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contribution consists of the design of an ST-like controller,
termed a Filtering-ST (FST) controller, that incorporates a
zero-phase filtering structure, capable of robustly rejecting
small in average (formally introduced in Section III) possi-
bly unbounded measurement noise. Filtering structures have
been proposed for the design of robust differentiators in
[6]; however, to the best of the authors’ knowledge, these
structures have not been used for the design of SM-based
controllers. The second contribution is an analysis of FST
convergence when feedforward control action is used in
combination with SM control action. Including feedforward
control reduces the required ST gains and, hence, diminishes
the effects of chattering and high-frequency oscillations
due to measurement noise. However, the inclusion of such
feedforward action results in state-dependent error dynamics,
which subsequently leads to a so-called algebraic loop in
demonstration of the convergence of the ST control. In
this paper, the algebraic loop is solved for homogeneous
perturbations with homogeneity degree (HD) rα ą 1{2.

In the following, some preliminaries are presented in
Section II. Section III presents the main contributions: Sub-
section III-A introduces the FST control structure, while Sub-
section III-B presents the FST convergence analysis under
state-dependent perturbations. Then, Section IV presents an
application case focused on wave energy systems. Finally,
conclusions are drawn in Section V.

II. PRELIMINARIES

A. Problem formulation
Consider the nonlinear control-affine system,

Σs :

"

9x “ fpxq ` gpxqu ` dpx, tq,

y “ hpxq ` ν,

(1a)
(1b)

with x P X Ă Rn, u P U Ă R1, y P Y Ă R1,
fpxq, gpxq, and hpxq, being differentiable with respect to
x and absolutely continuous functions of time, dpx, tq being
bounded external disturbances and/or model uncertainty, and
ν being measurement noise.

Let the relative degree of hpxq, with respect to the control
action, u, be one, and assume it is possible to transform (1)
to a normal form using z1 “ hpxq, i.e.:

Σs :

$

’

’

’

’

&

’

’

’

’

%

9z1 “ Lf phpxqq
loooomoooon

αpzq

`Lgphpxqq
loooomoooon

βpzq

u ` Ldphpxqq
loooomoooon

δpz,tq

,

9̄z “ qpzq,

y “ z1 ` ν,

(2a)

(2b)
(2c)

where z⊺ “ rz1 z̄⊺s, αpzq, βpzq and δpz, tq are unknown
smooth functions, and q P Q Ă Rn´1 are the states of the
zero dynamics in (2). Additionally, assume:
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I. INTRODUCTION

Robust  control  plays  a  fundamental  role  in  guaranteeing
control  performance  standards,  even  in  the  presence  of  model
uncertainty  or  external  disturbances.  In  particular,  among
the  variety  of  robust  control  strategies,  sliding  mode  (SM)
algorithms  offer  an  interesting  solution.  By  resorting  to  high-
frequency  switching,  SM  forces  the  system  to  remain  on  a
user-defined  state-dependent  surface  despite  non-parametric
uncertainty  and  unmodeled  dynamics.  However,  to  apply  SM
algorithms,  a  relative  degree  condition  on  the  sliding  variable
σpx,  tq  must  be  satisfied.

Specifically,  for  systems  where  σpx,  tq  is  of  relative  degree
one  with  respect  to  the  control  action,  u,  the  super-twisting
(ST)  control  may  be  used.  Since  ST  was  first  proposed
in  [1],  its  properties,  including  stability  conditions,  conver-
gence  time,  and  robustness,  have  been  extensively  studied
in  [2][3][4][5]  and  references  therein.  One  of  the  main
advantages  of  ST  is  that  it  provides  a  smooth  control  action,
with  the  discontinuous  action  appearing  on  the  first-time
derivative  of  u.

However,  a  disadvantage  of  ST  control  is  that,  in  noisy
environments,  its  performance  is  considerably  degraded.  This
occurs  because  the  ST  structure  cannot  disaggregate  the
noise,  ν,  from  the  measured  sliding  variable:  σm  “  σpx,  tq`

ν,  and,  as  a  result  of  the  ST  robustness  to  keep  σm  “  0,  large

and/or  highly  varying  control  actions  are  applied.  Naturally,
such  effects  in  the  control  action  challenges  ST  implementa-
tion  due  to  wind-up  and/or  slew-rate  limitations.  Typically,  in
practice,  to  reduce  the  effect  of  noisy  measurements,  linear
filters  are  employed.  However,  linear  filters  affect  the  relative
degree  of  the  measured  variable  and  introduce  phase  delay.

In  order  to  address  existing  limitations  of  ST  control,
this  paper  presents  two  contributions.  The  first  and  main
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(H1) |γpz, tq| “ |αpzq ` δpz, tq| ă 8, and | 9γpz, tq| ă ∆ ă

8 for some ∆ P R`, @t and all z P Z Ă Rn.
(H2) In (2), 0 ă βpzq ă 8, and | 9βpzq| ă B ă 8 for some

B P R`, @z P Z Ă Rn.
(H3) The zero dynamics of system (2) are asymptotically

stable, hence, with δpz, tq “ 0, αpzq Ñ 0, as z1 Ñ 0.
Assuming (H1)–(H3) hold, given a smooth user-defined
reference, yr, the control objective is to steer σpz1, tq “

z1 ´ yrptq to zero in finite time, exactly in the absence of
measuring noise (ν “ 0), and robustly using a measured
σmpz1, tq:

σmpz1, tq “ z1 ´ yr
loomoon

σpz1,tq

` ν “ σpz1, tq ` ν. (3)

Additionally, to achieve σ “ 0, two different control
scenarios are separately considered: First, solely employing
a SM control, and second, considering an SM control com-
bined with a feedforward control action.

B. Revisiting ST convergence

In this section, using concepts of homogeneous systems,
the convergence of the classic ST algorithm is revisited.

First, consider a surface:

S “ tz P Z Ă Rn : σpz1, tq “ 9σpz1, tq “ 0 u, (4)

An ideal second-order sliding mode is said to take place on
(4) if zptq evolves such that σpz1ptrq, trq “ 9σpz1ptrq, trq “

0 for some finite tr P R`, and σpz1ptq, tq “ 9σpz1ptq, tq “ 0,
@t ą tr. To achieve finite time convergence to (4), the ST
control:

usm “ ´k1rσu1{2 ` u1, (5a)

9u1 “ ´k2rσu0, (5b)

can be applied [1]. In (5), the notation r¨un “ | ¨ |nsignp¨q, is
used. To analyse ST convergence, compute the derivative 9σ
and substitute (5) to obtain the control dynamics:

9σ “ γpz, tq ` βpzqp´k1rσu1{2 ` u1q ´ 9yr, (6a)

9u1 “ ´k2rσu0. (6b)

Note that (6) possesses a discontinuous right-hand side. In
this paper, solutions to differential equations with a discon-
tinuous right-hand side are understood in the Filippov sense.
As a result, the dynamics (6) are replaced by an equivalent
differential inclusion (DI):

9σ “ σ1 ´ k1βpzqrσu1{2, (7a)

9σ1 P r´Γ; Γs ´ k2βpzqrσu0, (7b)

obtained by defining σ1 “ γpz, tq ` βpzqu1 ´ 9yr, and
assuming |∆`Bu1´ :yr| ă Γ P R`. For conciseness, rewrite
(7) as:

9s P Φpsq, Φpsq Ă TsR2, (8)

with s “
“

σ σ1

‰⊺
P S Ă R2, and TsR2 being the tangent

space to R2, where the vector set, Φ, is nonempty, closed,
convex, locally bounded, and upper-semicontinuous [7]. It is
simple to prove that, assuming 0 ď Γ ă 8, the DI (8) is

homogeneous with an associated triple pr, q,Φq where r P

R2, with rr1, r2s⊺ “ r, r1 “ 2, r2 “ 1 are the weights,
and q “ ´1 is the HD. Homogeneity of (8) implies that,
@κ P R`:

Φpsq “ κ´qpdrκ2
q´1

`

Φpdrκ2
sq

˘

, (9)

with drκ2
being a coordinate dilation in R2, with weight r,

defined as:

drκ2
: px1, x2q ÞÑ pκr1x1, κ

r2x2q. (10)

If the origin of a locally homogeneous DI with negative HD
is globally uniformly asymptotically stable, then it is also
globally uniformly finite-time stable [8, Theorem 4.4], and
the DI is contractive [9][10]. In particular, for system (7), it
has been proven [3][6] that, with an appropriate selection of
gains k1 and k2, an ideal SM takes place after a finite time
tr, which implies σ “ 9σ “ σ1 “ 0.

III. MAIN RESULTS

In this section, the FST control structure is presented
in Subsection III-A, and the extension of the results with
state-dependent perturbations is analysed in Subsection III-
B. First, the class of filterable functions is presented in defi-
nitions 1 and 2. For a broader discussion of these definitions,
the reader is referred to [6][11].

Definition 1: A function νptq, ν : r0, 8q Ñ R is called
a signal of global filtering order k, k ě 0 if ν is a locally
integrable Lebesgue measurable function, and there exists a
solution ξ for the differential equation ξpkq “ ν. Then, |ξptq|

is the k-th global order integral magnitude of ν.
Definition 2: Any signal νptq, ν : r0, 8q Ñ R is termed

locally filterable if it can be represented as νptq “ ε0 ` ε1 `

... ` εk, where each εi, with i “ 0, 1, ..., k, are signals of
global filtering order 0, 1, ..., k, respectively.

A. Filtering ST control

Consider the measured sliding variable σm in (3), with yr
being a desired reference. To drive σ “ 9σ “ 0, the FST
controller is designed as follows:

Σc :
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’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’
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’

’
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’

’

’

’

’

%

9w1 “ w2 ´ kf1rw1u

1`nf
2`nf ,

9w2 “ w3 ´ kf2rw1u

nf
2`nf ,

...

9wnf ´1 “ wnf ´ kfpnf ´1qrw1u
3

2`nf ,

9wnf
“ σm ´ kfnf

rw1u
2

2`nf ,

usm “ ´k1rw1u
1

2`nf ` u1,

9u1 “ ´k2rw1u0,

(11a)

(11b)

(11c)

(11d)

(11e)

(11f)

where kfi, with i “ 1, ..., nf are the filtering gains (as-
sociated with the filtering states w1´wnf ), k1 and k2 are
user-defined variables, adjusted to guarantee controller con-
vergence, and usm the FST control action.

Theorem 1: Consider dynamics (1) with conditions (H1)–
(H3), and surface (4). Then, with appropriate selection of the
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gains kfi, with i “ 1, ..., nf , k1 and k2, FST controller (11)
provides, in the absence of measurement noise (ν “ 0), exact
finite-time convergence to y ´ yr “ σ “ 9σ “ 0, and robust
finite-time convergence, in the presence of noise of a filtering
order not exceeding nf .

Proof: First, the error dynamics are computed, by
substituting the FST dynamics (11) to (2) and redefining
σ1 “ γ ` βu1 ´ 9yr (for simplicity, the z and t arguments
are dropped):

Φpeq :

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

9w1 “ w2 ´ kf1rw1u

1`nf
2`nf ,

9w2 “ w3 ´ kf2rw1u

nf
2`nf ,

...

9wnf ´1 “ wnf ´ kfpnf ´1qrw1u
3

2`nf ,

9wnf
“ σ ` ν ´ kfnf

rw1u
2

2`nf ,

9σ “ σ1 ´ k1βrw1u
1

2`nf ,

9σ1 P r´Γ; Γs ´ k2βrw1u0,

(12a)

(12b)

(12c)

(12d)

(12e)

(12f)

where, e⊺ “ rw⊺ s⊺s, and assuming |∆`Bu1 ´ :yr| ă Γ ă

8. Note that (12) coincide with the error dynamics of the
SM differentiator proposed in [6], whose convergence has
already been proven and extensively studied using Lyapunov
functions in [4]. Specifically, (12) is homogeneous with asso-
ciated triple p´1, r,Φq, with ri “ nf `3´i, i “ 1, ..., nf `2.
Hence, first, with ν “ 0, (12) provides exact finite-time
convergence to σ “ 9σ “ σ1 “ 0, and w “ 0. With ν ‰ 0 of
global filtering order nf , then ξ

pnf q
nf “ ν, |ξnf

| ă εnf
(the

following result is easily extrapolated for locally filterable
ν). Define ωi “ wi ´ ξ

pi´1q
nf , for i “ 1, ..., nf , and rewrite

(12) as:

Φp¨q :

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

9ω1 “ ω2 ´ kf1rω1 ` ξnf
u

1`nf
2`nf ,

9ω2 “ ω3 ´ kf2rω1 ` ξnf
u

nf
2`nf ,

...

9ωnf ´1 “ ωnf ´ kfpnf ´1qrω1 ` ξnf
u

3
2`nf ,

9ωnf
“ σ ´ kfnf

rω1 ` ξnf
u

2
2`nf ,

9σ “ σ1 ´ k1βrω1 ` ξnf
u

1
2`nf ,

9σ1 P r´Γ; Γs ´ k2βrω1 ` ξnf
u0,

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

which coincide with the error dynamics of a perturbed SM
differentiator. It follows, from [6][12], that (13) is robust
with respect to perturbations causing locally small changes
in the DI around the origin [13], and with ν ‰ 0 of the
filtering order nf , any trajectory starting at the origin at

t “ t0, satisfies sup |σ| ă µ0

´

ξnf

εnf

¯
2

nf `2

, sup |σ1| ă

µ1

´

ξnf

εnf

¯
1

nf `2

for some µ0 ą 0, µ1 ą 0, and @t ą t0,
and the control structure is locally finite-time stable.

Remark 1: The requirements for Γ are the same in both
the ST and FTS algorithms. As a result, the class of pertur-
bations that FST is capable of rejecting are the same as in

the ST case. However, FST permits robust operation in the
presence of measurement noise, which cannot be guaranteed
using the ST structure.

Remark 2: Two mature procedures to select the FST gains
can be directly applied: A numerical approach, as in [6],
or via Lyapunov analysis, as in [4]. Using either approach
guarantees local homogeneity and finite time convergence of
the FST.

B. Results with state-dependent perturbations
Assume the control action is composed of two terms,

a feedforward control term, u˚, designed to provide, on
average, the control action that drives the system close to
σ “ 0, and a feedback SM control term, usm. That is:

u “ u˚ ` usm, (14)

where u˚ “ ´
αpz˚

q

βpz˚q
. Using βpzq “ βpz˚q ` ∆βpzq, (2)

becomes:

9σ “ αpz, tq ` βpz, tqpu˚ ` usmq ` δpz, tq ´ 9yr, (15)
“ αpz, tq ´ αpz˚, tq ` δpz, tq ´ 9yr

´ αpz˚, tq
∆βpz, tq

βpz˚, tq
` βpz, tqusm.

Assume it is possible, via (15), to rewrite:

9σ “ αpσ, tq ` ρpz, z˚, tq ` βpz, tqusm, (16)

where ρpz, z˚, tq, represents bounded perturbations satisfy-
ing (H1) for some ∆˚ P R`. In (16), it is not possible to
bound 9αpσ, tq, since this is the output of the zero-dynamics
of system (2), using σ as input. However, it is possible to
state convergence conditions for a class of homogeneous
perturbations, as formalised in Theorem 2.

Theorem 2: Let a control for system (1), satisfying as-
sumptions (H1)–(H3), be designed as in (14), using the FST
controller (11). If α is a homogeneous function with HD
rα ą 1{2, then FST guarantees, with ν “ 0, exact finite-time
convergence to σ“ 9σ“0, and robust finite time convergence
with ν ‰ 0 of a filtering order not exceeding nf .

Proof: First, evaluate the error dynamics by substituting
(16) to (11), and using σ1 “ ρ ` βu1 ´ 9yr:

Φpeq :

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

9w1 “ w2 ´ kf1rw1u

1`nf
2`nf ,

9w2 “ w3 ´ kf2rw1u

nf
2`nf ,

...

9wnf 1́ “ wnf ´ kfpnf ´1qrw1u
3

2`nf ,

9wnf
“ σpz1, tq ´ kfnf

rw1u
2

2`nf ,

9σ “ αpσ, tq ` σ1 ´ k1βpz, tqrw1u
1

2`nf ,

9σ1 P r´Γ˚; Γ˚s ´ k2βrw1u0,

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

where e⊺ “ rw⊺ s⊺s, and |∆˚ `Bu1 ´ :yr| ă Γ˚ ă 8.
Apply the dilation drκnf `2

, and transformation (9), to (17),
with weights ri “ nf ` 3´ i, i “ 1, ..., nf ` 2, and q “ ´1.
Analyse, in particular, (17e):

9σ “ σ1 ´ k1βpz, tqrw1u
1

2`nf ` κ´1αpκ2σ, κ´1tq, (18)
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“ σ1 ´ k1βpz, tqrw1u
1

2`nf ` κ´1`2rα
`

αpσ, κ´1tq
˘

.

Then, for αp¨q with a HD rα ą 1{2, it follows from the
0-limit approximation (see Appendix) that there exists some
κ0, ε0 P R`, that defines an homogeneous ball Bκ0

Ă Ωκ0
:

Ωκ0
:“ te P Rnf `2 |κ ă κ0 ^κ´1`2rα

`

αpσ, κ´1tq
˘

ă ε0u,

where αp¨q is dominated by the FST correction terms. Hence,
for e P Bκ0 Ă Ωκ0 , (17) is locally homogeneous with HD
“ ´1 and, with appropriate selection of gains (kfi, with i “

1, ..., nf , k1 and k2), locally strongly finite-time convergent
[4][12].

Analogously, for ε8 P R`, define Ω̄κ0 :

Ω̄κ0
:“ te P Rnf `2 |κ ą κ0 ^

κ´2rαpσ1 ´ k1βpz, tqrw1u
1

2`nf q ă ε8u,

where αp¨q dominates the FST correction term, and hence:

9σ « αpσ, tq. (19)

Thus, @e P B̄κ0 Ă Ω̄κ0 , the dynamics of (17) are approxi-
mated as the cascade interconnection of the stable systems:

9w “ hpw, σq, (20a)
9σ “ αpσ, tq, (20b)

9σ1 P r´Γ; Γs ´ k2βrw1u0, (20c)

where (20a) are the error dynamics of a truncated SM
differentiator (17a)–(17d). Now, Lemma 1 (see Appendix)
is applied. Using (H3), (19) is asymptotically stable, and
αpσ, tq Ñ 0 as σ Ñ 0. Since 9w “ hpw, 0q is asymptotically
stable, @e P B̄κ Ă Ω̄κ0

, as σ Ñ 0, wi Ñ 0, and (20a)-
(20b) is asymptotically stable. Observe that (20c) plays no
role. Extending the solutions of (20) forward in time, σ
decreases until e P Bκ0 Ă Ωκ0 . Then, inside Ωκ0 , (17)
is locally homogeneous with HD “ ´1, strongly finite-
time convergent, and σ Ñ 0 (and αpσ, tq Ñ 0) in finite
time. Thus, robustness around the origin and noise rejection
properties follow from Theorem 1.

Remark 3: The homogeneity degree of αpσ, tq plays a
fundamental role. If αp¨q is not homogeneous, it is possible
to define αp¨q inside a class of larger homogeneous perturba-
tions as in [12]. Importantly, if αp¨q satisfies (H3), is locally
homogeneous, and there exists a 0-limit approximation of
αp¨q, α0p¨q with HD rα,0 ą 1{2, then (17) is also locally
homogeneous. Two important cases are: (i) rα “ 1{2, which
is extensively studied in [5], and (ii) αp¨q is a linear function
of σ, i.e., rα,0 “ 1, in which case Theorem 2 is directly
applicable.

Remark 4: Due to the inclusion of u˚, as α Ñ α˚, and
β Ñ β˚:

|ρpz, z˚, tq| « |δpz, tq ´ 9yr| ď | δpz, tq ` αpz, tq
loooooooomoooooooon

γ

´ 9yr|,

hence, typically, Γ˚ ď Γ, resulting in reduced values for the
FST (alternatively ST) gains [14].

IV. CASE STUDY: WAVE ENERGY CONVERTER

In this section, in-silico evaluations are conducted on a
one-degree-of-freedom wave energy converter (WEC). The
goal of this section is to evaluate FST performance around
σ “ 9σ “ 0, and compare it with ST performance in noisy
environments. Since u˚ does not affect the local homogeneity
of the controllers, only the case u˚ “ 0 is considered.
The simulation parameters are presented in Subsection IV-
A. Then, the FST controller velocity-tracking results are
presented and compared in Subsection IV-B.

A. Wave energy system and controller tuning

Consider the one-degree-of-freedom WEC dynamics:

Σw :

$

’

’

’

&

’

’

’

%

9v “ M p´Hz̄ ´ kzx ` dptq ` uq ,

9x “ v,

9̄z “ Fz̄ ` Gv,

y “ v ` ν,

(21a)
(21b)
(21c)
(21d)

where x is displacement, v is velocity, z̄ P R7 are the radia-
tion states, and dptq is the wave excitation force, which can
be modelled as an external bounded disturbance, satisfying
| 9dptq| ă Ld. To generate a realistic wave profile, dptq is
generated using the Bretschneider spectrum [15], considering
a peak period Tp “ 8s, and significant wave height Hs “

1m. Also, M “ 6.8 ˆ 10´6 and kz “ 5.57 ˆ 105.
For evaluation of the FST, a controller is designed with

nf “ 2, and compared with the ST. To tune both controllers,
the gains are as follows: L “ 6m{s2, k1ST “ 9.97 ˆ 106,
k2ST “ 8.95ˆ106, kf1FST “ 13.7, kf2FST “ 53.95, k1FST “ 9ˆ

107, and k2FST “ 8.95 ˆ 106. The simulations are conducted
with 20% uncertainty in the parameters of (21), and initial
conditions outside the sliding surface. As detailed in the
following, robustness to model uncertainty and perturbations
is observed for both the ST and the FST.

B. FST and ST comparison

This section analyses the performance of the ST and FST
algorithms for ν “ ν1 ` ν2, with ν1 „ N p0, 10´6q, and
ν2 “ 0.5 sinp100πtq, emulating 50Hz grid noise. The signal-
to-noise ratio of the measured velocity (see Figure 1), with
the simulated noise, is SNR “ 5.3dB.

Figure 1. Velocity measurement (solid line) and noiseless velocity (dashed
line).

In the following, the convergence of the ST and FST
controllers with ν “ 0 is analysed. First, observe the σ- 9σ
plane in Figure 2. As expected, both algorithms converge to
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Figure 2. Phase plane convergence of ST and FST to the sliding surface
when the measurement is noiseless.

Figure 3. Phase plane convergence of ST and FST to the sliding surface
when the measurement is noisy.

σ “ 9σ “ 0, in spite of model uncertainty. However, with
ν ‰ 0, the performance of both algorithms is affected, as
shown in Figure 3. Notably, when compared with the case
with ν “ 0, the FST presents a similar reaching phase, while
the ST initial convergence is deteriorated. Around the origin,
FST exhibits a clear advantage in achieving convergence to
a smaller region of the phase plane compared to that of the
ST. Complementarily, σptq is depicted in the time domain in
Figure 4. In Figure 4 (top), it is shown that, when ν “ 0, both
controllers exhibit a similar performance. However, when
ν ‰ 0 (see Figure 4 (bottom)), ST convergence is consider-
ably degraded, with σ showing increased oscillations around
the convergence region. In contrast, FST robustly retains
the sliding variable around zero, considerably reducing the
impact of measurement noise.

Also, the initial convergence of the ST and FST algorithms
is depicted, in the time domain, in Figure 5. In Figure 5
(top), with ν “ 0, it is observed that FST exhibits a

Figure 4. Sliding variable evolution for ST and FST when the measurement
is noiseless (top) and noisy (bottom). The dot-dashed lines delimit the
maximum values for ST and FST errors.

Figure 5. Sliding variable evolution for ST and FST when the measurement
is noiseless (top) and noisy (bottom). The dot-dashed lines delimit the
maximum values for ST and FST errors.

longer convergence time, approximated by the dot-dashed
line. Complementary, Figure 5 (bottom), representing the
noisy case, reveals that the reaching phase for the FST algo-
rithm remains similar to the noise-free scenario. However,
the evolution of σ in the ST algorithm begins to exhibit
noticeable deviations, consistently with the result in Figure 3.

Finally, Figure 6 illustrates the influence of measurement
noise on the control action. In Figure 6 (top), where the
measured signal is noiseless, ST and FST exhibit similar
control actions and hence, performance. However, in Fig-
ure 6 (bottom), where ν ‰ 0, a significant degradation
of the ST control action can be observed. This is due to
the higher sensitivity of the ST to noise. In contrast, the
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Figure 6. ST (solid line) and FST (dashed line) control action. Top: Control
action when the measured signal is noiseless. Bottom: Control action when
the measured signal is noisy.

FST demonstrates improved mitigation of the impact of
noise, resulting in a control signal with reduced amplitude
variations. Importantly, this latter feature proves essential for
real-time application of FST, especially to prevent control
action saturation and/or slew-rate effects.

V. CONCLUSIONS

The proposed filtering super-twisting (FST) controller
fulfils several key requirements for improving conventional
super-twisting (ST) control performance in noisy environ-
ments. First, FST effectively mitigates the impact of noise
in measured signals, enhancing overall performance without
compromising the inherent ST robustness to unmodelled
dynamics and perturbations. Second, FST reduces control
effort in noisy environments, addressing critical issues such
as wind-up and slew-rate saturation. Third, by integrating
a sliding-mode filtering structure directly within the control
design, FST eliminates phase delays in the tracked variable.
These enhancements collectively lead to a more efficient and
reliable control strategy when the noise power is significant.
Overall, FST represents an appealing solution for applica-
tions demanding both high robustness and strong noise re-
silience. Importantly, the preliminary results presented in this
paper can be extended to (i) an analysis of discretised FST,
(ii) address FST fixed-time convergence, and (iii) sensitivity
analysis on the FST gains, among other areas of interest.

APPENDIX

Definition 3 (0-limit homogeneous approximation [16]):
A vector field Φ is said homogeneous in the 0-limit with
associated tripe pr0, q0,Φ0q, where r0 P Rn is the weight,
q P R is the HD, and Φ0 is an approximating vector field,
if Φ, Φ0, are continuous and not identically zero, and, for
each compact set C P Rnzt0u, and each ε ą 0, there exists

a κ0 ą 0, such that for each Φ0,i, Φi, is satisfied:

max
xPC

ˇ

ˇ

ˇ

ˇ

Φipd
r0
κ xq

κq0`r0,i
´ Φ0,ipxq

ˇ

ˇ

ˇ

ˇ

ď ε, @κ P p0, κ0s. (22)

In words, definition 3 states that there must exist a suffi-
ciently small κ0, such that the 0-limit approximation Φ0,
approximates Φ with a small error ε.

Lemma 1 ( [17, Appendix B]): Consider the system:

9z “ qpz,yq, (23a)
9y “ gpyq. (23b)

Suppose pz,yq “ p0, 0q is an equilibrium of (23), the equilib-
rium z “ 0 of 9z “ qpz, 0q is asymptotically stable, and the
equilibrium y “ 0 of (23b) is asymptotically stable. Then the
equilibrium pz,yq “ p0, 0q of (23) is asymptotically stable.
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