NF-KB p50/p65 heterodimer translocation into the nucleus, resulting in a 

pro-inflammatory response (Fagerlund et al., 2005). 

Crucially immune response machinery known to be inhibited by A. fumigatus 

were inhibited in the explants including neutrophil degranulation and a decreased 

expression of pulmonary surfactant-associated protein A1 isoform X2. The levels of 

surfactant protein A are decreased in the lungs of patients with cystic fibrosis, acute 

respiratory distress syndrome and further chronic lung diseases (Heinrich, 2011). The 

specificity of the response to fungal pathogenesis is best exemplified by inhibition of 

the complement cascade. Components of the complement cascade were significantly 

decreased in abundance from 48 hours, and this was consistent at all subsequent 

timepoints. In addition, gene enrichment analysis also highlighted decreased 

complement and coagulation cascade activity at 96 hours post infection. This indicates 

potential immune evasion induced by the fungus could be occurring (Dasari et al., 

2019). These alterations occurred in the absence of other known complement evasion 

mechanisms and as such supports the role of enolase in this disruption and implies 

enolase is a potent inhibitor of this cascade or other factors yet to be identified are 

involved in the evasion observed in this study. 
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The EVPL model also indicated fungal utilisation of host nutrients for survival 

as observed in G. mellonella. Gene enrichment analysis across timepoints also 

highlighted a consistent decrease in proteins associated with the citrate cycle and amino 

acid degradation indicating the infected tissue is less metabolically active following 

infection. This is similar to that observed in murine models of invasive pulmonary 

Aspergillosis (Kale et al., 2017). The EVPL tissue also demonstrated evidence of tissue 

damage as observed in the later stages of larval infection but goes beyond what is 

observed in the insect as there is evidence of fibrosis and tissue remodelling from 48 

hours including collagen accumulation. This may be driven by transforming growth 

factor beta-1-induced transcript 1 protein increased as overexpression of TGF-β is 

known to induce collagen deposition in mice (Hillege et al., 2020). From 72 hours 

many components of the extracellular matrix (ECM) increase in abundance in response 

to A. fumigatus infection. These markers are also induced during fibrosis and are 

associated with the establishment of invasive fungal diseases. The increased expression 

of ECM components could also facilitate the covering of fungal hyphae by these 

components (Loussert et al., 2010). This can lead to the formation of aspergillomas 

where the hyphae are embedded together in this dense extracellular matrix, whereas in 

invasive aspergillosis hyphae are individually engulfed in the matrix (Müller et al., 

2011). The extracellular matrix coating protects the fungus against host immune 

effectors as well as antifungal drugs (Muszkieta et al., 2013). 

These results indicate dynamic and specific interactions occur between A. 

fumigatus and the EVPL explants and these responses share similarities to that 

observed in human patients and previously observed in G. mellonella larvae. A. 

fumigatus demonstrates a similar metabolic profile at similar stages of development 

and the kinetics of various virulence factor production in these models. However, the 

ex-vivo pig lung model goes further what was observed in G. mellonella larvae, 

providing insights into the attachment, metabolism, growth and virulence in response 

to a dynamic innate and adaptive immune response and complex tissue architecture. 

These results also demonstrate the importance of emulating the host as accurately as 

possible to gain insight into host-pathogen interactions. 
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To further utilise the newly adapted ex-vivo pig lung model we aimed to 

establish and assess the interactions of A. fumigatus during coinfection with P. 

aeruginosa in a realistic host tissue context and characterise all three species within 

this interaction simultaneously. Examination of infected explants demonstrated growth 

of both pathogens in isolation, however in coinfection there was weakened identifiers 

of each pathogen respectively particularly reduced fungal development. This indicated 

competition between pathogens within the co-infected tissue. This competition was 

supported through metataxonomic analysis of the explants which revealed that A. 

fumigatus infected explants resulted in dysbiosis of the tissue microbiome. This 

resulted in promotion of the Pseudomonadota phylum, but more specifically P. 

aeruginosa at the species level. Its abundance was significantly higher in co-infection 

relative to P. aeruginosa mono-infected explants. This confirms that A. fumigatus can 

facilitate P. aeruginosa dominance in the airways. Proteomic analysis of A. fumigatus 

in coinfection with P. aeruginosa relative to mono-infection suggests that P. 

aeruginosa dominance comes at the expense of A. fumigatus as there is a reduced 

abundance of proteins associated with virulence. In addition, enolase, previously 

demonstrated to inhibit the complement cascade (Dasari et al., 2019) was decreased 

in abundance in A. fumigatus in coinfected explants. These alterations can be 

attributed to a lack of nitrogen availability as proteins associated with numerous 

processes involving nitrogen utilisation and S-adenosylmethionine metabolism were 

decreased in abundance in coinfection. This indicates competition with P. aeruginosa 

for nitrogen as well as sulphur containing amino acids cysteine and methionine, both 

of which have been associated with fungal growth and virulence in the host (Amich et 

al., 2016). 

This explanation is further supported by analysis of the P. aeruginosa proteome 

which identified an increase in translation machinery and abundance of proteins 

involved with regulation of amino acids and their amide derivatives. This suggests 

increased cellular activity related to protein synthesis and nitrogen utilisation. All of 

these factors indicate reduced availability of crucial nutrients for A. fumigatus because 

of competition from P. aeruginosa and that A. fumigatus development is hampered by 

coinfection with P. aeruginosa. This is a similar to that observed when A. fumigatus 

was grown in the presence of the secreted products of K. pneumoniae and its growth 

was compromised. This also suggests that A. fumigatus enhances the development
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of its competitors and can fuel their virulence resulting in enhanced damage to the 

host. This is exemplified through the decreased detection of elastase LasB which is 

associated with acute virulence and is the most abundant protease produced by P. 

aeruginosa (Sun et al., 2020). LasB is a potent immune evasion molecule in acute 

infections through its ability to manipulate host responses (Suarez- Cuartin et al., 

2017). The gene lasR regulates LasB and loss of function mutants frequently arise in 

chronically infected CF patients and are associated with greater neutrophilic 

inflammation and immunopathology in both murine models and human patients 

(LaFayette et al., 2015). The decreased abundance of elastase (LasB) in the 

coinfection group indicates this phenomenon could be occurring in the lung explants, 

driving inflammatory response at the expense of A. fumigatus clearance. 

Characterisation of the tissue response to the various infection states highlight 

the impact each pathogen has on the host and the accumulative effect that occurs in 

coinfection. A. fumigatus mono-infection induces tissue fibrosis and inflammation as 

observed in the Chapter 5, but unlike the previous work there was activation of the 

alternative complement cascade pathway indicating that some differential responses 

may occur within the model. There was also a decrease in abundance of proteins 

associated with metabolic processes including valine, leucine and isoleucine 

degradation and 2-Oxocarboxylic acid, involved in the biosynthesis of the branched 

aliphatic proteinogenic amino acids (Kirschning, 2022). This further supports the 

previous ex-vivo pig lung results and the G. mellonella results which demonstrated 

amino acid metabolism from the host can fuel fungal virulence during the initial stages 

of host colonisation and immune antagonism. A. fumigatus relies heavily on the amino 

acids valine, isoleucine, and methionine during invasive aspergillosis (Ibrahim-Granet 

et al., 2008), and these metabolic processes were decreased in the infected explants. 

In response to P. aeruginosa mono-infection there was also evidence of fibrosis 

and alteration to the extracellular matrix in addition to stimulation of the immune 

response driven by natural killer cells. Proteins decreased in abundance were associated 

with different metabolic processes to that decreased in response to A. fumigatus 

indicating utilisation of host nutrients in a similar manner to A. fumigatus infection. 

Both species seem to reduce host valine degradation but P. aeruginosa also decreased
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butanoate metabolism, associated with chronic persistence of P. aeruginosa in 

hypoxic biofilms (Abdelhamid and Yousef, 2024). Reduction in host butanoate 

metabolism could indicate leaching specific nutrients from the host to fuel its own 

chronicity. Additionally, glyoxylate and dicarboxylate metabolism was decreased in 

the host infected with P. aeruginosa. The glyoxylate cycle is upregulated in P. 

aeruginosa under conditions of oxidative and antibiotic stress (Matthaiou et al., 2018). 

The proteome of the coinfected explants indicated a mixed phenotype when 

compared to both mono infections. This includes more potent immune responses 

including both the complement cascade and natural killer cell medicated toxicity 

observed in A. fumigatus and P. aeruginosa mono-infection respectively. There was 

also similarity in the decrease of metabolic processes with propanoate and valine 

leucine and isoleucine degradation, downregulated in both mono-infections and 

coinfection, indicating both pathogens require these resources. In addition, 2- 

Oxocarboxylic acid metabolism, only detected in A. fumigatus infection and glyoxylate 

and dicarboxylate metabolism, only detected in P. aeruginosa infection, were also 

decreased in coinfection indicating a combinational impact on the host tissue when both 

species are present. 

The coinfected EVPL induced a more potent adaptive immune activation and 

inflammatory response when compared to each mono-infection exemplified through 

elevated Interleukin-6 detection relative to both mono-infections. IL-6 has a crucial 

role in protective immunity against A. fumigatus infection in mice (Heldt et al., 2017) 

and elevated IL-6 and lung oedema were characteristic signs of P. aeruginosa infection 

(Wölbeling et al., 2011). Lactoferrin and ferritin light chain were both decreased in 

abundance in coinfected EVPL relative to P. aeruginosa mono-infection potentially 

indicating the presence of A. fumigatus can disrupt host iron sequestering resulting in 

elevated iron availability fuelling bacterial development. This is similar to decreased 

expression of G. mellonella nutrient reservoir processes and can potentially be 

attributed to A. fumigatus in the EVPL model also. This work clearly demonstrates that 

single and dual infections by these two important pathogens have distinct pathologies 

within the EVPL tissue, inducing fibrosis and distinct immune responses. 
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These studies culminate to provide novel phenotypic and proteomic insight into 

the development of A. fumigatus in the presence of various stressors experienced within 

a host including immune antagonism, oxidative stress, nutrient limitation and 

competition with bacterial pathogens. When exposed to these stresses in isolation and 

in combination, A. fumigatus utilises effectors evolved and produced during survival 

in the soil to overcome these challenges and survive. The production of these effectors 

appears to be tightly linked with metabolite availability to A. fumigatus as their 

production in both model systems examined in this work was tied to protein and 

aromatic amino acid metabolism within the host. The main aim of the production of 

these effectors appears to be stress mitigation and nutrient salvage. Siderophores 

harvest iron from the host and even gliotoxin, long observed as an immunosuppressive 

toxin is capable of stripping metals such as zinc from the host, although fungal 

utilisation of this zinc is yet to be confirmed (Downes et al., 2023). 

The ability of A. fumigatus to persist following inhalation into the body requires 

a specific set of circumstances and mimicking these conditions experimentally often 

requires biasing the infection dose to facilitate establishment of infection. The ability 

of particular conidia to survive is partially driven by host selection pressure by which 

conidia with particular fitness traits in the environment are selected for within the host. 

As a result, the traits the fungus already possesses enable it to survive in the presence 

of host effectors. This is further supported by the fact that a small number of protein 

changes can significantly alter the phenotype and survival of a strain in such a hostile 

environment resulting in the capacity to cause chronic infection. This indicates that 

host-selection influences host adaptation processes by selecting for traits that exist in 

the soil that also provide fitness in the human airways and tolerance of antifungal 

agents, specifically those fit to tolerate oxidative stress. 

The factors enabling fungal persistence requires the repurposing and utilisation 

of ancient and conserved mechanisms with cross-reactivity often to the detriment of 

the host, these include siderophores, mycotoxins and enzymes that can degrade host 

tissue and facilitate fungal invasion. It remains unclear if any effector identified as 

contributing to virulence in patients cannot be found in the soil as many are found to 

be produced in response to pressures exerted in this niche. The ability to repurpose 

these molecules implies that this accidental pathogen does display aspects of host 

adaptation and its ability to acquire and utilise host nutrients to survive supports this. 
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The ability of A. fumigatus to survive in the host environment can be attributed 

to selection for traits that enable the fungus to develop in its soil niche. These include 

its vast metabolic repertoire and versatility, its suite of fungal effectors and its rapid 

adaptability to stress. These factors make A. fumigatus a serious threat and the work 

presented here identifies only minor changes are required to facilitate its successful 

colonisation of the host from a wildtype strain. These findings suggest that strategies 

and effectors observed in the environment can give rise to pathogens without need for 

significant alterations within the host. Once a species can persist at suitable body 

temperature other environmental species may be equally as equipped to colonise 

humans through repurposing of enzymes, toxins and traits developed in the 

environment. This is of growing concern because of climate change as the number of 

fungal pathogens has already increased in recent years in a concerning trend that is 

likely to intensify. In some ways this work may confirm that A. fumigatus is an early 

emerging archetype of an environmental fungus whose environmental niche shaped its 

development and human disease is a consequence of how it has been shaped over 

evolutionary time. The inability of A. fumigatus to compete with bacterial pathogens 

as examined with K. pneumoniae and P. aeruginosa that inhabit a similar niche in the 

soil and in the lung further supports A. fumigatus’ identity as an accidental pathogen. 

This can be attributed to the fact that these bacterial species possess more robust 

arsenals of effectors which consistently outcompete and exploit the fungus for their 

own gain even irrespective of physical interaction. Despite this, traits conferring the 

ability of A. fumigatus to grow and persist in the lung including mycotoxin production, 

host degrading enzymes and nutrient acquisition strategies may also be present in other 

environmental fungi shaped by competition with other organisms and screening for 

these traits in the environment can aid in identifying species that may emerge as future 

pathogens, given the development of thermotolerance. 

The mechanisms governing A. fumigatus host adaptation and persistence 

though not uniquely produced in the host, give rise to a serious human health risk, 

resulting in the cost of many lives every year. In-depth analysis to understand these 

mechanisms is warranted in order to inform effective treatment of the disease. The 

nutritional requirements of A. fumigatus and its preferences towards aromatic amino 

acid metabolism offers a gap in its microbial armour and offers
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exciting avenues for the development of targeted therapeutics potentially acting on 

the conserved shikimate pathway. Understanding the kinetics and production of 

specific effectors and what is required prior to their production offers opportunity 

to intercept or target them to weaken fungal disease but also prevent the detrimental 

impacts these factors have on the host. It is crucial to examine these factors in 

systems that replicate the complexity of the host microenvironment to gain true 

insight into how these factors facilitate fungal survival and disease development in 

order to find novel ways to overcome this threat. 

 

 

7.2 Concluding remarks and future work 

A. fumigatus is a serious cause of disease and death but many of the factors 

facilitating its virulence are attributable to the species development in the soil niche. 

These include oxidative stress mitigation, the biosynthesis and utilisation of aromatic 

amino acids, and the production of various effectors including mycotoxins and 

siderophores, some of which can be derived from these metabolites. Examination of 

these traits in alternative model systems mimicking aspects of the host in isolation has 

provided novel insight into the requirements for fungal survival and persistence within 

the host. This work has also examined how aspects of the host environment influence 

the production and kinetics of fungal effectors and the impact they have on the host. 

The work presented here provide insight into the dynamics of host-pathogen interaction 

and has identified immune evasion and mitigation strategies displayed by the fungus 

during the initial stages of this interaction. The work presented here also highlights that 

only minor alterations are required to facilitate fungal persistence in the human host and 

that these alterations can influence the efficacy of antifungal therapy. Despite the 

ability of A. fumigatus to persist in the presence of multiple stressors, it often competes 

poorly against other better equipped bacterial pathogens through both indirect 

interactions with secreted products and through direct competition within the host 

niche. Despite this inability to compete, the fungus still poses a threat to the host and 

its interactions with bacterial species can result in enhanced virulence and development 

of its microbial competitor at the expense of the host. Much remains to be understood 

about A. fumigatus interactions and adaptation within the host and this and future 

studies will equip clinicians and researchers with better targets for diagnostics 

and therapeutics in order to tackle this disease. 
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            The work presented here primarily focused on proteomic analysis to elucidate 

mechanisms governing fungal survival in the host and utilised alternative model 

systems including G. mellonella and the ex-vivo pig lung model. Future work can 

expand this through examination of fungal development through transcriptomic 

analysis as a multi-omics approach can provide more robust and detailed insight into 

these factors. Further investigation into host-adaptation and passaging work in other 

model systems could be conducted to further elucidate the mechanisms governing in- 

host antifungal tolerance development as this poses a serious threat to human health 

and should be understood in better detail.  

            The ex-vivo pig lung model could be further developed for fungal biology and 

should be expanded to examine more polymicrobial interactions, antifungal efficacy in 

the context of tissue absorption and metabolism. The model could be further developed 

for use in examining other pulmonary fungal pathogens. The model would benefit from 

the development of further, more targeted endpoints to assess particular aspects of 

fungal virulence and development. The next iteration of the model could aim to utilise 

condition specific media such as artificial sputum media. This model would also be 

improved through the addition of perfusion to replenish nutrients in the system. The 

principles of the model could also be applied to other model systems including smaller 

mammals such as mice, where a whole lung model could be developed. The mice could 

be utilised from other experimental set ups that do not impact the lung or from breeding 

stock mice in line with the 3Rs principles to maximise the use of sacrificed mice. The 

development of a whole murine lung model could better emulate the structure and entry 

of a pathogen into the lung architecture and physiology. It would also by-pass the 

reliance on immune-suppressed mice currently found in fungal pathology literature 

enabling the immune response to be retained. 

              It is with hope that the work presented here will serve as a stepping stone for 

future breakthroughs, and that expansion of this work will aid in understanding the 

fundamentals of A. fumigatus pathogenesis and persistence. These expansions will 

identify strategies and targets for the next generation of antifungal agents and will aid 

in alleviating the growing threat of antifungal resistance and fungal disease. 
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Figure S6.1: Species rarefaction plots for all 16S and ITS2 samples. A: unwashed 

tissue, B: washed tissue, C: P. aeruginosa mono-infection, D: A. fumigatus mono- 

infection, E: coinfection. 
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Figure S6.2: Gene enrichment analysis highlighting biological processes decreased in 

expression in A. fumigatus when in coinfection with P. aeruginosa relative to growth 

in mono-infection 
 

Figure S6.3: Gene enrichment analysis highlighting biological processes increased in 

expression in P. aeruginosa when in coinfection with A. fumigatus relative to growth 

in mono-infection 
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Table S6.1: 16S sequencing results at the Phylum, Genus and Species levels A: 

unwashed tissue, B: washed tissue, C: P. aeruginosa mono-infection, D: A. fumigatus 

mono-infection, E: coinfection. 
 

Phylum 

Taxon A B C D E 

Thermomicrobiota 0.00% 0.00% 0.00% 0.00% 0.00% 

Planctomycetota 0.00% 0.00% 0.00% 0.00% 0.00% 

Thermotogota 0.00% 0.00% 0.00% 0.00% 0.00% 

Nitrospirota 0.00% 0.00% 0.00% 0.00% 0.00% 

Spirochaetota 0.00% 0.00% 0.00% 0.00% 0.00% 

Gemmatimonadota 0.00% 0.00% 0.00% 0.00% 0.00% 

CandidatusSaccharibacteria 0.00% 0.00% 0.00% 0.00% 0.00% 

Mycoplasmatota 0.00% 0.00% 0.00% 0.00% 0.00% 

Other 0.00% 0.00% 0.00% 0.00% 0.00% 

Synergistota 0.00% 0.00% 0.01% 0.00% 0.00% 

Campylobacterota 0.01% 0.00% 0.00% 0.01% 0.02% 

Acidobacteriota 0.02% 0.01% 0.01% 0.00% 0.01% 

Deinococcota 0.04% 0.02% 0.00% 0.00% 0.00% 

Fusobacteriota 0.35% 0.02% 0.01% 0.61% 0.04% 

Actinomycetota 1.73% 0.09% 0.10% 0.18% 0.32% 

Bacteroidota 4.48% 11.68% 8.06% 7.14% 5.12% 

Bacillota 9.75% 8.14% 24.83% 4.83% 7.97% 

Pseudomonadota 83.61% 80.04% 66.96% 87.22% 86.51% 

Genus 

Taxon A B C D E 

Acinetobacter 0.05% 0.04% 0.03% 2.84% 0.02% 

Peptoniphilus 0.30% 0.07% 0.00% 0.00% 2.84% 

Sporanaerobacter 0.00% 3.63% 0.02% 0.03% 0.01% 

Porphyromonas 0.02% 4.38% 0.22% 0.19% 0.04% 

Streptococcus 1.02% 1.80% 0.09% 0.05% 2.22% 

Aeromonas 0.00% 0.03% 0.03% 5.71% 0.00% 

Clostridiumsensustricto 3.54% 0.76% 0.01% 0.98% 0.56% 

Prevotella 0.15% 4.45% 0.61% 2.07% 0.06% 

Phocaeicola 1.72% 0.06% 5.68% 1.23% 0.13% 

Bacteroides 1.46% 1.24% 0.25% 2.88% 3.76% 

Comamonas 0.00% 6.78% 0.06% 3.19% 0.01% 

Peptostreptococcus 2.60% 1.20% 4.03% 2.80% 0.00% 

Suipraeoptans 0.63% 0.07% 19.29% 0.43% 0.04% 

Other 8.07% 3.13% 3.32% 3.05% 5.15% 

Actinobacillus 0.16% 53.13% 0.62% 0.33% 0.32% 

Pseudomonas 0.02% 0.17% 31.81% 0.22% 49.69% 

Escherichia 80.25% 19.06% 33.92% 73.99% 35.15% 
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species 

Taxon A B C D E 

Acinetobacter_baumannii 0.01% 0.01% 0.02% 2.83% 0.00% 

Bacteroides_heparinolyticus 1.21% 0.01% 0.05% 2.22% 0.01% 

Sporanaerobacter_acetigenes 0.00% 3.63% 0.02% 0.03% 0.01% 

Bacteroides_fragilis 0.00% 0.19% 0.08% 0.01% 3.70% 

Porphyromonas_macacae 0.01% 4.38% 0.01% 0.00% 0.00% 

Peptostreptococcus_porci 2.60% 1.20% 4.03% 2.80% 0.00% 

Suipraeoptans_intestinalis 0.63% 0.07% 19.29% 0.43% 0.04% 

Pseudomonas_aeruginosa 0.02% 0.17% 31.81% 0.22% 49.69% 

Other 95.51% 90.34% 44.68% 91.47% 46.55% 

 

Table S6.2. ITS2 sequencing results at phylum, genus and species level A: unwashed 

tissue, B: washed tissue, C: P. aeruginosa mono-infection, D: A. fumigatus mono- 

infection, E: coinfection. 
 

Phylum 

Taxon D E 

Other 7.56E-06 7.56E-06 

Mortierellomycota 2.27E-05 5.29E-05 

Basidiomycota 6.05E-05 0.000665 

Ascomycota 0.999909 0.999274 

Genus 

Taxon D E 

Other 0.000726 0.007849 

Aspergillus 0.999274 0.992151 

Species 

Taxon D E 

 


