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T2(t) Temperature measured by thermocouple 2 (8C)
Tk
1 Temperature measured by thermocouple 1 at kth sample instant (8C)

Tk
2 Temperature measured by thermocouple 2 at kth sample instant (8C)

Tk
g True gas temperature at kth sample instant (8C)

Ts Sampling period (s)
�1 Time constant of thermocouple 1 (s)
�2 Time constant of thermocouple 2 (s)
� Ratio of time constants, � ¼ �1=�2, �5 1 by definition
�1 Variance of noise on measurements from thermocouple 1
�2 Variance of noise on measurements from thermocouple 2
� Ratio of the noise variances, �¼ �1/�2
a1, b1 Parameters of the discrete-time model for thermocouple 1
a2, b2 Parameters of the discrete-time model for thermocouple 2
� Ratio of b2 and b1, �¼ b2/b1
�T k

i Change in measured temperature from the (k�1)th to the kth sample instant for
the ith thermocouple, ie, �Tk

i ¼ Tk
i � Tk

j (8C)
�T k

ij Difference in temperature measured by the ith and jth (8C) thermocouple at the
kth sample instant, ie, �Tk

ij ¼ Tk
i � Tk

j

xk, yk, h Generic regression, output vector and parameter vector in yk ¼ xTkh
X, y Matrix form of equation y¼Xh
TTP Two-thermocouple probe
LS Least squares
TLS Total least squares
GTLS Generalized total least squares
SVD Singular value decomposition

1. Introduction

Temperature measurement can be performed by exploiting a variety of temperature-
related material properties such as variation in resistivity (resistance temperature
detectors and thermistors), variation in volume (mercury thermometer), differential
expansion (bimetal strip), dissimilar metal junction potential (thermocouple) and
radiated heat/light (optical pyrometry). Of these approaches the thermocouple is the
most widely used in commercial applications because of its robustness and low cost of
manufacture. The main drawback is that thermal inertia thermocouple response times
are relatively slow. Consequently, they are only appropriate in applications where the
temperature changes relatively slowly (51Hz).

The frequency range of thermocouples can be extended by as much as 10 to 100
times by using software-based compensation schemes. Most compensation schemes
rely on having a dynamic model of the sensor whose parameters are determined
through an initial calibration procedure (sensor characterization). In the case of
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thermocouples in a gas or liquid flow, a first-order model with time constant, �, is
generally assumed (Kee et al., 1999).

�
dTm

dt
þ Tm ¼ Tg ð1Þ

A common a priori calibration technique is to heat the thermocouple by passing a
current through the thermocouple wire and then allow it to cool down in the
environment in which it is being used. The time constant, �, can then be estimated
from the resulting cooling curve. The difficulty with this approach is that � is strongly
dependent on the physical and mechanical properties of the thermocouple and its
environment, and therefore a priori characterization is only applicable when these
conditions are invariant during sensor operation. In many situations, such as the
measurement of temperature in a varying flow environment, this is not the case. Here
the time constant of a thermocouple is related to its diameter according to the equation

� ¼ kd 2�mv�m ð2Þ

where k and m are constants (approximately) arising from thermodynamic
considerations, d is the diameter of the thermocouple wire and v is the velocity of
the gas/liquid medium in which it is placed.

Using a probe consisting of two thermocouples (Figure 1) with different time
constants, it is possible to identify both time constants in situ and subsequently
reconstruct the input temperature. The underlying assumption is that due to their
close proximity, both thermocouples are subject to the same environmental conditions,
hence the same temperature Tg(t) and medium velocity v. Under these circumstances,
it follows from Equation (2) that the ratio of the time constants, given by

� ¼
�1
�2

¼
kd 2�m

1 v�m

kd 2�m
2 v�m

¼
d1
d2

� �2�m

, �5 1 ð3Þ

1
1 + sτ1
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Figure 1 TTP-based in situ thermocouple characterization
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is a function of thermocouple geometry only, and therefore approximately invariant.
Here subscripts 1 and 2 are used to distinguish between the two thermocouples and
the corresponding thermocouple models are given by

�1
dT1

dt
þ T1ðtÞ ¼ TgðtÞ ð4Þ

�2
dT2

dt
þ T2ðtÞ ¼ TgðtÞ ð5Þ

respectively. Assuming knowledge of �, in situ instantaneous estimates of the time
constants are given by

�2ðtÞ ¼
T1ðtÞ � T2ðtÞ

_T2ðtÞ � � _T1ðtÞ
, �1ðtÞ ¼ ��2ðtÞ ð6Þ

Indeed Tg(t) can be estimated directly without having to determine �1 and �2 explicitly
using

TgðtÞ ¼
T1ðtÞ _T2ðtÞ � � _T1ðtÞT2ðtÞ

_T2ðtÞ � � _T1ðtÞ
ð7Þ

It is believed that this approach was first suggested by Pfreim (1936) and subsequently
rediscovered by Strahle and Muthukrishman (1976) and Cambray (1986). Strahle and
Muthukrishman (1976) developed a procedure for estimating the time constants in situ
by analysing the cross and auto power spectra of the probe signals, while Cambray
(1986) exploited the invariance of the time constant ratio, �, to reduce the problem to
one of a priori ratio estimation. In particular, Cambray noted that since

�
_T1ðtÞ

_T2ðtÞ
¼

TgðtÞ � T1ðtÞ

TgðtÞ � T2ðtÞ
ð8Þ

� can be computed as the ratio of the slopes of the temperature responses T1(t) and
T2(t) at crossover points, ie, when T1(t)¼T2(t)

� ¼
_T2ðtÞ

_T1ðtÞ
ð9Þ

In recent years, researchers at the NASA–Lewis Research Centre for jet engine studies
in the USA, the Combustion Laboratory at the Nagoya Institute of Technology in
Japan and the Internal Combustion Engine Research Group at Queen’s University
Belfast in Northern Ireland have developed these concepts further to produce more
robust two-thermocouple probe (TTP) in situ characterization and signal reconstruc-
tion algorithms. Tagawa and Ohta (1997), Tagawa et al. (1998), Kee et al. (1999), and
O’Reilly et al. (2001) developed time-domain methods, while Forney and Fralick
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(1994, 1995a, 1995b) and Tagawa et al. (2003) transformed the problem to the frequency

domain (using the FFT), thereby avoiding signal derivative estimation.
While these TTP methods are a major step forward they have a number of

weaknesses:

� Algorithm performance deteriorates rapidly (and in some instances catastrophically) as
the signal-to-noise ratio increases. Although the frequency domain methods are better
able to deal with noise, their performance also deteriorates rapidly. Furthermore, they
are severely restricted with respect to the class of signals to which they apply.

� None of the existing methods has been developed within a statistical framework and, as
such, are not guaranteed to produce unbiased estimates in the presence of measurement
noise.

� With the exception of Tagawa and Ohta (1997) and Tagawa et al. (1998, 2003), the
TTP schemes rely on the invariant time constant ratio (�) property identified by
Cambray (1986) and thus depend on accurate a priori estimation of this parameter. This
drawback limits the applicability of these methods.

� Many of the methods suffer from numerical issues such as singularities and sensitivity
to measurement offsets.

Recently the authors proposed a novel discrete-time formulation of the TTP sensor

characterization problem that does not require the invariant � assumption and allows
the problem to be cast as a linear input–output system identification problem whose

parameters are algebraically related to the desired time constants [subject to a zero-

order-hold (ZOH) approximation, Hung et al., 2002, 2003]. The significance of this new
approach is that it allows the introduction of a statistical framework and the

application of a vast body of theory and techniques from the field of linear system
identification (Ljung, 1999). For example, this initial work has highlighted that the

estimation task arising in TTP characterization falls into the Error-In-Variable (EIV)

class of system identification problems and consequently conventional Least Squares

(LS) parameter estimation methods will produce biased estimates. In Hung et al.
(2003), Total Least Squares (TLS) is suggested as a way of obtaining unbiased
estimates when the noise on the thermocouple measurements is white and of equal

variance.
In this paper, the discrete-time approach to TTP characterization is developed in

full. Various linear and non-linear formulations are introduced and compared in terms

of their computational complexity, robustness and statistical properties. With the aid

of an analysis of the statistical properties of these formulations, LS optimization

procedures, which yield unbiased parameter estimates, are identified.
Two simulated temperature variation test cases will be used throughout the

paper to demonstrate the properties of the various algorithms developed. The first is a

a two-tone sinusoidal signal defined as

TgðtÞ ¼ 50þ 15 sinð20�tÞ þ 5 sin 34�tþ
�

3

� �
ð10Þ
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while the second is a broadband signal consisting of band-limited white noise

(0–1000Hz) and sinusoidal tones at 15, 20, 25, 30 and 35Hz. Both signals have a strong

sinusoidal component reflecting the cyclic nature of temperature variation observed in

many practical applications (eg, engine exhaust gas temperature measurement, Kee

et al., 1999). The latter includes band-limited noise to represent random fluctuations

under turbulent flow conditions. Samples of these signals and their frequency spectra
are depicted in Figures 2 and 3 along with the responses obtained from 0.02-s and 0.1-s

time constant thermocouples.
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Figure 2 Two-tone simulated gas test signal: (a) sample of signals
Tg, T1 and T2; (b) frequency spectrum of Tg
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Figure 3 Multi-tone random simulated gas test signal: (a) sample
of signals Tg, T1 and T2; (b) frequency spectrum of Tg

178 Characterization algorithms for two-thermocouple probes



The simulated signals are sampled at 500Hz and 1 kHz, respectively, yielding 1000
sample data sets. Zero mean normally distributed random numbers are added to the
samples to simulate white measurement noise. The noise level defined as

Noise level ¼
stdðnoiseÞ

stdðsignalÞ
� 100 ð11Þ

is used to quantify the amount of noise introduced. Here, std is the standard deviation
operator.

The remainder of the paper is structured as follows. Section 2 introduces some
preliminaries on LS optimization focusing on the problem of biased estimation when
noise is present on regressor variables. The TTP discrete-time characterization
approach is then outlined in Section 3 and the novel characterization formulations
presented in Section 4. Monte-Carlo simulation results comparing the different
methods are given in Section 5 and finally conclusions are presented in Section 6.

2. Least squares (LS) preliminaries

2.1 Singular value decomposition (SVD)

The SVD of a n�m matrix A is defined as

A ¼ UDVT ¼
Xp
i¼1

�iuiv
T
i ð12Þ

where

U ¼ ½u1 . . .un�, V ¼ ½v1 . . .vm�, D ¼
S 0
0 0

� �
ð13Þ

S ¼ diagð�1, . . . , �pÞ, p ¼ minfm, ng and �1 � �2 � � � � � �p � 0 ð14Þ

U and V are orthogonal matrices (ie, UTU¼ In, V
TV¼ Im) referred to as the left and

right singular matrices, respectively, and D is the matrix of singular values. Scalar �i is
the ith singular value of A and vectors ui and vi are the corresponding left and right
singular vectors. If matrix A is of rank r and r5p, then it follows that only the first
r singular values of A are non-zero and the SVD expansion can be written as

A ¼ UrDrV
T
r ¼

Xr

i¼1

�iuiv
T
i ð15Þ

where

Ur ¼ ½u1 . . .ur�, Vr ¼ ½v1 . . . vr�, Dr ¼ diagð�1, . . . , �rÞ ð16Þ
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Equation (15), also known as the dyadic decomposition of matrix A, is the
expansion of A as an ordered sum of rank one matrices, �iuiv

T
i . Significantly, this

decomposition is such that the closest rank q matrix, A�
q to A is given by

A�
q ¼

Xq
i¼1

�iuiv
T
i ð17Þ

where closeness is measured in terms of the Frobenius norm of the difference between
Aq to A, ie, kA�AqkF . By noting that ATA¼V D

T
DVT and AAT

¼UD
T
DUT it can be

seen that the singular values are the square roots of the eigenvalues of ATA and AAT,
and vi and ui are the corresponding eigenvectors.

2.2 Least Squares (LS)

In the conventional LS formulation, we have a linear model of the form

yk ¼ xTkh ð18Þ

where xk is the p� 1 regression vector, yk is a scalar output and h is the p� 1 vector of
unknown parameters. For a set of n samples, the regression matrix and corresponding
output vector can be defined as

X ¼ ½x1 . . . xn�
T and y ¼ ½y1 . . . yn�

T
ð19Þ

leading to the matrix equation

y ¼ Xh ð20Þ

Here X is an n� p matrix and y is an n� 1 vector. The LS estimate of h is then given by

hLS ¼ ½XTX��1XTy ¼ Xyy ð21Þ

Because of numerical issues, the pseudo-inverse (Xy) is seldom computed directly.
Instead robust procedures such as SVD are employed. Thus, given the SVD of X,

X ¼ Ur�rV
T
r , r ¼ rankðXÞ ð22Þ

as defined in (15), the pseudo-inverse can be computed as

Xy ¼ Vr�
�1
r UT

r ð23Þ

2.3 Statistical properties of the LS estimate

To evaluate the statistical properties of the LS solution in the presence of noise, it is
useful to express the solution in terms of the sample covariance matrix Rn,

Rn ¼
XTX

n
ð24Þ
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and the sample cross-correlation vector, pn,

pn ¼
XTy

n
ð25Þ

By definition, as the number of data points, n, tends to infinity we obtain the true
correlation matrix and cross-correlation vector, ie,

R ¼ lim
n!1

Rn ¼ E ½xkx
T
k � ð26Þ

p ¼ lim
n!1

pn ¼ E ½ ykx
T
k � ð27Þ

Using these definitions, the LS estimate can now be expressed as:

hLS ¼ R�1
n pn ð28Þ

If the regressors ðxk ¼ ½x1k . . . x
p
k�
T
Þ and output (yk) measurements are subject to zero

mean random noise, ie,

~xi ¼ xik þ nik and ~yk ¼ yk þ wk, nk ¼ ½n1k . . . n
p
k�
T

ð29Þ

where

E ½nik� ¼ 0, E ½ðnikÞ
2
� ¼ vi, E ½wk� ¼ 0, E ½w2

k� ¼ vy ð30Þ

then analysis of the LS estimate shows that its expected value is given by

E½~hLS� ¼ ½Rþ CXX�
�1
ðpþ cXyÞ ð31Þ

where

E ½nkn
T
k � ¼ CXX, E ½wknk� ¼ cXy and E ½w2

k� ¼ cyy ¼ vy ð32Þ

Thus in this general case, the LS estimate is strongly biased. If consistent estimates of
CXX and cXy can be obtained a priori, unbiased and consistent parameter estimates can
be computed as

~hCLS
�
¼ ½ ~Rn � ~CXX�

�1
ð ~pn � ~cXyÞ ð33Þ

This is referred to as Compensated Least Squares (CLS; Stoica and Soderstrom, 1982).
Note ‘�’ is used to indicate that the values in question are computed from the noisy
data ~X and ~y.

If the noise sequences on each regressor and output are independent zero mean
sequences with common variance v then

CXX ! vIp, cXy ! 0 ð34Þ
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and

E ½~hLS� ¼ ½Rþ vIp�
�1p ð35Þ

Even in this situation the LS estimate is asymptotically biased:

hbias ¼ E ½~hLS� � hLS ¼ ½Rþ vIp�
�1p� R�1p ¼ �v½Rþ vIp�

�1hLS ð36Þ

In fact the only situation where LS produces unbiased estimates is when zero mean
noise is present on the output only and the regressors are noise free. However, an
alternative approach known as TLS can be used to obtain unbiased estimate of hwhen
noise is present on the regressors.

2.4 Total Least Squares (TLS)

TLS seeks to achieve the best fit to the linear model (18) when noise is present on both
X and y. Thus if (18) represents the true model, then the matrix equation formed by the
noisy data ( ~X and ~y):

~Xh 	 ~y ð37Þ

will be incompatible. The LS solution can be interpreted as finding the smallest
perturbation of ~y, �y, that makes the equation compatible. Thus the LS solution
corresponds to

�yLS ¼ argfmin
�y

jj�yjj2g subject to the constraint ~Xh ¼ ~y��y ð38Þ

Any solution of ~X~hLS ¼ ~y��yLS is then an LS estimate of the parameters.
The objective of TLS on the other hand is to find the minimal perturbation of both ~X

and ~y to make the equation compatible. Thus the TLS problem can be formulated as
follows: find �X and �y such that

�XTLS, �yTLS ¼ arg min
�X,�y

jj½�X �y�jjF

� �
ð39Þ

subject to the constraint

½ ~X��X�h ¼ ~y��y ð40Þ

Any h satisfying

½ ~X��XTLS�h ¼ ~y��yTLS ð41Þ

is a TLS parameter estimate.
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The TLS estimate can be computed using SVD as follows. Rewriting (37) as

½ ~X ~y �
h
�1

� �
	 0 ð42Þ

and assuming rank ð½ ~X ~y �Þ ¼ pþ 1, then finding the TLS solution becomes a problem
of determining the minimum change to augmented matrix ½ ~X ~y � so that its rank is
reduced to p making (42) compatible. The required perturbation can be determined by
performing a SVD on ½ ~X ~y �. Thus

½ ~X ~y � ¼ Upþ1Dpþ1V
T
pþ1 ¼

Xpþ1

i¼1

�iuiv
T
i ð43Þ

The minimal TLS correction is

½�XTLS �yTLS� ¼ �pþ1upþ1v
T
pþ1 ð44Þ

and the corresponding rank p perturbed matrix is

½XTLS yTLS� ¼
Xp
i¼1

�iuiv
T
i ð45Þ

Now the matrix equation

½XTLS yTLS�
h
�1

� �
¼ 0 ð46Þ

is compatible and any h satisfying it is a TLS solution. However, since vpþ1 is the only
vector in the null space of [XTLS yTLS], the TLS solution is unique and is given by vpþ1

scaled so that its last component is �1. Thus

hTLS
�1

� �
¼ �

1

vpþ1, pþ1

� �
vpþ1 ð47Þ

By exploiting the fact that only the minor singular vector is needed for determining
the TLS solution, an efficient partial SVD algorithm can be used instead of full SVD
(Van Huffel and Vandewalle, 1991).

The significance of the TLS solution is that when the perturbations [�X �y] from
the true data [X y], ie,

½ ~X ~y� ¼ ½X y� þ ½�X �y� ð48Þ

are due to independent zero mean noise sequences with common variance, then TLS
produces unbiased and consistent estimates of hLS (Van Huffel and Vandewalle, 1991).
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It should be noted that the covariance matrix of the TLS estimate is always larger
that the covariance matrix of the LS estimate and therefore for low noise levels LS may
give better overall performance (ie, a lower mean squared estimation). The covariance
of TLS estimates is approximately given by

E ½ðh TLS � hÞ2� 	 ð1þ hThÞ
vR�1

n
ð49Þ

where as the covariance for the LS estimate is given by

E ½ðhLS � hÞ2� ¼
vR�1

n
ð50Þ

2.5 Generalized total least squares (GTLS)

Unfortunately the TLS solution only gives unbiased estimates when the noise on [X y]
has equal variance and is mutually independent, ie,

E �X �y
	 
T

�X �y
	 
h i

¼ C ¼
CXX cXy
cTXy cyy

� �
¼ vIpþ1 ð51Þ

This is quite a restrictive requirement. CLS can be used if C is known or can be
consistently estimated (Stoica and Soderstrom, 1982). Alternatively, if the structure
of C is known up to a factor of proportionality, ie, C¼ vC0, then the augmented
matrix ½ ~X ~y� can be transformed by a weighting matrix W so that the resulting noise
covariance matrix meets the unbiasedness requirement. This modified TLS algorithm
is known as GTLS and is computed as follows.

Given

~X ~y
h i h

�1

� �
	 0 ð52Þ

with noise covariance matrix C¼ vC0 where v is unknown, then an unbiased estimate
of h is obtained by applying TLS to the weighted matrix equation

~X ~y
h i

W�1 hw
�1

� �
	 0 ð53Þ

and then computing

vw ¼ W�1 hw
�1

� �
,

hGTLS

�1

� �
¼ �

vw

vwpþ1, pþ1

ð54Þ

Since

E �X �y
	 


W�1�
T �X �y
	 


W�1
	 


¼ v½W�1�
TC0W

�1
	

ð55Þ

and we require ½W�1�
TC0W

�1 ¼ Ipþ1 then C0 ¼ WTW: Therefore the required weight-
ing matrix W is the Cholesky decomposition of C0 (or the square root of C0).
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In practice, this direct approach to GTLS is not used because of potential ill-
conditioning arising from W�1. Instead the solution can be determined in a robust
fashion by taking the generalized SVD (gsvd; Van Huffel and Vandewalle, 1989) of the
matrix pair ½ ~X ~y� and W, and determining hGTLS from the generalized singular vector
associated with the smallest generalized singular value, ie,

gsvd ð½ ~X ~y �,WÞ !

½ ~X ~y � ¼ UDXyG
�1

W ¼ VDWG�1

D
2 ¼ D

T
XyDXy½D

T
WDW�

�1

8><
>: ð56Þ

where DW 2 <ðpþ1Þ�ðpþ1Þ and DXy 2 <ðpþ1Þ�ðpþ1Þ are diagonal matrices with singular
values on their diagonals and D contains the generalized singular values. The
corresponding generalized singular vectors are contained in the matrix
G ¼ ½g1 . . . gpþ1�: Therefore

hGTLS ¼ �
gpþ1

gpþ1, pþ1
ð57Þ

where gpþ1 is the vector associated with the smallest generalized singular value.
The corresponding variance on the GTLS parameter estimates is approximately
given by

E ½ðhGTLS � hÞ2� 	 hT � 1
	 


C
h
�1

� �
vR�1

n
ð58Þ

3. The difference equation TTP technique

3.1 Basic principles

For a given sample rate, Ts, the thermocouples constituting a TTP can be modelled as
first-order difference equations of the form

T k
1 ¼ a1T

k�1
1 þ b1T

k�1
g ð59Þ

T k
2 ¼ a2T

k�1
2 þ b2T

k�1
g ð60Þ

These can be related to the continuous time equations describing the TTP (4 and 5
above) under the assumption of ZOH on the input signal (Tg), ie,

a1 ¼ exp �
Ts

�i

� �
and bi ¼ 1� ai, i ¼ 1, 2 ð61Þ
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While ZOH is clearly not true for a continuously changing gas temperature, it
becomes a valid approximation provided the system is sufficiently over-sampled, ie,
fs 44 2fgðmaxÞ where fgðmaxÞ is the bandwidth of Tg and fs is the sampling frequency.
Thus, if the parameters of the discrete model equations can be determined, the
thermocouple time constants can then be estimated as

�i ¼ �
Ts

lnðaiÞ
¼ �

Ts

lnð1� biÞ
, i ¼ 1, 2 ð62Þ

Unknown signal T k�1
g can be eliminated from the simultaneous equations formed

by (59) and (60) to give the difference equation TTP model as

1

b1
T k

1 �
a1
b1

T k�1
1 ¼

1

b2
T k

2 �
a2
b2

T k�1
2 ð63Þ

This can be rewritten with T2 considered as the response variable and T1 as the input
variable, ie,

T k
2 ¼ a2T

k�1
2 þ

b2
b1

T k
1 �

b2
b1

a1T
k�1
1 ð64Þ

or

T k
2 ¼ a2T

k�1
2 þ �T k

1 � �alT
k�1
1 ð65Þ

where � ¼ b2=b1 is introduced here to simplify the expression.

3.2 Estimating the difference equation TTP model parameters

Expressing the TTP model (Equation 65) in vector form

T k
2

	 

¼ T k�1

2 T k
1 �T k�1

1

	 
 a2
�
�a1

2
4

3
5 ð66Þ

it can be seen that given n� 4 samples of T1 and T2 unknowns a2, � and h3(¼�a1) can
be uniquely determined using an appropriate LS estimation algorithm. Here,

xTk ¼ T k�1
2 T k

1 �T k�1
1

	 

, yk ¼ T k

2 and h ¼

a2
�
�3

2
4

3
5 ð67Þ

Parameter a1 can then be estimated as a1 ¼ �3=�:

3.2.1 Bias on estimates: If the measured temperatures T1 and T2 are subject to
zero-mean identically distributed white noise with variances v1 and v2, respectively,
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then the expected correlation matrix and cross-correlation vector are

E ½ ~Rn� ¼ Rþ

v2 0 0
0 v1 0
0 0 v1

2
4

3
5, E ½ ~pn� ¼ pþ

0
0
0

2
4

3
5 ð68Þ

Thus the LS estimate will be biased, but unbiased estimates can be expected with TLS
if v1¼v2 and with GTLS if the ratio of the noise variances, �¼v1/v2, is known. Note
that for this formulation the noise covariance matrix as defined in (51) is given by

C ¼ diagðv2, v1, v1, v2Þ ¼ v2diagð1,�,�, 1Þ ð69Þ

It is not possible uniquely to identify b1 and b2. Only their ratio � can be determined
unless additional information is available. In the case of unity gain thermocouples, we
have the additional constraint that in steady-state

T1 ¼ T2 ¼ Tg ð70Þ

hence from Equations (59) and (60)

b1 ¼ 1� a1, b2 ¼ 1� a2 ð71Þ

Thus, we do not have to compute b1 and b2; rather we have to solve Equation (66)
subject to the constraint that

� ¼
1� a2
1� a1

ð72Þ

When fitting data from a truly linear system to this model (ie, by estimating a2, � and
h3 and computing a1 ¼ h3=�), the constraint will implicitly be satisfied. However, in
the presence of noise or system non-linearity, the extra degree of freedom provided by
the third parameter in the effectively two-parameter model can lead to poor estimates
(over-fitting). This can be assessed by monitoring the degree of violation of
Equation (72) by the estimated parameters.

The identification task can be reduced to a two-parameter problem by substituting
Equation (72) into (66) giving

T k
2 ¼ a2T

k�1
2 þ

1� a2
1� a1

� �
T k

1 � a1
1� a2
1� a1

� �
T k�1

1 ð73Þ

This is no longer a linear in the parameter model and must be solved by non-linear
methods. This typically involves minimizing a mean squared estimation cost function
of the form

Jða1, a2Þ ¼ En T k
2 � a2T

k�1
2 �

1� a2
1� a1

� �
T k

1 þ a1
1� a2
1� a1

� �
T k�1

1

� �2
" #

ð74Þ
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where

En½xk� ¼
1

n

Xn
i¼1

xk ð75Þ

This cost function is highly non-linear with a singularity at a1¼1. While there is only a
single global minimum, minimization by iterative gradient-based methods is poorly
conditioned leading to slow convergence and numerical issues. In addition, minimi-
zation in the presence of noise is biased, but there is no systematic approach for
dealing with this in a non-linear setting. Consequently, alternative linear formulations
are needed.

4. k-formulations

4.1 Three-parameter l-formulation

In Hung et al. (2003), the authors propose a three-parameter l-formulation where
Equation (73) is written as

T k
2 ¼ l1T k�1

2 þ l2T k
1 þ l3T k�1

1 ð76Þ

which corresponds to identifying the discrete-time model given in Figure 4. Following
identification of the linear model parameters, l1, l2, l3 the desired coefficients a1 and
a2 can be determined according to

a1 ¼ �
l3
l2

, a2 ¼ l1 ð77Þ

Tg(t )

T2(t )

T1(t )1
1 + sτ1

1 + sτ2

----------------

1----------------

Ts

T1
k

T1
k

T2
k

T2
k

Ts

η2(t )

η1(t )

+

+

+

+

------------------------

τ1 = –
Ts

ln (a1)
----------------    , τ2 = –

Ts

ln (a2)
----------------   

a1 -----, a2 = l1 –=

1 + sτ2

l2 + l3z−1

1 − l1z−1

l2

l3

Figure 4 Discrete-time TTP formulation
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This formulation is essentially equivalent to that given in Equation (66) and there-
fore has similar issues. The noise covariance matrix, Cl3 is as defined in Equation (69).
However, an advantage of this parameterization is that the constraint on the extra
degree of freedom can be concisely expressed as

l1 þ l2 þ l3 ¼ 1 ð78Þ

4.2 Two-parameter l-formulations

Significantly, substitution of the constraint as defined by (78) into the identification
model in (76) reduces parameter estimation to a two-dimensional linear optimization
problem, the exact form of which depends on which of the three unknown parameters
is eliminated using Equation (78). For example, if we eliminate l3 by substituting

l3 ¼ 1� l1 � l2 ð79Þ

then (76) becomes

Tk
2 ¼ l1Tk�1

2 þ l2Tk
1 þ ð1� l1 � l2ÞTk�1

1 ð80Þ

Collecting terms yields

Tk
2 � Tk�1

1 ¼ l1ðTk�1
2 � Tk�1

1 Þ þ l2ðTk
1 � Tk�1

1 Þ ð81Þ

Tk
2 � Tk�1

1

	 

¼ Tk�1

2 � Tk�1
1 Tk

1 � Tk�1
1

	 
 l1
l2

� �
ð82Þ

4.2.1 Bias on estimates: The form of the bias in the LS solution is more complex in
this formulation because of the multiple occurrences of T1 and T2 in the regressor and
output, violating the assumptions on noise required by LS and TLS. If we assume zero
mean noise with variances v1 and v2 as before, then the resulting estimates of the
correlation matrix and cross-correlation vector are

E ½ ~Rn� ¼ Rþ
v1 þ v2 v1

v1 2v1

� �
, E ½ ~pn� ¼ pþ

v1
v1

� �
ð83Þ

and the overall noise covariance matrix as defined in (51) is given by

Cl2a ¼ v2

�þ 1 � �
� 2� �
� � �þ 1

2
4

3
5 ð84Þ
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Thus, both LS and TLS will produce biased estimates. Unbiased estimates can only be

achieved if estimates of the variances v1 and v2 are available (CLS) or their ratio � is

known (GTLS).
The other possibilities are

Tk
2 � Tk

1

	 

¼ Tk�1

2 � Tk
1 Tk�1

1 � Tk
1

	 
 l1
l3

� �
ð85Þ

and

Tk
2 � Tk�1

2

	 

¼ Tk

1 � Tk�1
2 Tk�1

1 � Tk�1
2

	 
 l2
l3

� �
ð86Þ

The corresponding noise covariance matrix in each case is

Cl2b ¼ v2

�þ 1 � �
� 2� �
� � �þ 1

2
4

3
5 ð87Þ

Cl2c ¼ v2

�þ 1 1 1
1 �þ 1 1
1 1 2

2
4

3
5 ð88Þ

Since the different formulations are related algebraically in a manner that is

independent of the measurements, eg,

l2
l3

� �
¼

0
1

� �
þ

0 1
�1 �1

� �
l1
l2

� �
ð89Þ

it follows that the statistical properties are not affected by these transformations.

Hence the bias and covariance of the time constant estimates obtained is the same for

all the two-parameter formulations. Indeed, when conventional LS is used, the

resulting bias and covariance will be identical to that obtained from minimization of

the non-linear two-parameter cost function defined by (74). Note, also that in general
the bias and variance obtained with the two-parameter formulations will be less than

those obtained with the three-parameter formulation defined in (76), since the extra

degree of freedom in this formulation will result in increased variance. Clearly, the

linear formulations are preferred to the non-linear formulation as unbiased estimates
can be obtained using GTLS. The three-parameter formulation is of value when we are

restricted to using TLS.
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4.3 Sensitivity to noise variance ratio estimate

Which of the two-parameter formulations is of most value is an open question. The
appropriate choice may depend on factors such as problem conditioning, and sensi-
tivity to the estimate of noise variance ratio, �. Interestingly, Cl2a¼Cl2b while Cl2c is
substantially different and contains fewer elements that are functions of �.
Consequently, it might be expected that the latter will be less sensitive to errors
in �. This can be quantified in terms of the Frobenius norm as follows:

jjCl2ajjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�2 þ 4�þ 2

p
ð90Þ

jjCl2cjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 þ 4�þ 12

p
ð91Þ

hence kCl2akF4kCl2ckF when �41. Measuring sensitivity as the change in Frobenius
norm due to a change in � gives

�jjCl2ajjF ¼
12�þ 2

jjCl2ajjF
�� ð92Þ

and

�jjCl2cjjF ¼
2�þ 2

jjCl2cjjF
�� ð93Þ

Defining the sensitivity in terms of percentages, we have

S �
Cl2a

¼
%�jjCl2ajjF

%��
¼

12�2 þ 2�

jjCl2ajj
2
F

¼
6�2 þ �

6�2 þ 2�þ 1
ð94Þ

and

S�
Cl2c

¼
%�jjCl2cjjF

%��
¼

2�2 þ 2�

jjCl2cjj
2
F

¼
�2 þ �

�2 þ 2�þ 6
ð95Þ

Plots of S�
Cl2a

and S�
Cl2c

as a function of � are given in Figure 5(a). The ratio of the
sensitivity functions is plotted in Figure 5(b). Clearly, Cl2a is more sensitive than Cl2c

to errors in � for all �40. The maximum difference occurs when �¼ 1 at which point
S�
Cl2a

is 3.5 times S�
Cl2c

. In relative terms Cl2a is 6 to 7 times more sensitive than Cl2a to
errors in � for �50.5.

However, this difference in sensitivity to errors in � does not translate to a
corresponding difference in sensitivity of the estimated time constants. Figure 6 shows
the sensitivity of time constant estimates to errors in � for the multi-tone random
signal benchmark. The two-parameter formulations have identical sensitivity to errors
in � and are less sensitive that the three-parameter formulation for all values of �.
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4.4 Ill-conditioning of the estimation problems

The issue of ill-conditioning also depends on the how it is measured. For conventional
LS a good indicator is the condition number of the data covariance matrix (24). When
solving the problem using GTLS, the conditioning of the augmented data matrix is
more important. Since this matrix should be rank deficient by design, the square of the
ratio of the largest to the second smallest singular value is a useful measure of
conditioning. Another important consideration for GTLS is the difference between the
two smallest singular values, as this determines how effectively the noise can be
isolated from the data. Clearly, as the SNR falls this becomes a limiting factor in
applying TLS and GTLS methods. It also has implications for algorithm convergence.
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Tables 1 and 2 show typical singular value ratios obtained with the benchmark

problems for each of the formulations and optimization methods considered when the

noise level on thermocouple 1 is 2% and 10%. The corresponding noise levels on
thermocouple 2 for each problem, assuming a noise variance ratio of �¼ 2, is as

indicated in the tables. The condition number is simply the square of the ratio of the
largest and smallest singular values and should be small (ideally 1) for a well

conditioned problem. The noise separation ratio (NSR), the ratio of the two smallest
singular values (row 1 of the tables), should be as large as possible for good

performance of TLS and GTLS methods.
As expected, the two-parameter formulations are equivalent as GTLS problems

and are better conditioned than the corresponding three-parameter formulation. As an

LS or TLS problem, the l2a formulation is the best conditioned. Thus, this may be
the best choice in situations where the more sophisticated optimization procedures

cannot be applied.
Increasing the noise level leads to improved problem conditioning but poorer noise

separation. The general trend in these parameters is illustrated in Figure 7 for the
multi-tone benchmark. As can be seen, while condition numbers are relatively

insensitive to increasing noise level, the NSR decays rapidly and is approximately

inversely proportional to noise level. This has major implications for the robustness of
TLS and GTLS at high noise levels.

Table 1 Singular value ratios for the two-tone benchmark with �¼ 2

Singular value ratio/ Noise level¼ 2%, 6%, Noise level¼10%, 30%
algorithm formulation l2a l2b l2c l3 l2a l2b l2c l3

GTLS matrix �n/�nþ1 4.8 4.8 4.8 4.8 1.3 1.3 1.3 1.3
GTLS matrix �1/�n 9.3 9.3 9.3 185.8 6.7 6.7 6.7 132.2
TLS matrix �1/�n 8.2 8.6 11.6 154.8 5.8 6.1 8.3 109.1
LS matrix �1/�n 5.9 6.2 12.1 137.1 4.1 4.4 8.4 95.1

Table 2 Singular value ratios for the multi-tone random benchmark with �¼ 2

Singular value ratio/ Noise level¼ 2%, 4% Noise level¼10%, 20%
algorithm formulation l2a l2b l2c l3 l2a l2b l2c l3

GTLS matrix �n/�nþ1 5.1 5.1 5.1 5.0 1.4 1.4 1.4 1.4
GTLS matrix �1/�n 8.3 8.3 8.3 15.0 6.0 6.0 6.0 10.8
TLS matrix �1/�n 7.4 7.6 10.3 14.7 5.4 5.5 7.5 10.5
LS matrix �1/�n 5.3 5.5 10.7 14.9 3.8 4.0 7.7 10.5
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4.5 Determining the noise variance ratio

In the preceding discussions, the only knowledge necessary for consistent unbiased
estimates of the time constants (using GTLS) was the ratio of the noise variance, �.
This is not a demanding requirement for the TTP application, where experience has
shown that probe thermocouples are subject to similar noise environments with the
result that �¼ 1 can normally be assumed. Furthermore, from the previous discussion,
it can be seen that time constant estimation is relatively insensitive to � compared with
other factors.

It is possible to estimate the correct noise variance ratio, by parameterizing the
GTLS solutions accordingly. The optimum ratio is then the one that produces the
minimal perturbation of the data ½ ~X ~y �, ie,

� ¼ arg min
�

���� �X �y
	 
GTLS

�

����
F

� �
ð96Þ

where

�X �y
	 
GTLS

�
¼ arg min

�X,�y

���� �X �y
	 


W�1
�

����
F

� �
ð97Þ

and W� ¼
ffiffiffiffiffiffi
C�

p
(ie, the Cholesky factorization of the appropriate noise covariance

matrix).
Another possibility is to estimate the noise variance directly by using two pairs of

identical thermocouples in each probe (ie, a four-thermocouple probe, two with time
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constant �1 and two with time constant �2). Since the identical thermocouples should

be producing identical outputs plus noise, the noise variance can be estimated as

vi ¼
1

2n

Xn
k¼1

Ti1ðkÞ � Ti2ðkÞ½ �
2

ð98Þ

Given estimates of both v1 and v2, we can choose to use either CLS or GTLS.

5. Results

In this section, results from Monte-Carlo simulations are presented for the TTP

measurement of the simulated two-tone and multi-tone benchmark temperature

variation signals described earlier. With the TTP time constants, �1 and �2 selected as
0.02 s and 0.1 s, respectively, and the noise variance ratio, �¼ 4, a series of 100-run

simulations were performed for noise levels ranging from 0 to 10% (with respect to

thermocouple 1) to evaluate the statistical properties of the algorithms. The root-mean

squared estimation error (RMSE), bias and variance were computed in each case and

are plotted as a function of noise level in Figure 8. In each case, the errors are
computed vectorally and expressed as a percentage of the true parameter values. The

distribution of parameter estimates and corresponding covariance ellipses (two

standard deviations) are displayed in Figure 9 for 1%, 5% and 10% noise levels. These

results confirm the theoretical predictions for each algorithm. The bias error

dominates in the LS and TLS implementations and the variance error dominates in

the GTLS implementations. As the bias is the main contributor to parameter error, it
follows that the GTLS algorithms are superior.

As the noise level is increased, GTLS methods deteriorate in performance

dramatically because of the rapidly increasing variance. In the multi-tone problem,

this deterioration occurs more rapidly with the three-parameter l-formulation than
with the two-parameter formulations, while there is little difference between the

methods in the two-tone problem. While not apparent in the two-tone example,

formulations with fewer degrees of freedom generally produce parameter estimates

with less variance. Consequently the two-parameter l formulations provide optimum

performance.
All the two-parameter l formulations (l2a, l2b and l2c) yield identical results and are

reported as l2 in Figures 8 and 9. It is also worth noting that direct iterative

optimization of the non-linear two-parameter cost function J(a1, a2) defined by (74)

generates identical parameter estimates (and statistical properties) to the two-
parameter l formulations solved using conventional LS (l2–LS).
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6. Conclusions

This paper has explored discrete-time algorithms for TTP characterization. The direct
translation from continuous time to discrete time yields a two-parameter non-linear

model. However, by appropriate choice of variables, it is possible to reformulate the

model as a two-parameter or three-parameter linear optimization problem. This has

the advantage of allowing the application of techniques such as TLS and GTLS, which

yield unbiased estimates. Several two-parameter formulations have been developed

but they all yield equivalent performance, since they are related by invariant
transformations of the model. Initial investigation of numerical properties would

suggest that they are also equivalent in this respect.
The performance and statistical properties of all the methods presented have been

verified through Monte-Carlo tests on two simulated benchmark problems. From
these results, it can be deduced that bias is a major source of error in TTP characteri-

zation, and consequently methods that can exploit GTLS optimization, or equivalent,

to obtain unbiased estimates are of great value. Unfortunately, the variance of

estimates obtained with GTLS increases rapidly with noise level limiting the direct

application to relative low noise levels. Successful application to higher noise levels is

possible in situations where ensemble averaging can be employed.
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