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Abstract. This paper presents an interdisciplinary scoping review of literature on trust and
trust repair in human-robot interaction (HRI), focusing on social and service robots. The primary
aim is to provide a comprehensive analysis of trust in social robotics and the methodologies for
measuring trust within HRI. Distinct from prior reviews, this work delves into both trust models
and trust measurement methods highlighting the complex nature of trust. This study assesses trust
repair strategies, including promises and explanations, in different contexts. It also investigates
scenarios of compromised trust and explores both communicative and proactive repair ap-
proaches. Finally, the paper presents nine key design principles such as safety, transparency,
apology mechanism etc., derived from the reviewed literature, as guidelines for the development
of social and service robots. These principles provide researchers with a path for creating robots
that can build and maintain trust, particularly when they are making mistakes and need to correct
them.

Keywords: Trust in HRI, Trust models, Trust measurement, Trust repair, Trust princi-
ples.

1 Introduction

Trust is a complex and multidimensional concept that can be defined as the willingness
to accept vulnerability or risk based on expectations of the intentions or behaviors of
another human or non-human entity [1]. Trust is essential for the successful adoption
and integration of social and service robots into various domains of society, such as
education, healthcare, and entertainment. Social robots are autonomous robots that in-
teract and communicate with humans or other autonomous physical agents by following
social behaviors and rules attached to their role [2]. Service robots, as defined by the
International Organization for Standardization, are robots that perform useful tasks for
humans or equipment excluding industrial automation applications [3]. Trust affects
how humans perceive, interact with, and rely on these robots, and influences their ac-
ceptance and satisfaction with these technologies. Trust also forms a vital element for
the effective functioning of these systems, as it enables coordination, cooperation, and
collaboration between humans and robots [4].

In the study of trust within robotics, it is important to differentiate between the user's
state of trust and a robot's trustworthiness. Trustworthiness is an inherent characteristic



of the robot, defined by its ability to consistently demonstrate reliability, skillfulness,
and the capacity to fulfill user expectations across different situations [5]. For example,
a robot's trustworthiness is assessed through its steady performance, interaction preci-
sion, and commitment to safety standards [6]. In social contexts, this also includes the
robot's display of social signals and conduct that resonate with human norms and ethics.
Furthermore, trust and trustworthiness in robots are fundamental elements to their ac-
ceptance and integration within society. These qualities influence user perceptions and
their readiness to interact with robots. This is especially critical in situations where tasks
involve some level of risk or require significant reliance on the robot’s behavior [7].

However, a user’s state of trust is not a static or fixed attribute, but rather a dynamic
and context-dependent process that can change over time and across situations [8].
Therefore, it is important to understand how trust can be built, measured, and repaired
in HRI, especially when trust violations occur due to robot errors, failures, or misbe-
haviors. Trust violations can have negative consequences for the human-robot relation-
ship, such as reduced trust, satisfaction, performance, willingness to interact, and some-
times complete rejection of a technology. The concept of “trust repair” in robotics lit-
erature was first discussed in 2015 [9]. Trust repair in social robotics refers to the
process of recovering or improving the level of trust that a human has in a social robot,
after the trust has been violated [10].

While there is extensive literature on human-to-human trust and trust in HRI (see
surveys and reviews [7, 11-15]), this paper presents an interdisciplinary scoping review
of the literature on trust in robots (social and service) and trust repair in HRI. Unlike
previous reviews, this study reviews the trust models, the methods for measuring trust,
and the strategies for repairing trust. Trust repair is an important aspect of human-robot
collaboration, as robots are prone to errors and failures in real-world scenarios. There-
fore, this paper reviews the effectiveness of different trust repair techniques, such as
promises and explanations, and how they vary depending on the context of the interac-
tion. In addition to our main objectives, we also identify the essential principles that are
important for building trust. These principles are derived from our review of the litera-
ture and can be helpful when designing social robots.

This paper has the following structure: In Section 2, we describe the criteria for
choosing the papers and the method we used to conduct the review. In Section 3, we
identify the techniques to build and assess trust and also address the topic of trust failure
and trust repair. Section 4 presents the design guidelines that one should follow to en-
sure the trustworthiness of a social robot. We present our conclusions in the final sec-
tion.

2 Methodology

We conducted a comprehensive interdisciplinary scoping review of published research
within the domains of trust focusing on trust in social and service robotics. This estab-
lished methodology was employed to identify key factors and characteristics within our
field of interest. Additionally, the methodology helps to find research gaps and to map
the general research patterns in the field [16, 17]. This is especially helpful in a



developing field such as ours, where it is important to build a basic understanding of
the topic by bringing together different areas of research.
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Fig. 1. The process of literature selection for analysis, from the initial identification to the final
selection, with all reasons for exclusion.

A comprehensive literature search was conducted on the Web of Science, encompass-
ing conference and peer-reviewed journal articles. The search, carried out in February
2024 for past 5 years and used the search terms “Trust in robotics”, “Trust” AND “Ro-
botics”, “Trust measurement in robotics”, “Trust measurement” AND “Robotics”
“Trust repair in robotics”, and “Trust repair” AND “Robotics” to get initial papers. The
search revealed 551 articles on robotics and trust repair. From the initial 551 articles on
trust in robotics and repair, a review was conducted on 46 pertinent studies from fields
including robotics, computer science, psychology, and sociology, all centered on trust
in robots from the user’s perspective. The process of exclusion is illustrated in Fig. 1.
Articles were excluded based on the following criteria:
e Do the articles discuss trust, specifically trust measurement methodolo-
gies, or trust-building models in the context of social robotics?
e Does the research address trust repair and its effects on users? This in-
formation is crucial for developing effective design guidelines. It enables



us to identify the most effective trust repair strategies for specific situa-
tions and integrate them into our design guidelines.

e Only articles on social or service robots were included. All other areas
of robotics were excluded (e.g., surgical, industrial, rescue, autonomous
vehicles, drones, etc.).

e Each paper must be in English.

3 Trust

Research on trust spans diverse fields including social sciences, psychology, and engi-
neering, with the aim of understanding human-to-human and human-to-machine rela-
tionships. In psychology and sociology, the focus of trust research is more on human
aspects like gender, age, race, education, expectancy, self-efficacy, and competence. In
contrast, for computer science and engineering systems to be trusted, they must be
demonstrated safe, reliable, and secure against unauthorized access. Intelligent robots
may need to show more indicators of safe behavior around humans [18, 19]. This sec-
tion will provide a comprehensive scoping review of trust in robotics. This review of
trust has been divided into three main parts such as trust building, trust measurement,
and trust repair. Additionally, we will explore relevant literature connected to the do-
mains of social science and psychology considering robotics applications.

3.1  Trust Building

In the context of HRI, trust influences the way humans and robots engage and work
together. However, establishing trust between users and robots involves more than en-
suring the robot is technically reliable or trustworthy. The process of building trust can
be divided into two concepts: initial engagement or pre-established trust, and dynamic
trust [20, 21]. Pre-established trust is developed prior to direct interaction with the ro-
bot. This trust is established based on information that the user has learned or gathered
about the system supporting the robot. It implies that users can form initial opinions
and expectations about the robot's reliability, capabilities, or other aspects before en-
gaging with it. This prior knowledge or system-related information serves as the foun-
dation for the trust that users develop in anticipation of their interaction with the robot.
On the contrary, dynamic trust is based on continuous feedback during real time HRI.
It is shaped by past experiences and adjusts in response to various decisions and events
occurring throughout the interaction with the robot [21, 22].

A robot may be designed to explain its actions in various scenarios and the impact
of such explanations on trust in human-robot interactions is substantial. They are in-
strumental in restoring trust when a robot’s actions do not meet human expectations,
and the nature of the explanation can affect the extent of trust recovery [23]. The context
and the type of explanation offered can significantly impact the level of trust generated.
For instance, [24] found when opening a bottle that joint visualizations emerge as the
most effective form of explanation for enhancing human trust, while text summaries
were least effective in that context. Robots usually depend on established rules or



machine learning techniques to identify errors in their functioning. They might also
employ sensors and feedback mechanisms to track their performance and pinpoint is-
sues. Nonetheless, robots may not always detect errors on their own and might require
human input or additional information to do so. In HRIs, explanations become neces-
sary when the actions of the robot lack clarity or have a considerable effect on the user.
The amount of explanation required can differ such as in certain comprehensive tech-
nical details can help, while in other cases robots may need to provide straightforward
and high-level information. The objective is to provide sufficient information to build
trust and comprehension without causing frustration [25]. The appearance of a robot,
its movements during interaction (including actions like touching the user [26]), ex-
plainability [19], transparency [27], reliability [28], safety [29], accountability [30], the
distinction between interactive and non-interactive robots [31, 32], and factors like gen-
der and humor [33] all influence user trust during HRI.

Researchers also investigated numerous models for measuring trust, which we will
discuss in the next section. Before addressing trust measurement approaches, it is im-
portant to understand the difference between trust building and trust measurement mod-
els.[21][6]. Trust building models aim to create and enhance trust, while trust measure-
ment models aim to assess and quantify trust. Trust building models focus on designing
interactions and behaviors that create trust, whereas trust measurement models focus
on evaluating trust through various metrics and observations.

3.2 Trust Measurement

The study of trust in robotics raises several important questions. It is challenging to
incorporate the abstract concept of trust into the design process, especially for research-
ers who are not experienced in qualitative and quantitative (e.g. surveys) research meth-
ods. Additionally, trust is a complex concept with multiple dimensions, wherein the
numbers of both trustors (users) and trustees (robots) can vary [18]. To measure and
understand trust, researchers often collect subjective data from human participants who
interact with robots using various methods, such as interviews, questionnaires, or ob-
servations. Additionally, they also utilize methods like Markov processes, probabilistic
models, and machine learning prediction models to forecast trust [5]. This data col-
lected from subjective approach is then used to build trust models that can capture and
predict the level of trust in different situations and contexts.

Trust measurement and modelling has been approached in a variety of ways. A per-
sonalized trust prediction model based on Bayesian inference was proposed by [14].
This trust model allows for continuous updating of trust levels as new information be-
comes available. In this model, each human participant starts with an initial level of
trust in the robot, which can be influenced by prior experiences or preconceived no-
tions. As humans interact with the robot, they observe its performance (including task
accuracy, reliability, and efficiency). Using Bayesian inference, the model updates the
trust level based on the observed performance. The model is personalized for each user,
meaning it considers individual differences in how trust is developed and adjusted. This
personalization is achieved by learning the parameters specific to each user’s trust dy-
namics. The multidimensional measure of trust (MDMT) uses a different approach



[31]. It is an intuitive measure of trust that assesses different dimensions of trust in
agents in human-robot and human-human trust situations. It includes subscales for re-
liability, competence, ethics, transparency, and benevolence, organized into broader
factors of performance and moral trust. The input size for the MDMT is 20 items. Each
item is rated on an 8-point discrete scale, ranging from 0 (Not at all) to 7 (Very), and
the output is a set of scores across above mentioned dimensions.

In subjective methods, certain questionnaire-based approaches are tied to well es-
tablished models, whereas others lack this association. For example, in [34] researchers
used a questionnaire to assess the level of trust participants placed in a robot during a
collaborative task where participants had to sort laundry with robot assistance. The re-
searchers analyzed the questionnaire data employing various statistical techniques (T-
tests, ANOVA, and linear regression) to compare groups, to understand the relationship
between trust levels and other continuous variables, and to identify differences in trust
levels among multiple groups. Questionnaires associated with trust models are also
commonly used. For example, [28] evaluated trust in a real-world mobile navigation
scenario involving the utilization of an autonomous wheelchair for delivering packages
to predefined locations. The assessment incorporated several models, including the
Trust in Automated Systems Test (TOAST) [35], Trust in Automation (TiA) [36], and
Trust Perception Scale (TPS) [37][28]. TOAST is a nine-item scale with two main cat-
egories: understanding and performance. TIA is a questionnaire developed to measure
trust in automation, based on a theoretical model containing six underlying dimensions.
TPS is a scale consisting of 40 items and provides a percentage trust score on a 0-100%
rating scale.

There is no definitive answer to which trust model is the most used or the best one,
as different models may have different advantages and limitations depending on the
research question, the application domain, and the type of robot. The personalized trust
prediction model is good at capturing trust dynamics over time, but it may not general-
ize well across different types of HRI. This model also relies on Bayesian inference
which can make it complex to understand and apply. It also requires a substantial
amount of interaction data to predict trust accurately which could be difficult to get in
some cases. MDMT is not able to capture the dynamic nature of trust that evolves over
time with continues interaction. It can only measure the trust as a snapshot of the inter-
action which is not a feasible option in social and service robot as these robots interact
with users over the long period of time. The combination of TOAST, TIA, and TPS has
its own limitations such as risk assessment and specificity. Trust measured by these
scales may not fully account for varying levels of risk associated with different auto-
mated systems. While questionnaires can be administered at several time steps, they do
not necessarily capture dynamic trust. Simply measuring trust at different intervals does
not capture the adaptive process of dynamic trust unless the data is used to adjust be-
haviors or interactions in real time.

Through a thorough examination of existing literature, a consistent finding emerges:
the measurement of trust is not merely a mathematical operation and there is not one
model which can fit all trust measurements. The choice of a trust model should be based
on the specific requirements of the situation and the type of trust relationship being
assessed. Measuring trust effectively requires the participation of human participants.



However, it is important to recognize that involving humans in trust measurement pro-
cesses adds an additional delay, mainly because approvals from social and ethical com-
mittees take time. This extra step, while crucial for ethical considerations, adds a time
constraint to research efforts.

3.3 Failure and Trust Repair

Failures are part of HRI, and they can damage the trust that humans have in technology.
Different types of failures require different types of trust repair strategies, and different
methods are used to evaluate the effectiveness of these strategies. In this section, we
focus on the effects of failure types on trust repairs in HRIs and examine how failures
and repair methods impact user trust and blame attributions during these interactions.
Logic failures are identified as the most critical type of performance failure, signifi-
cantly impacting the trust between humans and robots [38]. The research suggests that
when robots fail to perform tasks as expected due to a reasoning or decision-making
error, it severely damages user trust. To address these failures, the studies suggest that
an internal attribution apology is the most effective strategy for trust repair. In internal
attribution apology, a robot takes responsibility for the mistake. This approach not only
enhances user’s trust in the robot’s competence and integrity but also decreases the
perceived severity of the trust breach [39]. This finding is particularly noteworthy as it
contrasts with the established norms in human-human and human-machine trust repair,
where denial of fault was previously assumed to be more effective.

Another theme discussed in selected literature is trust loss due to deception. The
study of deception in robotics is crucial because it addresses the potential consequences
of robots behaving in ways that are unexpected or misleading to humans. This is par-
ticularly relevant in real-world applications where trust is a foundational aspect of HRI.
For instance, in the context of physical rehabilitation, scientists designed a robot that
intentionally misled participants about their effort levels, motivating them to work
harder and improve their overall rehabilitation outcomes [38, 39]. The intentional error
can lead to a mismatch between the robot’s actions and its intentions, which is critical
to address because it can reduce trust which is a key component in the effectiveness of
human-robot collaborations. To navigate these challenges, researchers have proposed
a framework for repairing trust that categorizes strategies as either instrumental, which
focuses on the outcome of the deception, or relational, which concentrates on the rela-
tionship between the human and the robot. Additionally, these strategies are further
classified based on whether they align with or contradict the type of deception involved.
Empirical studies have been conducted to explore these concepts. For instance, an ex-
periment involving a humanoid robot that deceives participants in a trivia game pro-
vided insights into how trust can be rebuilt following deception. They measured trust
recovery through self-reported questionnaires and perception scales [40].

Another study investigated the effects of robot deception on human trust and the
effectiveness of various apology strategies to repair that trust. This study focuses on a
high-stakes, time-sensitive assisted driving scenario where participants interact with a
robotic assistant that provides potentially deceptive advice. Participant’s trust in the
robotic assistant was significantly affected when they were deceived. Different text-



based apologies were tested to see which were most effective at repairing trust. An
apology that did not acknowledge intentional deception was found to be the best at
mitigating negative influences on trust [41]. This research adds valuable information to
the understudied area of robot deception and could guide designers and policymakers
in developing artificial intelligence (Al) systems that interact with humans, particularly
in situations where trust is crucial. As we discussed in the section 3.1, a robot can offer
explanations for their actions. These explanations, whether they focus on the function-
ality or the mechanics of the task, can be tailored to the users’ needs and preferences,
thereby aiding in the restoration of trust after a failure [24].

The main insights from this literature are that failures are part of HRI and can have
negative impacts on human trust. However, there are still many open questions and
challenges in this field, such as how to design and implement effective and ethical trust
repair strategies, how to build and measure trust dynamics in HRI, and how to account
for individual and cultural differences in human responses to failures and repairs.

4 Design Principles

To design a robot that can be trusted, one must consider the varying degrees of trust
needed for different applications. We acknowledge that trust is a complex and dynamic
phenomenon that depends on various factors, such as the application domain, the user
profile, and the interaction context. Based on our scoping review, we derived the fol-
lowing design principles that could help robots to achieve user’s trust.

4.1  Ensure User’s Data Privacy

Robots should only collect data that is essential for their function, avoiding any unnec-
essary data that could violate user privacy. Studies have shown that trust is significantly
impacted by how robots handle user data. For instance, research by [42—-44] emphasizes
that robots should only collect data essential for their function, avoiding any unneces-
sary data that could violate user privacy. These studies collectively highlight that min-
imizing data collection to only what is necessary can enhance user trust. Furthermore,
robot providers should provide users with simple mechanisms to view, manage, and
delete their data, ensuring they have control over their personal information [43, 45,
46]. This mechanism could be a log file which could also be helpful for accountability
(see section 4.5).

4.2 Security in Design

After collecting the required data, the next aim of the robot should be to secure it in a
safe place to become a trustworthy system. This storage system should not delay the
overall quality of service (QoS) of robot. It should have a robust security measure mech-
anism to protect user data from unauthorized access, breaches, and leaks. Moreover, it
is also important to inform your user about potential security threats and risks at the



start. There should be an automatic system to scan the system for any malware in the
non-active hours of the robot [43, 45, 46]. For example, a healthcare robot that collects
patient data during interactions. After collecting this sensitive information, the robot
immediately encrypts the data and stores it in a secure storage system (e.g. cloud). The
service providers should ensure that the data is protected from any unauthorized access
and breaches.

4.3  Perceived Safety and Actual Safety

In HRI literature, trust emerges as a critical factor influencing perceived safety in inter-
actions between humans and robots. Trust is closely intertwined with other key factors,
such as the context of robot use, user comfort, experience and familiarity with robots,
a sense of control over the interaction, and transparent and predictable robot actions.
These factors are not only essential for ensuring safety but also for building and main-
taining user trust, which directly impacts how safe users feel when interacting with
robots [29]. Additionally, studies have highlighted the need for redefining safety in light
of human-robot interaction, considering not only physical risks but also psychosocial
and cybersecurity aspects [47]. In terms of physical safety, the literature has empha-
sized the importance of service robots providing physically safe services, especially in
the context of the COVID-19 pandemic and has proposed a typology of safety-related
robot roles [48]. Another study has discussed the ethical design of social robots in aged
care, proposing design principles that consider both the physical and emotional well-
being of users [49]. Therefore, researchers should develop robots with robust safety
protocols for accident prevention, capable of safe human and object detection, and de-
signed with user-trusted features for reassurance and respecting personal space.

4.4 Transparency and Explainability

Transparent communication is key to improving the user’s trust in robots [40, 41]. For
social and service robotics, the transparency of a robot’s actions is important to ensure
safety and efficiency because of the shared environment. It is essential for robots to
possess planning systems that actively articulate their decision-making process to the
user so the user can predict future action [40]. A trustworthy robot should communicate
proactively whenever its actions have direct implications for the users or when a deci-
sion requires user input or consent. It should also communicate reactively in response
to user queries or changes in the environment that affect its operation [50]. This level
of openness not only builds trust but also clarifies the robot’s intentions, making its
behavior predictable and understandable. To enhance transparency, robots must offer
clear and logical insights into their actions and strategies. For technical users, detailed
explanations of the robot’s decision-making process may be appropriate. For general
users, the robot should provide simplified, understandable explanations that convey the
rationale behind actions without overwhelming the user with technical details. Where
possible, the robot should support multimodal communication, consisting of verbal,
visual, and possibly tactile signals to convey information effectively (see section 4.7).
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45  Accountability

Research has shown that a robot’s ability to justify its actions and decisions signifi-
cantly impacts user trust. In [30, 51] researchers emphasize the importance of robots
maintaining secure logs of their operations and events, ensuring data protection and
retrievability. When robots communicate their activities through effective channels like
verbal communication, body language, or visual signals, users can better understand
and trust their actions. They found that transparency in a robot’s decision-making pro-
cess significantly increases user trust and safety in shared environments. The studies
concluded that proactive communication from robots about actions that directly impact
users or require user input enhances trust. Additionally, the robot’s accountability
mechanisms should operate without significantly affecting its efficiency or consuming
excessive resources. For example, a social companion robot that interacts with individ-
uals in environments such as residences, medical facilities, and eldercare centers. To
adhere to accountability standards, the robot incorporates several functionalities that
enable it to articulate and document its actions. For instance, the robot can audibly ra-
tionalize its choices, such as reminding a patient to take their medication at a designated
time. It employs a decision-tracking system that logs the thought process behind each
decision, accessible to those with proper authorization. Furthermore, the robot keeps a
protected electronic journal of all its interactions and occurrences. This journal is en-
crypted and stored in compliance with privacy laws and data protection standards.

4.6  Apology Mechanism

The robot should have a built-in mechanism to generate an apology after detecting a
failure. The apology should be appropriate to the context of the error and the impact it
may have had on the user. The apology should also be consistent with what the user
would normally expect in a similar situation involving human-to-human interaction.
The robot’s acknowledgment of fault should be in line with the user’s attributions,
meaning that the robot should not only apologize for the error but also provide an ex-
planation where possible that matches the user’s understanding of why the error oc-
curred [38, 51, 52]. Furthermore, in scenarios where the robot does not detect its own
failure, it should be capable of acknowledging and responding to user-identified errors.
Upon receiving such feedback, the robot should offer an apology that aligns with the
user’s understanding of the situation. For instance, if a home assistant robot fails to
execute a task correctly or causes an accident like spilling a beverage, it should
promptly admit the error and activate its apology sequence.

47 Communication and Interaction

The robot should communicate with the human user in a clear, timely, and respectful
way. The robot should use verbal and non-verbal cues, such as speech, gestures, and
facial expressions, to convey its messages and events [45, 53]. The robot should also
respect the user’s privacy and autonomy and avoid interrupting or disturbing the user
unnecessarily. Take, for example, a robot working in a care setting. In a quiet early
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morning environment, it could acknowledge residents with a nod and a softly spoken
“Good morning”. It may use encouraging body language, such as open hands to denote
a readiness to assist, and it can establish simulated eye contact through its screen to
show engagement.

Cultural contexts are also crucial in the robot’s design. In environments where direct
eye contact is seen as hostile, the robot’s visual interaction must be modified. The ro-
bot’s speech patterns, and accent should also be customized to align with local dialects
where possible to enhance understanding. Moreover, robot gestures should also be de-
signed to fit in the cultural norms to prevent any potential offense; for example, a
thumbs-up gesture may be positive in some cultures but not in others. By accommodat-
ing these cultural differences, robots offer a more respectful interaction, thereby im-
proving the human-robot relationship.

4.8  Utility and Ease of Use

The robot should be perceived as useful and easy to use by the user and provide value
and support for the user or the task. These factors are important for fostering trust in
robots, especially for social assistive robots (SARS) that aim to help and interact with
humans [52, 54]. Consider in a rehabilitation center, a robot is introduced to assist pa-
tients with their recovery exercises. It is designed with a user-friendly interface that
patients can interact with using touch or voice commands. It guides them through their
exercises, provides feedback on their progress, and adjusts routines according to their
recovery rate, making it an invaluable aid for both patients and therapists. It also fea-
tures a friendly avatar that encourages patients with positive affirmations and celebrates
their milestones, fostering a sense of companionship. By providing consistent support,
understanding individual needs, and engaging in a socially meaningful way, it builds
trust with patients, which is essential for the success of social assistive robots in
healthcare settings.

4.9  Visual Appearance

The design of a robot is largely influenced by its intended use. For instance, if the goal
is to develop an assistive robot, an anthropomorphic design, which resembles human
characteristics, is often the preferred choice [55, 56]. On the other hand, if the aim is to
create a pet or therapeutic robot, a zoomorphic design, which mimics animal character-
istics, may be more suitable. When it comes to social and service robots, those designed
with human-like features may be more easily accepted by the user. This is because
human-like characteristics can trigger social behaviors and responses from people,
making the interaction with the robot feel more natural and intuitive. When a robot has
a face, eyes, or can mimic human gestures, it helps to bridge the gap between mechan-
ical and social entities, allowing users to connect with the robot in a way that is like
human-to-human interaction [57, 58]. For example, the robot Pepper is designed to as-
sist humans in various tasks, such as providing information and interacting socially. Its
anthropomorphic design, with a human-like face and body, helps it to be more relatable
and approachable for users [59].
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Although this design principle is important in social and service robotics, the exist-
ing research literature does not provide sufficient evidence or guidance to determine
the specifications for a new robot design.

5 Conclusion

In conclusion, this paper has conducted a comprehensive interdisciplinary scoping
review of research on human trust models, measurement of trust, as well as failure and
repair in robotics. Based on the scoping review we identify nine principles that could
aid the development of trustworthy service and social robots. Our research indicates
that there is no single trust model that fits in all scenarios. Different models have their
own unique strengths and weaknesses, which can be influenced by various factors such
as the research question, the application domain, and the type of robot. The literature
highlights that failures are an integral part of HRI and can negatively impact human
trust and behavior. Furthermore, different types of failures call for specific repair strat-
egies, the success of which depends on several factors including the nature and severity
of the failure, the context, task requirements, and the characteristics of both humans
and robots. However, there are still many unanswered questions and challenges in this
field, such as the design and implementation of effective trust repair strategies, the
measurement and modeling of trust dynamics in HRI, and the understanding of indi-
vidual and cultural differences in human responses to failures and repairs.
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