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Abstract 

High rehydration quality is essential for infant formula (IF) powder. Existing rehydration tests lack 

objectivity and reproducibility. Furthermore, current studies into improving the objectivity of 

rehydration tests lack both integrated platforms and systematic analysis of end-user rehydration 

behaviour. 

This thesis evaluated an automated approach to measuring the IF Powders rehydration quality. 

It was hypothesised that the approach would provide a better understanding of how human-like bottle 

agitation and powder physicochemical properties impact rehydration quality. First, a previously-

developed robotic sample preparation prototype was integrated with a computer vision system to 

estimate sediment height, foam height, and number of white particles in rehydrated IF powders. 

Secondly, these estimates were compared to ratings from eight participants and modified laboratory 

reference tests. Finally, bottle agitations from ten participants were characterised using computer 

vision, and human-like robotic agitations were statistically learned. 

The platform exhibited significant correlations with participants’ ratings (> 0.68), modified 

reference tests (0.79 and 0.55 for sediment height and white particles, respectively), and platform 

duplicate measurements (> 0.87). While white particle correlation may necessitate further research, 

the results suggest the potential to provide automated objective results across laboratories. The 

platform’s novel ability to monitor sediment height over time was used to develop a predictive model 

for rapid screening of dispersibility. The learned swirl agitation resulted in a lower foam height and 

higher sediment height than shake agitation suggesting that different end-users’ rehydration styles 

may yield different rehydration qualities. Results also showed that participants applied less energy 

and lower amplitude to agitation in the swirl style than shake style. Taken together, these findings 

could inform future updates to international guidelines on powder rehydration (e.g., WHO). 
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The thesis contributions include: (i) the development of an objective automated platform, (ii) 

the improvement/development of reference/benchmarking tests, (iii) providing insights into 

rehydration, and (iv) characterising/learning human bottle agitations.  
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1Chapter 1: Introduction 

1.1. Background and motivation 

Infant formula (IF) powder is a source of nutrients for infants when breastfeeding is not an option 

(Renfrew et al., 2003; WHO, 2009). It is designed to mimic breast milk’s nutritional profile and health 

benefits (Martin et al., 2016; Thompkinson and Kharb, 2007). Therefore, IF undergoes extensive 

quality control to ensure compliance with national and international standards (Martin et al., 2016). 

A key powder property is its ability to completely and quickly dissolve in water when 

rehydrated by an end-user to form a homogenous solution (Crowley et al., 2016; Selomulya et al., 

2023). However, it is challenging to achieve this ideal behaviour (Hogekamp and Schubert, 2003). 

Various rehydration stages influence powder rehydration, including wettability, sinkability, 

dispersibility, and solubility (Forny et al., 2011). The quality of rehydration stages depends on several 

factors, including water temperature, energy input during mixing or agitation, powder manufacturing 

methods (the processing steps and conditions used to produce the powder), and the composition and 

structure of the produced powder (Fitzpatrick et al., 2016; Forny et al., 2011). Powders with poor 

rehydration quality can exhibit several undesirable rehydration attributes such as sedimentation, 

excessive foam formation (Sharma et al., 2012), and persistent undissolved particles (Toikkanen et 

al., 2018) in the prepared mixture. 

Powder rehydration tests used for quality assurance may be conducted using either 

standardised or in-house methods (Pisecky, 2012; Schuck et al., 2016). These tests are designed to 

measure powder rehydration stages or attributes such as dispersibility, wettability, solubility, and 

sediment volume (Sharma et al., 2012). However, these methods are primarily based on manual 

sample preparation and visual inspection, introducing subjectivity and poor reproducibility (Munir et 

al., 2017). Therefore, their results may vary depending on the energy input and agitation technique 
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(Schober and Fitzpatrick, 2005), and the subjective interpretation of the mixture post-rehydration 

(Munir et al., 2017). It is necessary to standardise measurements using an automated and quantitative 

approach to allow objective comparisons between different powders (Munir et al., 2017). 

A  powder that rehydrates well in a laboratory setting must also rehydrate well when prepared 

by an end-user (e.g., at home) (Fang et al., 2008). Therefore, during rehydration tests, it is important 

to consider the realistic conditions under which the powder is expected to dissolve (Jeantet et al., 

2010; Richard et al., 2013). In some studies, the end users’ preferences are taken into account when 

rehydrating the powder (e.g., Lloyd et al., 2019). However, despite certain studies attempting to 

quantify end-user error regarding the amount of powder or water used (Rosenkranz et al., 2024) or 

the water temperature (Grant et al., 2024), there has been no systematic evaluation of human bottle 

agitation to determine whether end-user agitation style affects rehydration quality. Additionally, bottle 

agitation preferences may be influenced by national or international recommendations for safe 

powder rehydration (Farrent et al., 2021; WHO, 2007), or by cultural and geographical habits (O’Shea 

et al., 2021). Quantifying end-user bottle agitation parameters (e.g., agitation energy, frequency, and 

amplitude) and understanding their impact on rehydration is a research gap that should be addressed 

to provide measurable insights for regulatory bodies (such as FDA and WHO) to improve their 

recommendations to end-users on optimal rehydration practices (cf. Farrent et al., 2021; WHO, 2007). 

A study of end-user bottle agitations would allow manufacturers to better understand powder 

rehydration behaviour based on end-user needs. It also helps in optimising production processes and 

evaluating batch consistency by objectively replicating end-user bottle agitation movements (e.g., 

using robotics). The number of studies characterising realistic agitations during powder rehydration 

is currently limited, and none appear to have been conducted around infant formula powder. 

Therefore, the importance of characterising bottle agitations during IF powder rehydration is 

understudied despite the fact that IF is a powdered food intended primarily for infants, who have 
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sensitive digestive systems  (Bakshi et al., 2023), and deviations from optimal rehydration practices 

could adversely affect nutrient delivery (Farrent et al., 2021; Renfrew et al., 2003). 

To address the subjectivity issue, some researchers have explored alternative methods for 

assessing rehydration quality. These include light transmission technology for sediment height 

measurement (Ji et al., 2016b), turbidity sensing (Gaiani et al., 2005) and static light scattering 

(Mimouni et al., 2009), FBRM (focused beam reflectance measurement) and ERT (electrical 

resistance tomography) (Xu et al., 2024) for monitoring the rehydration process, and computer vision 

(CV) for dispersibility (Ding et al., 2020b). Fang et al. (2008) suggest that these techniques, 

particularly those which incorporate a mix of emerging technologies, can be more objective, reliable, 

and reproducible than traditional qualitative methods, and can provide more insights into how powder 

rehydration quality can be increased. 

Chapman (2003) suggested that robotics can increase productivity and efficiency by automating 

laborious and repetitive laboratory procedures in the food, agriculture, and pharmaceutical industries. 

Robots are expected to be employed more often in laboratories as they become “benchtop” or smaller, 

more affordable, and more modular (Chapman, 2003). In addition, several CV algorithms have been 

developed for the automatic inspection, classification, and quality assessment of food products 

(Aggarwal and Mohan, 2010; Farrera-Rebollo et al., 2012; Salazar-González et al., 2018; Villanueva 

et al., 2015). In contrast, only a limited number of studies have examined the use of robotics or CV 

in the analysis of IF powder rehydration (Ding et al., 2020b; Lloyd et al., 2019). 

1.2. Research Objectives 

The purpose of the work described in this thesis was to develop and validate an automated rehydration 

platform using robotics and CV system to assess the rehydration attributes of IF powders. The 

hypothesis was that CV algorithms could be used to objectively quantify foam height, sediment 

height, and undissolved particles, after standardised robotic rehydration, with repeatability 

approaching that of manual visual inspection. 
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The key research questions addressed were: 

1. Is it possible to develop an automated platform that rehydrates the IF powder in a 

commercially available baby bottle, automatically captures images, and uses CV algorithms 

to quantify key rehydration attributes? The purpose of using a commercially available baby 

bottle is to provide similar conditions (e.g., fluid dynamics) to those presented by the end-user 

during rehydration. 

2. Is there a relationship between automatically quantified rehydration attributes and traditional 

laboratory measurements conducted for characterising rehydration performance? It is 

expected that the answer to this question will provide insights into whether and how 

automated measurements can complement or replace traditional laboratory tests for foam, 

sediment, and unhydrated particles. Additionally, interpretation of the possible relationships 

between the automated measurements and the traditional measurements may provide new 

insights into the rehydration process. 

3. Is it possible to develop a predictive model that estimates traditional measures solely based 

on automatically quantified rehydration attributes? Considering that such a prediction occurs 

simultaneously with estimating the rehydration attributes, it may be possible to save time or 

resources by providing predictive insights about the time-consuming laboratory tests. 

4. Is it possible to characterise human bottle agitation behaviour using emerging technologies? 

It has been reported that different people may scoop different amounts of powder when given 

the same instructions. But what about agitation? Does bottle agitation, particularly agitation 

energy, differ significantly between individuals when the same instructions are given? If this 

is the case, it may impact the level of rehydration. 

5. Is it possible to generate “human-like” bottle agitations with the robotic platform? Are the 

automated measurements of rehydration quality attributes similar after the robot performs 

human-like swirl and shake agitations? It would be ideal if there were no significant 
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differences, however, any possible difference may highlight the need for promoting (by 

regulatory bodies) agitation styles that facilitate the dissolution of powders. 

1.3. Thesis scope 

The scope of the thesis was limited to the following: 

1. Only stage-1 infant formula powder was considered for rehydration.  

2. Throughout the thesis, deionised water with a fixed volume and temperature was used as the 

liquid medium for rehydration. The volume and temperature of the water was controlled 

manually, not by the automated platform. However, the experiments were strictly controlled 

to ensure consistency in water volume and temperature (cf. Gribble et al., 2017). It was not 

within the scope of this thesis to examine the impact of changing water temperatures and 

volumes on rehydration. 

3. Even though some pilot plant powders were used in this study as donations, no investigation 

was conducted on the effect of processing parameters on rehydration, and all discussions 

concerning this are based solely on laboratory physiochemical analyses of the produced 

powders. The scope of this thesis does not include the analysis of the direct relationship 

between the processing parameters and the rehydration attributes. 

4. Only one type of commercially available baby bottle was used to rehydrate powder by the 

robot. 

5. The scope of this thesis included the design and development of the whole vision system 

(including selecting all hardware components, developing software and algorithms, and 

integrating them with the robot, as a “benchtop” solution), and the development of “human-

like” robotic agitations. The robot for the development of the automated platform was not 

selected as part of the current thesis. Although this robot could follow the learned bottle 

agitation paths, due to its motor torque limits, it could not match the frequency of the 

acceleration change in the learned trajectories. However, it could perform scaled-up versions 
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of these paths to achieve the same agitation energy as the learned trajectories. Furthermore, 

the robotic agitations used in Chapters Three and Four were those that had been developed by 

O’Shea et al., (2021). However, the programme was improved for the robot to communicate 

with the developed vision system and to rotate the bottle in front of the camera. 

6. The automated measurements were based solely on the visible manifestations of rehydration 

attributes, and the robot used only an RGB camera as its only sensor. Investigations of the use 

of other types of cameras (such as thermal or hyperspectral cameras) or other types of lighting 

(such as ultraviolet or infrared) was outside the scope of this thesis. 

7. This thesis investigated the effects of swirl and shake agitations on infant formula preparation, 

as described in the WHO white paper (WHO, 2007). Although there may be a variety of 

agitation movements in different countries (such as the figure eight agitation) (O’Shea et al., 

2021), examining their effects was beyond the scope of this study. 

8. It was outside the scope of the current thesis to investigate people’s agitation preferences 

across different demographics. The participants who demonstrated bottle agitations were not 

intended to represent a specific group of people, such as parents or caregivers, or people from 

different cities or countries. 

1.4. Thesis contributions 

This thesis contributed to a better understanding of the rehydration process on the following fronts: 

1. The development of an objective rehydration evaluation platform. The platform developed 

through chapter three was, to the best of our knowledge, the first automated rehydration 

analyser that combined robotics and a CV system. 

2. The development of modified laboratory tests for benchmarking and evaluating the 

performance of the automated platform. The modified sediment weight test, in particular, 

performed better than traditional tests in the collection of finer fractions of sediment that 

would normally pass through the sieve in traditional tests. 
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3. The development of digitally-generated reference images in a systematic manner for 

participants’ ratings of white particles. The method for developing these images or the images 

themselves may be useful in future studies. In the past, these images could not represent the 

range of observations that could be made in a laboratory environment, and they were created 

subjectively. 

4. Obtaining deeper insights into rehydration using the automated platform and comparing its 

results with those of the laboratory tests. In particular, flowability was identified as an 

important factor in rehydration process. The powder’s “flowing” is the first step in the 

rehydration process, before it is wetted. 

5. Developing a predictive rehydration model for dispersibility (as an estimation and more rapid 

method than the standard test) based solely on automated measurements obtained from the 

developed platform. The platform could monitor sediment height changes over time for the 

first time in the literature and use this information in conjunction with sample colour for 

predicting sample dispersibility as a rapid screening method. 

6. Characterising human bottle agitations and obtaining key end-users’ agitation parameters for 

shake and swirl agitation styles. This study is the first to provide insight into the variability of 

agitation parameters, in particular the amount of energy applied by individuals. Researchers 

have already highlighted the importance of unintentional errors in rehydration, such as powder 

scooping behaviour or the water temperature. 

7. Developing an in-house method for learning the dominant bottle agitation behaviour of 

participants for swirl and shake styles. Despite the natural diversity of agitation patterns in 

humans, this method provided a single representative agitation pattern for both swirl and 

shake styles. It enabled the robot to perform human-like agitations in a reproducible and 

objective manner. It was demonstrated for the first time in the literature that human-like swirl 
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agitation results in less dissolved solids than human-like shake agitation. According to the 

results, shake agitation increases the likelihood of powder rehydration by end-users. 

1.5. Thesis outline 

This thesis consists of six chapters intended to accomplish the following objectives: 

• Chapter 1 (Introduction): provides an overview of the thesis including its objectives and 

research questions, scope, contributions, and structure. 

• Chapter 2 (Literature review): reviews the latest research on understanding the requirements 

for ideal rehydration and emphasises the necessity of quantifying it, particularly by using an 

objective and automated method. This chapter includes a review of the latest applied solutions 

for objectively measuring rehydration of infant formula powders, dairy powders, food 

powders, or a wider range of powders, such as pharmaceutical powders. Furthermore, the 

latest robotic research in performing “human-like” movements was reviewed to determine 

whether these techniques could be applied to robotic powder rehydration agitations. 

• Chapter 3 (Platform development): focuses on developing an automated rehydration and 

quality estimation platform by integrating a collaborative robot (cobot) and in-house CV 

system. In this chapter, details are provided on how the cobot mixed IF powder with water in 

a commercially available baby bottle and captured images of the resulting mixture. 

Additionally, it contains the method for developing three CV algorithms and applying them 

to the cobot-captured images of the prepared formula to estimate foam height, sediment 

height, and the number of undissolved particles. The chapter also evaluates the algorithms’ 

performance against the ratings of eight participants on a random selection of the same images 

used by the automated platform.  

• Chapter 4 (Platform evaluation) aimed to link the novel and objective estimates obtained using 

the platform developed in Chapter Three to traditional testing methods. The chapter involved: 
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(i) evaluating whether the automated quality ratings generated by the platform are consistent 

with the traditional laboratory measurements used to characterise rehydration performance; 

and (ii) developing a predictive data-driven model to estimate established measures solely 

based on automated quantification of rehydration attributes. In this chapter, two of the 

traditional tests needed modification to improve their resolution. The relationship between 

automated estimates and traditional measures provided new insights into the rehydration 

process. 

• Chapter 5 (Towards standardised characterisation and robotic replication of human bottle 

agitation) sought to gain new understanding of end-user behaviours during rehydration, which 

is a critical consideration when developing standardised rehydration quality measurement 

methodologies. The chapter involved using a camera and an IMU sensor to record ten 

participants’ hand movements during bottle agitation. IMU data were only recorded as a 

contingency measure and proved unnecessary as the camera data were of sufficient quality 

for analysis. The key attributes of human bottle agitations were identified. A learning from 

demonstration technique was developed for the robot to mimic the dominant pattern in human 

swirl and shake bottle agitations, yielding statistically learned “human-like” robotic 

agitations. Finally, the chapter used the CV algorithms developed in Chapter 3 to compare the 

effects of different “human-like” agitations on rehydration. Further study of this difference in 

rehydration quality would benefit both companies and regulating bodies. 

• Chapter 6 (Concluding remarks): summarises the findings of the PhD and suggests avenues 

for future research.
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2Chapter 2: A review of quality assessment of infant formula 

powder rehydration using emerging technologies 

A manuscript based on this chapter is being prepared for submission to Trends in Food Science & 

Technology as: 

• Mozafari, B., Villing, R., and O’Shea, N., A review of quality assessment of infant formula 

powder rehydration using emerging technologies 

2.1. Introduction 

Most food powders must be mixed with water or other liquids before consumption (Fitzpatrick and 

Ahrné, 2005). Rehydration, however, is a complex process impacted by a wide variety of parameters 

(Richard et al., 2013), and identifying these parameters and understanding their interrelationships is 

challenging (Hogekamp and Schubert, 2003; Selomulya et al., 2023). It has been suggested that the 

use of emerging technologies for monitoring various aspects of rehydration can prove useful in 

gaining a better understanding of powder rehydration (Fang et al., 2008). 

The present chapter provides an overview of the application of emerging technologies in two 

aspects of rehydration: i) mixing, and ii) evaluating the quality of the prepared mixture. Particularly, 

it reviews studies that attempt to make mixing methods more realistic and reproducible as well as 

methods for objectively evaluating rehydration quality. When applicable, this review is expanded to 

include dairy, food, or other similar (e.g., pharmaceutical) powders, and conclusions are drawn 

regarding potential applications in infant formula powder. The purpose of this expansion is to 

overcome the limitations of existing studies, especially for the rehydration of infant formula powder 

(the limitation may have resulted from inherent challenges associated with food digitalisation, such 

the volatility of the sector’s requirements (Demartini et al., 2018)). 
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The chapter begins with highlighting some current limitations in understanding rehydration and 

highlighting the review questions. Robotics and image analysis are then discussed as emerging 

technologies that are trending in current literature on food digitalisation (Demartini et al., 2018; 

Meenu et al., 2021). Robot Learning from Demonstration, which is a technique that has become 

increasingly popular in robotics research (Ravichandar et al., 2020), is discussed as a possible tool 

for performing realistic mixing. Then the chapter concludes with final remarks and a discussion of 

the potential benefits of integrating emerging technologies (Fang et al., 2008; Munir et al., 2017) to 

address current research challenges. 

2.1.1. Importance of studying powder rehydration 

Most materials manufactured by process industries are in the form of particles (Seville et al., 2012). 

Mixing powders with liquids is an important research topic for a wide range of applications (Nelson, 

2012). For example, in the food (Selomulya et al., 2023), drugs (Khadka et al., 2014), and fertiliser 

(Duan et al., 2023) industries, understanding powder rehydration mechanism is critical to ensuring 

that materials (e.g., nutrition or drugs) can be delivered as intended during powder design (e.g., 

expected delivery time and dilution). 

In the food industry, drying has been a traditional method of improving the efficiency of 

processing, packaging, storage (increased shelf-life and less occupied space), and easier 

transportation of products (Rahman, 2020). The powdered form of dried food is popular since it 

occupies even less space which makes storing and transporting food products easier (Bhandari et al., 

2013; Skibsted et al., 2010). As a result, throughout history, a wide variety of food powders (e.g., 

flour made from different grains, milk powder, salt, and spices) have been developed for industrial or 

domestic use (Bhandari et al., 2013; Kelly et al., 2003). 
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2.1.2. Food powder rehydration 

Domestic and industrial applications of food powders are broad, and in most cases, the powders must 

first be dissolved in a liquid medium (e.g., water) before use (Fitzpatrick and Ahrné, 2005). Food 

powders may contain oil and other ingredients that are not water-soluble, which may make water 

interaction difficult (Hogekamp and Schubert, 2003). It is therefore necessary to investigate how 

different food particles may be given the opportunity to interact with water and become rehydrated 

(Bhandari et al., 2013; Hardy et al., 2002). The rehydration process can be affected by liquid and 

mixing conditions, as well as the chemical composition and physical structure of the food powder 

(Richard et al., 2013). For different food powders, there may be a different mixing energy or water 

temperature required for a quick and complete rehydration, depending on how much fat or protein is 

present in the powder (Fitzpatrick et al., 2016). 

Food powder rehydration is considered to be a complex process (Parthasarathi and 

Anandharamakrishnan, 2014). The process has mainly been classified into three (Ji et al., 2016b) to 

four (Fang et al., 2008; Ji et al., 2016b; Schober and Fitzpatrick, 2005) stages, namely wetting, 

sinking, dispersing, and dissolving (Figure 2-1). Assuming that the liquid and mixing conditions 

remain unchanged, the powder performance at each of the four stages is often considered to determine 

its rehydration quality (Schuck et al., 2012). However, due to their overlap, observing these stages 

independently is difficult (Selomulya et al., 2023). 

 

Figure 2-1 Rehydration of powder particles is typically characterised by four stages: a) wetting, b) sinking, c) dispersing, and d) 

dissolution 
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Further to the liquid properties (Hardy et al., 2002) and mixing energy (Schober and Fitzpatrick, 

2005) mentioned earlier, powder properties themselves play a significant role in the rehydration 

process (Masum et al., 2020). There is evidence that powder behaviour during the rehydration stages 

is influenced by physical (structure dependent) and chemical (composition dependent) properties of 

the powder (Schober and Fitzpatrick, 2005), referred to as physiochemical (also known as physico-

chemical/physicochemical) properties (Kelly et al., 2002). There have been several studies 

investigating how powder production methods can affect powder physicochemical properties (Kelly 

et al., 2002; Kim et al., 2009; Vignolles et al., 2007), as well as how powder physiochemical properties 

can impact the rehydration stages (Andersson et al., 2019; Forny et al., 2011; Ji et al., 2016a; Schober 

and Fitzpatrick, 2005). Some other studies have attempted to directly relate the quality of rehydration 

with manufacturing parameters (Felfoul et al., 2020; Ji et al., 2016b, 2016a; Nugroho et al., 2021; 

Rodríguez Arzuaga et al., 2021; Warncke and Kulozik, 2020) or predict the rehydration quality to 

optimise the powder production quality (Rimpiläinen et al., 2015). 

2.1.3. Importance of infant formula powder 

As mentioned in the introduction chapter, IF is a manufactured food designed to serve as a nutritional 

substitute when human breast milk is unavailable or insufficient. With comparable composition and 

biochemical characteristics to human breast milk, IF is intended to provide adequate nutrition for 

infants from birth to three years of age (Bakshi et al., 2023; Thompkinson and Kharb, 2007). This 

particular type of food powder may be the sole source of nutrition for many infants, which makes its 

significance even greater (National Academies Press, 2004). For this reason, it is strictly regulated by 

governing bodies (CFR, 2024; Codex, 2023; EUR-Lex, 2016). Additionally, the production rate of IF 

powder continues to increase. The sector is projected to grow at a compound annual growth rate of 

over 10% between 2022 and 2030, driven by increases in the number of mothers who work, 

malnutrition cases, premature birth, middle-class growing incomes, and concerns about infant 



37 

nutrition (Bakshi et al., 2023). In 2022, the global IF market reached 68.2 billion USD, with Asia 

Pacific leading in sales, and is expected to surpass 174.6 billion USD by 2032 (PR, 2023). 

2.1.4. Importance of proper rehydration of infant formula powder 

An important quality parameter of IF is its solubility in water (cf. Selomulya et al., 2023). Infant 

nutrition can be significantly impacted by improper rehydration (Fein and Falci, 1999; Gribble et al., 

2017; Renfrew et al., 2003; WHO, 2007), potentially causing dehydration (Sunderland and Emery, 

1979), adiposity (Altazan et al., 2019; Farrent et al., 2021), or reducing feed concentration and 

delivery of targeted nutrients (if the dissolved solids in water are less than the intended amount), thus 

compromising infant growth (FDA, 2024; Fein and Falci, 1999; Renfrew et al., 2003). The mixing 

guidelines typically instruct shaking or swirling the bottle “gently” until the powder is completely 

dissolved (MOH, 2022; WHO, 2007), in hot water ≥70°C to reduce the risk of bacterial contamination 

(Grant et al., 2024; WHO, 2007). While certain agitation styles may be more prevalent in particular 

geographical regions (O’Shea et al., 2021), it has been shown that different mixing energies and 

agitation styles may result in varying amounts of powder being dissolved (Mozafari et al., 2024; 

Schober and Fitzpatrick, 2005). 

2.1.5. Undesirable infant formula rehydration attributes 

Ideally, the rehydrated IF powder should resemble human milk in both appearance (cf. Pisecky, 2012) 

and compositional profile of proteins and minerals (Crowley, 2016). In practice, it is almost always 

possible to observe undesirable rehydration attributes after powder rehydration (Pisecky, 2012); and 

reducing one may result in increasing another (Mozafari et al., 2024). Figure 2-2 illustrates some of 

the undesirable rehydration attributes. 
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Figure 2-2 Three examples of undesirable rehydration attributes: foam, sediment, and undissolved particles 

Any foam or poorly soluble powder in rehydrated IF powder is undesirable (Masum et al., 2020). For 

example, undissolved particles, including damaged or slowly dissolving particles, may remain after 

rehydration (Lloyd et al., 2019; Toikkanen et al., 2018). Also, the release of protein into the solution 

can be limited if the powder forms sediment rather than being homogeneously dispersed and 

dissolved (Fang et al., 2011). If solubility, which can be considered the most critical stage of 

rehydration (Selomulya et al., 2023), is poor or insufficient energy is applied during rehydration, 

sediment may form (Fitzpatrick et al., 2016; Mozafari et al., 2024). Foaming is another undesirable 

rehydration attribute, as it may lead to aerophagia (Huppertz, 2010), which is deemed to contribute 

to infantile colic (Daelemans et al., 2018). Even though energetic agitation may help dissolve more 

solids, it may also result in a greater amount of foam being produced (due to the ingress and trapping 

of air during agitation) (Mozafari et al., 2024). Thus, powder rehydration should ideally be achieved 

with the least amount of agitation energy (Richard et al., 2013), emphasising the importance of 

understanding how powder physicochemical properties affect rehydration. 
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2.1.6. Scope of the present review 

This narrative literature review aims to: i) review the limitations of commonly used manual methods; 

ii) evaluate robotics as a means of obtaining repeatable sample preparation agitations; iii) discuss the 

use of computer vision techniques for quantitative evaluation of IF rehydration quality attributes; and 

iv) explore how human bottle agitation techniques may be transferred to robotic platforms using 

techniques such as learning from demonstration to obtain realistic rehydration tests based on powder 

end-user bottle agitation behaviour. The review will finally discuss the major gaps and challenges 

associated with integrating emerging technologies into IF rehydration analysis. 

2.2. Challenges associated with understanding IF powder rehydration 

To evaluate the rehydration performance of IF powder, several reference tests are available, either as 

standards (such as ISO: International Organization for Standardization or IDF: International Dairy 

Federation (Tamime, 2009)) or in-house methods, sometimes confidential (Pisecky, 2012), developed 

by manufacturers or research institutions (such as the test described by Lloyd et al. (2019)). However, 

using these methods, the main rehydration stages are assessed manually by human analysts, prone to 

subjectivity (Munir et al., 2018; Rimpiläinen et al., 2015) and with limited repeatability (Munir et al., 

2017; Pisecky, 2012; Selomulya et al., 2023). Also, when the commonly used rehydration tests are 

subjective to the analysts who has conducted them (Lloyd et al., 2019; Pisecky, 2012), there is 

uncertainty finding the source of observed rehydration attributes. Yet, understanding the complex 

interaction between water and IF powder is necessary to optimise the rehydration process and 

minimise the variation in the nutritional and functional properties of the resulting mixture (Boiarkina 

et al., 2018; Hardy et al., 2002; Schuck et al., 2016). 

Usually, IF powder is produced by dissolving or dispersing ingredients such as lactose, protein, 

and oils in water or skim milk, adding minerals, vitamins, and emulsifiers, followed by heat treatment, 

homogenisation, and spray drying with high hygienic standards (Pisecky, 2012). The formulation 
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before drying, drying method, powder handling, transportation, and storage can all influence powder 

physiochemical properties (Masum et al., 2020) and, subsequently, its rehydration quality (Schuck et 

al., 2016). From the production perspective, both formulations and production parameters of powder 

can play a role in the physicochemical properties and, as a result, in the rehydration quality of the 

powder (Rodríguez Arzuaga et al., 2021). Due to the large number of factors involved in powder 

production, it can be difficult to pinpoint the source of some observed rehydration attributes (Richard 

et al., 2013). Despite these challenges, the manufacture of high-quality IF powder requires a thorough 

understanding of the relationship between the starting formulation, processing conditions, and the 

final powder rehydration properties (Munir et al., 2018). Understanding these relationships can 

inform manufacturers when to make process adjustments and produce IF powders with consistent 

rehydration properties (Munir et al., 2017).  

The formulations are becoming increasingly complex, as manufacturers strive to tailor their 

products to meet specific digestion needs and better mimic the protein profile of breast milk (Schuck 

et al., 2016; Walshe et al., 2021). The produced powder contains macronutrients, e.g., proteins, fats, 

and carbohydrates, as well as micronutrients, e.g., vitamins (e.g., A, D, E, K) and minerals (e.g., iron, 

calcium, zinc), and other additives important for brain development (Masum et al., 2020; 

Thompkinson and Kharb, 2007). The formulation complexity presents challenges for achieving 

optimal rehydration process (Masum et al., 2020; Schuck et al., 2016). For example, powder surface 

composition can affect its wetting time (Kim et al., 2002) and solubility (Fang et al., 2008); protein 

interactions during rehydration or drying process can impact sedimentation (Schuck et al., 2016; 

Toikkanen et al., 2018) and foam formation (Bals and Kulozik, 2003); and powder particle size 

distribution and agglomeration can influence its sinkability (Schober and Fitzpatrick, 2005) and 

dispersibility (Gaiani et al., 2011). Proteins provide essential amino acids required for growth and can 

be obtained from plant sources (such as soy) or bovine milk (Masum et al., 2020). However, the 

source of protein can significantly impact the rehydration quality (Le Roux et al., 2020). Although 



41 

protein content can directly impact the rehydration process (Ji et al., 2016b), the protein content of 

various IF powders may vary, mainly due to variations in amino acid compositions and the 

digestibility of different protein types (Masum et al., 2020). Fat is intended to supply 40-50% of 

infants’ energy needs (Masum et al., 2020), but is inherently insoluble in water. Carbohydrates 

(mainly lactose) are also a vital source of energy, contributing to gut health by supporting the growth 

of probiotic bacteria (Masum et al., 2020). 

In addition to formulation, several manufacturing parameters can significantly affect IF powder 

rehydration quality; these include homogenisation pressure, number of passes, heat treatment 

(temperature and time), spray drying conditions (inlet/outlet temperatures, type of atomiser, and 

speed), powder handling and packaging methods, storage time, and relative humidity (Sharma et al., 

2012; Thompkinson and Kharb, 2007; Toikkanen et al., 2018). The wide variety of processing 

parameters and formulations can make understanding IF rehydration difficult. 

Apart from the physiochemical properties of powders, the tests themselves are labour-intensive, 

time-consuming, and subjective (Ding, 2021). Typically, human analysts manually perform sample 

preparation following specific procedures including the amount of powder, the method of mixing, 

and the duration of mixing or pausing (Pisecky, 2012). Rehydration variables such as power (energy 

and time) and vortex formation influence the rehydrated sample (Schober and Fitzpatrick, 2005). 

Consequently, inherent subjectivity and variability across analysts can lead to inconsistency in 

experimental outcomes (Fang et al., 2008), even in tests evaluating the four main rehydration stages, 

wettability (Gaiani et al., 2005; Wu et al., 2021), sinkability (Pisecky, 2012), dispersibility (Munir et 

al., 2018), and solubility (Gaiani et al., 2005; Schuck et al., 2007). In light of the variability of human 

bottle agitation factors (e.g., agitation time or energy) and the environment (e.g., change in 

instruments), as well as the limitations of the reference tests (e.g., low discretisation based on only a 

limited number of classes (e.g., reference images)), standardisation of measurements between 
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different laboratories and analysts is often difficult (Lloyd et al., 2019; Munir et al., 2017), which 

limits their application for optimising manufacturing processes (Lloyd et al., 2019). 

While the mixing method used in manual experiments can affect the rehydration process 

(Fitzpatrick et al., 2017; Pisecky, 2012; Schober and Fitzpatrick, 2005; Wu et al., 2021), a wide variety 

of mixing methods (including stirring (Jeantet et al., 2010), impelling (Schober and Fitzpatrick, 

2005), and sonification (McCarthy et al., 2014)) have been employed to explore the impact of mixing 

on powder rehydration process. While examining powder-water interactions according to the end-

user agitation behaviour is necessary (Hardy et al., 2002), and some recent studies have attempted 

this (Lloyd et al., 2019; O’Shea et al., 2021), no systematic analysis has been conducted to determine 

whether current mixing methods and human agitation are comparable. Due to the sensitivity of 

rehydration to the mixing method and the variety of mixing methods, achieving reproducible 

measurements of rehydration attributes (such as slowly dissolving particles and dispersibility) can be 

difficult (Boiarkina et al., 2018), especially across laboratories (Lloyd et al., 2019). 

2.3. Robotic systems in food sector 

Robotics is one of the key technologies for food digitalisation (Lezoche et al., 2020) and Industry 4.0 

(Akyazi et al., 2020; Muhuri et al., 2019). It is expected to increase productivity, quality, flexibility, 

traceability, and consistency, as well as enable the execution of sensitive, harsh, or constrained tasks 

(Wallin, 1997). The food industry is increasingly demanding robots for analytical automation, 

provided they can handle complex decision-making and perform challenging pick-and-place 

operations (Klerkx and Rose, 2020; Wallin, 1997). Klerkx and Rose (2020) identified robotics as a 

recent trend for enhancing sustainability through the digitalisation of the food industry. 

While robotics has existed since the 1950s (Estolatan and Geuna, 2019), its application in the 

food industry has been relatively limited until the last three decades (Bader and Rahimifard, 2018; 

Bogue, 2009; Caldwell, 2013; Fernando et al., 2016; Khan et al., 2018; Müller et al., 2014; Wallin, 

1997, 1995; Wilson, 2010). Among the main concerns for their adoption are cost and return on 
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investment, hygiene requirements, and challenges in handling food due to texture (pliable, fragile, 

and sticky) and size or shape variations of food products, sometimes caused by seasonal changes 

(Caldwell, 2013).  Traditional industrial robots typically lack more advanced sensors and control 

algorithms and must often be deployed in cages or behind safety barriers (Iqbal et al., 2016). 

Programming them may require considerable time and expertise (Villani et al., 2018). Collaborative 

robots (cobots) are designed to alleviate these limitations, featuring relatively lightweight 

components, more sensitive sensors (e.g., force/torque), and intuitive programming (Bloss, 2016). 

This is of particular importance to small and medium-sized enterprises (SMEs) (Hentout et al., 2019). 

In recent years, robotic systems in food processing have progressed considerably, with 

applications in fresh produce, meat and poultry, and baked goods. For example, robots and cobots 

have been used for harvesting, cutting, packaging, and palletising. For handling fluids, soft, or 

granular materials, robotic end-effectors such as suction cups, jamming grippers, and scoops may 

allow flexible pick-and-place of irregular shapes (Wang et al., 2022). However, a quantitative 

measurement of the “engineering” properties of food (e.g., weight and texture) is required for the 

design of end-effectors, particularly for bin-picking and pick-and-place applications in 3D 

environment without compromising food quality (Wang et al., 2022). Through sensors and feedback 

loops, robots can be programmed to consistently dispense liquids and powders in small quantities 

(Fermier et al., 2003; Wakchaure et al., 2023; Wang et al., 2022) and automate different steps involved 

in sample preparation, including weighing, mixing, and diluting (Fermier et al., 2003). In comparison 

with manual methods, they can dispense experiment material with less error (Rodriguez-Gonzalez et 

al., 2019). The improved repeatability in the experiments can prove especially useful in IF rehydration 

tests since scooping IF powder manually may involve considerable error (Altazan et al., 2019). More 

advanced control systems may enable the robot grasping to adapt to food stiffness, shape, weight, 

fragility, and surface characteristics (Bader and Rahimifard, 2020; Wang et al., 2022). These control 

systems can monitor and regulate robotic interaction with the environment, such as grasping force 
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and speed (Caldwell, 2023; Wang et al., 2022). In this way, they may be able to provide a more 

consistent powder scooping in IF rehydration tests. 

2.3.1. Robotics in the measurement of IF rehydration quality 

O’Shea et al. (2021) assessed the feasibility of using a cobot to approximate the movements of human 

agitation while rehydrating IF powder. The cobot simulated four agitation motions: up and down, left 

to right, swirl, and figure 8. However, the study did not compare the robot’s agitation styles to those 

performed by humans. 

Although limited in the dairy industry, other sectors have used robotics for food quality 

measurements. For example, for evaluation of beer quality, Gonzalez Viejo et al. (2016) developed 

RoboBEER to minimise the variability associated with manual beer pouring. The robot was integrated 

with video recording (via a mobile phone) and semi-automated computer vision algorithms in 

MATLAB to measure foaming properties (maximum foam volume, foam lifetime, drainage, and 

bubble size). The sensors recorded the beer’s colour, alcohol content, temperature, and amount of 

carbon dioxide released. The results of measurements obtained using RoboBEER were used to 

classify beers based on their quality and fermentation type. 

Despite the challenges, the use of robotics is anticipated to reduce variability in IF rehydration 

(Duong et al., 2020; Lloyd et al., 2019; O’Shea et al., 2021). In light of the complexity and high 

subjectivity of some of the current rehydration tests, such as dispersibility (Pisecky, 2012), using a 

robot that mimics an expert operator may increase the repeatability of the experiments (Misimi et al., 

2018). 

2.4. Automating the rehydration of IF powder and the assessment of 

rehydration quality 

Despite the importance of understanding the rehydration stages in the food powder industry, it 

remains difficult to quantify them (Selomulya et al., 2023). Quantitative (Fang et al., 2008), and 
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digital (Munir et al., 2017) approaches are expected to provide more objective tests and enhance 

understanding of the rehydration behaviour of new formulations. 

Several studies have been conducted on automating rehydration or the measurement of the 

rehydration quality. Fang et al., (2008) evaluated different methods commonly used in assessing the 

rehydration properties of food powders, with emphasis on dairy powders. They also discussed several 

other emerging methods devised to overcome the limitations they identified, such as dynamic wetting 

measurements and turbidity sensors. However, they stated that many of these technologies still have 

imperfections (e.g., need for specific experiment conditions and inability to provide complete 

characterisation alone), and different types of food commodities may require objective quality tests 

for their specific end use. 

To address the lack of repeatability in dispersibility measurements, Boiarkina et al., (2017) used 

two methods to measure particle size: sieving and laser diffraction, each with its own prerequisite. In 

sieving, upper and lower limits for fine and coarse particles were used, whereas laser diffraction only 

incorporated the fine particle limit. They found that the particle sizing technique could predict the 

dispersibility of in-specification powders with 97% accuracy. However, the method had a high false 

positive rate of 50% when predicting out-of-specification powder. 

In an attempt to reduce the subjectivity of sediment tests, Rimpiläinen et al., (2015) predicted 

sediment values of milk powder using manufacturing data from an industrial plant. Using traditional 

offline laboratory analysis, 13 specific plant variables, such as milk flow, total solids, pH, and dryer 

temperature and pressure were selected as independent predictors. They applied a conditional 

probability distribution to production data from four subsequent seasons. It was concluded that the 

trained model could be applied to controlling sediment values in rehydrated milk powder. 

Henihan et al. (2019) investigated a fluorescence-based analyser for rapid quantification of 

soluble proteins. Compared to reference methods, their approach provided faster results. However, 

the reproducibility was affected by rehydration time, especially for non-agglomerated powders. 
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Consequently, they recommended developing a standard protocol for rehydrating samples. In a 

related study, Henihan et al. (2018) suggested that powder fluorescence properties could be used to 

estimate parameters such as powder storage time, soluble protein content, and surface-free fat. 

Lloyd et al., (2019) developed a mixer that mimicked end-user rehydration and an image 

analysis method to objectively quantify bulk particles in slowly-dissolving particle analysis. The 

developed method was then evaluated against an in-house laboratory test. While a mixer was used 

for sample preparation and computer vision was used to count the number of undissolved particles, 

the image analysis involved manual threshold adjustment. Because of this manual adjustment, there 

may still be some degree of subjectivity in the measurement process. 

There are still several gaps in current infant formula rehydration assessments, including poor 

reproducibility (Fang et al., 2008; Selomulya et al., 2023), the absence of systematic end-user 

rehydration characteristics (Hardy et al., 2002; Lloyd et al., 2019), and the failure to fully consider 

the influence of powder physicochemical properties on the rehydration process (Rimpiläinen et al., 

2015). Due to the unreliability of the current tests, several “proxy measurements” (e.g., predicting 

powder dispersibility solely by its particle size) (Boiarkina et al., 2017) have been developed. 

However, these approaches also have some limitations, including the underrepresentation of 

systematic characterisation of end-user rehydration practices (Lloyd et al., 2019) and limited 

alignment with lab measurement results or false positive rates under certain conditions (Boiarkina et 

al., 2018; Lloyd et al., 2019). Objective rehydration tests that take into account real-world conditions 

are still required (Hardy et al., 2002; Lloyd et al., 2019). This can improve the consistency of powder 

production from batch to batch (Caldwell, 2013).  

2.5. Computer vision-based food quality measurement 

CV systems have also been increasingly used in objective food quality assessment (Duong et al., 

2020) and food safety (Mc Carthy et al., 2018). Until a few decades ago, the high cost of camera 

sensors restricted the application of CV systems in the food industry (cf. Pedersen, 1991). Since food 
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exhibits a variety of shapes and colours, using CV methods can be challenging (Patel et al., 2012). 

However, thanks to recent advances in software and hardware, this approach has become more 

ubiquitous (Meenu et al., 2021). 

There is considerable potential for the use of CV techniques to objectively assess the quality 

attributes of food and agricultural products (Brosnan and Sun, 2004; Ma et al., 2016; Mery et al., 

2013; Patel et al., 2012; Wu and Sun, 2013). Such systems allow for non-destructive, fast, and cost-

effective quality assessment solutions that are less subjective than manual visual inspections (Patel et 

al., 2012). Many food products including fruits, vegetables, meats, bakery products, grains, and dairy 

products (Brosnan and Sun, 2004; Ma et al., 2016; Patel et al., 2012), have been inspected using 

image analysis for surface roughness, colour, size, shape, or contaminants (Ma et al., 2016). This 

method also has been applied to quantify quality attributes of dairy products, such as foam stability 

in milk (Xiong et al., 2020), counting lumps (Mitchell et al., 2020), unhydrated particles (Lloyd et 

al., 2019; Mozafari et al., 2022), and foam (Mozafari et al., 2024) after powder rehydration. Also, 

integrating CV systems with robotics is a promising approach to enhance the automation and 

objectivity of food quality evaluations (Mozafari et al., 2024).  

CV can process colour data at the pixel level, calculate the mean and standard deviation of 

colour, quantify the area and colour of irregular shapes, identify specific regions of interest, analyse 

multiple objects, and create colour distribution maps (Wu and Sun, 2013). These systems can analyse 

various quality attributes such as size, shape, colour, and texture at high speed and with a high degree 

of accuracy (Brosnan and Sun, 2004; Ma et al., 2016; Wu and Sun, 2013). The classical measurement 

process using this method comprises image acquisition, image pre-processing, image segmentation, 

feature extraction and selection, and classification (Mery et al., 2013; Patel et al., 2012). During the 

preprocessing step, some common problems such as geometric distortions, focus issues, noises, and 

non-uniform illumination may be corrected (Brosnan and Sun, 2004). 
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As illustrated in Figure 2-3, a typical CV system for evaluating food quality consists of five 

main components: lighting, lens, camera, computer hardware, and software (Ma et al., 2016; Patel et 

al., 2012; Wang and Sun, 2002). 

 

Figure 2-3 Components of computer vision systems: (a) light source, (b) lens, (c) camera, (d) hardware, and (e) software 

Selecting the camera, lens, and lighting, is influenced by the specific food inspection problem and 

affects the system’s performance (Brosnan and Sun, 2004; Ma et al., 2016; Mery et al., 2013; Patel et 

al., 2012; Wu and Sun, 2013). For example, the camera resolution can have a significant impact on 

the quality of the image and the visibility of the defect being inspected (Cubero et al., 2011). Also, 

the illumination should be designed carefully as it directly relates to the image quality and accuracy 

of the entire system (Brosnan and Sun, 2004; Patel et al., 2012). Some of the factors in illumination 

design include type of light (incandescent, fluorescent, LED), the lighting configuration 

(backlighting, front lighting, side lighting) and the lighting model (point lighting, diffuse lighting) 

(Patel et al., 2012). For example, front lighting is used to measure surface features (e.g., apple 

defects), while backlighting is used to measure sub-subsurface or edge features (e.g., the size of 

chicken pieces) (Brosnan and Sun, 2004). 

The software algorithms for CV are mainly divided into classical and Machine Learning (ML) 

approaches (O’Mahony et al., 2019). Generally, classical approaches require less data for software 

development and have a lower computational cost during algorithm development. However, they may 

also be subject to the effects of the surrounding environment, including lighting and camera settings. 

ML techniques, on the other hand, require more training images to learn how to identify patterns 

within pixels. However, since these techniques statistically “learn” the patterns based on real 
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examples, they can be expected to provide greater performance flexibility. A possible issue is that 

some machine learning approaches are not easily interpretable, which can make it difficult to identify 

the cause of the weak algorithm performance. 

Both monochrome and colour cameras have been applied in several areas in the food industry 

(e.g., colour cameras for the detection of specific fruits or meat quality inspection and monochrome 

cameras for the detection of their defects) (Brosnan and Sun, 2004). Other imaging techniques that 

have been applied to milk powder or other food quality assessment include hyperspectral (Khan et 

al., 2020), ultrasound, infrared, CT (computed tomography), MRI (magnetic resonance imaging) (Ma 

et al., 2016), and X-ray imaging (Caldwell, 2023). High-resolution array cameras and CV systems, 

along with advanced signal processing devices such as FPGA chips, are used for real-time quality 

measurements, product sorting, and hygiene inspection (Wakchaure et al., 2023) from receipt of raw 

materials to the final packaged products (Caldwell, 2023). 

2.5.1. CV based sensing of powder or rehydration attributes  

The quality of IF powder has been quantified using various image analysis approaches. For instance, 

Munir et al. (2018) used hyperspectral imaging (HSI) for real-time monitoring of milk powder quality. 

Based on the HSI results, it was possible to classify powder functional characteristics and the factory 

they originated from. The authors pre-processed hyperspectral data and identified/removed artefacts 

from the images. The data was normalised using a standard normal variate and cleaned using a grey-

level co-occurrence matrix. Using Principal Component Analysis (PCA) and partial least squares 

regression, the HSI data successfully discriminated between different samples. The partial least 

squares regression method was successful in predicting moderate levels of accuracy for dispersibility, 

which is a fundamental functional property. However, according to the authors, HSI has certain 

limitations in the analysis of milk powder samples. For example, compared to other food powders, 

milk powder has a consistent texture and subtle colour variations that are difficult to distinguish. 
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Ding et al., (2020) used image analysis to quantify the effects of particle shape on dispersibility. 

They tested four brands of Instant Whole Milk Powder (IWMP) and sieved the powders into three 

size categories (< 180 μm, 180-355 μm, and > 355 μm). The images were captured using light 

microscopy, and the geometric descriptors were determined by MATLAB image processing. The 

dispersibility was determined using the New Zealand Dairy Board method (Pisecky, 2012). PCA, 

partial least squares regression, and artificial neural networks were used to measure the correlation 

between shape factor and dispersibility. It was observed that circularity and convexity influenced 

particle dispersibility differently depending on the particle size category. However, the study only 

evaluated four powder brands, which may not be sufficient to generalise the findings. 

2.5.2. CV based food quality assessment challenges 

In contrast to human evaluations, imaging-based techniques can provide objective quantitative 

measurements of several quality attributes simultaneously in a non-destructive manner (Mozafari et 

al., 2024). However, since they can be sensitive to ambient conditions, some applications may require 

consistent and constrained viewpoints and specialised lighting to achieve satisfactory results (Ding, 

2021; Mozafari et al., 2024). Thus, CV systems are associated with several challenges, including 

designing and selecting the appropriate illumination system and hardware components (Brosnan and 

Sun, 2004; Patel et al., 2012) as illustrated in Figure 2-3. Moreover, food products may not be 

homogeneous, and the variations in shape and size can pose challenges in image analysis (Brosnan 

and Sun, 2004; Wu and Sun, 2013). The challenge arises because generalising any new observation 

(e.g., size, colour, lighting, texture) requires an increase in number of observations during algorithm 

development, which can be resource-intensive (Wu and Sun, 2013). Despite these challenges, the use 

of CV in the food industry has continued to grow because it offers potential for improved quality 

control and process optimisation (Brosnan and Sun, 2004; Ma et al., 2016; Mery et al., 2013; Patel et 

al., 2012; Wu and Sun, 2013). The ability of this technology to provide quick, accurate, and non-
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invasive quality assessments makes it an attractive tool for meeting consumer demands for high-

quality food products in the agri-food industry (Ma et al., 2016). 

2.6. Potential gap between automated and end-user agitation 

In many industries (such as pharmaceutical, cosmetic, and food), understanding and mimicking the 

mixing behaviour of consumers is necessary to ensure that powders of high quality are produced 

(Hardy et al., 2002; Lloyd et al., 2019; Quadro, 2015; TP, 2016). However, there have been a limited 

number of studies systematically mimicking end-user powder-liquid mixing behaviour (Lloyd et al., 

2019; O’Shea et al., 2021). In standard laboratory methods, different mixers are used, which may not 

reflect how end-users rehydrate powders at home. In the case of IF powder, infants’ susceptibility to 

nutritional deficiencies during critical stages of physical growth and neurological development (Prado 

and Dewey, 2014), combined with the fact that IF may be the only source of nutrition for some infants 

(National Academies Press, 2004), can make complete rehydration and release of intended nutrients 

in the water particularly important. More research is required into ways to make the mixing procedure 

for rehydration tests more realistically representative of the agitation behaviour applied to powder 

and water by the end users (while maintaining test objectivity). A study of this kind may also be useful 

in other research fields, such as the dissolution of pharmaceutical powders in liquids (Kumar et al., 

2018). 

2.7. Mimicking human bottle agitation 

The methods used to “mimic” human arm movements by robots should ideally be developed 

systematically (Ravichandar et al., 2020). This systematic approach is required to take into account 

the possibility of other similar movements performed by humans, which can enhance the 

generalisability of the learned movements. However, some studies have attempted to simulate the 

mixing of powder and liquid subjectively (Lloyd et al., 2019; O’Shea et al., 2021).  Lloyd et al. (2019) 

conducted market research by asking consumers to rehydrate various milk powders. The mechanical 
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mixer was then modified to achieve residue left after rehydration similar to those observed in 

consumers’ samples. This resulted in a mixing procedure involving rotating the mixer paddle 13 times 

clockwise and 13 times counterclockwise within eight seconds. However, the study provides limited 

information regarding the market research conducted to characterise the domestic rehydration 

methods. Additionally, the comparison of the agitations is not described in detail, such as the number 

of participants and milk powders, or the methods for analysing consumer rehydration. Conducting a 

subjective approach for mimicking the agitations is perhaps due to the difficulty of developing more 

objective methods for robots to mimic human movements (Ravichandar et al., 2020). For example, 

while the robot’s degrees of freedom (DoF) should be high enough to mimic a demonstration, dealing 

with increased DoF can be challenging (Ravichandar et al., 2020). Robots’ motors may also be less 

agile than human muscles (Hong et al., 2023). Because of differences in physical embodiment, robots 

and humans often behave differently to achieve the same results (Billard and Grollman, 2013). 

 Machine learning techniques can also be applied to other relatively large data processing 

problems in the food industry, such as robotic food handling (Misimi et al., 2018). It is common to 

use machine learning techniques to increase the flexibility of the data processing and obtain more 

generalised insights (Zhou et al., 2019). By using these techniques, researchers have explored the 

application of learning from demonstrations (LfD) to optimise robotic movement tasks (Ravichandar 

et al., 2020). LfD is a strategy in robotics that allows an intuitive method of teaching a robot new 

skills through demonstration. This approach, if its implementation challenges are addressed, is 

intended to reduce the time and cost of automation, especially for Small and Medium-sized 

Enterprises (SMEs) with high product variability and low volumes (Ko et al., 2015; Zhu and Hu, 

2018). 

CV combined with LfD has also shown promising results for inferring tasks from demonstration 

videos (Liu et al., 2018).  For example, based on LfD techniques combined with visual RGB-D and 

tactile feedback, Misimi et al. (2018) transferred the skill of handling food material to a robot. Their 
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learning approach based on SVM enabled a six DoF robot to learn how to handle fragile food items 

through around five hundred teleoperated demonstrations of random lettuce placements. For 

automated measurement of IF rehydration quality, a possible approach is to record videos of humans 

preparing the formula and, then, train models to identify key patterns related to the rehydration 

process (cf. Brito et al., 2020). Among these patterns are agitation motions, including trajectories, 

amplitudes, and frequencies (Kulak, 2021), which can yield the most frequent rehydration patterns 

according to human demonstrators (cf. Z. Liu et al., 2022). LfD is particularly of interest when the 

desired robotic motion is not well known and cannot be easily defined or scripted (Ravichandar et al., 

2020). 

Meanwhile, cobots have been employed to reproduce demonstration movements in industrial 

settings (e.g., Zaatari et al., 2021) with repeatability that is difficult for humans to achieve (L. Liu et 

al., 2022). Unlike traditional robotic motion programming, LfD techniques provide the opportunity 

to bridge human expertise with robotic precision. This may produce agitations that are both natural 

(as the motions are learned from human demonstrators) and reproducible (as the learned motions are 

performed by a robot). However, as LfD typically relies on human demonstrations, variability in these 

demonstrations may pose algorithmic challenges in the acquisition and articulation of agitation 

parameters (Ravichandar et al., 2020). This can be problematic, particularly considering high-speed 

agitations and the need to encode or learn a mapping that transfers the learned skills from human 

demonstrations to motions executable by robots (Ravichandar et al., 2020). 

LfD can encompass both high-level learning, which involves understanding the sequence of 

actions required for a task, and low-level learning, which focuses on recognising the precise trajectory 

of a task (Kyrarini et al., 2019). Because humans and robots interact with their surroundings in 

fundamentally different ways (Billard and Grollman, 2013), certain demonstration methods may 

require remapping the demonstrated task for the robot, known as a “correspondence problem”. 

According to Figure 2-4, the demonstration methods can be categorised into three groups: (i) 
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Kinesthetic Teaching: this method involves the operator physically moving the robot to demonstrate 

the required task. It is commonly used in teaching manipulation tasks while the robot records the joint 

angles. In this approach, there is no “correspondence problem”, and the teacher does not require much 

technical training to demonstrate the task (Zhu and Hu, 2018); (ii) Teleoperation: in this method, the 

robot is controlled remotely by an operator using tools such as joysticks or haptic devices. It is useful 

for teaching complex trajectories, repetitive tasks that require accuracy, or manipulating a robot in 

hazardous conditions (Ravichandar et al., 2020); and (iii) Passive Observation: in this method, the 

robot mimics teachers based on movement data obtained from sensors (usually CV-based).  

 

Figure 2-4 Three main demonstration methods: (a) Kinesthetic Teaching, which involves demonstration of the task through touching 

the robot arm, (b) Teleoperation, which involves the use of a remote controller (e.g., a joystick) to demonstrate the task, and (c) 

Passive Observation, which involves collecting data from the demonstration using sensors or computer vision systems 

The observed action sequences are then mapped to robot capabilities, including solving the 

“correspondence problem” between human and robot actions (Ravichandar et al., 2020). The Passive 

Observation method seems to be most appropriate for IF bottle agitation since it obtains the agitation 

data by observing the bottle in hand, rather than from haptic devices or robotic arm sensors. Directly 

observing bottle movements is expected to result in observation of more realistic agitation movements 

(e.g., the influence of fluid dynamics on bottle movement, or the effect of how the bottle feels in the 

participant’s hand on their perceptions and bottle agitation behaviours). Kinesthetic Teaching may 

not capture realistic agitation frequencies, due to the weight and inertia of the robot arm. Similarly, 

the use of a tool such as a haptic in the Teleoperation method may not accurately represent the natural 

agitation of the bottle. 
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To learn from the observations, a wide variety of algorithms have been used. Some of the 

commonly used techniques include: (i) Gaussian Mixture Models (GMM): these models encode the 

variability of demonstrations and enable robots to generalise observed movements (Kyrarini et al., 

2019); (ii) Hidden Markov Models (HMM): these models provide robots with the ability to learn 

different sequences of actions by encoding sequential patterns in the observed task (Kyrarini et al., 

2019); (iii) Dynamic Movement Primitives (DMP): this method provides reliable control over learned 

motions by storing motor skills in a format that can be modified for use in other settings (Ravichandar 

et al., 2020). There are advantages and disadvantages to each method, depending on the particular 

learning task. For example, a GMM approach alone may not be able to learn the temporal dependency 

and frequency of IF bottle agitation (cf. Vogt et al., 2017). Additionally, since HMM approaches are 

designed to learn sequences, they may have difficulty performing an entire smooth agitation cycle. 

Since phase-based methods such as DMP can learn both smooth paths and timing, they seem to be 

more suitable for learning rhythmic tasks (Ernesti et al., 2012; Kulak et al., 2020) such as IF bottle 

agitation movements. However, it has been common in recent years to develop hybrid approaches 

that incorporate the advantages of each approach (Kulak et al., 2020; Vogt et al., 2017). 

Although LfD has demonstrated some promise in addressing food handling challenges, Ko et 

al. (2015) highlighted some difficulties LfD may encounter in industrial applications, such as high 

accuracy requirements, repeatability, adaptability, system complexity, and production speed. To 

overcome these issues, they proposed a learning architecture to achieve flexibility along with 

accuracy and speed needed in industrial applications. Recent research has focused on developing 

techniques for detecting and eliminating inconsistent demonstrations, predicting the intended actions 

of teachers, and enabling robots to perform learned tasks in new environments without additional 

training data (Kyrarini et al., 2019; Misimi et al., 2018). 
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2.8. Integration of emerging technologies and their synergies 

The food processing and agricultural automation industries are currently undergoing transformation 

driven by emerging technologies (Derossi et al., 2023; Kadalagere Sampath et al., 2023; Sane and 

Sane, 2021). Integration of these technologies has the potential to enable automated and standardised 

manipulation of food objects. Robotics, advanced sensing systems (such as force sensors and high 

resolution cameras), and machine learning have provided solutions to some previously unsolved 

challenges associated with characterising food properties and quality, crop harvesting, and food 

handling (Derossi et al., 2023; Sane and Sane, 2021). 

Numerous studies have integrated emerging technologies to address existing automation 

challenges in the food industry. Lillienskiold et al. (2022) used robotic systems with haptic feedback, 

image analysis, and machine learning to develop food grasping strategies. Tai et al. (2023) replicated 

scooping food by using robotic process automation combined with “active perception”. Robotic 

systems equipped with soft grippers and 3D vision are now available for better handling of food 

products (Derossi et al., 2023). Multi-finger robotic hands, CV, tactile sensing, and techniques for 

interacting with deformable and soft objects can be integrated to solve food handling problems 

(Kadalagere Sampath et al., 2023). In the agriculture sector, robots, image analysis, and deep learning 

have been applied to automate crop harvesting (Sane and Sane, 2021). Rajendran et al. (2023) 

presented a fruit harvesting system that includes robotic arms, end effectors, a CV system for fruit 

identification, and a method for motion planning. 

However, in practice, developing manipulation strategies for objects with different shapes and 

sizes (Kadalagere Sampath et al., 2023) or heterogeneous objects (Derossi et al., 2023) remains a 

challenging process. The challenges associated with robot handling of food products have resulted in 

many tasks in the food industry still being performed manually, which are both labour-intensive and 

subject to large variations (Misimi et al., 2018). Particularly in the food industry, some experiments 

require complex operations to be performed by experts. This complexity exacerbates the difficulty of 
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maintaining consistency (Misimi et al., 2018). To address the challenges associated with handling 

food and agricultural products, integrated modular solutions both in terms of hardware (Derossi et 

al., 2023) and software (Sane and Sane, 2021; Tai et al., 2023) can be beneficial. Modular 

architectures can be flexible, precise, and fast simultaneously, aligning with the demands of the food 

industry. For example, the integrated platform for food scooping tasks (Tai et al., 2023) consists of 

modules that encode interaction data, capture state information, and implicitly represent food 

properties to guide real-time robotic scooping actions. Modular solutions based on emerging 

technologies can lead to improved product quality, reduced waste, and increased productivity 

(Derossi et al., 2023; Sane and Sane, 2021). Moreover, although the use of robots and the CV systems 

may increase productivity and minimise the costs of the quality inspection process, there may be 

difficulties in establishing communication between the automated systems (Leidenkrantz and 

Westbrandt, 2019), or the integration of sensors into the robot to handle food products (Misimi et al., 

2018). 

2.9. Conclusion 

A review of current methods for evaluating IF rehydration properties identified several shortcomings, 

including subjectivity, poor reproducibility, and lack of standardisation. Despite the potential of 

emerging technologies such as robotics and CV to provide solutions, practical implementation 

challenges exist relating to module design and the architecture of the entire automated system. 

However, to ensure consistent product quality control based on end-user needs, more objective and 

representative rehydration quality tests are required. Also, developing automated analytical tools 

could provide a more objective understanding of the effects of formulation and processing parameters 

on IF powder rehydration. 

If the robot has the necessary electromechanical capabilities and the control system is properly 

designed, robots can be programmed to mimic human movements during bottle agitations using 

systematically characterised agitations. This would reduce the variations resulting from human 
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analysis. Further research is necessary to characterise human bottle agitation and to validate robotic 

agitations against common human agitations. The process of mapping human motions to robots and 

the variability between demonstrations pose implementation challenges. Likewise, for other 

automation modules such as CV systems, it is crucial to compare automated measures with reference 

methods for validation. 

Computer vision is considered an objective and non-destructive method to provide quantitative 

measurements of quality attributes. There are some challenges in designing and selecting the CV 

system components. Also, the variations in the studied quality attribute in the dairy or other food 

products (e.g., shape and size of the defect) pose challenges in image analysis. Furthermore, the 

possibility of new observations (e.g., size, colour, and texture) may require an increase in the number 

of observations during algorithm development, which can be resource intensive. Despite these 

challenges, the use of computer vision in the food industry has continued to grow because it offers 

the potential for objective quality control and improving process optimisation. 

Transforming manual bottle agitation styles into automated protocols requires interdisciplinary 

research e.g., process engineering, sensors, control systems, and data analysis. Because powder 

rehydration preferences may vary according to culture and geographic location, it may be difficult to 

develop a universal solution. However, one potential for a robotics rehydration platform is to use LfD 

techniques and learn agitations based on demonstrations from different geographical locations. The 

platform could therefore mimic specific powder rehydration styles regardless of the laboratory’s 

location. In addition, identical rehydration assessments could be guaranteed if manufacturers or 

researchers use the same robot and program.   
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3Chapter 3 (Platform development): An Automated Platform 

for Assessing Infant Formula Rehydration 

Parts of this chapter have been published in: 

• Mozafari, B., O’Shea, N., Fenelon, M., Li, R., Daly, D.F. and Villing, R., 2024. An 

automated platform for measuring infant formula powder rehydration quality using a 

collaborative robot integrated with computer vision. Journal of Food Engineering, 383, 

p.112229. https://doi.org/10.1016/j.jfoodeng.2024.112229  

• Mozafari, B., O’Shea, N., Fenelon, M. and Villing, R., 2022, June. Towards Image 

Processing-based Quantification of White Particles in Reconstituted Infant Formula. In 

2022 33rd Irish Signals and Systems Conference (ISSC) (pp. 1-6). IEEE. 

https://www.doi.org/10.1109/ISSC55427.2022.9826210  

3.1. Introduction 

The purpose of this chapter is to describe the development of an automated platform for evaluating 

the rehydration quality of IF powder. The automated platform integrates a collaborative robot with a 

computer vision system developed in-house. The cobot was used for preparing the IF mixture in a 

standardised manner. In this chapter, the cobot bottle agitation movements were identical to those 

used in another study outside the scope of the thesis (O’Shea et al., 2021). However, the cobot 

program was enhanced to handle the bottle for automated imaging and visualisation of the unhydrated 

particles in the bottle’s blank headspace (e.g., the red dashed line in Figure 3-4). The computer vision 

system was used to assess the quality of the prepared mixture and quantify three rehydration 

properties that may be undesirable in a rehydrated IF powder. 

After describing how the platform was developed, the chapter describes a preliminary 

assessment of the platform by comparing its estimates of three rehydration properties with those of 

https://doi.org/10.1016/j.jfoodeng.2024.112229
https://doi.org/10.1016/j.jfoodeng.2024.112229
https://doi.org/10.1016/j.jfoodeng.2024.112229
https://doi.org/10.1016/j.jfoodeng.2024.112229
https://www.doi.org/10.1109/ISSC55427.2022.9826210
https://www.doi.org/10.1109/ISSC55427.2022.9826210
https://www.doi.org/10.1109/ISSC55427.2022.9826210
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people using a random subset of the same automated-captured images. Chapter Four describes a 

subsequent evaluation of the platform in comparison to commonly used laboratory tests. 

The findings of the present chapter provide a foundation for the remainder of the experiments 

in this thesis. Therefore, although benchmarking of the platform based on laboratory tests common 

in food and dairy science was not conducted for this chapter, some basic laboratory measurements 

were performed to ensure that platform measurements have meaningful relationships with basic 

laboratory tests (such as particle size and dissolved solids measurements). 

3.2. Related works 

As described in Chapter Two, the rehydration attributes of IF powders are often associated with 

product quality and end user acceptance. Ideally, IF powders should completely and rapidly dissolve 

in water and resemble milk in appearance after rehydration. However, in reality, they may 

demonstrate some undesirable rehydration attributes such as foam, sediment, and undissolved 

particles (Masum et al., 2020; Sharma et al., 2012). Therefore, IF powder manufacturers perform 

quality tests to determine how well the powders dissolve in water, commonly referred to as “instant 

properties” (Pisecky, 2012). For example, wettability and dispersibility tests have been frequently 

used to assess the different stages of rehydration in water in a certain amount of time (Sharma et al., 

2012). 

Currently, powder rehydration assessment methods are subjective (Munir et al., 2017), 

depending on the amount of agitation energy used by a human in the preparation of the mixture (Lloyd 

et al., 2019; O’Shea et al., 2021) and an individual’s interpretation of the mixture quality (Lloyd et 

al., 2019). An objective method is required to better understand powder rehydration behaviour (Munir 

et al., 2017). Emerging technologies, such as computer vision (CV), are expected to improve the 

objectivity, reproducibility, and accuracy of testing (Fang et al., 2008). The primary reason why 

human evaluations are still widely used for rehydration quality instead of digital methods is that 

digital data collection is challenging (Munir et al., 2017). Furthermore, appropriate software, 
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hardware, and data management systems are required for real-time data analysis, and companies need 

to justify their investments when implementing digital systems, as they can create additional expenses 

and require interdisciplinary expertise (Munir et al., 2017). 

Recently, some studies have sought to address the lack of objective rehydration quality 

measurements. Lloyd et al. (2019) developed a CV algorithm to measure the number of undissolved 

“bulk particles” and a mixer that mimicked the end user agitation movements to ensure consistency 

during powder rehydration. To count the number of particles, they used a 5 Megapixels camera and a 

flow cell with a dark background to increase contrast and reduce the impact of ambient factors (e.g., 

lighting). Their image processing methodology involved normalizing the image background, creating 

a binary image using a manually selected threshold, and performing a connected components analysis 

with a threshold on particle area. A recent study conducted by the author of this thesis examined 

undissolved “surface-floating particles” (Mozafari et al., 2022). The study developed a preliminary 

version of “digitally-generated” reference images based on particle size and particle size distribution 

measurements obtained from a confocal microscope and laser scattering instrument. A computer 

vision algorithm for counting particles was developed and then evaluated by manually scoring the 

images based on the reference images. Other rehydration attributes associated with the rehydration 

of IF powders, such as foaming and sedimentation, do not appear to have been adequately assessed 

using a CV approach in the literature to date. 

Despite the limited number of such studies conducted for rehydrated dairy powders, several 

other studies have applied the image analysis approach to assess the quality of various drinks. The 

methods include manual assessment of images (Crumpton et al., 2018; Novak et al., 2015) with the 

aid of computer applications such as ImageJ (Schneider et al., 2012), Artificial Neural Networks 

(ANNs) (Gonzalez Viejo et al., 2018; Morelle et al., 2021; Panckow et al., 2021), and classical 

methods. While ANNs can be more flexible than classical approaches, they may require more lab 

experiments to obtain the necessary data for training (Huang et al., 2007). Classical approaches have 
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been applied to measure: (i) foam height in beer  (Cimini et al., 2016; Nyarko et al., 2021), wine 

(Condé et al., 2017), milk (Ewert et al., 2016; Münchow et al., 2015); (ii) particle shape of milk 

powder (Ding et al., 2021); and (iii) curdling and sediment in soy milk (Brown et al., 2019). 

The classical methods used to measure rehydration attributes may differ. For example, the study 

conducted by Condé et al. (2017) employed the circle Hough transform to determine the size of the 

foam bubbles in wine. The algorithm computed the likelihood of circular shapes occurring within the 

image. However, it is possible for foam to have a noncircular shape (Walstra, 1989). 

In another study on the foaming properties of liquid milk, Mϋnchow et al. (2015) used a 

threshold pixel intensity approach to measure the foam height and its stability in milk containing 

different fat or protein content. They collected images every second for 10 minutes to determine the 

stability of foam from different steam-frothed milk samples. It was reported that image processing 

decreased the dependency of measurements on human interpretations, which offered a reliable means 

for understanding the impact of different milk ingredients on foam height and stability. Backlighting 

was used before thresholding to increase the contrast between milk and foam. This technique cannot 

be used to detect some other rehydration attributes, such as sediment, in a mixture. For example, when 

Brown et al. (2019) assessed the curdling of soy milk in coffee, they applied thresholding on the 

Fourier transform rather than enhanced-contrast images obtained from backlighting. They analysed 

the images using Fourier transform to evaluate the phase separation and sedimentation processes. 

However, their report does not provide details regarding the algorithm used for image analysis or 

whether the images were captured or analysed automatically. 

3.3. Aims of the present study 

The present study aimed to develop and evaluate an automated platform for quantifying three visible 

indicators of rehydration quality in a non-destructive and objective manner. Since some powder 

rehydration quality tests are categorized into distinct levels and rely on subjective assessments, 

automating them is a challenge for the dairy powder industry (Munir et al., 2017). To our knowledge, 
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this is the first time an automated platform has been developed to quantify three visible rehydration 

attributes using the same rehydrated powder sample. The platform consisted of a CV system using 

three classical vision approaches and a collaborative robot (cobot). Our study focused on measuring: 

(i) foam height; (ii) sediment height; and (iii) the number of undissolved particles (referred to as 

“white particles” in this document). The research involved: (i) rehydrating IF powders using a cobot; 

(ii) automatically capturing images of the rehydrated powder from six different viewpoints in five 

imaging rounds using an industrial camera integrated with the cobot; (iii) applying three developed 

CV algorithms to quantify the three rehydration attributes; and (iv) evaluating CV estimates of all 

three visible rehydration attributes in comparison to those of eight participants presented with a 

random selection of the same cobot-captured images. 

3.4. Automated platform development 

3.4.1. Platform overview 

The platform consisted of a dual-arm YuMi collaborative robot (cobot) (ABB corporation, 

Switzerland) with seven degrees of freedom on each arm and an in-house developed vision system 

(Figure 3-1). The cobot was used to ensure that the same agitation energy, time, and motions were 

used during the preparation of the mixtures. Using the touch screen, the operator could select the style 

and duration of bottle agitation and the number of scoops of powder to be added to the bottle. The 

process of heating and adding water to the empty bottle was carried out manually (it was not part of 

the automated platform). 
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Figure 3-1  Platform architecture for preparing mixtures and capturing bottle images 

As mentioned in Chapter One and the overview of the present chapter, the robot agitations 

described in this chapter were previously developed outside the scope of this thesis. However, the 

robot program was enhanced by adding an automatic imaging module as will be described in section 

3.4.2. 

3.4.2. Integrated computer vision system 

Although the YuMi robot used in this study was equipped with SmartGrippers having 1.3 Megapixel 

cameras on each arm and Cognex image processing software (ABB, 2021a), preliminary trials 

indicated that the resolution of the cameras was not sufficient to evaluate the rehydration attributes 

(Figure 3-2). 
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Figure 3-2 Images automatically taken by YuMi’s Cognex AE3 camera with internal illumination were not of sufficient quality to be 

used in this study 

Additionally, the camera was monochrome, limiting image segmentation capabilities. It was 

therefore necessary to incorporate an external high-resolution vision system into the platform design. 

The visibility of rehydration attributes, specifically particles, was evaluated first using a Canon EOS 

80D camera (Canon Inc., Tokyo, Japan) with two lenses of 50 mm f/1.4 and 18-135 mm f/3.5-5.6. As 

a result of this evaluation, it was possible to estimate the characteristics of an appropriate industrial 

camera and lens that could be incorporated into the platform. During the selection process for the 

camera, the size and resolution of the image sensor were given a high priority. The use of a larger 

image sensor (and pixel size) was preferred to obtain adequate image illumination without increasing 

signal gain (which can result in noise in images and adversely impact the performance of image 

analysis algorithms, particularly for particle detection). During lens selection, several factors were 

taken into consideration, including high resolution (usually measured as line pairs per mm, and 

determined by the quality of its glass material, which affects the price), a small minimum focusing 
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distance (because the vision system has to fit on the robot table and capture the sample images from 

a close distance), an adequate field of view (to ensure that it can capture the entire bottle in the 

minimum focusing distance), and a greater depth of field (to ensure rehydration attributes are visible 

despite the curvature of the bottle). 

The vision system included a 5536 × 3692 pixels (21 Megapixels) industrial camera (U3-

3800CP Rev.2.2, iDS Imaging, Germany) with a pixel size of 2.4 µm, a 1:1.8/16 mm lens (CF16ZA-

1S, Fujinon, Fuji Photo Film Co., Japan), and a cubic lightbox (23 cm × 23 cm × 23 cm) with two 

LED strips (2 × 550 LM) secured on top (inside the lightbox, front and back) to provide uniform 

lighting. The camera communicated with the cobot using socket messages transmitted using USB3 

and TCP/IP over Ethernet (Figure 3-3) to capture the images automatically. 

The vision system evaluated the rehydration quality of the IF mixtures in a commercial 260 ml 

baby bottle (Philips Avent, Glemsford, England). The purpose of using a commercial bottle was to 

ensure that the conditions in which the mixtures are prepared are as close as possible to those applied 

by the end user. Two specific objectives were pursued by preparing the mixtures in a commercial 

bottle: i) ensuring a realistic fluid dynamic inside the bottle; and ii) evaluating the rehydration quality 

of the mixture in the same bottle without further disturbing the mixture (which may result in foam 

displacement and sediment re-dispersion into the mixture). Consequently, computer vision algorithms 

were required to handle the presence of commercial marks on the bottle. Following this approach, a 

preliminary evaluation of the platform quality assessment based on the measurements from 

participants was possible. 

The overall platform architecture is shown in Figure 3-1. A hole of 40 mm diameter was made 

in the lightbox for positioning the lens to capture the bottle, which had a size of 10 cm × 7 cm. The 

distance between the lens and the bottle was 9 cm, and the f-number of the lens was fixed at 8 to 

create a larger depth of field compared to the lens’s maximum aperture of f1.8. To reduce reflections 
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from the glossy bottle, the inner sidewalls of the lightbox were covered with white matte paper, except 

for the black background behind the bottle. 

The bottle holder (inside the lightbox) was constructed from a transparent acrylic plate to reduce 

shadows at the bottom of the bottle and improve the visibility of any possible sediment. A ruler was 

attached to the bottle holder to evaluate foam and sediment height (described in sections 3.5.5.1 and 

3.5.5.2). 

3.4.3. Image acquisition 

After agitation, the cobot placed the bottle on the transparent holder inside the lightbox (Figure 3-1) 

and waited 10 s for the mixture to stabilize. It then communicated a command to a laptop (Core i7-

6700HQ) over the socket to capture an image using the camera. The camera exposure time was 250 

ms, and the signal was not amplified to minimise noise in the images. Each high-resolution captured 

image was cropped three times, once for each rehydration attribute (rather than capturing three 

separate images) to minimise possible changes in rehydration attributes due to time passing or fluid 

disruption during the imaging process. After capturing the first image, the cobot “gently” rotated the 

bottle around the Z (vertical) axis by 60° and captured another image, repeating this rotate-and-

capture process until six images from equally spaced viewpoints of the bottle were captured. These 

six images constituted a single imaging round. It took 20 s to perform the “gentle” bottle rotation to 

reduce the disturbance of the mixture. All images were saved and processed on the laptop. For CV 

ratings, the images were converted from BMP to PNG format. The platform communication 

schematic is presented in Figure 3-3. 
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Figure 3-3 Platform communication schematic 

To ensure data integrity and maintain electronic records as recommended by FDA regulation CFR 21 

Part 11 (Winter and Huber, 2000), every cobot-captured image was saved in a unique folder with the 

exact time and date in the format of yy-mm-dd-hh-mm-ss. Throughout the project, a private internal 

network was used to back up images to ensure that the original data would remain unchanged. A text 

file was also provided as metadata explaining the structure of the stored data (such as imaging round, 

expected visible defects in images, and folder naming) for data users. 

The entire imaging procedure for each cobot-prepared mixture involved five imaging rounds 

(each comprising of six images from different viewpoints around the bottle). The first four rounds 

were used to monitor the change in foam and sediment height. The fifth (and last) round was used to 

count white particles. Before the fifth round, the cobot removed the bottle from the lightbox, then 

inclined and rotated it for visualisation of white particles in the bottle’s blank headspace, if present. 

The first three rounds of imaging were followed by a 3-min rest period to allow foam height change. 

The same viewpoints were used to capture images of the bottle during all imaging rounds. 

3.4.4. Computer vision algorithms 

Python and the OpenCV library (Bradski, 2000) were used to calibrate the camera and develop the 

image-processing software. The calibration was performed by photographing a 9×6 OpenCV 

chessboard pattern printed on approximately A6-sized paper using the same camera settings and 

distance as when imaging the samples. For the development of vision algorithms, five powders (P1, 
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P2, C1, C2, and C3) were randomly selected. The rehydration attributes subjectively observed in 

these mixtures can be found in Table 3-1. 

Table 3-1 The mixtures used for developing the algorithms and corresponding rehydration attributes  

Mixture Foam Sediment White Particles 

C1 High Low Low 

C2 Medium Medium Low 

C3 Medium Medium Medium 

P1 Low High Medium 

P2 Low High High 

Algorithms were developed for estimating each of the three rehydration properties and these 

are described in sections 3.4.4.1 to 3.4.4.3. The six cobot-captured images obtained during an imaging 

round and the Region of Interest (ROI) (i.e., the cropped images) for each of the three algorithms are 

illustrated in Figure 3-4. 

 

Figure 3-4 Six different bottle viewpoints in an imaging round. The ROI of Foam Height, Sediment Height, and Number of White 

Particles algorithms are illustrated in Image 1 (left) in Blue (solid line), Green (dotted line), and Red (dashed line) 

The three image processing algorithms began rating the rehydration properties as soon as the images 

were captured. The results of the image analysis were available within approximately five seconds. 

While the algorithms were analysing the image, the robot rotated the bottle (which took twenty 

seconds plus ten seconds of rest time, as described in section 3.4.3) to obtain the next image. 

Therefore. the software used for the image analysis on this platform was quicker than its “physical 

counterpart” and can be considered “real-time” (Bélanger et al., 2010). The software was designed 

with a parallel architecture, which enabled the robot to operate without waiting for the images to be 
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analysed, preventing the image analysis software from becoming a bottleneck during the cobot 

imaging of the samples. Moreover, since the original images and timestamps have been stored, they 

can be processed using any other techniques or algorithms later. To enhance the traceability of 

experiments, it is beneficial to have data stored and timestamped from samples (which can be done 

through food digitalisation (Serazetdinova et al., 2019)). 

3.4.4.1. Foam Height Estimation Algorithm 

During a preliminary evaluation prior to developing the algorithm, some large bubbles were observed 

to be elliptical rather than circular, while some mixtures contained small bubbles (Figure 3-5). 

According to the literature, foam bubbles can have a variety of sizes and shapes (Walstra, 1989). 

 

Figure 3-5 Bubble size and foam-mixture boundary in different mixtures (left: mixture C1 with small bubbles, right: mixture P1 with 

elliptical bubbles) – mixtures were prepared and photographed automatically using the platform 

Therefore, a derivative filter convolution was used to calculate the image gradient to detect foam 

regardless of the shape and size of the bubble. The foam algorithm pipeline is illustrated in Figure 

3-6. The purpose of this algorithm was to determine the height of foam, not to interpret its shape. 
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Figure 3-6 Foam height estimation algorithm 

The steps of the foam algorithm are as follows. 

1. The image was cropped according to foam ROI illustrated in Figure 3-4. 

2. The black background visible through the transparent bottle was removed using Otsu 

thresholding. 

3. Using connected component analysis, the small droplets or pieces of foam were isolated from 

the main body of the mixture including foam (the largest component in the binary image) and 

removed as they were not of interest for foam detection. Accordingly, the upper boundary of 

the foam was detected as the highest pixel in the largest component. To ensure successful 

thresholding (step 2), it was checked that the largest component accounted for 10%–90% of 

the ROI. 

4. Otsu thresholding was used again to remove the manufacturer’s label and bottle marks (their 

colours were different from the main body of the mixture). Since the bottle marks cast 

shadows on the mixture, the entire image columns were removed if they contained a bottle 

mark. 

5. Before lower foam boundary detection, the image was scaled down to 20% to reduce 

calculation costs and to minimise the possibility of highlighting smaller features such as noise. 

6. The liquid-foam boundary was detected by convolving a filter size of 11 pixels (equivalent to 

0.5 mm on the scaled image which is approximately the smallest bubble diameter visible in 

the images) from four different directions (due to the circular edges of bubbles). 
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7. A fixed threshold was manually set for segments H and V (H > 60 & V > 100) to determine 

boundaries in the processed image. 

8. After detecting the boundary between the liquid and foam mediums, the foam boundaries 

were fully detected. The foam height was then calculated in pixels and converted to 

millimetres. 

3.4.4.2. Sediment height estimation algorithm 

The sediment algorithm pipeline is illustrated in Figure 3-7. 

 

Figure 3-7 Sediment height estimation algorithm 

The steps of the sediment algorithm are as follows. 

1. The image was cropped according to sediment ROI illustrated in Figure 3-4. 

2. The black background visible through the transparent holder under the bottle was removed 

using Otsu thresholding. 

3. Connected component analysis was performed to ensure that the lower sediment boundary 

was detected without any remaining noise in the base region using the same function as the 

foam algorithm. The lower pixel of the largest component, which was the main body of the 

mixture and possible sediment, was then selected as the lower boundary of the sediment. 

4. The median Hue level of each image column in the entire ROI was calculated in the HSV 

colour space. 

5. A sliding window of 1 mm with a 0.5 mm overlap was used to scan each column of the ROI 

and calculate the Hue median. 
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6. Whenever the median Hue of a sliding window and its subsequent windows in a column 

exceeded that of the column, the window was considered as the upper boundary of the 

sediment in that column (as sediment is thicker and less diluted than the rest of the mixture 

on top, it was assumed to have a higher Hue). This method was applied to all image columns 

within the ROI.  

7. The sediment height was then calculated in pixels and converted to millimetres. 

3.4.4.3. Number of White Particles algorithm 

The detection of white particles was based on image sharpness and mean shift algorithms as reported 

in Mozafari et al. (2022). The algorithm pipeline is illustrated in Figure 3-8. 

 

Figure 3-8 Number of white particles detection algorithm 

The steps of the white particles algorithm are as follows. 

1. The image was cropped according to particles ROI illustrated in Figure 3-4. 

2. Mean shift was used to classify the colours and emphasise the particles margin. The window 

was approximately 100 μm in size, which was in the expected range of these particles 

(Toikkanen et al., 2018). 

3. The pixels that fell inside a manually selected colour range (75 < H < 115, 25 < S < 105, 175 

< V < 255), were segmented (choosing the colour range was accomplished by manually 

examining the particles’ colours in the development dataset). 
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4. A connected component analysis was applied to ensure that only particles with a width and 

height of 100 μm to 1 mm and a surface area greater than one-third of their width × height are 

retained. 

5. Unsharp masking with a kernel size of approximately 500 μm was applied to find the sharp 

regions in the image. It was expected that the sharp regions may contain particles. 

6. The logical conjunction between steps 4 and 5 was detected as particles. 

In this algorithm, particles were counted. However, in order to allow for better comparison with 

participant ratings, the assigned numbers by CV were also categorized as scores using a logarithmic 

scale as described in Mozafari et al. (2022). 

3.5. Platform evaluation based on visible rehydration attributes 

This section presents the methods for evaluating platform performance. To validate the effectiveness 

of CV for visually estimating foam height, sediment height, and white particles, we examined whether 

people and CV algorithms would produce similar estimates when presented with the same cobot-

captured images. The agreement between the CV and human estimates was assessed using the method 

described in section 3.5.6. Section 3.4.3 describes how images were captured. 

3.5.1. Participants (demographics) 

Eight participants were recruited to rate images that had been captured by the platform and used by 

the CV algorithms. All participants were researchers in dairy-related fields. They gave their informed 

consent to participate (Appendix 2 contains the relevant ethical approval). 

3.5.2. Infant formula powders 

Twenty-nine stage-1 IF powders were used, of which 14 were off-the-shelf powders available in 

Ireland or the Netherlands, and 15 were pilot plant powders produced by Moorepark Technology Ltd., 
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Fermoy, Co. Cork, Ireland. Throughout this document, the commercial powders are referred to as C1 

to C14, and the pilot plant powders as P1 to P15. 

3.5.3. Rehydration process using robotic agitations 

The cobot prepared two mixtures for each powder using two different agitation styles: Swirl and 

Shake (the latter is referred to as “up and down” in O’Shea et al. (2021)). The procedure was 

conducted as follows. 

1. On the cobot pendant, an operator (the author) entered the agitation style, the desired number 

of scoops of a powder, and the agitation duration, which was 15 s for all the samples in this 

study. 

2. 180 ml of water (38°C) was manually added to the bottle and placed in front of the cobot and 

the start button on the cobot pendant was pressed. 

The platform performed the rest of the experiment automatically. It included: (i) rehydration of 

the powder, (ii) imaging of the bottle, and (iii) rating of the captured images using the developed CV 

algorithms. The Shake agitation was more energetic than the Swirl agitation according to a 

preliminary analysis of data collected from the robot controller (data is presented in Chapter 5). The 

robotic scooping, levelling of powder in scoops, and agitation movements used in this study were 

designed to approximate those of humans during bottle preparation. Formal evaluation of the robot 

movements in comparison to human movement is described in Chapter 5. 

3.5.4. Infant formula powder and mixture properties 

The following properties of these powders and the corresponding prepared mixtures were determined. 

Powder Particle Size Distribution (PSD): The PSD of each powder was measured using the 

Mastersizer™ 3000 laser diffraction machine (Malvern Instruments Ltd., Malvern, England). 

Measurements were performed in triplicate by the machine with the obscuration limits set between 

1% and 5%, refractive index 1.45, absorption index 0.1, and air pressure 0.5 barg. 
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Liquid Particle Size Distribution: The PSD of each mixture was measured using a 

Mastersizer™ 3000 (Malvern Instruments Ltd., Malvern, England). Measurements were performed 

in triplicate by the machine with the obscuration limits set between 3% and 10%, refractive index 

1.45 (1.333 for water as dispersant), absorption index 0.01, and stirrer speed 1750 RPM. 

Target Total Solids: To calculate the target total solids (TTS) in triplicate, the cobot scoop was 

manually filled with powder, levelled with a blade, and weighed. The average weight was multiplied 

by the number of scoops recommended by the manufacturer for preparing each mixture to determine 

the TTS. 

Dissolved Solids: A single dissolved solids (DS) measurement of each mixture was conducted 

using a SmartTrac™ (CEM Corporation, NC, USA). The sample was collected approximately from 

the centre of geometry for each mixture. 

Transferring the prepared mixtures for measurements (e.g., to determine the DS) was done by 

hand rather than by trolley to minimise the introduction of additional vibrations. It was observed that 

the introduction of vibration into the prepared mixture can compromise the accuracy of 

measurements, particularly when measuring small quantities (i.e. the difference between the TTS and 

DS). Vibrations can cause sediment to re-disperse in the mixture, making it difficult to obtain a 

consistent mixture for measurements. 

3.5.5. Participant instructions and supports 

To reduce the number of images and make the rating process feasible for participants, one of the first 

four imaging rounds in each mixture (which aimed to monitor the foam and sediment height) was 

selected randomly and cropped at the top and bottom to show only foam or sediment regions. From 

the fifth imaging round (which aimed to count the number of white particles), no random selection 

was performed so all images were cropped to be rated by participants. In total, 288 cropped images 

per rehydration attribute were shuffled and distributed randomly to the eight participants such that 

each participant rated 36 images per rehydration attribute. Participants rated images in accordance 
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with a Standard Operating Procedure (SOP) developed for the experiment (Appendix 1). For each of 

the three rehydration attributes, the SOP included an image showing the rehydration attribute and 

expectations for the outcome. By using Python and the OpenCV library, the contrast of all images 

was increased to enhance the visibility of rehydration attributes. 

3.5.5.1. Foam height 

A ruler visible in the images was used by participants to measure the foam height. It was possible for 

participants to zoom into the images to count the number of millimetre grades on the ruler and report 

foam height in the region “as close to the ruler as possible”. Participants could report measurements 

with a resolution of 0.5 mm in case they detected foam height between the two ruler grades. 

3.5.5.2. Sediment height 

As with the foam height measurement, participants were asked to rate the sediment height with a 

resolution of 0.5 mm and “as close to the ruler as possible”. Participants had the option of zooming 

into images. 

3.5.5.3. Identification and rating of white particles 

Figure 3-9 illustrates six digitally generated reference images used by participants to rate the presence 

of white particles. Compared with our previous study (Mozafari et al., 2022) that used Mastersizer™ 

and microscope data for developing the reference images, the reference images in this study were 

improved to show particles with a similar shape to actual particles. 
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Figure 3-9 The digitally generated reference images provided for participant ratings 

The six reference images were generated using the ImageJ computer application (Schneider et al., 

2012) and Python. First, from the entire dataset of sample images, five samples’ images with the 

highest level of white particles were selected subjectively by the author and labelled as samples with 

an “extreme” number of white particles. Then ImageJ was used to detect particles in the selected 

“extreme” images. The ImageJ outputs were imported into Python as binary images, and the particles 

visible in the images were separated and placed in an unordered collection known as a bag. To create 

each of the reference images, a uniform random selection was made from the bag of particles. The 

number of particles in reference image six was determined by averaging the number of particles in 

the selected “extreme” images. The number of particles in each of the other reference images was 

chosen in a logarithmic manner as described in Mozafari et al. (2022). 

As illustrated by Figure 3-10, to distribute the particles in the reference images: (i) an empty 

image was generated in the same size as the cropped images in ImageJ, (ii) the randomly selected 

particles were sorted by size from large to small, and (iii) for each particle, a random (x, y) was 
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selected as the position of the particle in the image; if the particle (with known width and height) did 

not overlap the previously placed particles or image boundaries, it was placed in the image; otherwise, 

another random (x, y) was selected until the criteria was met. 

 

Figure 3-10 The Algorithm for digitally generating a reference image 

A webpage was developed for participants to display the sample images to be evaluated alongside the 

reference images. The purpose of this was to ensure that reference images and mixture images had 

consistent relative scaling for all participants. Participants could scroll through the reference images 

up and down on the page and compare them with the static sample images (which were slidable left 

and right) to score the presence of white particles in the mixtures.  

3.5.6. Data analysis 

Data was analysed using R (R Core Team, 2020) and visualised using the ggplot library (Wickham, 

2016). Pearson correlation coefficients and their significance (p-values) were calculated to quantify 

the possible linear relationships between the rehydration attribute estimates of participants and CV. 

While correlation assesses the strength and direction of the linear relationship between two variables, 

it does not evaluate the degree of concordance between the two methods (participants’ and CV 

estimates). Thus, Bland-Altman plots were generated for all measurements, as well as Krippendorff’s 

Alpha for white particle ratings, to analyse the degree of agreement between CV and participants’ 

estimates. Student’s t-test was used to evaluate if differences in rehydration attributes arising from 

each agitation style were significant. 
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3.6. Results and discussion 

The results of the powders and prepared sample measurements are discussed in section 3.6.1. 

Additionally, this section discusses the possible impact of robotic agitation on particle size and 

dissolved solids in mixtures. Sections 3.6.2 to 3.6.4 compare the estimations of rehydration attributes 

between CV algorithms and participants. Sections 3.6.2 to 3.6.4 also discusses the impact of agitation 

style on the rehydration attributes estimated by CV, and the relationships between CV sediment height 

estimations, powder particle size, and dissolved solids. 

3.6.1. Powder and mixture properties 

According to PSD in Table 3-2, the D90 of commercial powders was greater in minimum (252 > 202 

[μm]), maximum (478 > 397 [μm]), and average (357 > 310 [μm]) than that of pilot plant powders. 

Similarly, D[4, 3] of commercial powders showed a larger minimum (142 > 102 [μm]), maximum (286 

> 205 [μm]), and average (202 > 173 [μm]) than that of pilot plant powders. Therefore, the particles of 

commercial powders in this study were often larger than those of the pilot plant powders, possibly 

due to a larger primary particle size or better agglomeration. 

Table 3-2 Physical properties of the powders 

Powder C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 P3 

D[4, 3]Powder (µm) 153 286 169 142 190 244 182 173 254 177 255 194 

D90Powder (µm) 282 478 306 252 316 426 308 317 468 318 451 361 

Target Total Sol. (%) 16.7 16.33 15.67 16.33 14 14.78 15.56 16 13.67 16 14.67 13.7 

Powder P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 

D[4, 3]Powder (µm) 205 170 119 102 146 192 191 178 204 192 180 173 

D90Powder (µm) 397 323 237 202 290 330 327 305 346 313 306 296 

Target Total Sol. (%) 14.33 12.5 13.67 13.67 12.78 12.78 12.78 12.5 11.67 13.31 12.58 12.64 

Ji et al. (2016) reported that the PSD of a powder plays an important role in determining its 

rehydration attributes. This can be a measure of how much surface area is available for water 

absorption. Therefore, it can affect the rate of water absorption, which affects the rate of rehydration. 
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For example, agglomeration can increase the size, void spaces, and porosity of particles and allow 

more water to be absorbed in a shorter period of time, which results in a faster rehydration process 

(Ji et al., 2016b). Due to the fact that the cobot prepared all of the mixtures in a standard time of 15 

seconds and identical agitations (for either swirl or shake style) in this study, the CV was expected to 

show the possible relationship between PSD and the measured rehydration quality (section 3.6.3 

explains this further). 

According to Table 3-2, TTS ranged from 11.7% to 16.7%, with an average of 14.1%, due to 

variations in powders (e.g., particle size) used in the study, particularly in the case of pilot plant 

powders. The TTS indicates the percentage of solids that ideally should be present in the prepared 

sample. Rehydration requirements, both in terms of time and energy, can also be influenced by the 

TTS (Fitzpatrick et al., 2016; Walshe et al., 2021). 

Table 3-3 gives the PSD and DS for the rehydrated powders obtained using Shake and Swirl 

agitations. 

Table 3-3 Physical properties of the mixtures prepared using Swirl and Shake robotic agitations 

Mixture C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 P3 

D[4, 3]Mixture_Swirl (µm) 0.58 42.2 0.74 4.17 2.33 2.42 27.4 1.1 4.85 49.4 1.79 2.72 

D90Mixture_Swirl (µm) 0.89 167 1.25 0.93 6.86 7.47 130 1.29 0.75 169 4.66 5.92 

D[4, 3]Mixture_Shake (µm) 0.54 23.5 0.73 1.03 2.36 2.31 23.8 1.1 0.55 24.9 1.84 2.37 

D90Mixture_Shake (µm) 0.86 129 1.24 0.88 7.09 7.11 123 1.27 0.71 116 5.06 4.92 

Dissolved Sol.Swirl (%) 9.26 8.49 11.25 11.30 12.28 12.23 12.41 12.90 12 11.98 10.87 14.14 

Dissolved Sol.Shake (%) 13.24 13.62 14.28 14.03 13.33 13.4 14.11 14.48 13.22 13.09 13.84 14.85 

Mixture P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 

D[4, 3]Mixture_Swirl (µm) 2.1 2.73 2.19 2.56 2.53 68.1 68.1 1.08 1.52 1.55 4.35 1.59 

D90Mixture_Swirl (µm) 3.92 5.78 6.19 6.95 5.31 203 203 1.75 3.35 2.98 3.26 2.87 

D[4, 3]Mixture_Shake (µm) 2.39 1.28 1.48 1.97 2.19 22.9 22.9 0.9 1.49 1.6 1.29 1.4 

D90Mixture_Shake (µm) 5.01 2.38 3.73 5.24 4.54 124 124 1.68 3.29 2.97 2.43 2.67 

Dissolved Sol.Swirl (%) 11.53 10.02 8.73 7.43 11.37 7.27 7.74 7.25 7.93 10.37 10.38 8.88 

Dissolved Sol.Shake (%) 15.36 12.14 14.26 13.55 13.27 11.62 8.35 9.57 10.83 11.86 12.33 11.75 
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There have already been studies using the DS to assess the “solubilisation ability” and the change in 

mixture PSD to assess dispersion (Fitzpatrick et al., 2016; Mimouni et al., 2009). In the current study, 

the difference between TTS and DS was observed to be related to sediment as explained in section 

3.6.3. If the DS is less than the TTS, it can be argued that some parts of the solids have not dissolved 

and have therefore settled (or floated). It was observed that on average, Shake agitation resulted in 

higher DS than Swirl agitation, as a result of the fact that Shake agitation was more energetic than 

Swirl agitation. The DS in mixtures P3, P4, and P6 prepared using Shake agitation are higher than 

the TTS. Perhaps this is due to the high compressibility of powder and the fact that the TTS was 

measured manually. When powder is scooped with greater force it may be packed more tightly in the 

scoop, resulting in a higher powder weight in the scoop, and a higher TTS (cf. Altazan et al., 2019; 

Crowley et al., 2014). As part of the Chapter 4, the cobot will be used to measure the TTS to ensure 

greater consistency. 

PSD D90 values of the mixtures prepared by Shake and Swirl agitations ranged from 0.71 to 

129 (μm) and 0.75 to 203 (μm), respectively. The results indicate that there was a wide range of particle 

sizes in the mixtures. In addition, mixtures prepared by the Shake agitation often displayed smaller 

particle sizes than those prepared by the Swirl agitation (considering D[4, 3] or D90 of Shake versus 

Swirl agitation in Table 3-3). According to Table 3-3 the D90 in mixtures obtained using the Shake 

agitation had a lower median (4.1 < 5 [μm]) and average (28.3 < 39.3 [μm]) than the mixtures prepared 

with the Swirl agitation. This may be due to the more energetic agitations associated with the Shake 

agitation, which could result in more rehydration of powder particles due to the breakage of the solid 

bonds between particles (Bock et al., 2007). However. further studies are needed to explore the effects 

of the powder PSD on rehydration (Benkovic and Bauman, 2009). 
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3.6.2. Comparison between the foam height estimates of computer vision and 

participants 

For evaluation purposes, the foam height estimates corresponding to a single random imaging round 

(six images from different viewpoints) of each mixture were averaged separately for participants and 

CV. This was done because the foam height estimates from any single viewpoint of a mixture can be 

expected to slightly vary, and the objective was to get a foam height estimate for the mixture rather 

than from a single image. The CV estimates for all mixtures, independent of the agitation method, 

exhibited a Pearson correlation of 0.82 (p < 0.001) with participant estimates. When the agitation 

method was considered, this correlation was 0.69 (p < 0.001) for Swirl agitation and 0.86 (p < 0.001) 

for Shake agitation as shown in Figure 3-11. 

 

Figure 3-11 Comparison of computer vision and participant foam height estimates on cobot-captured images for mixtures prepared 

using the Shake (left) and Swirl (right) agitation. Each dot represents the average foam height of a single random imaging round of a 

single mixture estimated by participants and computer vision. 

The CV foam height estimates are more closely correlated with the participants’ estimates for samples 

prepared using the Shake agitation. This behaviour can be explained by the fact that mixtures prepared 
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using Swirl agitation were on average found to have less foam (and therefore more difficult to 

measure) than those prepared using Shake agitation, both according to CV and participants. Also, 

considering the results for the foam height estimates of the Swirl samples were smaller, the correlation 

becomes more sensitive to the accuracy of the measurements, while the theoretical resolution of the 

participants’ ratings in this study was limited to 0.5 mm. Furthermore, in a small number of cases 

(some viewpoints of some mixtures), the CV algorithms provided estimates that were obviously not 

correct; this was observed in mixtures C4 and P10 in the Shake agitation and mixtures C4 and C8 in 

the Swirl agitation. There could be a number of factors responsible for this, including lighting 

conditions, bottle marks, and the colour of the mixture. 

As explained in section 3.5.5, Figure 3-11 only shows one randomly selected imaging round for 

each mixture that was evaluated by participants. While the platform monitored the foam and sediment 

height over time (during the first four imaging rounds), two mixtures, C8 and C14, exhibited a 

relatively high increase in foam height at two consecutive time points (Figure 3-12). 

 

Figure 3-12 Manual validation of increased foam height over time in samples C14 (from time 0 (a) to 5 (b) minutes) and sample 

C8 (from time 5 (c) to 10 (d) minutes) illustrated alongside their corresponding CV estimations. The end of horizontal dotted 

arrows (marked manually) subjectively shows how the lower and upper foam boundaries change over time.  

It is in agreement with the phenomenon of foam drainage described by Huppertz (2010) which refers 

to the process of liquid separation and migration within a foam structure over time. 
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Figure 3-13 shows Bland Altman graphs assessing the agreement between participants and CV 

for foam height estimates. 

 

Figure 3-13 Bland Altman graph for foam height estimated by participants and CV. A: average of each imaging round; B: all 

individual images (without averaging). 

When the foam height estimates were averaged across the six viewpoints of an imaging round, the 

95% confidence interval (CI) between the foam height estimates was 2.1 mm, indicating good 

agreement between participants and CV. When considering individual images, the CI was 5.1 mm. 

The larger CI (and hence lesser agreement) on individual images was expected since the participants 

and CV made estimations from slightly different parts of the foam (with participants focusing on the 

area near the ruler only). However, when the foam estimates were averaged across six viewpoints 

around the bottle, much of that difference disappeared (i.e., reduced from 5.1 mm to 2.1 mm). It is 

worth noting that, in Figure 3-13, the apparent diagonal structure of points on the results for individual 

images is a side effect of the participant foam height estimates having a resolution of 0.5 mm. It also 

suggests that the difference between measurements increases as the mean value increases. In some 

bottle viewpoints, the participant may rate sediment/foam as large while the CV system rates it as 

small (e.g., because the participant only measures sediment/foam close to the ruler, while CV 

performs averaging across the entire ROI, or when CV/participant makes an error). 
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3.6.3. Comparison between the sediment height estimates of computer vision 

and participants 

Similar to the foam height estimate, the sediment height estimate corresponding to a single imaging 

round (six images from different viewpoints) for each mixture was averaged separately for 

participants and CV. The CV sediment height estimates exhibited a correlation of 0.77 (p < 0.001) 

with participant estimates when the agitation method was not considered. When separated by 

agitation method, Figure 3-14 shows that the correlation was 0.78 (p < 0.001) for Swirl and -0.16 (p 

= 0.45) for Shake. 

 

Figure 3-14 Comparison of computer vision and participant sediment height estimates on cobot-captured images for mixtures 

prepared using the Shake (left) and Swirl (right) agitation. Each dot represents the average sediment height of a single random 

imaging round of a single mixture estimated by participants and the computer vision. 

It appears that the detection of sediment height may be more challenging in mixtures prepared using 

the Shake agitation. The reason for this may be the more energetic agitations involved in Shake style, 

which results in less sediment being detected in the mixtures. Similar to the foam height estimate, 

participant sediment estimates were limited to 0.5 mm resolution, which may explain the weaker 

correlation when small amounts of sediment are present. 
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In most powders, sediment decreased when a more energetic agitation was applied during 

rehydration (i.e., Shake agitation). Generally, both CV and participants estimated lower sediment 

levels for mixtures prepared with Shake agitation compared to Swirl agitation. This finding is 

supported by the fact that the DS measurements reported in Table 3-3 are higher for Shake agitation. 

Considering all mixtures, it was found that the difference between the TTS and the DS (i.e., solids 

introduced but not dissolved) was correlated with the sediment height estimated by CV (r = 0.75, p < 

0.001) and participants (r = 0.70, p < 0.001). This relationship might be explained according to the 

law of conservation of mass, if the added powder has not been sufficiently rehydrated, the mixtures 

should show sediment (or lumps). For example, Fitzpatrick et al. (2016) observed that milk protein 

isolate with high sediment content had low solubilisation percentages after comparing the mass of 

dissolved solids (using an oven) with the initial powder mass. The current study also found weak but 

significant correlations between the powder particle size D90 and sediment estimates for the Swirl 

agitation, both according to CV (r = -0.44, p = 0.03) and participants (r = -0.48, p = 0.02). In the case 

of Shake agitation, neither CV estimates (r = -0.13, p > 0.5) nor participant estimates (r = -0.14, p > 

0.5) demonstrated a significant correlation. This suggests that smaller powder particles may 

contribute to higher sediment levels if a sufficiently energetic agitation is not performed during 

rehydration. This behaviour could be explained by the fact that smaller particles have a smaller air 

gap between (or within) them, making water penetration difficult (Ji et al., 2016b). 

Figure 3-15 shows Bland Altman graphs assessing the agreement between participants and CV 

for sediment height estimates. 
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Figure 3-15 Bland Altman graph for sediment height estimated by participants and CV. A: average of each imaging round; B: all 

individual images (without averaging). 

When averaged across an imaging round as normal, the 95% CI for sediment estimates was 3.4 mm. 

Assessing images individually results in a CI of 6.9 mm. Similar to foam height estimates, the larger 

CI is expected since participants and CV measure the sediment in slightly different places in the 

image. In some mixture images, the sediment height varies across the image and the difference 

between participants and CV can be rather large in these cases. Additionally, the apparent diagonal 

structure results can be explained similarly to section 3.6.2. 

3.6.4. Comparison between the white particle ratings of computer vision and 

participants 

White particles were counted by CV but counting individual particles is impractical for participants. 

Hence white particles were categorically rated (1–6) by participants (by matching them to the 

reference images described in section 3.5.5.3). Similar to the foam and sediment estimates, CV counts 

and participant ratings of white particles corresponding to a single imaging round for each mixture 

were averaged separately. Therefore, the average participant rating for an imaging round often falls 

between existing categorical values and is treated as a continuous valued variable for analysis. As 

illustrated in Figure 3-16, the correlations between the CV number of particles and participants’ 

ratings were 0.6 (p = 0.0019) for Shake and 0.56 (p = 0.0045) for Swirl agitation. 
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Figure 3-16 Comparison of white particles counted by computer vision and categorically rated by participants (in average of each 

imaging round) 

According to Weber-Fechner’s hypothesis, human perception functions on a logarithmic basis 

(Fechner et al., 1966). Therefore, the results of the CV detected number of particles were categorized 

in a logarithmic manner in six scores (the approach was the same as described in Mozafari et al. 

(2022)). According to Figure 3-17, using this approach, the correlations between CV and participants’ 

ratings increased to 0.67 (p < 0.001) for Shake and 0.72 (p < 0.001) for Swirl agitation. Independent 

of the agitation method, the CV and participants’ ratings were correlated by 0.68 (p < 0.001). 
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Figure 3-17 Categorized computer vision ratings of white particles compared to the participants’ ratings 

Although agitation style appears to affect CV sediment (p < 0.001) and foam  height estimates (p = 

0.018) (in the first imaging round, i.e., before further changes in foam or sediment heights occur), CV 

ratings of white particles, both in terms of their numbers (p = 0.52) and score (p = 0.40), do not appear 

to be significantly affected. It is possible that the 15 s of agitation by the cobot was insufficient to 

dissolve white particles since they are inherently difficult to dissolve (Lloyd et al., 2019; Toikkanen 

et al., 2018).  

Figure 3-18 illustrates a Bland Altman graph based on the average of the imaging rounds (since 

this is an ordinal rating). The magnitude of 95% CI for CV ratings is 1.7 score. 

 

 

Figure 3-18 Bland Altman graph for an average of white particles in each imaging round rated by participants and CV 
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For individual images, Krippendorff’s Alpha was 0.31 between CV and participants’ ratings. This 

number was 0.54 if the average of the imaging rounds was considered instead. The averaging was 

expected to reduce the variation of ratings and increase the agreement, especially when in each 

imaging round different participants rated the six viewpoints of the bottle randomly. While this 

increase suggests that there is a higher agreement between the CV and participants’ particles rating 

when a complete imaging round is considered rather than individual images, the Krippendorff’s Alpha 

still falls below the threshold for reliable agreement. Without taking into account CV ratings, 

Krippendorff’s Alpha for the participant ratings (which, as explained in section 3.5.5, were from 

different viewpoints of the same sample), was 0.39. This suggests that the agreement between 

different participants rating the same sample from different viewpoints is similar to the agreement 

between the automated and participants’ ratings. 

3.7. Conclusion 

This thesis chapter aimed to provide an automated powder rehydration testing platform that can be 

incorporated into a laboratory or manufacturing plant environment. The platform was used to: (i) 

rehydrate IF in a commercial bottle, in a manner that is similar to how the end user would rehydrate 

it at home, and (ii) objectively and nondestructively quantify three visible powder rehydration 

attributes. As far as the author is aware, the concept of automated rehydration characterisation has not 

been explored in the literature to date, and this platform is the first of its kind developed for gaining 

objective insights into powder rehydration. 

The CV foam height estimates, sediment height estimates, and white particles ratings were 

compared with those of participants on the same cobot-captured images used in the CV system. The 

correlations were 0.82, 0.77, and 0.68, respectively. Furthermore, the difference between the Target 

Total Solids and Dissolved Solids of the mixtures was correlated to the CV (r = 0.75) and participants’ 

(r = 0.70) sediment height estimates. These correlations suggest that incomplete rehydration 

contributes to sediment formation. Additionally, for Swirl (less energetic) agitation, powder particle 
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size D90 showed weak but significant negative correlations with sediment height estimates of CV (r 

= -0.44) and participants (r = -0.48). It suggests that powders with smaller particles may not be able 

to rehydrate without a sufficiently energetic agitation, therefore, resulting in an increasing sediment 

height. The results of both participants’ and CV measurements indicate that agitating the mixtures 

more energetically (i.e., Shake agitation) increased foaming and reduced sedimentation but did not 

affect the number of white particles significantly. 

Even though the algorithms performed satisfactorily for this study, they may be improved, 

particularly for the foam and white particles algorithms by considering shape-related factors. Also, 

the flexibility of CV ratings may be improved by applying machine learning techniques. For example, 

the same “digitally generated” particles used in the current study may be useful for training a network 

for the detection of white particles. 

The results of the current chapter show that the platform has the potential to automatically 

rehydrate IF powders and objectively estimate the visual manifestation of three rehydration attributes. 

Moreover, except in the case of sediment resulting from Shake agitation, the platform CV estimates 

both correlate and agree well with those of human raters. Chapter four will discuss the relationship 

between CV estimates and commonly used laboratory methods, including sediment weights and 

slowly dissolving particles. Moreover, even though the cobot’s scooping and agitation movements in 

this study were designed to approximate the movements performed by end users, chapter five intends 

to characterise the arm movements of ten people to fine-tune the robotic bottle agitation movements. 
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4Chapter 4 (Platform evaluation): Exploring the impact of 

infant formula powder properties on rehydration quality 

using an automated platform 

A manuscript based on this chapter is being prepared for submission to Innovative Food Science & 

Emerging Technologies as: 

• Mozafari, B., Villing, R., Fenelon, M., Li, R., Daly, D.F. and O’Shea, N., Exploring the Impact 

of Infant Formula Powder Properties on Rehydration Quality Using an Automated Platform. 

4.1. Introduction 

This chapter aimed to answer two research questions and provide a deeper understanding of the 

platform performance and the insights it may provide. 

First, continuing from Chapter Three, the present chapter further examined whether there are 

any relationships between automatically quantified rehydration attributes and twenty commonly used 

laboratory tests on powders and the corresponding rehydrated powders (such as sediment weight, 

dispersibility, and particle size of powder and the corresponding rehydrated powder). It was expected 

that analysing the relationship between automated measurements and traditional measurements would 

provide new insights into platform performance and rehydration process. As for the dissolved solids 

and particle size measurements which were also conducted in Chapter Three, similar findings were 

expected in the present chapter. 

Secondly, based on the relatively extensive (a comparable number of experiments and IF 

powder samples have not been reported in the literature) data collected from the commonly used 

laboratory tests, this chapter also investigated the possibility of predicting the results of the manual 

laboratory tests, specifically dispersibility, which is a time-consuming and subjective test (Boiarkina 
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et al., 2017), based exclusively on the automated estimates of the rehydration attributes (foam height, 

sediment height, number of white particles, and mixture colour) generated by the platform. 

Predictions based on measured mixture properties (such as particle size and optical scattering 

methods) have already been reported in the literature as a more rapid (Chen and Lloyd, 1994) and 

accurate (Galet et al., 2004) method. However, such a prediction has not been reported previously 

using visual manifestations of rehydration attributes. Since this approach can also estimate other 

rehydration attributes simultaneously, such as sediment height, foam height, and the number of 

unhydrated particles (Mozafari et al., 2024), it may be advantageous. 

As mentioned in Chapter Two, IF powder rehydration quality is critical as poor rehydration can 

adversely impact the nutritional value, safety, and visual appeal of the rehydrated IF powder (Martin 

et al., 2016; Masum et al., 2020; Renfrew et al., 2003; Sharma et al., 2012). The rehydration properties 

of IF powders are strongly influenced by formulation, manufacturing parameters (Crowley, 2016; 

Munir et al., 2017), and the agitation energy used by the end-user during rehydration (Fitzpatrick et 

al., 2017; O’Shea et al., 2021). Both the initial formulation and the manufacturing parameters used to 

transform the liquid concentrate into powder interact in a complex manner and significantly impact 

the final physicochemical characteristics of the powder, which, in turn, impacts rehydration properties 

(Schuck et al., 2016). However, as mentioned in Chapter One, quantitative and objective approaches 

are required to better correlate powder physicochemical attributes with rehydration properties (Ding 

et al., 2020b; Munir et al., 2017). 

As illustrated in Figure 4-1, the ideal rehydration of infant formula powder in water involves 

rapid and complete progression through the following steps: (i) wetting of particle surfaces upon 

contact with water; (ii) sinking of wetted particles throughout the water; (iii) breakdown of 

agglomerates into discrete primary particles (dispersion); and (iv) dissolution of individual particles 

into water (solubilisation) (Fang et al., 2008; Schober and Fitzpatrick, 2005). Occasionally, however, 

wettability, sinkability, dispersibility, and solubility issues can adversely affect the rehydration 
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process, resulting in undesirable rehydration attributes such as sedimentation, lump formation, and 

flecking or slowly dissolving particles (Masum et al., 2020; Sharma et al., 2012; Toikkanen et al., 

2018). 

 

Figure 4-1 Four rehydration stages of dairy powders; (a) wetting, (b) sinking, (c) dispersion, and (d) solubilisation 

There are several physical and compositional attributes of particles that can determine their 

rehydration, including: 

Particle size: Smaller particles possess a greater specific surface area (surface per unit of mass). 

However, smaller particles can increase cohesive forces between particles (Fang et al., 2008; 

O’Donoghue et al., 2019). They also result in smaller spaces between particles that can make water 

penetration difficult. An optimal particle size is reported to be ~150-250μm, depending on the powder 

type (Gaiani et al., 2011; Sharma et al., 2012). 

Particle density: Higher particle density is reported to accelerate sinking rate upon wetting 

(Fitzpatrick et al., 2017; Freudig et al., 1999; Murphy et al., 2020). On the other hand, better wetting 

is associated with higher agglomeration, resulting in a lower particle density (Freudig et al., 1999). 

Particle morphology: Irregular particle shapes and internal void spaces created by pockets of 

trapped air during drying can improve wettability (Gaiani et al., 2011; Han et al., 2022; Tamime, 

2009). However, irregularity can result in a less free-flowing powder (Fu et al., 2012). 

Surface composition: Hydrophilic compounds (e.g., lactose) on particle surfaces accelerate 

water interactions during the wetting stage, while hydrophobic components (e.g., fat) result in poor 

wettability (Kim et al., 2002). Increased fat lowers wettability, and surface fat coverage is more 

detrimental than bulk fat (Fitzpatrick et al., 2017). 
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Protein content/type: Higher total protein, especially casein, is reported to reduce solubility. 

Although whey proteins disperse easier, their wettability is poor (Ji et al., 2016b). However, some 

studies have not observed this behaviour (Walshe et al., 2021). 

To assess dairy powder rehydration properties, a variety of qualitative and quantitative 

laboratory techniques are employed (Pisecky, 2012). In some tests, the powder rehydration properties 

are inspected visually. Among these tests are wettability, slowly dissolving particles, foam formation, 

and some sediment measurement tests, which are highly dependent on a technician’s perception of 

the degree of observed rehydration properties (Pisecky, 2012) and suffer from low discretisation and 

a high degree of subjectivity (Crowley et al., 2016; Lloyd et al., 2019). With these methods, it is 

difficult to detect small differences between powders’ rehydration properties (Lloyd et al., 2019). 

Also, measurement of some parameters, such as foam dissipation rate, may be time-consuming for a 

technician since the sample must be monitored for a specified duration of time. Therefore, current 

methods have limitations, including insufficient automation, subjectivity, poor repeatability and 

reproducibility, laborious, time consuming, and difficulty providing insight into rehydration kinetics 

(Fang et al., 2008; Munir et al., 2017). Moreover, many of the traditional tests focus on only one stage 

of rehydration and do not closely replicate the actual rehydration procedure used by end users (Hardy 

et al., 2002; Pisecky, 2012). When a powder does not perform well during a particular stage of 

rehydration, that does not necessarily mean that it cannot perform well during the overall rehydration 

process (McSweeney et al., 2021). Manufacturers may obtain more consistent products for consumers 

if they have a better understanding of the rehydration process (Pisecky, 2012), particularly based on 

the procedure used by the end user (Hardy et al., 2002; Lloyd et al., 2019).  

As discussed in Chapter Two, and illustrated in Chapter Three, developing an integrated 

rehydration platform requires specialised expertise across several fields, including robotics, image 

processing, computer programming, statistics, and, dairy science and technology, which prevents 

widespread adoption of these platforms in the IF or dairy processing industry (Munir et al., 2017; 
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Serazetdinova et al., 2019). Due to the challenges associated with digital data collection (e.g., system 

integration, requirement of additional skills and resources, and management of software, hardware, 

and data), only a limited number of automated tools have been reported for quantitatively assessing 

the rehydration of dairy powders (Munir et al., 2017). 

Recently, some rehydration properties have been quantified using computer vision (CV) 

techniques. Lloyd et al., (2019) developed a method for identifying bulk slowly dissolving particles 

that combined machine-assisted reconstruction, flow cell imaging, and a custom image processing 

algorithm. Authors of the present study developed a fully automated rehydration quality measurement 

platform, incorporating a cobot integrated with a camera, which rehydrated IF powders and estimated 

foam and sediment height, and the number of undissolved particles (referred to as white particles) in 

the mixtures (Mozafari et al., 2024). Eight participants evaluated the foam and sediment height 

estimate algorithms using a ruler visible in the cobot-captured images. Additionally, six reference 

images were digitally generated, and the participants separately rated the presence of white particles 

in the cobot-captured images. To maintain the scale between reference images and rehydrated sample 

images, a webpage was developed for participants. The CV algorithm for estimating the number of 

white particles, and a preliminary version of the digitally generated reference images had been 

developed in a previous study by the authors (Mozafari et al., 2022). The purpose of these studies 

was to reduce the subjectivity associated with the way humans prepare mixtures and perceive 

rehydration properties. Ding et al., (2020) developed a model to predict powder dispersibility and 

slow-dissolving particles using particle morphological features extracted from image analysis. They 

found that particle shape metrics were a key indicator of dispersibility. 

Despite the challenges, it is imperative to develop automated platforms to fully exploit the 

benefits of Process Analytical Technologies (PAT). These platforms provide real-time quantitative 

data while reducing subjective human evaluation (Munir et al., 2017). In addition, the combination 

of robotics and CV may enable more reproducible measurements and the generation (and storage) of 



98 

experimental datasets that are more likely to allow improved traceability (Serazetdinova et al., 2019). 

In this way, well-recorded data and quantitative attributes related to powder rehydration could be 

obtained, something that conventional methods are not able to provide. Also, predictive models can 

be developed that may be useful in better understanding the water transfer processes during 

rehydration (Schuck et al., 2016) and guiding powder production so that poor-quality powder can be 

detected earlier (Munir et al., 2018), saving resources. 

In response to the first research question mentioned at the beginning of this chapter, the current 

study aimed to: (i) validate the performance and repeatability of the platform’s CV algorithms in 

estimating sediment height and the number of white particles in comparison to standard reference 

methods commonly used in the laboratory; and (ii) identify potential relationships between powder 

physicochemical properties (obtained using the standard reference methods) and rehydration 

properties quantified by the automated platform. Regarding the second research question of the 

present chapter, the study proposed and evaluate a multivariate model to predict the outcome of the 

dispersibility reference method based solely on properties estimated by the automated platform, as a 

rapid screening method. Measuring dispersibility using the standard method is a highly subjective 

process, as it requires adherence to using a specific spatula, stirring method, and stirring duration 

(GEA, 2005a). Several studies have already attempted to predict this test as “proxy measurements” 

(Boiarkina et al., 2017; Ding et al., 2020a). 

4.2. Materials and Methods 

4.2.1. Infant Formula Powders 

Twenty-three stage-1 IF powders were analysed, including sixteen commercial (C4-C19) and seven 

pilot plant (P9-P15) powders. Three types of measurements were conducted on these powders: (i) 

commonly used lab measurements (i.e., reference methods) according to Table 4-1, (ii) modified 

reference methods according to Table 4-2, and (iii) automated platform estimates. After completing 
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the measurements, first, a comparison was made between the results from the modified reference 

methods and the output from the CV system on the automated platform to evaluate the platform 

estimates. Secondly, a model to predict measurements of commonly used lab methods and modified 

methods solely based on the automated platform estimates was developed and evaluated. To prevent 

interhuman variation, each measurement was to be conducted by the same individual (however, this 

was not achieved for insolubility and particle density measurements). 

4.2.2. Commonly Used Lab Measurements (Reference Methods) 

Table 4-1 lists the eighteen physicochemical powder properties and their corresponding mixture 

properties that were measured. 

As a measure of the presence of undissolved material in the mixture based on Table 4-1, the 

difference between TTS and DS was used. Solids introduced into a solution but not completely 

dissolved should manifest as undissolved material, such as clumps or sediment (Mozafari et al., 

2024). However, for the DS measurement, it is important to collect samples from the body of the 

mixture rather than from any region near sediment at the bottom or clumps at the top of the mixture, 

where the mixture may be thicker and exhibit a higher DS as a result. Therefore, the samples for the 

DS measurements were collected from the bottle’s centre of geometry, and the pipettes were placed 

in the rehydrated samples at an identical depth (aligning the pipette grades with the top edge of the 

bottle). Moreover, to avoid disturbing possible sediment or clumps in the mixtures, the samples were 

collected gently (the pipette vacuuming process took approximately five to ten seconds). 

The span parameter, which is used for characterising powder particle size distribution (Bhandari 

et al., 2013), was calculated According to Equation (4.1) to examine a possible relationship of the 

powder particle size distribution with the rehydration attributes. 

𝑆𝑝𝑎𝑛 =
𝐷90 − 𝐷10

𝐷50
 (4.1) 
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Table 4-1 List of the commonly used laboratory measurements (reference methods) conducted in the present study on powders 

and their corresponding prepared mixtures 

number Measurement Method 

1 Powder moisture was measured in duplicate using the GEA “Powder moisture – accurate standard 

method” (GEA, 2006a). 

2 Particle density was determined in duplicate using a helium pycnometer (AccuPyc™ II 1340, 

Micromeritics Inc., USA) according to the GEA method (GEA, 2006b). 

3 Bulk volume measurements were made in duplicate using the GEA reference method (GEA, 2006c). 

4 Powder insolubility was measured in duplicate using the GEA method (GEA, 2006d). 

5 Powder flow index was determined in duplicate using a flow tester (Brookfield Engineering Laboratories 

Inc., MA, USA). 

6 Protein content of powders was quantified in triplicate using the Dumas combustion method via the LECO 

machine (LECO Inc., USA) with a protein conversion factor of 6.3800. 

7 The measurements of wettability were conducted in duplicate using the GEA method with 100 ml of 40°C 

water, but the powder was dropped using a plate and cylinder instead of a funnel and pestle (GEA, 2009). 

8 A duplicate measurement of dispersibility was conducted using the IDF method (GEA, 2005a). 

9 Target Total Solids (TTS) for each powder was measured in triplicate by filling an empty bottle with the 

powder using the robot. A TTS was determined by dividing the weight of the powder by the weight of the 

water and the powder. 

10 A duplicate comparison was made between the volume of commercial scoops, provided in the 

manufacture’s cans, and that of the robot scoop. Using the calculated volume ratio, the robot added the 

powder to the bottle, to prepare the samples as closely as possible to the manufacturer’s recommendations 

on the packaging. For volume comparisons, the scoops were weighed based on the maximum amount of 

water they could hold. 

11 The percentage of Dissolved Solids (DS) in rehydrated powders was determined in duplicate using a 

SmartTrac™ (CEM Corporation, NC, USA) that utilises a microwave to evaporate sample moisture and 

determine weight differences. 

12 The Dumas combustion method via the LECO machine (LECO Inc., USA) was used to measure the 

protein content in the sediment once (protein conversion factor = 6.3800). Samples of sediment were 

collected in aluminium foils and dried in an oven at 102°C for two or three days, depending on the amount 

of sediment in each sample. A pestle and mortar were used to grind the dried sediment, and the powdered 

sediment was fed into the machine for protein measurement. 

13 The particle size distribution of powders was measured by laser diffraction (Mastersizer 3000™, Malvern 

Instruments, UK) in duplicate. The obscuration levels were from one to five percent, with refractive index 

of 1.45, absorption index of 0.1, and air pressure of 0.5 barg. In the current study D90 is primarily 

discussed as a descriptor of powder particle size. 

14 The particle size distribution of reconstituted mixtures was measured by laser diffraction (Mastersizer 

3000™, Malvern Instruments, UK) in duplicate. The stirrer speed was 1750 RPM, with an obscuration 

level of three to ten percent, refractive index of 1.45 (1.333 for water as dispersant), and absorption index 

of 0.01. In the current study D90 is primarily discussed as a powder particle size. 

15 Powder particles morphology parameters were measured once using Malvern morphology machine. The 

current study focused on circularity, convexity, and elongation. 

16 Lactose content was measured in duplicate by a technician using the HPLC method described by Pirisino, 

(1983). 

17 The powder surface free fat was measured in duplicate by a technician using the GEA method (GEA, 

2005b) which uses petroleum ether as the solvent. 

18 Powder colour was measured in duplicate using a Konica Minolta CR-400 Chroma Meter (Chiyoda, 

Tokyo, Japan) after calibration with its white tile. 
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4.2.3. Modified Reference Methods 

For sediment measurement, current methods use relatively large pore size sieves that cannot catch 

finer fractions of sediment, and they do not take into account possible sediment left in the beaker after 

filtration (e.g., the “sludge” test (Pisecky, 2012)). Current methods for analysing undissolved particles 

also have repeatability issues (Lloyd et al., 2019). Therefore, these methods cannot provide a reliable 

benchmark for assessing the performance of our automated platform without modification. 

Consequently, these methods were modified as shown in Table 4-2 to increase sensitivity (for 

sediment) and repeatability (for white particles). The modified methods aimed to provide a 

benchmark for the mixtures evaluated using the automated platform. 

Table 4-2 List of modified reference methods 

Methods Available in the 

Literature 

Modified Methods (based on the methods from literature) 

Before performing the tests: 

1. The robot prepared the samples in the same manner as for the vision 

system 4.2.4.1), but without performing any imaging. 

2. There was a three-minute rest period for the sample. During this time, any 

potential clumps on the surface of the mixture was scooped out and discarded. 

Slowly Dissolving Particles 

(SDP) (Lloyd et al., 2019) 

** Highlighted modification: 

The glass tube was emptied 

from bottom rather than top. 

Presence of White Particles (WP) test: 

1. Within one minute, the mixture surface was scooped into the pipe section 

of a glass funnel closed at the bottom with a stopper. The remainder of the mixture 

was used for the SW test. 

2. After three minutes, the stopper was removed to pour the sample into the 

sink (discarded). 

3. Five minutes later, the presence of white particles sticking to the glass pipe 

was compared against the pictures in the reference method (SDP test) and a score 

from one to five was assigned. 

Sludge Test (Pisecky, 2012) 

** Highlighted modification: 

A Whatman filter grade 4 and 

a vacuum pump were used 

rather than a 600 μm sieve. 

Sediment Weight (SW) test: 

1. After sample collection for the WP test, two-thirds of the mixture (from 

the top to the 60 ml mark on the bottle) was gently (around 30 seconds 

duration) vacuumed from the top of the mixture into the sink. This was 

done to prevent the filter from becoming clogged with potential bulk 

particles. 

2. A vacuum pump and Watman filter grade 4 (25μm) were used to filter the 

remainder of the mixture (60 ml). 

3. The weight of sediment remaining in the bottle was added to the weight 

of the sediment on the filter (minus the weight of the empty bottle/filter). 
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Some standard tests recommend that when a sample falls between two scores, it should be assigned 

the highest score (GEA, 2006e, 2005c). Thus, to maintain the ordinality of the results of the WP test, 

the results were rounded to the higher integer after averaging the duplicated measurements. 

Unlike the modified reference methods for WP and SW tests described in Table 4-2, the original 

methods do not require the samples to be prepared in a commercial bottle. In this study, the mixtures 

were prepared in a baby bottle to ensure that the experimental process could be as representative of 

that used by end users as possible. 

For benchmarking purposes, samples for these tests were prepared using the same automated 

platform and baby bottle described in section 4.2.4.1. According to the reference for the WP test 

(Lloyd et al., 2019), liquid samples should be collected in glass tubes (not funnels) and then inverted 

into a sink. In the original form of the test, it is expected that surface white particles (if any) will 

adhere to the glass surface. However, the author observed that obtaining repeatable scores may be 

challenging using this test, likely due to a substantial particle count being discarded immediately after 

inverting the tube, since they tend to float on the liquid surface. Therefore, in our modified method, 

a glass pipe (funnel) was used instead of a glass tube, and the mixture was drained from the bottom 

of the pipe by removing a stopper. 

The reference method for the SW test step 2 specifies the use of a sieve with a pore size of 600 

μm (Pisecky, 2012). Additionally, in the SW test step 3, only the sediment weight in the sieve is 

reported (the remaining sediment in the beaker or bottle is not considered). However, the sieve with 

a size of 600 μm was too large for our application and could not capture the more diluted fraction of 

the sediment that had smaller particles. Also, ignoring the remaining sediment in the bottle after 

filtering the mixture could compromise the accuracy of the comparison of the platform’s CV estimate 

with the reference method, as CV measured all visible sediment from the intact bottle non-

destructively without neglecting anything. Therefore, a Whatman filter grade 4 (which has a 25 μm 

pore size) and a vacuum pump were used for sediment filtering. Filtration was not time-limited (as 
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the filtration rate of different samples can differ due to several reasons such as the presence of 

undissolved crystals or protein), and it continued until all liquid was removed at least from the filter 

edges when feasible. However, for most samples, the filtration usually took about 30 seconds. It 

should be noted that a “sediment disc” was also used for sediment filtration during the development 

of the SW test. However, a preliminary evaluation with seven pilot powders (data not shown here) 

showed that the Whatman filter could considerably increase the sensitivity of sediment weight 

measurements. Sediment weight using the Whatman filter demonstrated a correlation of 0.92 with 

sediment height in the bottle (measured manually using the ruler as a reference), which was more 

promising compared to a negative correlation of -0.67 for the sediment disc. 

4.2.4. Automated Measurements by Rehydration Platform 

4.2.4.1. Robotic Platform 

The current study used the same automated rehydration characterisation platform described in 

Chapter Three. The mixture preparation and image capture methods were also the same. 

4.2.4.2. Computer Vision Methods 

The detailed information on the CV algorithms used are provided in Chapter Three. A logarithmic 

classification was used to assign an ordinal score to the presence of white particles in addition to 

particle counts (Mozafari et al., 2022). In the current study, the particle counts were classified into 

five categories to match the one-to-five scoring in the manual WP test (Table 4-2). The current study 

did not aim to evaluate the performance of the foam height algorithm. A further component of the 

current study was colour measurement of the rehydrated powders based on the cobot-captured 

images. To accomplish this, a horizontal strip of 3000 by 1000 pixels was cropped from the middle 

of the images, under the trademark on the bottle, and the colour median was calculated in the same 

software environment (and the same L*a*b* colour space) described in Chapter Three. 
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4.2.5. Data analysis 

Python was used to analyse the results statistically. Pearson correlation analysis was used to identify 

relationships between the results of the modified reference tests and CV estimates as well as possible 

relationships between powder physicochemical parameters and rehydration properties. Due to the 

ordinal nature of the WP test, the Spearman correlation was preferred over the Pearson correlation 

(Hauke and Kossowski, 2011). P-values were used to assess the significance of the correlations. The 

significance of the difference between the rehydration properties of different agitation styles was 

tested using Student’s t-test. To evaluate the repeatability of measurements, Root Mean Square Error 

(RMSE) and Normalised Root Mean Square Error (NRMSE) were used. NRMSE was determined by 

dividing the RMSE by the standard deviation of the observed values in each method (Otto, 2019). 

4.2.6. Multivariate Model Development 

A multivariate predictive model based on random forest was developed in Python using the Scikit-

learn library (Pedregosa et al., 2011). A random forest consists of several decision trees generated 

from random selections of observations (i.e., our rehydrated samples) and their features (e.g., foam, 

sediment, etc.). The reason for choosing a random forest was to first avail of the power of decision 

trees in identifying feature interactions (as required in the rehydration problem, which has complex 

interactions between the rehydration attributes), and secondly to account for the diversity of 

observations in the training set (as rehydration behaviour can be considerably different from powder 

to powder). A total of 40 estimators (decision trees) with a maximum depth of ten were trained on the 

23 rehydrated samples. To prevent overfitting, each of these estimators was trained with a minimum 

leaf and split of four and two, respectively. Validation of the model was performed using Leave-One-

Out Cross-Validation (LOOCV) with 23 folds to account for all 23 powders. RMSE and Pearson 

correlation was used to evaluate the performance of the model. A Student’s t-test was used to 
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determine whether there were significant differences between rehydration attributes in each agitation 

style. 

4.3. Results and discussion 

4.3.1. Evaluation of the Platform Measurements and Their Repeatability 

Using the automated platform, sediment height, foam height, and the number of white particles were 

quantitatively characterised. For the evaluation of the algorithms, CV estimates of sediment height 

were compared with SW reference test, and CV ratings of white particles were compared with WP 

reference test (Table 4-2).  

4.3.1.1. Sediment height estimates 

The sediment height estimated by the platform’s CV (with values ranging from 0-10.1 mm in the last 

imaging round when the sediment has settled) was positively correlated with the SW test (with values 

ranging from 1.1-20.5 g). The correlations were 0.75 for swirl, 0.89 for shake, and 0.79 independent 

of the agitation style (p < 0.001). 

Table 4-3 presents the correlations, the RMSE, and the coefficients of variation for duplicated 

measurements for both the CV and reference methods. 

Table 4-3 Relationship between duplicate measurements of sediment using the computer vision and modified reference 

methods for sediment weight 

 

Correlations 

between duplicate 

measurements 

RMSE, NRMSE 

between duplicate measurements 

Coefficients of 

variation for duplicate 

measurements 

Swirl Shake Swirl Shake Swirl Shake 

CV 0.92 0.93 1.22mm, 0.49 0.98mm, 0.45 0.41, 0.35 0.51, 0.59 

SW test 0.95 0.91 2.52g, 0.42 0.89g, 0.46 0.59, 0.63 0.57, 0.60 

Even though the platform estimated sediment height, and the SW test measured sediment weight, the 

similarity of the coefficients of variation (which is independent of the measurement unit) between the 

duplicated measurements for both CV estimates and SW test suggests that the variability in the two 
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methods is comparable. Furthermore, the repeatability of the coefficient of variation in CV was 

comparable to that of the SW test. These findings provide confidence in the repeatability of the 

sediment image analysis algorithm. 

A limitation of the current CV based sediment quantification method is that sediment height 

estimates from two-dimensional images may not accurately reflect the complex 3D sediment 

topology. 

4.3.1.2. Presence of White Particles 

The CV counts were logarithmically classified into five classes, averaged between the six bottle 

viewpoints, and rounded to the nearest integer to be comparable to human ratings based on the WP 

test (which has ordinal results based on five reference images). The correlations between the 

categorised CV particle counts and the manual WP test were 0.57 for swirl, 0.53 for shake, and 0.55 

independent of the agitation style. The weak correlation may result from several factors. First, the CV 

ratings were categorised logarithmically as described in section 4.2.4.2 . The WP test, however, does 

not include any systematic evaluation of the reference pictures, such as the particle count in each 

picture. In addition, the reference method determines the presence of particles by comparing the 

reference images to the glass pipe from any arbitrary viewpoint (and particle distribution may not be 

uniform on the surface of the pipe). The platform, however, rates white particles from specific 

viewpoints. These differences make it difficult to compare the two approaches and interpret the 

results. There may also be other reasons for the weak correlation such as an algorithmic failure to 

detect particles larger than expected (the expectation was derived based on the literature and the 

observation of the training dataset when developing the algorithm) or inherent differences between 

the two approaches. For example, the platform and the WP test used different methods for 

visualisation of white particles, as well as different materials and diameters in the plastic bottle and 

glass funnel, which may explain the differences in particle adhesion patterns. It has been reported that 

particle “adhesion” and “trapping” behaviour are influenced by several factors including surface 
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material and suspension flow rate (Uno and Tanaka, 1972, 1970). As a means of “trapping” the 

particles in the present study, as part of the WP test, the liquid in the glass pipe was released quickly 

into the sink via removing the stopper, whereas the robot tiled and rotated the plastic bottle gently. 

The “trapping” of particles on the surface may be impacted by the drainage rate and inner diameter 

of the bottle or the pipe (which impacts the speed of the liquid flowing over the surface) and the 

surface material (e.g., glass or plastic). For example, sample C17 showed a low particle count in the 

bottle’s blank headspace despite receiving a score of 5 on the WP test (i.e., perceived by the author to 

have the highest level of particles present) (Figure 4-2). 

 

Figure 4-2 White particles in sample C17. The plastic bottle’s blank headspace appears relatively clear in samples prepared using 

shake (a) and swirl (c) agitations. There are small particles visible in the glass funnel for shake (b) and swirl (d) samples. 

Table 4-4 presents the correlations, the RMSE, and the coefficients of variation for duplicated 

measurements for both the CV and WP reference methods. To compare the repeatability of CV ratings 

with the WP reference method, CV ratings for different viewpoints of a sample were averaged and 

logarithmically classified to produce ordinal scores from one to five. This was done for each of the 

duplicate measurements separately. The CV repeatability correlations (between the two sets of ordinal 

scores) decreased to 0.71 (swirl) and 0.66 (shake) due to the reduced discretisation in the scoring 
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format (from counting the particles to classifying them as scores). Using the CV approach to count 

the particles resulted in a relatively a relatively high RMSE due to the fact that the scale for the 

number of particles reported in this approach is much larger than the scoring range of 1-5 in the 

reference method. Despite this, its normalised RMSE is lower than that of the reference method. 

Table 4-4 Relationship between duplicate measurements of white particles using computer vision and modified reference methods for 

white particles 

 

Correlations between 

duplicate 

measurements 

RMSE, NRMSE 

between duplicate 

measurements 

Coefficients of variation 

for duplicate 

measurements 

Swirl Shake Swirl Shake Swirl Shake 

CV particle 

count 
0.93 0.87 19.7, 0.51 8.2, 0.59 1.23, 1.69 0.98, 1.30 

CV classified 

scores 
0.71 0.66 0.84, 1.02 0.54, 0.83 0.39, 0.55 0.40, 0.39 

WP test 0.73 0.75 1.02, 0.72 0.83, 0.71 0.37, 0.36 0.31, 0.30 

In the current study, the presence of particles was rated by one of the authors. However, the perception 

of particles may differ from person to person, which can increase the variation between measurements 

taken by different people (Lloyd et al., 2019) and impact the human-platform comparison. Also, 

increasing the scoring scale (e.g., to 1-6 as in Chapter Three) may help better capture the underlying 

relationship between the platform and human ratings as the higher scale can provide a higher level of 

discretisation for the scoring of particles by humans. In comparison with the subjective 1-5 scoring 

scale, the numerical particle counts of the platform allow for a more nuanced differentiation between 

samples (Lloyd et al., 2019). By providing reproducible quantitative particle counts, the platform 

reduces subjectivity. Despite these findings, the discrepancy observed in sample C17 and the 

algorithm failure in the detection of aggregated particles indicate that further work is needed to 

determine how particles adhere to one another and to the surfaces of different materials. The current 

CV algorithm may sometimes count other non-particle components in images as white particles (e.g., 

foam or droplets). This may contribute to the lower correlation between the duplicated measurements 
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in shake agitation (which generates more foam) for CV scoring. It should be noted, however, that 

human raters in the reference test also had difficulty distinguishing between foam or droplets, and 

particles in some samples. Improved algorithms based on machine learning may provide greater 

flexibility in particle detection in future iterations. However, the automated counting of white 

particles provides numerical results that are more discrete than the 1-5 grading scale used in the 

reference test. Further validation studies would be beneficial to fully characterise the platform’s 

performance. 

4.3.2. Relationships Between Powder Properties and Platform Estimated 

Rehydration Metrics 

As a secondary objective, the automated platform was used to examine relationships between powder 

physicochemical properties and rehydration behaviour. 

4.3.2.1. Relationships with Platform’s Sediment Estimates 

Compared to swirl agitation, shaking agitation resulted in lower sediment heights and sediment 

weights (p < 0.001). For swirl and shake agitation, CV estimates of sediment height were correlated 

with the difference between target total solids and dissolved solids (unhydrated powder) by 0.71 and 

0.80, respectively. This finding is consistent with literature (Fitzpatrick et al., 2016), and our previous 

study (Mozafari et al., 2024). It is possible to explain this connection by considering the law of 

conservation of mass. Powder, when added to a mixture but not dissolved, must manifest as clumps, 

sediments, or other undissolved forms. As long as this undissolved powder is completely sedimented, 

it is expected to be detected by the CV. However, it may appear in the mixture as clumps on the top or 

as any other unhydrated material that has not yet settled. When CV estimates were replaced by 

modified reference method measurements, the correlations increased to 0.94 and 0.85, respectively. 

The lower correlations for the CV estimates may be attributed to the inherent differences in the 

measurements (filtration catches any undissolved materials even in the liquid portion of the mixture 
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whereas CV only detects settled material), algorithm performance, and the fact that the current vision 

method is unable to perceive the complete 3D topography of sediment inside the bottle. However, the 

repeatability results (Table 4-3) indicate that the platform can provide rapid, non-destructive, and 

objective estimation of sediment and monitor its change over time. 

According to Figure 4-3, in swirl motion, sediment height increased over time for 21 samples 

(average: 1.16 mm, min: 0.04 mm, max: 3.56 mm) and decreased for two samples (average: 0.06 mm, 

min: 0.01 mm, max: 0.12 mm).  

 

Figure 4-3 Sediment changes over time for swirl samples monitored by the computer vision algorithm 

 

Figure 4-4 illustrates normalised sediment height (i.e., sediment height at each time step divided by 

sediment height at time zero) in samples prepared using swirl agitation to provide clearer comparison 

of sediment height changes. 
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Figure 4-4 Normalised sediment height (h/h0) over time for swirl samples monitored by the computer vision algorithm. In two 

samples, the final sediment height was smaller than the initial height. 

The unusual pattern in sample C7 can be explained by the fact that this sample has relatively small 

sediment heights. When the numbers are smaller, a small change in the measured sediment height for 

any reason (which is explained later in the current section) can have a large impact on the sediment 

height ratio. 

As illustrated in Figure 4-5, in shake motion, sediment increased for 16 samples (average: 2.05 

mm, min: 0.03 mm, max: 5.12 mm) and decreased for seven samples (average: 0.34 mm, min: 0.11 

mm, max: 0.80 mm). Figure 4-6 shows the normalised sediment height for samples prepared using 

shake agitation. 

The duplicated sediment height estimates from time 0 to 15 min correlated (p < 0.001) by 0.92 

(swirl) and 0.85 (shake). It appears that the trends observed by CV are reproduced in the duplicate 

measurements, which suggests that they are not the result of chance. 
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Figure 4-5 Sediment changes over time for shake samples monitored by the computer vision algorithm 

 

Figure 4-6 Normalised sediment height (h/h0) over time for shake samples monitored by the computer vision algorithm. In 

seven samples, the final sediment height was smaller than the initial height. 
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The increasing or decreasing behaviour of sediment height may be related to the presence of 

undissolved powders, such as visible clumps. Although clumps were not quantified in the current 

study, it was observed that almost all samples with a high level of sedimentation had visible clumps 

on their surface. In support of this hypothesis, the change in sediment height from imaging rounds 

one to four in samples prepared with swirl agitation showed negative correlation of -0.65 with DS in 

samples prepared with the shake agitation. This may indicate that more energetic agitation can result 

in a higher level of dissolved solids because of disruption of clump structures (Fitzpatrick et al., 2017), 

or any smaller undissolved powder structures present in the mixture body that are not visible on the 

surface (Ji et al., 2016a). This is further supported by the fact that the correlations between DS and 

TTS in swirl and shake motions were 0.07 and 0.75, respectively, suggesting that shake agitation is 

more effective at dissolving particles intended to be dissolved (including sediments and clumps). The 

presence of more dissolved solids can also increase the viscosity of the solvent liquid (mixture, i.e., 

powder being mixed with water) (Walshe et al., 2021), decrease wettability (Ji et al., 2016a), and 

increase the likelihood of clump formation (Kim et al., 2002). 

When performing the modified sediment reference tests, during the “rest period” mentioned in 

Table 4-2, some clumps were observed to sink into the mixture and disappear from the surface, 

whereas other clumps were observed to rise to the surface and become visible (possibly detached 

from the sediment at the bottom). An explanation for this phenomenon may be found by illustrating 

the shape of the observed sediment and clumps. As shown in Figure 4-7, some clumps still appear to 

resemble the shape of the powder scoop that had been added to the water at the beginning of 

rehydration. The added powder remained in a “ball” shape (Figure 4-7 , a) after being separated from 

the scoop and had not spread properly across the water surface. 
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Figure 4-7 Sample P11 prepared by the cobot using the Swirl motion. Unwetted powder scoops formed clumps; (a) illustrates two 

clumps on the surface after robotic rehydration, (b) illustrates the clumps cut with a knife, and (c) illustrates sunken clumps after 

surface clumps were discarded using a scoop and the mixture was vacuumed (the modified reference method (test b) described in 

Table 4-2). 

As illustrated in Figure 4-8, in addition to particle physiochemical characteristics, flowability also 

seems to be an important factor in rehydration, along with the four commonly known stages shown 

in Figure 4-1. Powders that spread easily over the water surface can increase the powder-water contact 

area and are more likely to become wet (i.e., the first stage in Figure 4-1). 

 

Figure 4-8 Powder flowability appears to be a critical factor in increasing the powder contact area with water. The powder-water 

interaction of (a) low flowability and (b) high flowability powders is illustrated. 

Consequently, a scoop of added powder may become wet from the outside while still containing dry 

powder inside (Mitchell et al., 2015). It appears that some sediments have shapes similar to scoop-

shaped clumps (Figure 4-7, c), suggesting that a clump may sink and form sediment if enough water 

penetrates it and makes it heavier than the solvent liquid. A similar observation was made by Mitchell 

et al., (2015) as well, who reported two types of clumps, floating clumps near the surface, and 



115 

sedimented clumps, which they termed “flake-like aggregates”. Clumps are typically surrounded by 

a viscous shell (Fitzpatrick et al., 2017). The reported flake-shaped clump may be the same viscous 

shell of a clump that has lost its dry powder content due to dissolution after water penetration (e.g., 

due to more energetic agitation that has broken the viscous shell). Even when a clump has sedimented, 

this does not necessarily indicate that there is no dry powder within it (but the current study did not 

explore this aspect further). 

Dilution of the viscous layer in the clump shell may explain the sediment’s tendency to decrease 

over time in some samples. The viscous shell of clumps may adhere to one another when several 

scoops of powder with a poor flowability are added, as shown in Figure 4-7a and Figure 4-8a. A heavy 

clump (denser than the solvent liquid) may be attached to a lightweight clump causing them to 

sediment together. Over time, if the bond between the viscose layers of the clumps is weakened for 

some reason (e.g., dilution, vibration, etc.), the lighter clump may float to the surface. This can result 

in a decrease in visible sediment height at the bottom of the bottle. It has already been reported that 

clumps may separate from sediment and rise to the surface (Mitchell et al., 2015). Also, in the present 

study, it was observed that most samples that experienced a decrease in sediment height (two out of 

two for swirl and four out of seven for shake) had been prepared using the four powders with the 

worst dispersibility. Dispersibility was correlated with absolute value of decreased sediment heights 

in the seven shaken samples (Figure 4-6) by 0.93 (p = 0.002). This relationship was also observed for 

the two swirled samples (Figure 4-4). Therefore, in powders with poor dispersibility, the small 

disturbance introduced by rotation of the bottle by the cobot for imaging may have a greater chance 

to re-disperse “initial sediment” (Ji et al., 2016a) in the suspension. The “initial sediment” may be 

composed of powder particles that are slightly denser than the mixture but have not dispersed and 

dissolved during agitation. Consequently, they settle over time, but they may re-disperse with a small 

disturbance (e.g., robotic bottle rotation). It has been reported that poor dispersibility can contribute 

to both the formation of sediments and clumps (Pisecky, 2012). 
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Sediment height was weakly and negatively, but significantly, correlated with the flow index 

(swirl: r = -0.38, p = 0.009, shake: r = -0.51, p < 0.001) as well as the surface free fat level (swirl: r = 

-0.33, p = 0.027, shake: r = -0.46, p = 0.001). The result suggests that powders with better flow 

properties may rehydrate more efficiently (as reported in pharmaceutical applications (Kim et al., 

2022)), but additional work outside the scope of the current study would be required to investigate 

this further. It has been suggested that poor flowability may contribute to the formation of clumps 

during the rehydration of dairy powders (Hazlett et al., 2021). It has also been reported that powders 

with poor rehydration properties may form either clumps or sediments after rehydration (Pisecky, 

2012).  

The observed relationship between flowability and sediment formation can demonstrate the 

importance of flowability in the rehydration process, and may further explain why agglomeration and 

increased porosity do not invariably improve rehydration (Crowley et al., 2016). Furthermore, surface 

free fat may not necessarily be a limiting parameter in rehydration, for instance when the solvent is 

warmer than the melting point of fat. Contrary to some reports in the literature (Kim et al., 2005), 

surface free fat showed a significant positive correlation of 0.60 (p = 0.002) with the flow index. The 

stickiness of particles cannot be directly related to the surface free fat alone, as it is also dependent 

on the total fat content (Nijdam and Langrish, 2006) and particle size (Nugroho et al., 2021). 

Therefore, surface free fat does not appear to negatively impact the flowability of powders with 

relatively less fat content, such as skim milk powder (Kim et al., 2005) or IF. In the present study, the 

flow index was primarily affected by physical parameters. It showed a negative correlation of -0.61 

(p = 0.002) with interstitial air (bulk volume change after tapped 100 times (GEA, 2006b)) and a 0.53 

(p = 0.009) correlation with particle morphology elongation. It did not show a significant relationship 

with lactose content (r = 0.30, p = 0.17). 

In general, the platform ability to monitor changes in sediment height over time seems to 

provide useful information regarding the stability of the mixture and the presence of undissolved 
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powder structures such as clumps or inadequately dispersed powder in the mixture. The platform’s 

high reproducibility and ability to distinguish subtle differences in sedimentation kinetics (e.g., 

sediment height change over time), which is missed by traditional methods, may assist in identifying 

new rehydration characteristics. 

There was a weak but significant correlation of -0.31 (p = 0.03) between powder particle size 

D90 and CV sediment height in swirl agitation. This correlation was not significant for Shake 

agitation (r = -0.25, p = 0.09). One interpretation is that, in the absence of energetic rehydration, 

smaller powder particles may contribute to higher sediment formation (Fitzpatrick et al., 2016). While 

a small powder particle size is reported to decrease wettability (Fitzpatrick et al., 2016; Freudig et al., 

1999) and increase lump formation (Fitzpatrick et al., 2017; Mitchell et al., 2015), agitation energy 

appears to be influential on the wetting of smaller particles (Wu et al., 2021) and disruption of clumps 

(Fitzpatrick et al., 2017).  

4.3.2.2. Relationships with Platform’s Foam Estimates 

The foam height in the first imaging round (when foam had not yet dissipated) was higher following 

shake agitation compared to swirl agitation (p = 0.023). However, this p-value was below the 

threshold for being highly significant (p < 0.001).  

In shaken samples, CV foam height estimations showed the strongest correlation with powder 

distribution span index (ranged from 1.30 to 1.83) at 0.65 and powder brightness (L) at 0.61. The 

span index represents the relative width of the particle size distribution, which is influenced by several 

factors, including powder manufacturing parameters, and impacts powder colour (Pugliese et al., 

2017). For example, homogenisation before drying is one of the manufacturing parameters that can 

influence the concentrate span index (Mercan et al., 2018), and the D90 of rehydrated powders and 

fat globule size in concentrate (Zacaron et al., 2023), which may increase the amount of foam 

(Huppertz, 2010; Xiong et al., 2020) and sediment (Zacaron et al., 2023). Accordingly, foam height 

in shaken samples correlated with sediment height in swirled (r = 0.61, p = 0.002) and shaken (r = 
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0.52, p = 0.01) samples, and D90 of swirled (r = 0.53, p = 0.009) and shaken (r = 0.50, p = 0.02) 

samples. Specifically, fat globules have a greater impact on foaming at temperatures below their 

melting point around 40°C (Huppertz, 2010; Xiong et al., 2020), including the mixtures in the current 

study. Therefore, according to the correlations, samples that produce sediment, are also likely to 

produce foam under more energetic agitation. The foam height in shaken samples also showed a 

negative correlation with protein content (r = -0.57, p = 0.004). Although protein is reported to 

contribute to foam stability (Xiong et al., 2020), foam formation may not be directly related to protein 

content. Foamability is also affected by the molecular weight and structure of proteins, which should 

be considered when comparing studies (Ho et al., 2021). At higher protein concentrations, the 

viscosity increases (Walshe et al., 2021), which may inhibit air diffusion into the liquid during mixing 

and account for the negative correlation between foaming and protein content in our study. 

4.3.2.3. Relationships with Platform’s White Particles Ratings 

White particle ratings were not significantly influenced by agitation style both according to CV 

counting the particles (p = 0.26) and the WP test (p = 0.9). This was also observed in our previous 

study (Mozafari et al., 2024) and was expected since these particles are inherently difficult to dissolve 

(Toikkanen et al., 2018). 

For swirl agitation, the number of white particles rated by CV correlated by -0.40 (p = 0.006) 

with the difference between TTS and DS. This correlation was not significant for shake agitation (r = 

-0.25, p = 0.09). Accordingly, powders that dissolved better using a less energetic agitation are likely 

to have more white particles visible on the surface, possibly due to protein denaturation during 

ineffective agglomeration. Although the agglomeration process is expected to improve rehydration 

and reduce sediment, if inefficient, it can overheat the particles and cause protein denaturation 

(Schmidmeier et al., 2019). Also, when CV ratings are replaced with the modified white particles 

reference method ratings, the correlations remain similar at -0.52 (swirl) and -0.41 (shake) with 

sediment weight in Swirl motion, and -0.57 (swirl) and -0.47 (shake) with the difference between 
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TTS and DS. Based on the same reasoning, the dispersibility of samples correlated by -0.37 (p = 0.01) 

and -0.40 (p = 0.006) with the CV white particle numbers for swirl and shake agitations, respectively. 

In the manufacture of fat-filled milk powders, different thermal treatment methods can 

significantly impact powder colour, surface free fat, and flecking levels, with surface free fat 

contributing to fleck formation (Finnegan et al., 2021). However, the current study did not find a 

significant correlation between surface free fat and white particle ratings, whether viewed from the 

perspective of the CV (swirl: r = 0.18, p = 0.4; shake: r = 0.33, p = 0.1) or the WP test (swirl: r = 0.30, 

p = 0.2; shake: r = 0.34, p = 0.1). 

4.3.2.4. Other Powder-Rehydration Properties Relationships 

As discussed earlier in the introduction, powder properties play a complex role in rehydration. Figure 

4-9 illustrates some of the significant relationships as well as our findings regarding the flowability 

and sediment in green arrows. Table 4-5 lists the references for relationships shown in Figure 4-9. 

Table 4-5 Detail of the references in Figure 4-9 

[1]: (Freudig et 

al., 1999) 

[2]: (Kim et al., 

2002) 

[3]: (Schober 

and Fitzpatrick, 

2005) 

[4]: (Gaiani et 

al., 2007) 

[5]: (Fang et 

al., 2008) 

[6]: (Tamime, 

2009) 

[7]: (Gaiani et 

al., 2011) 

[8]: (Sharma et 

al., 2012) 

[9]: (Mitchell et 

al., 2015) 

[10]: (Ji et al., 

2016a) 

[11]: (Ji et al., 

2016b) 

[12]: 

(Fitzpatrick et 

al., 2016) 

[13]: 

(Fitzpatrick et 

al., 2017) 

[14]: 

(Toikkanen et 

al., 2018) 

[15]: 

(Schmidmeier 

et al., 2019) 

[16]: 

(O’Donoghue 

et al., 2019) 

[17]: (Murphy 

et al., 2020) 

[18]: (Han et 

al., 2021) 

[19]: (Walshe et 

al., 2021) 

[20]: (Wu et al., 

2021) 

[21]: (Han et 

al., 2022) 
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Figure 4-9 The literature already reports some relationships between powder chemical properties (yellow), powder physical 

properties (orange), powder-water interaction (blue and purple), and rehydration properties of the prepared mixture (red). Green 

arrows indicate our findings that are not well considered in literature. The solid and dotted arrows indicate direct and reverse 

relationships, respectively. The references are mentioned in brackets near arrowheads with details provided in Table 4-5. 

In the present study, insolubility index showed correlations of -0.33 (swirl) and -0.23 (shake) with 

sediment weight (i.e., negative relationships, unexpectedly), -0.32 (both swirl and shake) with the 

difference between target total solids and dissolved solids, and -0.26 (swirl) and 0.11 (shake) with 

CV sediment height estimates. According to these observations, contrary to some opinions (Fang et 

al., 2008), the insolubility index does not appear to have a meaningful relationship with 

sedimentation, clump formation, or dissolution of other “soluble” particles (referred to as 

“solubilisation ability” by Fitzpatrick et al., (2016) and Mimouni et al., (2009)). It appears that 

insoluble particles are only a fraction of the total amount of powder, while other particles may be 

soluble (Pugliese et al., 2017). The presence of insoluble particles in a powder sample may not 

necessarily indicate the powder’s solubility behaviour as a whole (Schmidmeier et al., 2019). 

Inefficient agglomeration, for example, can increase the overall heat load and cause protein 

denaturation, which can result in insoluble particles being formed (Schmidmeier et al., 2019). Despite 
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the presence of insoluble particles, the agglomerated powder sample may generally show acceptable 

rehydration behaviour. 

Insolubility can be influenced by several factors, including the interaction between proteins, 

salts, lactose, and humidity (Fang et al., 2008; Toikkanen et al., 2018), heat treatment, the presence 

of lactic acid or addition of heat stabilising agents before drying, type of spray dryer, level of salt ions 

in the protein (Sharma et al., 2012), mineral contents, and solvent rehydration temperature (Mimouni 

et al., 2009). 

4.3.3. Prediction of Reference Method Results 

As a final step, a multivariate model was developed to investigate the prediction of the results of the 

dispersibility test based solely on the rehydration properties quantified by the automated platform. 

4.3.3.1. Dispersibility Prediction 

Based on platform metrics, a random forest model (Figure 4-10) was developed to predict 

dispersibility determined by the standard IDF method (GEA, 2005a). The model inputs were the 

automated platform measurements for change in sediment height estimates during the first two 

imaging rounds (time 0 to 5 minutes) and mixture colour (using the CV system) in the shaken samples. 

While the model predicted dispersibility with an RMSE of 3.53%, the RMSE of the actual IDF 

dispersibility test with respect to duplicate measurements prepared by the same person (excluding 

invalid measurements) was 1.9%. Despite the larger RMSE of the model dispersibility measurements 

than that of the reference method, it still falls within the acceptable range of less than 4%, according 

to IDF method repeatability criteria. The correlation between the predicted values and the actual 

measurements was 0.29. Also, the correlation between duplicated actual dispersibility tests was 0.76. 

The advantage of using a predictive model is that it facilitates rapid characterisation of powders, as it 

takes approximately ten minutes to conduct the test using the automated platform (with only two 

imaging rounds) versus about half an hour on the standard method to complete the dispersibility test. 
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Thus, the automated platform may be used as an at-line screening method, that in addition to 

estimating the three rehydration attributes, provides insight into powder dispersibility simultaneously, 

and samples whose dispersibility is flagged by the platform, may be sent to the laboratory for further 

analysis. 

 

Figure 4-10 Results of the random forest regression model for predicting dispersibility 

It is possible that the current model inputs do not fully represent all parameters affecting dispersibility. 

Incorporating powder properties such as powder particle size distribution, density, and chemical 

composition may enhance model generalisation. However, the current results demonstrate that 

machine learning techniques can potentially be used to predict complex rehydration attributes based 

on automated platform metrics. Consequently, this predictive model may serve as an objective and 

rapid method for benchmarking powder dispersibility before conducting time-consuming and 

subjective laboratory experiments. 

4.4. Conclusions 

The current study aimed to compare the rehydration properties of IF powders measured by an 

automated platform (using two agitation styles: swirl and shake) with those measured using 

commonly used reference methods. In addition, it examined the possibility of predicting the results 

of dispersibility reference test solely based on automated measurements. The platform’s CV 
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algorithms for sediment height, foam height, and white particle counts showed good repeatability 

comparable to standard reference measurements. Key advantages of the automated approach include: 

(i) reduced subjectivity compared to qualitative human evaluations (repeatability of reference 

methods may also be decreased if different individuals perform the same test); (ii) provided a non-

destructive method for monitoring the estimates of sediment and foam height over time as opposed 

to just endpoint measurements in the reference methods; (iii) provided higher degree of discretisation 

in the quantitative metrics for white particles versus coarse ordinal ratings in the reference test, and 

(iv) conducted the rehydration tests in the same baby bottle available off-the-shelf, to maintain a 

greater similarity between the tests and procedures used by end users when rehydrating powder. 

By detecting subtle changes in foam and sediment height (missed by the reference methods), 

some insight could be gained into the kinetics of powder rehydration, in particular, clumping and 

sedimentation. These insights would suggest that flowability should be considered as an important 

rehydration stage in addition to previously four well-known rehydration stages. Therefore, the powder 

rehydration process will have five main stages: (i) flowing, (ii) wetting, (iii) sinking, (iv) dispersion, 

and (v) solubilisation. “Flowing” is directly associated with flowability (should be measured as flow 

index) and will be defined as the ability of powder particles to flow over one another during the period 

when the powder is exiting the scoop and hitting the water surface. To emphasise the importance of 

flow index compared to wettability, it is important to note that the flow index of powder provides 

information about how the powder behaves when scooped and poured into the water, which is 

normally not considered in wettability tests, where the powder is dropped into the water at once (GEA, 

2009). In the wettability tests, the powder may already have been spread before the particles are 

dropped into the water, thereby disregarding the natural interaction between powder particles before 

they reach the water’s surface. In the literature, there has been a lack of adequate attention to the 

importance of flow index in the rehydration process, perhaps due to previous studies focusing on 
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conducting laboratory experiments that did not closely mimic the behaviour of end users, particularly 

scooping behaviour. 

Using the platform rehydration properties estimations alone, a multivariate predictive model 

could predict the results of time-consuming dispersibility reference tests with acceptable accuracy, 

highlighting the potential of the platform for rapid screening applications. Data collected from the 

reference experiments and the automated platform also revealed some powder physicochemical 

parameters such as surface free fat, flowability, powder particle size, and density were correlated with 

the three studied rehydration attributes.  

There is a possibility that the diversity, accuracy, and generalisability of predictions will 

continue to improve with the addition of new powder sets (the current study aimed to include all 

major commercial stage-1 infant formula powders available in Ireland and the Netherlands), 

additional rehydration properties metrics, and more advanced CV algorithms. However, this work 

demonstrated the potential of the automated platform concept for overcoming certain limitations 

associated with subjective qualitative testing. By providing rapid, quantitative, and objective 

rehydration data in a digitalised method. The integrated platform using robotics and CV techniques 

may enhance traceability and assist in optimising the infant formula manufacturing process. 
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5Chapter 5: Towards standardised characterisation and 

robotic replication of human bottle agitation 

5.1. Introduction 

The present chapter aimed to characterise end-user bottle agitation behaviour and evaluate the 

possibility of using a robot to imitate this behaviour. Computer vision was used to observe human 

mixing, and robotics and a statistical learning method were used to learn and subsequently mimic two 

agitation styles demonstrated by humans. Characterising and replicating human agitation may assist 

in gaining valuable insight into the diversity of bottle agitation behaviour among participants and the 

main trends in their agitations. Understanding these patterns can be useful in developing rehydration 

quality tests that reflect the real-world usage of powders. For powder manufacturers, representative 

tests are needed to design products that rehydrate well across different mixing styles used in different 

cultures and locations. Additionally, a connection was made between this chapter and chapters three 

and four by evaluating the effects of the learned agitation on the rehydration attributes. In this chapter, 

the fluid dynamics of the mixture inside the bottle was not examined, as this requires analysis beyond 

the scope of the current thesis. Rather, the chapter focused on studying the movement of the bottle in 

3D space during agitation, as demonstrated by participants or as replicated by the robot. No sensor 

was placed inside the bottle to avoid affecting natural fluid dynamics and to ensure realistic results, 

particularly for comparison of human-like swirl and shake agitations, and also comparison with 

results from chapters three and four. 

5.1.1. Importance of understanding end-user bottle agitation behaviour 

Mixing is a common operation in process engineering for material transfer (e.g., increasing 

homogeneity for infant formula). The duration and style of agitation can significantly impact the 

mixture quality (King, 1966; Richard et al., 2013). Thus, it is important, although difficult, to 
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understand how the powder will rehydrate when end-users rehydrate it (Richard et al., 2013). In some 

laboratory tests, the purpose is to simulate how well powder would dissolve in water upon rehydration 

by the end-user (Pisecky, 2012). However, since the tests are performed manually, the variability of 

human agitation highlights the need for more consistent methods to ensure that observed differences 

in rehydration behaviour reflect powder properties rather than variations in agitation. Also, as 

mentioned in Chapter 2, it is necessary to assess IF powder rehydration quality in a representative 

manner based on how the powder is rehydrated by the end-users (Lloyd et al., 2019). 

For the food powder industry, it is important to characterise the impact of rehydration variables 

such as energy, fluid dynamics of solvent liquid (usually water), and even the shape of the container 

on the rehydration process (Richard et al., 2013). Better understanding the end-user rehydration 

behaviour, particularly considering possible diversity of rehydration practices in different 

geographies and cultures (O’Shea et al., 2021), can help powder manufacturers design and produce 

powders that meet the expected functionality. Despite the needs, there are limited studies in this area. 

However, considerable knowledge can be learned from other powder industries (Fitzpatrick and 

Ahrné, 2005). 

Also, as discussed in chapters three and four, the agitation style can have a significant impact 

on the quality of rehydration, particularly the amount of dissolved solids. Some powder mixing 

parameters including water temperature and quality (King, 1966), agitation type and time (ADPI, 

2023; Richard et al., 2013), or exact amount of water or scooped powder before mixture preparation 

(Farrent et al., 2021) can compromise mixture homogeneity. Although several studies have evaluated 

the impact of temperature, scooping and water measurement used by end-users on rehydration of 

infant formula (Farrent et al., 2021; Rosenkranz et al., 2024), agitation temperature and speed (Jeantet 

et al., 2010), and agitation style (Richard et al., 2013) are less studied. It has been shown that even 

with the same powder, temperature, and agitation duration, agitation style can have a significant 

impact on how much powder is dissolved in the mixture (Mozafari et al., 2024). In addition, although 
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more energetic agitation results in more dissolved powder (Fitzpatrick et al., 2016), it may also result 

in other rehydration attributes such as foam formation (Mozafari et al., 2024). 

5.1.2. Limitation of current methods for characterising end-user bottle agitation 

behaviour 

Research on agitation during rehydration of dairy powder may be viewed from two perspectives, 

namely from the perspective of chemical processing (mixing) (e.g., (Schober and Fitzpatrick, 2005), 

and from the perspective of end-user experience (e.g., (Altazan et al., 2019)). 

To address the research gap in understanding rehydration from the perspective of end users, 

Lloyd et al., (2019) evaluated typical domestic rehydration processes by asking consumers to 

rehydrate a range of milk powders. They measured the residue in the rehydrated powders and adjusted 

a mixer to mimic participants mixing procedure by obtaining a similar level of residue. To obtain a 

“similar” level of residue, they rotated the mechanical mixer’s mixing paddle 13 times clockwise and 

13 times anticlockwise over eight seconds. The detail of their market research is not reported. Such a 

characterisation method does not directly measure the end-user agitation behaviour. Not 

characterising agitation behaviour introduces limits for the understanding of the agitation as it only 

considers the agitation process as a black box that only has inputs and outputs. Also, the method was 

affected by subjectivity as the implementation method for obtaining a similar sample quality only by 

adjusting the number of paddle rotations were subjective and may not consider the complexity of 

realistic fluid dynamics. 

 O’Shea et al., (2021) used a collaborative robot to approximate end-user bottle agitation as a 

more realistic alternative to the traditional mixers. However, the method of programming the robot 

was subjective. A more systematic approach is required to ensure inherent differences between human 

and robotic arms (such as degrees of freedom and the fundamental difference of the way they generate 

motions (Billard and Grollman, 2013)) do not hinder the replication of realistic agitations. 



128 

Despite the importance of characterisation of rehydration variables for the IF powder industry, 

there are only a few studies on the topic. However, understanding rehydration behaviour of a variety 

of powders (e.g., dairy, pharmaceuticals, or fertilisers) both for industrial and consumer applications 

has been studied (Cao, 2015; Richard et al., 2013). Because of complexity of understanding the liquid 

behaviour during agitations, many studies simulate dissolution or mass transfer behaviour during 

mixing in beaker using Computational Fluid Dynamics (CFD) methods (Hanspal et al., 2020; 

Hörmann et al., 2011; Wadnerkar et al., 2012). In the case of infant formula bottle agitation, 

simulations can be even more complex, considering the sensitivity of rehydration attributes to bottle 

shape (cf. Richard et al., 2013), higher complexity of fluid dynamics during bottle agitation (which 

may also result in a turbulent state in which simulations are much more complex if not impossible 

with currently available hardware) compared to stirrers in steady state, and the high diversity of 

human bottle agitation compared to mixing machines. 

 There are several studies that do not consider human participants and investigate the 

dissolution behaviour of powder under different agitation parameters such as shear and power 

produced by regular mixtures (Fitzpatrick et al., 2016; Jeantet et al., 2010; McCarthy et al., 2014; 

Schober and Fitzpatrick, 2005). They mainly have not considered realistic agitation parameters, 

perhaps due to challenges of realistic agitation characterisation. Despite the limited number of studies 

conducted to date, there is a need to measure end-user bottle agitation behaviour objectively (Hardy 

et al., 2002; Lloyd et al., 2019; O’Shea et al., 2021). However, digital data collection and data 

processing of diverse agitations between human agitations is a challenge of objective approaches.  

5.1.3. Potential of adapting motion tracking techniques for rehydration studies 

Although rare in the food powder industry, there are several studies characterising body limb 

movement behaviour, for example, for developing tools for assistant purposes such as in walking, 

running, or object grasping. The current techniques are either non-contact techniques based on vision 

or IR approaches, or wearable Micro-Electromechanical System (MEMS) sensors connected to the 
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human body (without being too heavy and interfering with the demonstrated motions) for motion 

tracing. Such techniques may have the potential to be adapted for characterising end-user behaviour 

during food powder rehydration. However, the available commercial solutions may be expensive, 

particularly those that can measure high-speed motions (Jensen et al., 2020). For the development of 

low-cost solutions, it is necessary to address the challenges associated with rehydration movements, 

such as high-speed agitations, which may require the development of tailored signal processing 

solutions. 

Rehydration can be affected by many factors (e.g., powder properties, water penetration, 

changes in solubility resulting from environmental conditions such as pH (Siepmann and Siepmann, 

2008), and mechanical energy (Richard et al., 2013)). Studies have examined how mixing conditions 

(mechanical input energy and duration (Fitzpatrick et al., 2016; Richard et al., 2013)) and system 

geometry (container and impeller design (Richard et al., 2013)) influence powder rehydration 

mechanism. The interaction of these mechanical factors can affect fluid dynamics including vortex 

formation, turbulence, and mass transfer (Fitzpatrick et al., 2016; Wadnerkar et al., 2012). Monitoring 

the bottle movements in 3D space using computer vision or sensors can provide insights into the 

trajectory of agitations, which can provide information about instantaneous or average agitation 

frequency and power (i.e., energy per unit of time). This can enable the possibility of mimicking the 

dominant agitation behaviour among participants, without needing to characterise or understand the 

fluid dynamics of the mixture inside the bottle. In this case, fluid dynamics inside the bottle can also 

be expected to be similar to those obtained in end-user agitations if the same bottle used by the end-

user is used. 

5.1.4. Motivation for replicating human bottle agitation with a robot 

Although the selection of the cobot was not part of this thesis, Table 5-1 compares ten collaborative 

robots with a maximum payload of 5 kg manufactured by some major market players (M&M, 2023). 
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Table 5-1 Ten collaborative robots with payloads less than five kg (listed alphabetically by manufacturer name) 

Cobot Manufacturer 

Maximum 

Payload (kg) 

Degree of 

Freedom 

Maximum Tool 

Speed (m/s) 

Price (€)* Reference 

YuMi 14050 ABB 0.5 7 1.5 31,000 (ABB, 2021b) 

AUBO-i3 AUBO 3 6 1.9 18,000 (AUBO, 2021) 

COBOTTA Denso 0.5 6 ~ 0.13 15,000 (Denso, 2024) 

E0509 Doosan Robotics 5 6 ~ 1 16,000 (DOOSAN, 2024) 

CRX-5iA FANUC 5 6 1 32,000 (FANUC, 2023) 

LBR iisy 3 KUKA 3 6 N/A 23,000 (KUKA, 2022) 

Sawyer Rethink Robotics 4 7 ~ 1.5 33,000 (RR, 2020) 

TM5 - 900 TECHMAN 4 6 1.4 26,000 (TM, 2019) 

UR3 Universal Robots 3 6 ~ 1 22,000 (UR, 2015) 

MotoMINI YASKAWA 0.5 6 N/A 13,000 (YASKAWA, 2022) 

*Price information is approximate, may vary by market, and is not included in the provided references. 

YuMi’s small payload may limit the development of human-like agitation. However, its seven degrees 

of freedom may increase the likelihood of successful imitation of human arm movements. Since a 

human arm is believed to have seven degrees of freedom (Harthikote Nagaraja, 2019), the YuMi 

robot, which also has seven degrees of freedom, was expected be able to mimic the movements of 

the end users’ arm. 

The current rehydration tests that imitate end-user agitations are not widely automated; also, if 

automated, they are not developed systematically (Lloyd et al., 2019). If the test is not automated, an 

observed rehydration quality cannot directly be concluded to originate from changes in the formula 

or variability in human agitation. Obtaining such an objective rehydration platform can enable food 

powder manufacturers to mimic end-user agitation behaviour (as the agitation data is collected from 

humans) in a repeatable manner (as the agitation is performed by a robot). Using such a platform can 

have several benefits for researchers or powder manufacturers, including: i) standardisation of 

“realistic” agitations among the rehydration tests between different laboratories or manufacturing 

plants, especially considering the large diversity of the current rehydration methods, ii) enabling the 
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possibility to edit a specific characterised rehydration parameter (such as duration, amplitude, or 

frequency obtained from participants) and monitor its impact on the rehydration process; and iii) 

enabling characterisation of different human agitation styles and evaluating the impact of agitation 

style on rehydration attributes. Such controlled experiments on realistic motions can help in 

understanding the mechanisms linking agitation characteristics to rehydration performance. This can 

help identify practices that optimise rehydration and facilitate benchmarking the impact of deviations 

from the recommended rehydration procedure (usually available on the packaging) that can help the 

regularisation of the recommended rehydration methods.  

5.1.5. Robotic learning from human demonstration 

Learning rhythmic motions has traditionally been implemented using dynamical systems called 

Dynamic Movement Primitives (DMPs) (Ijspeert et al., 2002a, 2002b; Schaal et al., 2000), or 

probabilistic methods (Huang et al., 2021; Paraschos et al., 2018, 2013) that are based on sinusoidal 

basis functions and have limitations in capturing variations in phase, frequency, and amplitude (Kulak 

et al., 2020). To overcome these limitations, Fourier movement primitives that can extract multiple 

underlying frequencies in demonstrations were proposed by Kulak et al. (2020). As this method does 

not need an estimated dynamical model for the system and works based on the Fourier transform of 

the demonstrated signal, there is no subjectivity introduced during the selection and tuning of basis 

functions. Using this approach enabled the robot to wipe a whiteboard or draw figure-eight shapes 

starting from different initial positions. 

Although  learning based on FMPs is applicable to detect multiple frequencies in 

demonstrations, in the form implemented by Kulak et al. (2020), it has two limitations that prevent it 

being applicable in our case. First, although the learning approach allows the robot start from random 

points, the robot ultimately goes to the learned position which is not of interest in our study. The 

interest of our study is to learn the agitation behaviour as an isolated demonstration regardless of 

where in 3D space (or which position in front of the camera) participants agitate the bottle. Second, 
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the method learns all frequencies in the demonstration including frequencies of transferring from one 

cycle of the rhythmic demonstration to the other. Although this is an advantage of the method to detect 

these patterns, it might not be of interest in some applications, particularly in industrial environments. 

5.2. Experiment to track and characterise human bottle agitation 

Regardless of the robot performing the agitations, to understand variation intra and inter 

demonstration by humans, their agitations were evaluated in terms of their frequency and amplitude. 

As it is the first time such data have been collected, this analysis was expected to help obtain a better 

understanding of the expected variations in human agitations. Thus, this section presents the methods 

for bottle pose detection demonstrated by participants, data processing, and characterising human 

bottle agitation behaviour. The section aims to characterise two widely used (cf. WHO, 2007) end-

user baby bottle agitation styles, swirl and shake, performed by participants, and evaluate variations 

inter and intra human agitation and find their basic agitation parameters (e.g., amplitude and 

frequency) and determine whether the human variations are significantly different.  

5.2.1. Participants 

Ten participants were randomly recruited for this study by sending internal email at Maynooth 

University. The participants included five males and five females, aged between 18 and 54, and they 

gave their informed consent to participate. Some participants reported having prior experience 

preparing infant formula; however, this was not a formal question or inclusion criterion. The only 

inclusion criterion was being above 18 years old. 



133 

 

Figure 5-1 Age and gender distribution of ten participants in bottle agitation study 

 Since the present study was a preliminary assessment of human bottle agitation behaviour, a 

preliminary evaluation by the author was used to estimate the number of participants required. It was 

expected that a larger pool of participants may need to be recruited in the future depending on the 

outcomes of this study (the current sample of ten participants, however, was sufficient for the 

purposes of this study). 

5.2.2. Motion capture apparatus 

A 260 ml commercial Philips Avent baby bottle (Philips Avent, Glemsford, England) was 

instrumented with custom 3D-printed components Figure 5-2, AprilTags (Olson, 2011), and an 

Inertial Measurement Unit (IMU) sensor (Shimmer3 IMU unit, Dublin, Ireland). The design goal was 

to track bottle motions during agitation with two independent approaches: using an IMU and 

computer vision. To instrument the bottle for computer vision, five tag holders were designed using 

FreeCAD (FreeCAD, 2022), 3D printed from PLA, and attached to the bottle. According to Figure 

5-2, the first and biggest tag holder was in the middle of the bottle (and designed to also hold the IMU 

sensor), two tag holders were on the right and left, and two tag holders were on the top and bottom. 
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The five AprilTags were from the tag36h11 class which is reported to have acceptable detectability 

from small angles that limit the camera’s view of tags (cf. Olson, 2011). 

 

Figure 5-2 (a) and (b) show the five AprilTags connected to the sensor holder (tag 1) and tag holders (tags 2 to 5). (c) shows how the 

IMU sensor slides into the holder (the two side AprilTag holders are removed for demonstration purposes). Dotted lines show hidden 

axes. 

A unique tag was used for each side of the bottle. The chosen tag arrangement allows up to three tags 

to be visible at the same time as the tags were attached to five unique faces perpendicular to each 

other (can be imagined as five unique faces of a Rectangular Prism). The sensor holder weighed 14 g 

and the sensor weighed 23.6 g, a total of 37.6 g. 

The bottle was filled with 180 ml of milk to mimic a similar condition used in our previous 

studies which used 180 ml of water plus an average of 29 g of powder. Although the added powder 

in our previous study increases the overall mixture volume, this increase was ignored in the current 

study to not increase the bottle weight considering a sensor was attached to it. Here two 

simplifications are considered: 

i) The added powder will increase the volume of the mixture in our previous study which 

results in mixture more than 180 ml. However, this was not considered since in this study, 

the sensor and sensor/tag holder need to be added and increasing the milk volume would 

increase the total bottle weight resulting in deviation from natural bottle weight. 
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ii) Sensor was placed outside the bottle, and its weight would generate a parameter of 

moment of inertia which is different from that of the natural agitation. But this deviation 

was ignored since attaching the IMU to the bottle was an important alternative plan for 

ensuring any agitation data from participants was not missed. 

The 180 ml volume was chosen to not deviate too much from the realistic fluid dynamics inside 

the bottle and how the bottle feels in participants’ hands (resulting from fluid dynamics and 

participants’ perception from the presence of liquid) during agitations. 

The sensor holder was designed to have a light weight and keep the sensor as close as possible 

to the bottle while still allowing participants to hold the bottle naturally. The centre of the sensor was 

65 mm away from the centre of the bottle. The impact of moments of inertia of the attached sensor 

and the tag/sensor holders were ignored since they were lightweight and were not expected to have a 

significant impact on agitation dynamics. Considering the bottle mass was around 35 grams and it 

contained 180 ml of milk (with density of around 1.03 kg/L at 20° C) plus around 38 grams for the 

sensor and sensor holder, and the bottle cap, the overall bottle weight agitated by participants can be 

estimated at around 265 grams. 

5.2.3. Bottle pose and motion estimation 

Given that the relative position of bottle to the tags was known, the AprilTags were used to facilitate 

feature extraction for estimating the location of the bottle in 3D space. To detect the tags, the 

pupil_apriltags (Pupil Labs, 2022a) library was used in Python. Although detection of smaller tags 

may have more noise due to camera resolution limitations (especially at high frame rates), there was 

a space limit for the tags not to increase the moment of inertia and the tag holder vibrations, as well 

as not to interfere with the natural way participants may hold the bottle. As a result, except for the left 

and right tags (tags number 4 and 5), the tags had to have different sizes. Where possible, efforts were 

made to have a larger tag for better detection of edges, especially when camera ISO rating had been 
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increased to compensate for the limited lighting in the laboratory that could increase noise level. The 

sizes of tag1 to tag5 (which is defined as the distance of detection corners (AprilRobotics, 2024)) 

were 52, 37, 23, 28, and 28 mm. The distance of the centre of the tags to the centre of the bottle was 

known, and the tags were in planes perpendicular to each other. 

 

Figure 5-3 Coordinate system of AprilTags used to determine the bottle centre relative to each tag (here only the first tag is shown as 

an example) 

The corners of an “ideal” tag are at (-1, 1), (1, 1), (1, -1), and (-1, -1) (Pupil Labs, 2022b). The tag 

coordinate system follows the right-hand rule with x to right and y to down (AprilRobotics, 2024), 

which is shown in Figure 5-3, and the distance of the bottle to the tag coordinate system relative to 

each tag shown in Figure 5-2 (a) and (b) for tag1 to 5 in the tags’ coordinate systems respectively 

were (0, 0, 70), (0, 0, 50), (0, 0, 75), (54, 0, 29), (-54, 0, 29). Also, according to Figure 5-2, the 

rotations of the bottle relative to the coordinate system of tags 1 to 5 are respectively (0, 0, 0), (-π/2, 

0, 0), (π/2, 0, 0), (0, π/2, 0), (0, -π/2, 0). 
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The algorithm pipeline for estimating the position of the bottle centre is as follows: 

Algorithm1: Estimating Bottle Pose from Videos 

 Input: video of bottle agitation in a participant’s hand 

 Output: a time series of estimated position and orientation of bottle in camera coordinate system 

during the agitation demonstration video 

 1 load camera calibration parameters 

 2 initialise AprilTag detector and pose data storage lists based on each tag 

 3 for (each frame in video): 

 4  detect AprilTags in image 

 5  if (any tags found): 

 6   calculate bottle centre position and orientation based on each tag 

 7   store estimated pose based on each tag 

 8  else: 

 9   store NaN (Not a Number) values in data storage lists 

 10  end 

 11 end 

 12 for (each timepoint t in estimated poses based on all tags): (i.e., aggregating bottle 

position and orientation across tags) 

 13  calculate mean position and orientation from detected tags at each t and store in bottle 

pose lists (i.e., bottle position and orientation) 

 14 end 

 15 for (each timepoint t in bottle pose): (i.e., computing bottle velocities): 

 16  bottle linear velocity = (position[t+1] - position[t]) / (time[t+1] - time[t]) 

 17  bottle angular velocity = (orientation[t+1] - orientation[t]) / (time[t+1] - time[t]) 

 18 end 

Using this algorithm, bottle position, orientation, linear speed, and angular velocity were obtained at 

each frame of the recorded 240 fps video (i.e., time steps of 1/240 s). 

5.2.4. Data collection procedure and motion capture setup 

An SOP was developed for participants on expectations from the study and how to agitate the bottle 

(attached in Appendix 2). As there are two agitation styles of Shake and Swirl instructed in the 
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guideline provided by World Health Organisation (WHO, 2007), this study only measured these two 

agitation styles (however, measurement of any other agitation style should be possible with the same 

approach described in this study but potentially with modification of the sensor, camera, and bottle 

tag positions to avoid interfering with the way participants would naturally hold the bottle). To avoid 

inauthentic instructions, the SOP was designed to mimic the agitation guidelines on the packaging of 

commercially available IF powders. In the SOP, participants were communicated that “Your personal 

preferences will ultimately determine the details of the motion”. Similar to manufacturer guidance, 

no additional instructions were provided regarding the exact Shake or Swirl method to ensure 

capturing natural bottle agitations according to participants’ preferences. 

Participants were asked to demonstrate each agitation style three times with a duration of 15 s 

per demonstration. As a result, there were three shake and three swirl agitations demonstrated by each 

participant. To minimise the impact of fatigue, participants had the option to take a rest between the 

demonstrations as much as they needed. Verbal cues were provided to indicate the start and end time 

of each demonstration. They stood in front of a table mounted with a GoPro Hero 8 Black camera 

(GoPro Inc., USA) in the robotics laboratory at Maynooth University to demonstrate the bottle 

agitation movements. The video was recorded at a frame rate of 240 fps with a resolution of 1080p 

which was the maximum resolution of the camera at this frame rate. The camera ISO was set to 1600 

to ensure the frames were bright enough for tag detection using image analysis. Because increasing 

ISO will increase the chance of noise absorption, the possibility of detection of the tags in these 

settings was tested under the fastest possible range of agitations. There was no need to change the 

normal lighting or background (white wall) available in the room. 

5.2.5. Data analysis 

The video frames were processed using the OpenCV (Bradski, 2000) library in Python. The learning 

algorithm was also developed in Python. We used the NumPy library (Harris et al., 2020)  to work 

with FFT, and the Scikit library (Pedregosa et al., 2011) to handle Gaussian Mixtures and implement 
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the grid search. To find the peak and trough in signals of individual demonstrations (for inter and intra 

demonstration analysis), the SciPy library (Virtanen et al., 2020) was used. The results were plotted 

using the Matplotlib library (Hunter, 2007). 

5.3. Learning a single agitation cycle from human demonstrations 

This section discusses how an LfD technique was developed and used to obtain one representative 

(dominant) agitation cycle for both swirl and shake styles from all participants’ demonstrations. 

Moreover, it discusses how the two learned cycles were mapped onto the robot to simulate human-

like agitations. This section also extracts the dominant agitation parameters from the learned agitation 

cycles as a statistical approach (in addition to the averaging approach described in section 5.3). The 

movements humans make when agitating a bottle in 3D space can occur in several layers, including 

rhythmic cycles we are interested in studying, as well as larger and slower movements (such as 

drifting from side to side). Rather than reproducing these large movements, our robot should be able 

to reproduce the rhythmic movement for as long as required by the robot operator. For this platform, 

only one agitation cycle should be obtained out of all demonstrated agitations in each agitation style 

because the platform aims to analysis the rehydration performance of different powders 

systematically, and it should perform identical agitations regardless of the time. For example, if the 

rehydration time is set to 5 s or 10 s, the only variable should be time, so that the platform is able to 

show the impact of agitation duration on the rehydration attributes while the other parameters, 

including the agitation path and agitation cycles, remain identical. 

Considering participants may have large variation in swirling/shaking the bottle (as there was 

no limitation for them on shaking/swirling the bottle horizontally, vertically, or clockwise or 

counterclockwise), detecting a single cycle that represents all possible behaviours requires a statistical 

approach. The learning algorithm must be capable of handling situations in which some individuals 

shake the bottle horizontally (left-right) and others shake it vertically (top-down). In the same manner, 

opposite agitations (e.g., left-to-right and right-to-left, or clockwise and counterclockwise) must be 
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learnable without the opposite motions cancelling each other out. To obtain the most likely occurring 

agitation, bottle velocity was used rather than bottle position. After the representative velocity was 

learned, bottle position was calculated from the representative velocity. The reason for not using bottle 

position was that , despite many robotic problems that need to be solved for moving from point A to 

B, in the case of this study, it is important to understand how the bottle moves (i.e., its position relative 

to its previous state) rather than focusing on where the bottle is exactly located in 3D space. Working 

with bottle position needs data shifting (e.g., to bring all data to a certain point for learning) or data 

cleaning while it is best in LfD problems to take an approach without using these stages. As a result, 

position may not contain clean features for learning as participants may hold the bottle anywhere in 

space which is not a useful parameter for agitation. Moreover, finding the agitation cycles based on 

position data can be challenging because the agitation cycles cannot be clearly determined using this 

data (e.g., the bottle may change direction in the x-axis while not yet changing direction in the y-

axis). 

There were three requirements for the outcome of the learned agitations in this study: 

1. Only one representative agitation cycle (from each style) needed to be learned out of 

demonstrations from all participants (because standardised human-like agitation was needed). 

2. It was essential that the agitation cycle could be repeated smoothly. In other words, the bottle 

position, speed, and acceleration must be the same at the beginning and the end of the cycle 

(to ensure the robot could perform the human-like agitation smoothly for any duration 

desired). 

3. The amplitude and frequency of the outcome of the learning algorithm must be scalable to 

any desired size (to provide platform users with the capability to evaluate the impact of 

different agitation parameters on rehydration quality). 

Also, in LfD problems, there is a tendency to minimise preprocessing the demonstration data 

as much as possible to ensure the outcome is as objective as possible (Kulak et al., 2020). 
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To satisfy the first requirement, it is necessary to find at least one feature in the signals that 

indicates the start and end of the agitation cycle. The velocity signal was used for this purpose. Since 

agitation is a rhythmic movement, the velocity signal needs to change direction to return for the next 

repeat. Therefore, in any agitation cycle there must be two points in which velocity is zero. Also, for 

the same reason, velocity signal automatically oscillates around zero and does not need any 

preprocessing. This also helps to satisfy the second requirement because less preprocessing of data 

means less signal warp and a closer gap between the learned path start and end. 

An alternative solution for finding such a feature is to find minimum or maximum of bottle 

position on any of the three axes. However, since the bottle position can be anywhere in the 3D space 

(provided it is in camera viewpoint), it would be necessary to process the position signal to remove 

the low frequency and bring all demonstrations to a known coordinate system. Additionally, the 

extremum may not happen simultaneously in the three axes. 

 To satisfy the third requirement, not only must a single closed and smooth agitation cycle have 

been obtained (the first two requirements must be already satisfied), but also the time of agitations 

must be included in the learning algorithm to obtain a trajectory. Then it will be possible to scale 

robotic agitation frequency since the learned timing is based on equal intervals (determined by the 

camera frame rate). 

Three techniques were used to satisfy the three requirements at the same time: 

1. Velocity signal was used instead of position signal. By learning the velocity signal for a single 

agitation cycle, it will be possible to find the position from integration of velocity. 

2. Fast Fourier transform (FFT) was used to encode the agitation velocity signals for the agitation 

cycles.  

3. A Gaussian Mixture Model (GMM) was used on the first two largest FFT components to learn 

the FFT parameters for the dominant velocity signal that represents all the demonstrated 

velocities. 
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We define 𝑚 as the number of frequencies we select for each component, (𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝜔𝑥, 𝜔𝑦, 𝜔𝑧) 

as the linear and angular velocity components in each demonstration (i.e., agitation cycle), 𝑀 as the 

number of data points in a single cycle, and 𝑁 as the number of demonstrations (agitation cycles). 

For each cycle in each of the 6 signal components (𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝜔𝑥, 𝜔𝑦, 𝜔𝑧), we perform an FFT: 

𝑋(𝑓) = ℱ{𝑥(𝑡)} (5.1) 

where 𝑥(𝑡) is the time-domain signal and 𝑋(𝑓) is its frequency-domain representation. 

We select the top two frequencies (𝑚 = 2) with the largest magnitude in the frequency 

spectrum, along with their corresponding amplitudes: 

|𝑋(𝑓)| = √Re(𝑋(𝑓))
2

+ Im(𝑋(𝑓))
2

 (5.2) 

The most important components of ℱ are identified as the 𝑚 largest values in |𝑋(𝑓)|. 

For each component, we find the 𝑚 frequencies and amplitudes corresponding to the 𝑚 largest 

magnitude peaks in the spectrum using Equations (5.3) and (5.4): 

𝑓𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓|𝑋(𝑓)| (5.3) 

𝐴𝑖 =
2|𝑋(𝑓𝑖)|

𝑀
 (5.4) 

Then we create a feature vector for each cycle: 

𝐹𝑓𝑎 = [𝑓1, … , 𝑓𝑛, 𝐴1, … , 𝐴𝑛] (5.5) 

where 𝑛 =  𝑚 × 6 (𝑚 frequencies for each of the 6 components), and 𝐹𝑓𝑎 represents the 

frequency and amplitude feature components. 

We fit a GMM to the frequencies and amplitudes components of the feature vectors. 

𝑃(𝐹𝑓𝑎) = ∑ 𝑤𝑘𝒩(𝐹𝑓𝑎|𝜇𝑘, 𝛴𝑘)

𝐾

𝑘=1

 (5.6) 
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where 𝐾 is the number of components in the GMM, 𝑤𝑘 are the mixture weights, with 

∑ 𝑤𝑘
𝐾
𝑘=1 = 1, and 𝒩(𝐹𝑓𝑎|𝜇𝑘, 𝛴𝑘) are Gaussian distributions with means 𝜇𝑘 and covariances 𝛴𝑘. 

The idea is to group similar patterns regardless of their starting point in the agitation cycle. 

For example, two agitation cycles from two different participants might have the same fundamental 

shape but start at different phases. By ignoring phase at this stage, we can recognise such signals as 

similar signals. 

We select the GMM component whose sum of posterior probabilities across all cycles is 

highest, as the representative pattern in the agitation cycle: 

𝑘∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘

∑ 𝑃(𝑘|𝐹𝑓𝑎,𝑖)

𝑁

𝑖=1

 (5.7) 

where 𝑁 is the number of demonstrations (agitation cycles), 𝑘∗ is the index of the GMM 

component that maximises the sum of posterior probabilities across all cycles, and 𝑃(𝑘|𝐹𝑓𝑎,𝑖) is the 

posterior probability of component 𝑘 given the frequency and amplitude features of cycle 𝑖. 

This equation can identify a representative pattern by selecting the GMM component that has 

the highest sum of posterior probabilities, regardless of whether those probabilities are distributed 

across many cycles or concentrated in fewer cycles. 

Now, we consider the phase to be able to reconstruct the representative agitation cycle, as it 

was not included in the learning features. We compute and circular average the signal phases for each 

𝑗 from 1 to 𝑛: 

𝜙𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛 2 (Im(𝑋(𝑓𝑖)),Re(𝑋(𝑓𝑖))) (5.8) 

𝜙avg,𝑗 = ∠ (
1

𝑁
∑ 𝑒𝑗𝜙𝑖,𝑗

𝑁

𝑖=1

) (5.9) 

 Finally, for each of the 6 components, we reconstruct the learned signal using: 
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𝑥reconst(𝑡) = ∑ 𝐴𝑖 𝑐𝑜𝑠(2𝜋𝑓𝑖𝑡 + 𝜑𝑖)

𝑚

𝑖=1

 (5.10) 

where 𝑓𝑖 and 𝐴𝑖 are from the representative GMM component 𝑘∗, and 𝜙𝑖 are the averaged 

phases. 

As a result, the learning approach was designed so that scaling the amplitude and frequency 

of agitations (Equation (5.10)) was possible in case the user of the platform needs to evaluate the 

impact of frequency and amplitude on rehydration attributes. 

The following paragraphs provide a mathematical analysis showing how a closed loop arises 

from this learning method so that the robot can repeat the agitation cycles smoothly. The analysis 

demonstrates how both GMM clustering and FFT calculations work together to achieve this result. 

If agitation cycles are split at zero crossings, for each demonstration 𝑖: 

𝑣𝑖(0) =  𝑣𝑖(𝑇𝑖) =  0 (5.11) 

where 𝑇𝑖 is the period of demonstration cycle 𝑖. 

According to the Central Limit Theorem, when sufficient demonstrations exist (𝑁 →∞), the 

distribution of agitation cycle periods converges to a normal distribution with mean denoted as 𝑇∗: 

𝑇∗ = 𝑙𝑖𝑚
𝑁→∞

(
1

𝑁
) ∑ 𝑇𝑖

𝑁

𝑖=1

 (5.12) 

This mean (i.e., 𝑇∗) is identified by our GMM (using the most probable pattern 𝑘∗ in Equation (5.7)) 

as a unique dominant period of human bottle agitations. 

Since all demonstration cycles are periodic, their FFT representations contain frequencies that 

are multiples of their fundamental frequency 
1

𝑇𝑖
. As 𝑁 → ∞, these frequencies converge to multiples 

of 
1

𝑇∗ through GMM clustering. Therefore, the FFT frequency components (𝑓𝑖 in Equation (5.10)) that 

generate the learned agitation cycle are integer multiples (harmonics) of the dominant frequency 
1

𝑇∗: 
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𝑓𝑖 =
𝑖

𝑇∗
, 𝑖 =  1, … , 𝑚 (5.13) 

As a result, for any reconstituted component in Equation (5.10): 

𝑐𝑜𝑠(2𝜋𝑓𝑖𝑇∗ + 𝜙𝑖) = 𝑐𝑜𝑠(2𝜋𝑖 +  𝜙𝑖) = 𝑐𝑜𝑠(𝜙𝑖) = 𝑐𝑜𝑠(2𝜋𝑓𝑖 ·  0 + 𝜙𝑖) (5.14) 

  This means that the reconstructed signal returns to its starting value: 

𝑥reconst(𝑇∗) =  𝑥reconst(0) (5.15) 

For any reconstructed signal using Equation (5.10) (particularly 𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝜔𝑥, 𝜔𝑦, and 𝜔𝑧 in 

our case), the derivatives or integrations remain periodic and preserve the harmonic relationships. As 

a result, given sufficient agitation demonstrations, the obtained position, velocity, acceleration, and 

jerk will remain closed smooth trajectories. 

The method for learning a single agitation cycle that can represent all demonstrated agitation 

cycles is as follows: 

Algorithm2: Learning a Single Agitation Cycle from Participants’ Demonstrations 

 Input: the time series of bottle position and orientation during demonstrations (derived from 

Algorithm1) 

 Output: a time series of bottle position and orientation during a single learned agitation cycle 

 1 import bottle position and orientation from the bottle pose estimation algorithm 

(Algorithm1) 

 2 for (each agitation style (swirl and shake in our case)): (i.e., feature extraction) 

 3  apply a 3rd-order Butterworth filter from the SciPy library with a normalised cutoff 

frequency of 0.04 (equivalent to 4.8 Hz, i.e., upper bound of the expected agitation 

frequency range, calculated as 0.04 × 120, where 120 is the Nyquist frequency) 

 4  calculate linear velocity (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)  and angular velocity (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) from bottle 

position and orientation using NumPy’s gradient function 

 5  calculate and identify the linear velocity component whose cycles have the highest 

average pairwise cross-correlation between each other (which was 𝑣𝑦 for swirl and 𝑣𝑧 

for shake, as expected) 

 6  for (each datapoint in the identified signal): 
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 7   find and store the indices of zero crossings where the signal changes from negative 

to positive (i.e., marking the beginning of each agitation cycle) 

 8  end 

 9  for (indices of zero crossings): 

 10   split the six signals (i.e., linear and angular velocities) into individual agitation 

cycles 

 11  end 

 12  for (𝒗𝒙, 𝒗𝒚, 𝒗𝒛, 𝝎𝒙, 𝝎𝒚, and 𝝎𝒛): 

 13   for (each split cycle): 

 14    perform FFT using Equations (5.1) and (5.2) 

 15    extract and store the top 2 frequency and amplitude components (not phases) of 

FFT 

 16   end 

 17  end 

 18  combine the extracted components into a single feature array (size: number of 

demonstrations × 24 (i.e., 6 motion components × top 2 of × the 2 FFT components)) 

 19  for (𝒗𝒙, 𝒗𝒚, 𝒗𝒛, 𝝎𝒙, 𝝎𝒚, and 𝝎𝒛): 

 20   compute and store the circular average of the signal phase (to be used when 

reconstructing the signals) 

 21  end 

 22 end 

 23 for (each array of extracted features (swirl and shake in our case)): (i.e., training a 

model for clustering agitation patterns that are similar) 

 24  identify the optimal GMM using cross-validation and testing 1-10 Gaussian 

distributions and 4 covariance types 

 25  fit the identified model to the feature array 

 26 end 

 27 for (each trained model (swirl and shake in our case)): (i.e., reconstructing the learned 

𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝜔𝑥, 𝜔𝑦, and 𝜔𝑧) 

 28  find the most common cluster of the trained model and use its mean as the representative 

frequency and amplitude 

 29  for (𝒗𝒙, 𝒗𝒚, 𝒗𝒛, 𝝎𝒙, 𝝎𝒚, and 𝝎𝒛): 



147 

 30   reconstruct the learned signal by summing 2 sinusoids using the representative 

frequencies and amplitudes, and average phases (calculated at line 20) 

 31  end 

 32 end 

 33 for learned 𝒗𝒙, 𝒗𝒚, 𝒗𝒛, 𝝎𝒙, 𝝎𝒚, and 𝝎𝒛 in each agitation style: (i.e., reconstructing the 

learned bottle position and orientation) 

 34  obtain the learned bottle position by integrating the learned linear velocity (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) 

 35  obtain the learned bottle orientation by integrating the learned angular velocity 

(𝜔𝑥, 𝜔𝑦, 𝜔𝑧) 

 36  calculate median starting angles (𝜃𝑥, 𝜃𝑦, 𝜃𝑧) from original agitation cycles and add 

them to the reconstituted orientation data as initial orientation values 

 37 end 

5.3.1. Mapping the two learned agitation cycles onto the robot 

The current section aimed to: i) update robot agitation programmes to perform “human-like” 

agitations, and ii) validate the updated agitations compared to the learned trajectory from humans. 

To map the learned position of the bottle to the robot, matrix transformation was used. Since 

the robot tool for holding the bottle was on its left arm (i.e., similar to a left-handed person), in case 

a participant was right-handed, before mapping to the robot coordinate system, their demonstration 

was reflected relative to the XZ plane in the World’s coordinate system with the following 

transformation: 

𝑀𝑟𝑒𝑓𝑙𝑒𝑐𝑡,𝑋𝑍
𝑊𝑜𝑟𝑙𝑑 = [

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

] (5.16) 

We define the following coordinate systems: 

𝑊: World 

𝐶: Camera 

𝑇𝑖: Tags (𝑖 =  1, … ,5) 
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𝐵: Bottle (representing human hand) 

𝑅: Robot base 

𝑊𝑂𝑏𝑗: Work Object 

𝐸𝐸: End Effector 

𝑇𝐶𝑃: Tool Centre Point 

Figure 5-4 illustrates the defined coordinate systems required for transformations from the 

camera to the robot space. 

 

Figure 5-4 (a): Bottle pose relative to camera coordinate system (which is calculated from bottle pose in tag(s) coordinate 

system(s) and then the tag pose(s) in camera coordinate system). Camera coordinate system is defined based on ideal tag coordinate 

system as explained in the text. (b): The coordinate systems for Robot and EE are defined as default by robot controller. The 

coordinate systems for WObj and TCP in (b) were defined to respectively match those of the camera and bottle in (a). Dotted lines 

show hidden axes. 

When transforming from any coordinate system 𝑃 to 𝑄, if the translation matrix is 𝑡𝑃
𝑄

 and the Rotation 

matrix is 𝑅𝑃
𝑄

, then the transformation Matrix is: 

𝑇𝑃
𝑄 = [𝑅𝑃

𝑄 𝑡𝑃
𝑄

0 1
] (5.17) 

For simplicity, first, we imagine only one random tag is identified. Afterwards, we will expand 

the equation to handle more identified tags. 
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In case of detecting only one random tag, the transformation Matrix for the bottle in human 

hand is as: 

𝑇𝑊
𝐵 = 𝑇𝑊

𝐶 ⋅ 𝑇𝐶
𝑇𝑖 ⋅ 𝑇𝑇𝑖

𝐵  (5.18) 

And the transformation for robot TCP (where the bottle is in robot gripper) is as: 

𝑇𝑊
𝑇𝐶𝑃 = 𝑇𝑊

𝑅 ⋅ 𝑇𝑅
𝑊𝑂𝑏𝑗

⋅ 𝑇𝑊𝑂𝑏𝑗
𝐸𝐸 ⋅ 𝑇𝐸𝐸

𝑇𝐶𝑃 (5.19) 

The learning approach allows scaling of human demonstration before mapping the movements 

to the robot, in case an operator wishes to scale down or up the robotic movements while mimicking 

the path of human demonstrations. The scaling Matrix from human demonstration for robot 

mimicking can be defined with option to scale agitation in any of the axes in World 3D space as: 

𝑆 = [

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

] (5.20) 

For the robot to mimic agitations learned from participants’ demonstration, the goal is to match 

the relative position and orientation of the Bottle to the World with the relative position and 

orientation of the 𝑇𝐶𝑃 to the World, after (if required) scaling and reflection applied: 

𝑇𝑊
𝑇𝐶𝑃 = 𝑀𝑟𝑒𝑓𝑙𝑒𝑐𝑡,𝑋𝑍

𝑊𝑜𝑟𝑙𝑑 ⋅ 𝑇𝑊
𝐵 ⋅ 𝑆 ⋅ (𝑀𝑟𝑒𝑓𝑙𝑒𝑐𝑡,𝑋𝑍

𝑊𝑜𝑟𝑙𝑑 )
−1

 (5.21) 

Expanding this using the full transformation matrices will result in: 

𝑇𝑊
𝑅 ⋅ 𝑇𝑅

𝑊𝑂𝑏𝑗
⋅ 𝑇𝑊𝑂𝑏𝑗

𝐸𝐸 ⋅ 𝑇𝐸𝐸
𝑇𝐶𝑃 = 𝑀𝑟𝑒𝑓𝑙𝑒𝑐𝑡,𝑋𝑍

𝑊𝑜𝑟𝑙𝑑 ⋅ 𝑇𝑊
𝐶 ⋅ 𝑇𝐶

𝑇𝑖 ⋅ 𝑇𝑇𝑖

𝐵 ⋅ 𝑆 ⋅ (𝑀𝑟𝑒𝑓𝑙𝑒𝑐𝑡,𝑋𝑍
𝑊𝑜𝑟𝑙𝑑 )

−1
 (5.22) 

In case more than one random tag is identified, the estimation of the bottle position based on 

each tag is averaged among the tags. Therefore, the transformation Matrix for the bottle in human 

hand will be: 

𝑇𝑊
𝐵 =

1

𝑛
∑ 𝑇𝑊

𝐶

𝑛

𝑖=1

⋅ 𝑇𝐶
𝑇𝑖 ⋅ 𝑇𝑇𝑖

𝐵  (5.23) 
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where n is the number of visible tags. 

Inputting this to equation for transformations on the robot side, and considering the reflection 

and scaling (if required), the equation will be: 

𝑇𝑊
𝑇𝐶𝑃 = 𝑀𝑟𝑒𝑓𝑙𝑒𝑐𝑡,𝑋𝑍

𝑊𝑜𝑟𝑙𝑑 ⋅ (
1

𝑛
∑ 𝑇𝑊

𝐶

𝑛

𝑖=1

⋅ 𝑇𝐶
𝑇𝑖 ⋅ 𝑇𝑇𝑖

𝐵 ) ⋅ 𝑆 ⋅ (𝑀𝑟𝑒𝑓𝑙𝑒𝑐𝑡,𝑋𝑍
𝑊𝑜𝑟𝑙𝑑 )

−1
 (5.24) 

Therefore, if there are more than one tag visible, the expanded equation will be: 

𝑇𝑊
𝑅 ⋅ 𝑇𝑅

𝑊𝑂𝑏𝑗
⋅ 𝑇𝑊𝑂𝑏𝑗

𝐸𝐸 ⋅ 𝑇𝐸𝐸
𝑇𝐶𝑃

= 𝑀𝑟𝑒𝑓𝑙𝑒𝑐𝑡,𝑋𝑍
𝑊𝑜𝑟𝑙𝑑 ⋅ (

1

𝑛
∑ 𝑇𝑊

𝐶

𝑛

𝑖=1

⋅ 𝑇𝐶
𝑇𝑖 ⋅ 𝑇𝑇𝑖

𝐵 ) ⋅ 𝑆 ⋅ (𝑀𝑟𝑒𝑓𝑙𝑒𝑐𝑡,𝑋𝑍
𝑊𝑜𝑟𝑙𝑑 )

−1
 

(5.25) 

Defining the 𝑊𝑜𝑏𝑗 coordinate system and calculating the inverse kinematics in this system is 

a cleaner approach in programming the robot as any future changes in robot arm configuration will 

be as simple as changing the position and orientation of this coordinate system. This enables the robot 

to perform the learned trajectory starting from any desirable point in its workspace (as long as the 

entire trajectory falls within robot workspace). To make the calculations straightforward, defining the 

𝑊𝑜𝑏𝑗 relative to 𝑇𝐶𝑃 coordinate system was done in a way to resemble the relative orientation of the 

Bottle to Camera coordinate system. To implement the motions on YuMi robot, its native software 

(RobotStudio) was used to ensure all the safety features of the robot controller remain available. The 

robot native language is RAPID (ABB, 2024). To map the learned agitations to the robot space, all 

the points of the representative agitations (i.e., the learned points) were inputted into RAPID as 

“robtarget” datatype which is a common way to define points for the YuMi robot that also includes 

orientation of the robot end effector at that point as well as the preferred robot configuration to access 

the point. Python was used to generate robtarget points (the format required for RAPID) from the 

learned points. 
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As agitation is relatively a high frequency movement for the robot capability, the robot 

movements were implemented in joint space which needs command MoveAbsJ() in RAPID. There 

are also some other syntaxes for controlling robot arm including linear (MoveL()) or curved (MoveJ()) 

paths, but these syntaxes are performed slower as they need more calculations on the robot controller. 

Also, to get the full advantage of high-speed performance using the MoveAbsJ(), the robot position 

in joint space was already calculated and stored to be ready for use without spending more time for 

calculating the inverse kinematics during performing the agitations. For this, the inverse kinematics 

embedded inside the CalcJointT() in RAPID was used. In case there are several solutions for the 

inverse kinematics, the preferred robot configurations must be input. An identical preferred 

configuration was used in all points which was also the same as the old agitations (i.e., before update; 

the same agitations used in Chapter 3 and 4) so that the arm was in the same configuration of the past 

and therefore there was no need to modify the positions of objects already made on the table (bottle, 

IF can, etc.) for safety and preventing possible collisions. 

5.3.2. Evaluation of robotic agitation performance 

Although it may be possible to access the joint states of the actual YuMi robot in RobotStudio, only 

the robot position in the simulation environment was used for the evaluation of the learning method 

for the following reasons. First, there was an access error for monitoring the live motor states perhaps 

due to organisation limited level of access to the robot controller or network firewall rules. Second, 

as will be discussed in results section, the motor torque was insufficient to perform the high frequency 

acceleration change of the learned agitations. Consequently, as expected, the agitations for the robot 

needed to be scaled up to be adapted to the robot capabilities and make a similar agitation power as 

the learned agitations. This needed trial and error in the simulation environment to obtain the closest 

agitation power to that of the learned agitation the robot can perform. Consequently, for validation 

purposes, we relied solely on the simulation environment of the robot, which is an official digital 

replica of the robot that utilises the same controller software as the real robot. The controller version 
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of the robot was identical to that of the simulation environment. Therefore, the simulation 

environment was used to obtain the path of robot end effector to be compared with the learned paths. 

By extracting the trajectory of the robot end effector from the simulations in different scaled 

trajectories, the applied power to the bottle was calculated and compared with the power that would 

be applied if the robot could perform the original learned agitation trajectory. 

5.3.2.1. Rehydration power calculations 

Rehydration power, either from the learned trajectories or from the trajectories generated in the 

simulation software (and exported as trajectories in an Excel file), was calculated by finding the 

instantaneous speed and acceleration at each timestamp, using the following equations. 

𝑣(𝑡) = √𝑣𝑥(𝑡)2 + 𝑣𝑦(𝑡)2 + 𝑣𝑧(𝑡)2 (5.26) 

𝑎𝑥(𝑡) =
𝑑𝑣𝑥(𝑡)

𝑑𝑡
,  𝑎𝑦(𝑡) =

𝑑𝑣𝑦(𝑡)

𝑑𝑡
,  𝑎𝑧(𝑡) =

𝑑𝑣𝑧(𝑡)

𝑑𝑡
 (5.27) 

𝑎(𝑡) = √𝑎𝑥(𝑡)2 + 𝑎𝑦(𝑡)2 + 𝑎𝑧(𝑡)2 (5.28) 

And instantaneous power being transferred to or from the bottle is determined using the scalar 

magnitudes of speed and acceleration as: 

𝑃(𝑡) = 𝑚 ⋅ 𝑣(𝑡) ⋅ 𝑎(𝑡) (5.29) 

Therefore, the average power over the time T is calculated as: 

𝑃̅ =
1

𝑇
∫ 𝑃(𝑡)

𝑇

0

 𝑑𝑡 (5.30) 

=
1

𝑇
∫ 𝑚

𝑇

0

⋅ 𝑣(𝑡) ⋅ 𝑎(𝑡) 𝑑𝑡 (5.31) 

 As a result, in the current problem that contains discrete (digitalised) measurements, the 

average power transferred to or from the bottle can be calculated as: 
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𝑃̅ ≈
1

𝑁𝑝
∑ 𝑃(𝑡𝑖)

𝑁

𝑖=1

=
1

𝑁𝑝
∑ 𝑚

𝑁

𝑖=1

⋅ 𝑣(𝑡𝑖) ⋅ 𝑎(𝑡𝑖) (5.32) 

Where 𝑁𝑝 is the number of datapoints during the agitation for which we calculate the average 

power. 

In the above formulations, the bottle and the liquid together are studied as a system. The 

average amplitude of the agitations was calculated as: 

𝐴𝑎𝑣𝑔 =  
1

𝑁ℎ
∑ √𝑥𝑖

2 + 𝑦𝑖
2 + 𝑧𝑖

2

𝑁

𝑖=1

 (5.33) 

where 𝑁ℎ is the number of half agitation cycles (from peak to trough and vice versa). Variables 

𝑥, 𝑦, and 𝑧 are the distance bottle travelled in the three axes in space, and the peak for 𝑥, 𝑦, and 𝑧 do 

not necessarily happen at the same time. 

5.4. Assessment of rehydration attributes 

The last part of this chapter evaluated whether the learned robotic agitations from human 

demonstrations resulted in different level of rehydration attributes compared to the agitations used in 

Chapters 3 and 4. The rehydration attributes estimated by the same computer vision algorithms 

developed in Chapter 3. Also, the percentage of dissolved solids was measured using a SmartTrac™ 

(CEM Corporation, NC, USA) as another supportive method (in addition to sediment level) for 

evaluating significance of powder solubility as a result of the updated agitations. The powders used 

in this chapter were P11 to P15, and each was rehydrated in duplicate using both agitation styles. 

5.5. Results and discussion 

5.5.1. Characterisation of human agitation behaviours 

A few of the participants were observed to change the regime of agitation in the middle of their 

demonstration (e.g., changing the bottle orientation from vertical to horizontal and vice versa during 
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shake, or changing the swirling direction). However, they did not change the hand they were using 

for demonstration. This observation was the unique challenge for the robot learning from 

demonstrations in the present study. As explained in the methodology section, the learning algorithm 

was designed to handle variations of this nature. 

5.5.1.1. Agitation amplitude patterns 

The agitation amplitude in swirl style was significantly (p < 0.001) lower than the shake style, with 

average of 66.6 mm and 99.2 mm for swirl and shake respectively. 

 

Figure 5-5 Individual boxplot of agitation amplitudes demonstrated by participants 
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Figure 5-6 Overall boxplot of agitation amplitudes demonstrated by participants 

5.5.1.2. Agitation frequency patterns 

Interestingly, there was no significant difference (p = 0.28) between agitation frequency in swirl and 

shake styles, with average of 3.66 Hz and 3.77 Hz for swirl and shake respectively. As expected (given 

the significantly different agitation amplitudes), the amount of power transferred during swirl 

agitation was significantly lower than during shake agitation (p < 0.001), with an average of 1.31 W 

for swirl and 2.98 W for shake. 
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Figure 5-7 Individual boxplot of agitation frequencies demonstrated by participants 

 

Figure 5-8 Overall boxplot of agitation frequencies demonstrated by participants 
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5.5.1.3. Inter-participant variability analysis 

Another interesting observation was that both in swirl and shake, the higher the amplitude of an 

agitation, the lower the frequency of agitation. This relationship had correlations (p < 0.001) of 0.8 

for swirl and 0.86 for shake agitations (Figure 5-9). Additionally, it was observed that the agitation 

performed by various individuals can differ significantly. For instance, there was a significant 

difference between participants two and nine in the amplitude and frequency of their agitations, both 

for swirl (p < 0.001 and p < 0.003, respectively) and shake (p < 0.001 and p < 0.001, respectively). 

 

Figure 5-9 Relationship between frequency and amplitude of all swirl and shake agitation demonstrations 

The inverse relationship between amplitude and frequency could be because simultaneously 

increasing the frequency and amplitude of agitations requires an increase in both speed and 

acceleration of the bottle, which demands more power from participants’ muscles. Studying the 

limitations of applying more power is outside the scope of this thesis, as it would result in a deviation 

from the natural way a participant agitates the bottle.  

5.5.2. Outcome of the learned cycles 

The graphs of the six learned signals for swirl agitation are illustrated in Figure 5-10. 



158 

 

Figure 5-10 The six components of all swirl agitation cycles (transparent black) and the learned components (solid red) 

As expected, all six learned velocity signals for swirl agitation are complete cycles that end where 

they start. After the integration of the learned signals from the velocities, the bottle position was 

obtained as shown in Figure 5-11. According to the figure, the trajectory points of one swirl agitation 

cycle end at the starting point and the transition from the last trajectory point to the starting point (i.e., 

one agitation cycle to the next when the robot repeats them) is also smooth. This is in accordance 

with the analysis from Equations (5.11) to (5.15) and the smooth complete velocity cycles illustrated 
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in Figure 5-10. As a result, the obtained trajectory points satisfy all three requirements for smooth 

swirl agitation over any desired time  

 

Figure 5-11 A representative swirl agitation cycle based on all demonstrations. The orientation of human demonstrator(s) is 

illustrated relative to the 3D bottle orientation. 

Regarding the shake agitation, the graphs of the six learned velocity signals are shown in Figure 5-12. 

In the same way, the learned signals end at the same point at which they were started, and they are 

smooth complete cycles. A notable difference is the vertical linear velocity (i.e., 𝑣𝑧), which has larger 

absolute peak and trough values than swirl agitation (Figure 5-10). 
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Figure 5-12 The six components of all shake agitation cycles (transparent black) and the learned components (solid red) 

After the integration of the learned signals from the velocities, the bottle trajectory for the shake 

agitation was obtained according to Figure 5-13. Again, it is noteworthy that the learned trajectory 

cycle for shake is a complete and smooth cycle that ends at its starting point as expected. This figure 

also illustrates the learned change in the orientation of the bottle during the shaking process. In an 

interesting observation, the vertical axis of the bottle aligns more closely to the trajectory path when 

the bottle is moving down (i.e., towards the ground) than when it is moving up (i.e., against the 

ground). This may be due to the anatomy of the human wrist or to the fact that gravity contributes to 
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the downward movement of the bottle, which helps humans achieve a straight bottle path more 

quickly.   

 

Figure 5-13 A representative shake agitation cycle based on all demonstrations. The orientation of human demonstrator(s) is 

illustrated relative to the 3D bottle orientation. 

Another interesting observation is that the shake agitation follows a narrow, twisted figure-eight shape 

in 3D space. This might be due to the anatomy of the human arm and the fact that the bottle needs to 

return to its starting point before beginning the next agitation cycle in a smooth, feasible manner for 

human performance. While it is also possible that this observation could be influenced by larger and 

slower side-to-side movements that occur during natural human motion, this seems less likely given 

that such movements would need to follow a consistent rhythmic pattern to create artifacts in the FFT 

analysis, and such patterns were not consistently observed across participants. However, these 
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observations require further investigation by monitoring the exact position of arm joints involved, 

which is outside the scope of the current thesis. 

5.5.2.1. Dominant motion features in the two learned agitation cycles 

Learning from demonstration technique resulted in a single agitation cycle for each of the 

demonstrated agitations (the learned trajectories and bottle orientations were already presented in 

Figure 5-11 and Figure 5-13). It is a contribution of the present study that a single swirl or shake 

agitation cycle was obtained despite the variety of human demonstrations and the fact that there were 

no restrictions imposed on how participants would like to swirl or shake the bottle. These cycles are 

a novelty of the present study for obtaining a single swirl or shake agitation cycle despite the large 

diversity of demonstrations and the fact that the provided SOP did not restrict participants. The 

dominant participants’ shake and swirl agitation behaviours are represented by these two cycles. In 

this section, the dominant features (i.e., total bottle displacement, speed, acceleration, and agitation 

power and cumulative energy) of agitation motions in swirl and shake styles are compared. As 

explained in methodology, now the mass of the bottle can be applied to the learned kinematics of the 

bottle to find bottle dynamics and transferred power. 

The average of applied power during the learned swirl agitation was 1.34 W with 0.32 J 

cumulative energy transfer in an agitation cycle: 
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Figure 5-14 Analysing the learned cycle for swirl agitation. Based on bottle displacement (top), instantaneous speed and 

acceleration are calculated. The instantaneous power is calculated by multiplying the bottle speed, acceleration, and mass. Finally, 

cumulative transferred energy is obtained from instantaneous power. Note: power fluctuates around 1.3 W, and the cumulative energy 

is not linear even though it appears to be linear. 
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For shake, the average instantaneous power was 2.24 W with a 0.53 J cumulative energy transfer in 

an agitation cycle: 

 

Figure 5-15 Analysing the learned cycle for shake agitation. Based on bottle displacement (top), instantaneous speed and 

acceleration are calculated. The instantaneous power is calculated by multiplying the bottle speed, acceleration, and mass. Finally, 

cumulative transferred energy is obtained from instantaneous power. Note: the cumulative energy is not linear. 
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According to the Figure 5-14 and Figure 5-15, during an agitation cycle for shake agitation there are 

larger power changes with clear rhythmic behaviour that maximises two times during forward and 

two times during backward motion. In each course of the motion, the first maximum power is for 

increasing the bottle speed and the second one is for stopping it until the bottle reaches the end of the 

course (a half agitation cycle). For swirl however the power is more uniform and oscillates around its 

average power as the bottle speed in this agitation does not get close to zero. Therefore, although the 

energy transfer in swirl has smaller values than shake, it is more uniform. Also, even though the speed 

and acceleration in shake motion come close to zero in a rhythmic manner, the maximum values still 

compensate the overall power with a higher average compared to swirl. It remains an open question 

whether high peak powers or high average powers are responsible for better powder rehydration. 

As expected from energy formulation in the methodology section, the maximum energy 

transfer happens at the peak of instantaneous power. According to Figure 5-14 and Figure 5-15, for 

both agitations, power has four local maxima in an agitation cycle. This indicates that the transferred 

energy in human agitations, as expected, is not steady. This behaviour is particularly visible in the 

shake agitation cycle. The peak of energy transfer is at the times when both bottle speed and 

acceleration are high simultaneously, but not at their peak, because the acceleration is at its lowest 

point when the speed is at its peak (for example in shake, these points are not at the beginning or 

middle of the agitation cycle where the speed and acceleration are zero respectively). However, this 

observation cannot provide any information about the state of the fluid inside the bottle. This study 

only aimed to characterise the bottle agitation movement, and any information about the fluid state 

(e.g., laminar or turbulent, or the amount of shear forces) at the points with maximum power are out 

of the scope of this study (and can be complex considering the increase in fluid viscosity during 

powder rehydration). 



166 

5.5.3. Validating the programmed “human-like” agitations 

Although there was no requirement for participants to be right or left-handed (and they were not asked 

about it), they all demonstrated the agitations with their right hand. Therefore, as the robot was 

expected to agitate the bottle with its left hand, all the demonstrations were reflected for the robotic 

demonstration, according to Equations (5.16) and (5.25). After programming the robot, it was 

discovered that, although the robot was able to follow and repeat the learned swirl and shake agitation 

cycles smoothly, the motors could not produce enough torque to match the agility of human bottle 

agitations. However, given there was a significant inverse correlation between participants’ agitation 

amplitude and frequency (Figure 5-9), and given the learning approach was flexible to scaling the 

outcome of the learned trajectories, the amplitudes of the learned agitation cycles were increased on 

the same observed trend as human demonstrations while maintaining the robot’s maximum agitation 

frequency (Figure 5-16). Scaling up the learned amplitudes was intended to, as a response to robot 

limitations, simulate people who agitate the bottle with a greater amplitude and smaller frequency. 

Scaling up the amplitudes was carried out until the robot could produce the same agitation energy as 

the originally learned agitation cycles (i.e., the same agitation energy as if the robot had been able to 

perform the original agitation cycles without scaling). This procedure required a trial-and-error 

approach in the robot’s native programming software (mentioned in section 5.3.1). For the robot used 

in this study, the agitation energy equal to the learned energies (Figure 5-14 and Figure 5-15) occurred 

approximately at 155 mm for the shake style and 150 mm for the swirl style. 
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Figure 5-16 The frequency and amplitude of participants’ agitations (circles) in comparison to the amplitudes achieved by robot at its 

maximum speed (blue squares) illustrating the robot limit in performing the learned trajectories. The red stars indicate the learned 

agitations from human demonstrations. Data is shown for both swirl (left) and shake (right) agitation styles. 

After scaling up the trajectory amplitudes, for shake agitation, there was also a robot controller 

processing limitation regarding handling the three requirements of agility, accuracy, and safety in the 

trajectory points in real-time. This was expected due to the higher amplitude/speed in shake agitation 

compared to swirl agitation. Thus, to reduce the load on the controller, the number of trajectory points 

for shake agitation had to be reduced to two trajectory points which had the greatest distance from 

each other. This was accomplished at the cost of the robot not reproducing every detail of the learned 

shake style. For the swirl style, the exact trajectory was maintained after scaling up as a reduction in 

the number of trajectory points was not required. 

5.5.4. Evaluating the impact of “human-like” robotic agitations on rehydration 

attributes 

It was observed that for all rehydration attributes, there was a significant difference (p < 0.001) before 

and after updating the robotic movements to human-like agitations. As the updated motions were 

more energetic than the old motions, and in accordance with the findings in Chapters 3 and 4, for both 
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agitation styles, the average of CV estimates increased for foam height and decreased for sediment 

height (Table 5-2). 

Table 5-2 CV shows an increase in foam height estimates and decrease in sediment height estimates for both swirl and shake 

agitation styles after the movements are updated to “human-like” agitations 

 

CV foam height estimates 

(mm) 

CV sediment height estimates 

(mm) 

swirl shake swirl shake 

With human-like agitations 4.1 5.4 2.9 2.3 

Without human-like agitations 3.8 4.9 5.4 2.6 

Also, the percentage of dissolved solids was significantly higher for shake agitation compared to swirl 

agitation (p < 0.05). The reason for these observations is that, according to section 5.5.3, the learned 

agitations are more energetic than those manually programmed into the robot previously. The more 

energetic agitation is usually expected to dissolve more powder, produce less sediment, and create 

more foam by introducing more air to the more energetically agitated mixture. 

5.6. Conclusion 

Although agitation is an important parameter in food/dairy powder rehydration, it is not well studied 

how agitation motions applied by end-user of powders can impact rehydration quality. This is perhaps 

due to challenges associated with studying fluid dynamics, particularly in complex states of agitations 

which can also vary widely in different humans and even different countries. This study, first, aimed 

to provide insights into human bottle agitation movements. It quantified some dynamical parameters 

in bottle agitation behaviour of ten human participants for the first time in the literature. It was found 

that the energy applied during swirl agitation is significantly lower than the shake agitation. Also, 

participants’ swirl agitations had a significantly smaller amplitude than shake agitations, although 

frequencies of agitations were not significantly different. In both agitation styles, frequency and 
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amplitude of participants’ agitations were negatively correlated (i.e. higher frequency resulted in 

lower amplitude). The second aim of the present study was to evaluate the possibility of obtaining 

dominant agitation behaviours out of all demonstrations and reproduce the dominant shake and swirl 

agitations with a robot. The method for finding the dominant agitation was based on the state-of-the-

art techniques used in robot learning from demonstrations. Our developed LfD technique was able to 

extract a single representative agitation cycle out of all demonstrations, which was a requirement for 

our platform aiming to evaluate rehydration quality. Also, our learning approach guaranteed 

flexibility for multiplying the learned trajectories to any desired scale (reachable for the robot) to 

study the impact of changes in frequency or amplitude of agitations on rehydration attributes. 

Although the robot in our study was not as agile as human demonstrators, the flexibility of the learning 

approach made it possible to increase the amplitude of the learned agitations for the robot to obtain 

the same transferred power to the bottle as the demonstrated agitations. The updated robotic agitations 

both for swirl and shake resulted in significantly more foam and less sediment compared to the old 

robotic agitations before they were updated to be “human-like”. This was expected because the 

previous robotic agitations were less powerful than the updated “human-like” agitations, and also, in 

the old movements, only a limited number of motors were being utilised on the robot arm, which can 

result in a different fluid dynamic inside the bottle. 

Future studies may increase the number of participants and diversify their demographics. It will 

be particularly beneficial to study the effects of agitations in different regions or countries on 

rehydration quality. The robotic limitations in the present study may be addressed by using a different 

robot, which is beyond the scope of this thesis. Nevertheless, since human bottle agitations were 

examined for the first time in this study, future research is expected to have a clearer picture of 

whether a selected robot can produce such human-like movements. Also, based on the results of this 

study, with the availability of a robot generating editable human-like agitations, further research may 

benefit from studying the impact of specific parameters of human-like bottle agitations (e.g., 
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amplitude or frequency) on the rehydration quality of IF or other food/dairy powders. Here, only 

visible rehydration attributes were used to assess the impact of agitation on rehydration quality. 

However, in-bottle sensors (e.g., conductivity sensors) may be used to obtain real-time information 

regarding agitation’s impact on rehydration. Finally, it is expected that the methodology developed 

for generating identical human-like agitations may also apply to other types of food or pharmaceutical 

powders that are intended for rehydration by end-users. 
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6Chapter 6: Concluding remarks 

6.1. Introduction 

The present thesis examined potential improvements in automating IF rehydration quality tests, both 

in terms of sample preparation and rehydration quality measurement. Several issues were found in 

literature regarding commonly used rehydration tests. The tests are mostly subjective, time-

consuming, and prone to error (Selomulya et al., 2023). Additionally, there are sometimes different 

tests for measuring the same rehydration attribute, some developed in-house and potentially 

confidential (Pisecky, 2012), thus not useful to the research community. These make the findings 

dependent on the method and the analyst who performed the test. Consequently, it can be difficult to 

gain a deeper understanding of how powder physicochemical properties impacts its rehydration. 

Several studies have attempted to improve the tests using alternative methods. For example, 

using laser diffraction and measuring particle size, Boiarkina et al. (2017) investigated powder 

dispersibility in a less time-consuming method. Another study by Lloyd et al. (2019) demonstrated 

further improvements in test discretisation by counting slowly dissolving particles using computer 

vision rather than manually comparing them to five reference images. Ideally, the improved tests are 

expected to provide insights into the optimal parameters for powder rehydration and powder 

production (e.g., drying parameters), saving energy, time, and material resources (Munir et al., 2017). 

The work described in this thesis aimed to address the issues identified by means of an 

automated platform that integrated a cobot and computer vision system. The cobot was used to scoop 

and rehydrate the mixtures consistently in addition to rotating and presenting the bottle to the 

computer vision system. The computer vision system made estimates of visible rehydration properties 

(foam, sediment, and white particles) objectively. Finally, the automated platform also replicated key 

aspects of the end-user rehydration practice (i.e., the use of a baby bottle and performing the agitation 

styles that are usually instructed on the packaging of powders). 
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6.2. Summary of contributions 

This thesis made the following seven contributions to the automation and understanding of powder 

rehydration. 

1. In Chapter 3, an automated rehydration quality measurement platform was developed by 

integrating a cobot with a CV system (Mozafari et al., 2024). The author is not aware of any 

comparable system being described in literature. A primary objective of the platform was to 

replicate the end-user rehydration procedure as closely as possible, for example rehydrating 

the powders and assessing the quality of rehydrated powders in a commercially available baby 

bottle. The platform ratings of three key rehydration properties (foam height, sediment height, 

and number of white particles) were compared to human participants in an evaluation 

experiment. The results indicated ratings that were comparable to those of human participants 

except for sediment height using shake agitation. Considering some commonly used tests are 

based on human visual inspection, this was a significant result. Also, this is the first report to 

use CV to measure these attributes in IF rehydration. A key benefit of the automated platform 

is that it could be used in different laboratories around the world and provide reproducible 

results that are not impacted by the subjectivities that may be introduced by geographical 

agitation style preferences or the variations in quality interpretation or energetic rehydration 

of the analyst who performs the test. Additionally, the platform may be used to ensure that 

powder does not lose its rehydration quality during storage or transportation from the 

production plant to the repackaging facility, such as in another country. More standardised 

and objective methods using the integration of emerging technologies can contribute to 

gaining a better understanding of rehydration  (Crowley et al., 2016). Moreover, obtaining 

objective measurements can offer a better comparison of research findings and quicker 

convergence to common understandings and shared opinions about rehydration. 
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2. In Chapter 3, “digitally generated” reference images for evaluating the numbers of white 

particles were developed (Mozafari et al., 2024, 2022). As part of the evaluation of the 

platform based on participants’ ratings, it was necessary to design experiments that allowed 

humans to rate the images captured by the automated platform. The subjectivity issue 

associated with traditional reference images (e.g., the scores assigned to the reference images 

are not systematically explained, and the reference images may not reflect all observations) 

has already been raised in the literature (Lloyd et al., 2019). The present study addressed two 

of these limitations by: (i) developing the reference images in a systematic manner and (ii) 

based on observations from several extreme samples (that contained a large number of 

undissolved particles). The developed reference images or the method used for their 

systematic development can be used by the research community going forward.  

3. As explained in Chapter 4, the modification of “sludge” (Pisecky, 2012) and “slowly 

dissolving particles” (Lloyd et al., 2019) tests to improve their repeatability for the 

benchmarking purposes was the third contribution of this PhD. For example, regarding the 

modified sludge test, it was observed that it is not only more robust for benchmarking 

purposes, but it also exhibits higher correlations with other commonly used laboratory tests, 

such as the percentage of targeted but undissolved solids. Thus, the modified tests could 

provide the research community with more valuable insight into rehydration.  

4. In Chapter 4 an important relationship between powder flowability and sediment formation 

(which is possibly related to clump formation and clump sedimentation) was reported for the 

first time in the literature. Our findings suggest that rehydration stages can be more complex 

than previously thought, having five stages rather than four. As a result, good flowability is 

not only important in the production line but also important in rehydration when powder 

particles flow on top of each other quickly to reach the water surface faster as the first step in 

rehydration (followed by wetting, and the additional rehydration stages). 
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5. As dispersibility is an important rehydration quality test that requires a complicated and time-

consuming procedure, alternative methods for predicting it are of interest (Boiarkina et al., 

2017). In Chapter 5, a random forest model was developed to more easily and quickly predict 

the results of the dispersibility test based on rehydration property ratings from the automated 

platform. Although predicting dispersibility using some measurements from the mixture is 

already reported (Boiarkina et al., 2017; Nugroho et al., 2021), this was the first time in the 

literature that a CV method applied to the prepared mixture (not powder (Ding et al., 2020b)) 

was used to predict dispersibility. Also, this was the first time in the literature a computer 

vision approach was used to monitor the sediment height change over time in the intact bottle 

in which the sample was prepared. The monitoring of sediment height change was necessary 

to predict dispersibility. 

6. In Chapter 5, the natural bottle agitations of ten human participants using two agitation styles 

mentioned by WHO (2007), swirl and shake, were characterised. To the best of the author’s 

knowledge, this was the first time in the literature that such a characterisation has been 

reported. For this purpose, we designed a custom CV and IMU-based approach to detect 

agitation movement in a reliable and economically feasible manner. It was shown that the 

natural swirl agitation performed by humans was significantly less energetic than the shake 

agitation. As a result, the amount of agitation power applied by humans depends on the 

agitation style. It suggests that end-user instructions regarding bottle agitation should be 

improved. Also, it was observed that, interestingly, the frequencies of swirl and shake 

agitations were not significantly different, but the amplitudes were significantly different, and 

the amplitude of agitations is negatively correlated with their frequency  

7. In Chapter 5, the seventh contribution of this thesis was the development of a statistical 

learning method that was used to obtain the dominant swirl or shake agitation trajectory as a 

single closed path that was smoothly repeatable for the robot. It was a unique challenge for 
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the present study compared with previous studies to learn such a cycle without constraining 

the natural agitation behaviour of participants (despite the observed significant variations in 

demonstrations). It was also shown that it is possible to use a 7 DOF robotic arm to mimic the 

learned trajectory. The flexibility of the learning method allowed scaling up the learned 

trajectory so that the robot could apply a similar power to that of humans during the bottle 

agitation despite having to use a lower agitation frequency due to robot limitations. The 

learned swirl agitation was less energetic than the learned shake agitation, resulting in a 

greater sediment height and a smaller foam height on average. Additionally, both in the case 

of swirl and shake agitation styles, the updated robotic agitations (i.e., the learned “human-

like” agitations) were significantly more energetic than the previous robotic agitations which 

attempted to subjectively and approximately replicate human agitations. As expected, both in 

the case of swirl and shake agitations, updating the robotic agitations resulted in higher foam 

height and lower sediment height than had been measured in Chapter 3. 

6.3. Potential research impact 

There is considerable similarity between food powders and powders in other industries (Fitzpatrick 

and Ahrné, 2005). In fact, some of the methods used in the current study were inspired by studies on 

food and pharmaceutical powders. Therefore, although this study focused on infant formula powder, 

its findings may be of relevance for future studies in a wider range of powder rehydration applications, 

such as high protein dairy powders (Ji et al., 2016b). The current platform can not only rehydrate 

infant formula powder and estimate the rehydration quality in a reproducible manner (using a robot 

and a CV system) but can also rehydrate the samples in a “human-like” manner, using swirl and shake 

agitations learned from humans. This enables the platform to be used as an objective method for 

evaluating the rehydration process while using a rehydration energy and style that is similar to end 

users of the powder. The same methods used for characterising the baby bottle agitations could be 
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applied to other applications, such as agitation of protein shake bottles or rehydration of 

pharmaceutical powders, with appropriate modifications. 

6.4. Opportunities for future work 

During the work described in this thesis, several opportunities for additional work were identified. 

Although these were outside the scope of the present work, they are collected here in the form of 

potential limitations and research questions that deserve further attention. 

1. The computer vision approach used in this work could not detect features that are invisible to 

cameras (and perhaps the human eye). One example of this is the exact sediment topology 

inside the bottle, rather than sediment height detection just from the bottle sidewall. 

Additionally, the type of camera used, an RGB camera, was limited to registering features that 

manifest in the visible range of the electromagnetic spectrum. Hyperspectral, thermal, or UV 

cameras may be able to provide richer information for all three rehydration attributes 

automatically rated in this study, particularly for distinguishing white particles from small 

droplets and foam pieces. Furthermore, additional research could be conducted with an RGB 

camera on the impact of variations in the colour of the light source (wavelength), use of a 

movable light source rather than a fixed source, and the number and variety of imaging 

viewpoints around the bottle used to generate ratings. 

2. Computer vision algorithms developed in the present study were based on classical 

techniques, which may prove beneficial in certain tasks, such as in detecting nuanced sediment 

changes in the present study. However, a method based on ML may be more flexible when 

dealing with unseen data, such as detecting particles that are slightly larger than expected. An 

ML based method may also provide greater tolerance of lighting and colour variations. 

However, more images may be needed to develop an ML algorithm. In this stage of the study, 

the collected images may provide sufficient data for developing a more flexible method, 

particularly for white particle detection. The development of a vision approach based on ML 
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and the comparison of its results with those of the present study would be an interesting 

research direction.  

3. It was outside the scope of this thesis to determine if the water preparation used within the 

experiments introduced any variability into the results. Precautions were taken (as far as 

possible) to ensure that identical water was provided to the automated platform during our 

work (e.g., with the analyst’s eye level aligned with the marking on the bottle for accurate 

volume measurement and starting the robotic experiments within thirty seconds of dispensing 

the water to minimise the possibility of a drop in water temperature). Nevertheless, the process 

of filling the bottle with water is still a manual task, which introduces some possibility for 

variability and error, and this could be investigated. If it were a problem, it may be possible to 

achieve more consistent results by integrating an automated water dispenser with the 

automated platform that can heat the water and control the temperature and volume of water 

dispensed. 

4. The robot platform used in this work was a bimanual cobot with a relatively low maximum 

payload and some limits on the maximum movement speeds. The robot specifications affect 

the cost of the robot (e.g., bimanual robots are often more expensive than single arm robots), 

and the ability of the robot to fully mimic human movements (characterised in Chapter 5). In 

the context of the work in this thesis the feasibility of using a single arm robot was briefly 

examined (but not reported). While the bimanual robot used in this study used the right arm 

for scooping the powder and the left arm for levelling the powder in the scoop and agitating 

the bottle, a single arm robot could perform the actions if appropriate jigs were provided to 

hold the bottle in place. A single arm solution could be a valuable step towards developing a 

more cost-effective platform at a higher technology readiness level. 

5. The impact of the scooping method on the dissolved solids has been studied before 

(Rosenkranz et al., 2024), but there is a need for deeper studies (Mozafari et al., 2024), for 
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example, to consider the impact of scoop shape (not just volume) on the amount of powder 

the scoop can fit, considering the high compressibility of dairy powders. Even the size of the 

holes on the scoop may be responsible for consistency in the weight of powder in scoops, as 

they should let the trapped air out of the scoop to fully fill it with powder. Such studies would 

assist IF processors in improving scoop shapes for optimal rehydration. Also, further research 

may be conducted to determine how humans scoop powder naturally, using a method similar 

to that used for characterising human bottle agitation in the present study. To gain insight into 

the natural force applied during scooping (which, again, may affect the amount of powder 

scooped as dairy powders are highly compressible). 

6. Further investigation of the formation of clumps using the automated platform (e.g., identical 

powder scooping and bottle agitations) could provide a deeper insight into the observed 

behaviour in sediment height change. Although some observed relationships between 

sedimentation, flowability, and dispersibility were discussed in Chapter 4, a more in-depth 

(e.g., quantified) examination of clumps (e.g., based on their weight and volume) might 

provide more insights into the impact of flowability on clump formation and clump 

sedimentation. 

7. Quantification of scorched particles may provide some insight into the possible impact of 

particle size and agglomeration on the number and size distribution of scorched particles. A 

relationship may also exist between the number and distribution of scorched particles and the 

number of white particles (possibly damaged particles) examined in this study. Using a high-

resolution camera (such as that used in the present study), colour segmentation, and connected 

component analysis, it is possible to identify scorched particles on a white colour filter disc 

(called sediment disc). As a result, their size distribution can be determined. During the current 

study, a preliminary analysis of this approach was conducted, which allowed us to both count 

the particles and estimate their size. However, it was not pursued further, and its results were 
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not presented since the integration of the computer vision approach to scorched particles test, 

which involves filtration and high-speed agitation, was outside the scope of this thesis. 

8. It has already been reported that powder particle size is related to dispersibility (Boiarkina et 

al., 2017). During the experiments conducted in Chapter 4, there were also some initial 

observations that a larger powder particle size, particularly D10, may reflect the presence of 

more white particles that may be damaged during agglomeration and fines return (which can 

increase D10). For further evaluations of this observation, improvements will need to be made 

both in terms of the CV algorithm and the traditional test as a reference. As mentioned in the 

previous paragraph, this observation may also be related to the size distribution of scorched 

particles. 

9. Although the number of participants in human bottle agitation experiments was sufficient to 

examine whether there were significant differences in swirl and shake agitations, a larger 

number of participants could provide additional insights, such as understanding agitation 

behaviour across different cultures or geographical regions. 

10. Further research could examine the impact of human-like agitation parameters (such as 

amplitude and frequency) on powder rehydration. Although the present study developed a 

platform capable of replicating human-like agitations with the ability to scale the agitation 

parameters, the relationship between specific agitation parameters and rehydration outcomes 

remains to be determined. For example, it was observed in Chapter 5 that the average and 

peak power of shake agitation are higher than those of swirl agitation. Further research could 

be conducted to determine whether peak power or average power is more crucial to the 

complete rehydration of powder. It may be possible to establish optimal practices for powder 

rehydration by understanding how agitation parameters affect rehydration. 
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6.5. Conclusion 

The work in this thesis represents a first attempt to address two major issues in powder rehydration 

quality measurements: subjectivity and lack of representative sample preparation. To address these 

challenges, an automated rehydration quality measurement approach that mimics the bottle agitation 

behaviour of end-users was developed in the thesis. It was shown that the automated platform can 

serve as an example of the potential of emerging technologies and interdisciplinary research in 

gaining novel insights into long-standing research questions about powder rehydration. The insights 

gained regarding the complex process of powder rehydration as well as end-users’ powder rehydration 

behaviour and replication of this behaviour can lead to consistent and improved product quality and 

process efficiency for IF powders. Ultimately, these advances can pave the way to the innovation in 

powder technology as a whole, and the development of powders with enhanced performance in other 

industries such as dairy, food, and pharmaceutical powders. 
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Appendices 

Appendix 1 Standard Operating Procedure for participants to rate cobot-taken images 
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Appendix 2 Standard Operating Procedure for participants to agitate the bottle 
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