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A Filtering Super-Twisting Controller with Noise Rejection

Pedro Fornaro!2, Facundo D. Mosquera2, Carolina A. EvangelistaQ, Paul F. Puleston?, and John V. Ringwood1

Abstract— This paper addresses the design of a filtering
Super-Twisting (FST) controller with noise rejection. To effec-
tively achieve noise rejection and improve ST performance, the
proposed control structure includes a zero-phase sliding-mode
filter, capable of rejecting unbounded measurement noise. The
features of the FST controller reduce the control effort required
to steer the sliding variable to zero, without compromising
the control robustness. The convergence of the FST is demon-
strated, and a numerical example based on wave energy systems
is presented to illustrate the effectiveness of the proposal.

I. INTRODUCTION

Robust control plays a fundamental role in guaranteeing
control performance standards, even in the presence of model
uncertainty or external disturbances. In particular, among
the variety of robust control strategies, sliding mode (SM)
algorithms offer an interesting solution. By resorting to high-
frequency switching, SM forces the system to remain on a
user-defined state-dependent surface despite non-parametric
uncertainty and unmodeled dynamics. However, to apply SM
algorithms, a relative degree condition on the sliding variable
o(x,t) must be satisfied.

Specifically, for systems where o (x, t) is of relative degree
one with respect to the control action, u, the super-twisting
(ST) control may be used. Since ST was first proposed
in [1], its properties, including stability conditions, conver-
gence time, and robustness, have been extensively studied
in [2][3][4][5] and references therein. One of the main
advantages of ST is that it provides a smooth control action,
with the discontinuous action appearing on the first-time
derivative of wu.

However, a disadvantage of ST control is that, in noisy
environments, its performance is considerably degraded. This
occurs because the ST structure cannot disaggregate the
noise, v, from the measured sliding variable: o, = o(x,t)+
v, and, as a result of the ST robustness to keep o, = 0, large

and/or highly varying control actions are applied. Naturally,
such effects in the control action challenges ST implementa-
tion due to wind-up and/or slew-rate limitations. Typically, in
practice, to reduce the effect of noisy measurements, linear
filters are employed. However, linear filters affect the relative
degree of the measured variable and introduce phase delay.
In order to address existing limitations of ST control,
this paper presents two contributions. The first and main
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contribution consists of the design of an ST-like controller,
termed a Filtering-ST (FST) controller, that incorporates a
zero-phase filtering structure, capable of robustly rejecting
small in average (formally introduced in Section III) possi-
bly unbounded measurement noise. Filtering structures have
been proposed for the design of robust differentiators in
[6]; however, to the best of the authors’ knowledge, these
structures have not been used for the design of SM-based
controllers. The second contribution is an analysis of FST
convergence when feedforward control action is used in
combination with SM control action. Including feedforward
control reduces the required ST gains and, hence, diminishes
the effects of chattering and high-frequency oscillations
due to measurement noise. However, the inclusion of such
feedforward action results in state-dependent error dynamics,
which subsequently leads to a so-called algebraic loop in
demonstration of the convergence of the ST control. In
this paper, the algebraic loop is solved for homogeneous
perturbations with homogeneity degree (HD) r,, > 1/2.

In the following, some preliminaries are presented in
Section II. Section III presents the main contributions: Sub-
section III-A introduces the FST control structure, while Sub-
section III-B presents the FST convergence analysis under
state-dependent perturbations. Then, Section IV presents an
application case focused on wave energy systems. Finally,
conclusions are drawn in Section V.

II. PRELIMINARIES
A. Problem formulation

Consider the nonlinear control-affine system,

5o {‘b:f(fﬂ)-l—g(w)u—i-d(w,t), (1a)
Ty = h(x) + v, (1b)

with x e ¥ ¢« R", w e Y c R, y € Y c R},
f(x), g(x), and h(x), being differentiable with respect to
x and absolutely continuous functions of time, d(x, t) being
bounded external disturbances and/or model uncertainty, and
v being measurement noise.

Let the relative degree of h(x), with respect to the control
action, u, be one, and assume it is possible to transform (1)
to a normal form using z; = h(x), i.e.:

Z1 = Lg(h(x)) + Lg(h(x)) u + La(h(z)), (2a)
—_— —]} = —_——
5, a(z) B(=) 5(z,t)
‘ z = q(z), (2b)
y=z+v, (20)
where 2T = [z1 27|, a(z), B(z) and 6(z,t) are unknown

smooth functions, and q € Q R™! are the states of the
zero dynamics in (2). Additionally, assume:
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HD) |v(z,t)| = |a(z) +(2z,t)| < 0, and |[(z,t)] < A <
oo for some A e R, Vit and all z € Z < R".
(H2) In (2), 0 < B(z) < o0, and |B(z)| < B < o for some
BeR,,Vze ZcR"
(H3) The zero dynamics of system (2) are asymptotically
stable, hence, with §(z,t) =0, a(z) — 0, as z; — 0.
Assuming (H1)-(H3) hold, given a smooth user-defined
reference, y,, the control objective is to steer o(z1,t) =
21 — yr(t) to zero in finite time, exactly in the absence of
measuring noise (¥ = 0), and robustly using a measured
Om(z1,1):
om(z1,t) = 21 —yr + v = 0(21,1) + 1. 3)
——
o(z1,t)
Additionally, to achieve ¢ = 0, two different control
scenarios are separately considered: First, solely employing

a SM control, and second, considering an SM control com-
bined with a feedforward control action.

B. Revisiting ST convergence

In this section, using concepts of homogeneous systems,
the convergence of the classic ST algorithm is revisited.
First, consider a surface:

S={ze ZcR":0(z,t) =06(z1,t) =0}, (4)

An ideal second-order sliding mode is said to take place on
(4) if z(t) evolves such that o (21 (t,),t,) = d(z1(ty), tr) =
0 for some finite ¢, € Ry, and o(z1(t),t) = 7(21(t),t) =0,
YVt > t,. To achieve finite time convergence to (4), the ST
control:

Ugy = —k:l[ajl/Q + uq,

Uy = —kalo|,

(52)
(5b)
can be applied [1]. In (5), the notation [-|™ = | - |"sign(+), is

used. To analyse ST convergence, compute the derivative o
and substitute (5) to obtain the control dynamics:

& = (2, 1) + B(z) (ko] + u1) — gy,
’Z.L1 = 7](72[CTJ0.

(6a)
(6b)
Note that (6) possesses a discontinuous right-hand side. In
this paper, solutions to differential equations with a discon-
tinuous right-hand side are understood in the Filippov sense.
As a result, the dynamics (6) are replaced by an equivalent
differential inclusion (DI):

d’ =01 — klﬁ(z)[ajl/2,

1€ [-T3T] — k2 (2)[0 ),

(7a)
(7b)

obtained by defining o7 = ~(z,t) + f(z)us — ¥, and
assuming |A+ Buj; —,| < I' € R,. For conciseness, rewrite
(7) as:

5e ®(s), ®(s)c T,R?, (8)

with s = [0 01]T € S = R?, and T,R? being the tangent
space to R2, where the vector set, ®, is nonempty, closed,
convex, locally bounded, and upper-semicontinuous [7]. It is
simple to prove that, assuming 0 < I' < oo, the DI (8) is

homogeneous with an associated triple (r, g, ®) where r €
R?, with [r1,72]T = r, r; = 2, ro = 1 are the weights,
and ¢ = —1 is the HD. Homogeneity of (8) implies that,
Ve Ry:

®(s) = xIU(dy,) " (®(d},s)), )

with d22 being a coordinate dilation in R2, with weight r,
defined as:

dy, :(x1,22) = (K21, K222). (10)

If the origin of a locally homogeneous DI with negative HD
is globally uniformly asymptotically stable, then it is also
globally uniformly finite-time stable [8, Theorem 4.4], and
the DI is contractive [9][10]. In particular, for system (7), it
has been proven [3][6] that, with an appropriate selection of
gains k1 and ko, an ideal SM takes place after a finite time
t,, which implies 0 = ¢ = 01 = 0.

III. MAIN RESULTS

In this section, the FST control structure is presented
in Subsection III-A, and the extension of the results with
state-dependent perturbations is analysed in Subsection III-
B. First, the class of filterable functions is presented in defi-
nitions 1 and 2. For a broader discussion of these definitions,
the reader is referred to [6][11].

Definition 1: A function v(t), v : [0, 0) — R is called
a signal of global filtering order k, k > 0 if v is a locally
integrable Lebesgue measurable function, and there exists a
solution ¢ for the differential equation £(*) = v. Then, |£(t)]
is the k-th global order integral magnitude of v.

Definition 2: Any signal v(t), v : [0, ©) — R is termed
locally filterable if it can be represented as v(t) = g +¢1 +
... + €k, where each ¢;, with ¢ = 0,1, ..., k, are signals of
global filtering order 0, 1, ..., k, respectively.

A. Filtering ST control

Consider the measured sliding variable o, in (3), with y,
being a desired reference. To drive 0 = o = 0, the FST
controller is designed as follows:

( 1+“'f
wy = wy — kprfwy|*T, (11a)
Wy = w3 — kpawi |, (11b)

et . ‘ _3

Wnps—1 = Wnf — k‘f(nffl) {le 2y ) (11C)

2
wnf = Um - kfnf [w1J2+nf I (lld)

1

Usm = —k1[w1 > + g, (11e)
Uy = —kafwi %, (116)

where ky;, with i = 1,...,ny are the filtering gains (as-
sociated with the filtering states wi—wyys), k1 and ko are
user-defined variables, adjusted to guarantee controller con-
vergence, and ug,, the FST control action.

Theorem 1: Consider dynamics (1) with conditions (H1)—
(H3), and surface (4). Then, with appropriate selection of the
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gains ky;, with i = 1,...,ns, k1 and ko, FST controller (11)
provides, in the absence of measurement noise (v = 0), exact
finite-time convergence to y — y, = 0 = ¢ = 0, and robust
finite-time convergence, in the presence of noise of a filtering
order not exceeding 7.

Proof:  First, the error dynamics are computed, by
substituting the FST dynamics (11) to (2) and redefining
o1 = v+ Pur — y, (for simplicity, the z and ¢ arguments
are dropped):

g Lo,
Wy = weg — kprfwr [P0, (12a)
iy = w3 — pafwn |77 (12b)

®(e) W1 = Wnyp — kf("f_l)[wljﬁ, (12¢)

W, =U+u—k:fnf[wljﬁ, (12d)
& = o1 — ka By |77 (12¢)
o1 € [-I;T] — kaffwn |°, (129)

where, eT = [wT sT], and assuming |A + Bu; —§,| < T <
0. Note that (12) coincide with the error dynamics of the
SM differentiator proposed in [6], whose convergence has
already been proven and extensively studied using Lyapunov
functions in [4]. Specifically, (12) is homogeneous with asso-
ciated triple (—1,r, ®), withr; = ny+3—i,i=1,...,np+2.
Hence, first, with v = 0, (12) provides exact finite-time
convergence to 0 = 0 = 01 = 0, and w = 0. With v # 0 of
global filtering order ny, then Efﬁf ) _ v, & f\ < &n; (the
following result is easily extrapolated for locally filterable
v). Define w; = w; — §£ff71), for i = 1,...,ns, and rewrite
(12) as:

1+7Lf
wr = wy — kprfwr + &, 20, (13a)
wo = w3 — kpafwr + &, 777, (13b)

_3
=wnf — kfm—plwr + &, 77, (130)

ny1
Gy = 0 = hpuglwn + Ea, |77, (13d)
& = o1 — kyBlws + €a, )77, (13¢)

61 € [T5T] = koBlwr + &, )%, (13f)

which coincide with the error dynamics of a perturbed SM
differentiator. It follows, from [6][12], that (13) is robust
with respect to perturbations causing locally small changes
in the DI around the origin [13], and with v # 0 of the
filtering order my, any trajectory starting at the origin at
Eny

to, satisfies suplo| < po (ﬂ) T suploy| <
n

t =
1

1 (i% "% for some po > 0, g1 > 0, and Vt > tq,
and the control structure is locally finite-time stable. [ ]
Remark 1: The requirements for I' are the same in both
the ST and FTS algorithms. As a result, the class of pertur-
bations that FST is capable of rejecting are the same as in

the ST case. However, FST permits robust operation in the
presence of measurement noise, which cannot be guaranteed
using the ST structure.

Remark 2: Two mature procedures to select the FST gains
can be directly applied: A numerical approach, as in [6],
or via Lyapunov analysis, as in [4]. Using either approach
guarantees local homogeneity and finite time convergence of
the FST.

B. Results with state-dependent perturbations

Assume the control action is composed of two terms,
a feedforward control term, u*, designed to provide, on
average, the control action that drives the system close to
o = 0, and a feedback SM control term, ug,,. That is:

(14)

*
U=uU" + Ugm,

where u* = —gg:; Using B(z) = B(z*) + AB(2), 2)
becomes
o =a(z,t) + B(z,t)(u* + usm) +(z,t) — 4., (15)
= oz(z,t) - a(z*,t) + 5(Z,t) - er
AB(z,t)
— a(z*,t)m + B(z,t)usm.-
Assume it is possible, via (15), to rewrite:
o = alo,t) + p(z,2%,t) + B2z, t)usm, (16)

where p(z, z*, t), represents bounded perturbations satisfy-
ing (H1) for some A* € R,. In (16), it is not possible to
bound (o, t), since this is the output of the zero-dynamics
of system (2), using ¢ as input. However, it is possible to
state convergence conditions for a class of homogeneous
perturbations, as formalised in Theorem 2.

Theorem 2: Let a control for system (1), satisfying as-
sumptions (H1)—(H3), be designed as in (14), using the FST
controller (11). If « is a homogeneous function with HD
T > 1/2, then FST guarantees, with v = 0, exact finite-time
convergence to o =0 =0, and robust finite time convergence
with v # 0 of a filtering order not exceeding n .

Proof: First, evaluate the error dynamics by substituting
(16) to (11), and using o1 = p + Bui — Y-

( Ling
Wy = we — kp1fwr|*T07 (172)

"
we = w3z — kpawy|**7 (17b)

L3 _3
(6) wnf—l = Wnf — kf(nffl) [w1J2+nf 5 (17C)
2
Wy, = 0(21,t) = kg, [wi]*7, (17d)
1

o =alo,t)+ o1 — k1f(z,t)[w|*"r, (17e)
o1 € [-T*;T*] — kofw: |°, (17f)

u
where eT = [wT sT], and |A*+ Buy — §,| < I'* < oo.
Apply the dilation d2nf+ ,» and transformation (9), to (17),
with weights r; = ny+3—14,1=1,...,ny+2,and ¢ = —1.
Analyse, in particular, (17e):

1
o =01 —kiB(z,)[w |77 + kra(k?o, kM), (18)
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— 01 — ka2 )[un |TT + 51 (a0, k7)) |

Then, for a(-) with a HD r, > 1/2, it follows from the
0-limit approximation (see Appendix) that there exists some
Ko, €0 € Ry, that defines an homogeneous ball B, < Q,,:

Quy = {e e RV T2 |k < ko A kT2 (a0, k7)) < g0},

where a(-) is dominated by the FST correction terms. Hence,
for e € B, < Q,, (17) is locally homogeneous with HD
= —1 and, with appropriate selection of gains (k¢;, with i =
1,...,n¢, k1 and ky), locally strongly finite-time convergent
[41(12]. B

Analogously, for €., € R, define 2, :

Qo = {e e R 2|k > kg A
K2 (01 — kB2, )[wn |7 ) < el
where «(-) dominates the FST correction term, and hence:
(19)

o~ a(o,t).

Thus, Ve € B, < Q.,., the dynamics of (17) are approxi-
mated as the cascade interconnection of the stable systems:

w = h(w, o), (20a)
¢ = afo,t), (20b)
&1 € [-I3T] — ko B[w: |, (20¢)

where (20a) are the error dynamics of a truncated SM
differentiator (17a)—(17d). Now, Lemma 1 (see Appendix)
is applied. Using (H3), (19) is asymptotically stable, and
a(o,t) — 0 as 0 — 0. Since w = h(w, 0) is asymptotically
stable, Ve € B, < Q.,, as ¢ — 0, w; — 0, and (20a)-
(20b) is asymptotically stable. Observe that (20c) plays no
role. Extending the solutions of (20) forward in time, o
decreases until e € B,, < ,. Then, inside Q,, (17)
is locally homogeneous with HD = —1, strongly finite-
time convergent, and 0 — 0 (and a(o,t) — 0) in finite
time. Thus, robustness around the origin and noise rejection
properties follow from Theorem 1. [ ]

Remark 3: The homogeneity degree of «(o,t) plays a
fundamental role. If a(-) is not homogeneous, it is possible
to define «(+) inside a class of larger homogeneous perturba-
tions as in [12]. Importantly, if «(-) satisfies (H3), is locally
homogeneous, and there exists a 0-limit approximation of
a(-), ap(+) with HD r, ¢ > 1/2, then (17) is also locally
homogeneous. Two important cases are: (i) r,, = 1/2, which
is extensively studied in [5], and (ii) «(-) is a linear function
of o, i.e, rq0 = 1, in which case Theorem 2 is directly
applicable.

Remark 4: Due to the inclusion of u*, as o — o, and

B — p*:
|p(z7Z*vt)| ~ |(5(Z,t) _y.'r“ < |5(Z,t) +Oé(Z,t) _y7'|a
—_—
vy

hence, typically, I'* < T, resulting in reduced values for the
FST (alternatively ST) gains [14].

IV. CASE STUDY: WAVE ENERGY CONVERTER

In this section, in-silico evaluations are conducted on a
one-degree-of-freedom wave energy converter (WEC). The
goal of this section is to evaluate FST performance around
o = o = 0, and compare it with ST performance in noisy
environments. Since u* does not affect the local homogeneity
of the controllers, only the case u* = 0 is considered.
The simulation parameters are presented in Subsection IV-
A. Then, the FST controller velocity-tracking results are
presented and compared in Subsection IV-B.

A. Wave energy system and controller tuning

Consider the one-degree-of-freedom WEC dynamics:

=M (-Hz — k.x +d(t) + u), (21a)

5 T =, (21b)
Y] z2=Fz+ Go, (21c)
Yy=v-+v, (21d)

where x is displacement, v is velocity, z € R7 are the radia-
tion states, and d(t) is the wave excitation force, which can
be modelled as an external bounded disturbance, satisfying
|d(t)] < Lg4. To generate a realistic wave profile, d(t) is
generated using the Bretschneider spectrum [15], considering
a peak period T,, = 8s, and significant wave height H, =
1m. Also, M = 6.8 x 107 and k, = 5.57 x 10°.

For evaluation of the FST, a controller is designed with
ny = 2, and compared with the ST. To tune both controllers,
the gains are as follows: L = 6m/s?, ki, = 9.97 x 10°,
kog = 8.95x 10, ky,.ip = 13.7, kfypr = 53.95, ki = 9 X
107, and ko, = 8.95 x 10°. The simulations are conducted
with 20% uncertainty in the parameters of (21), and initial
conditions outside the sliding surface. As detailed in the
following, robustness to model uncertainty and perturbations
is observed for both the ST and the FST.

B. FST and ST comparison

This section analyses the performance of the ST and FST
algorithms for v = vy + vy, with 11 ~ N/(0, 10’6), and
vo = 0.5sin(1007t), emulating 50Hz grid noise. The signal-
to-noise ratio of the measured velocity (see Figure 1), with
the simulated noise, is SNR = 5.3dB.

2 Noisy Vel.
2 — — — Clean Vel.
=1
Z o
Q
S
<A1

2 . . . . .

0 50 100 150 200 250 300
Time [s]
Figure 1. Velocity measurement (solid line) and noiseless velocity (dashed

line).

In the following, the convergence of the ST and FST
controllers with ¥ = 0 is analysed. First, observe the o-0
plane in Figure 2. As expected, both algorithms converge to
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Figure 2. Phase plane convergence of ST and FST to the sliding surface
when the measurement is noiseless.

x10°*

ST 1
— — —FST
-6 Ca 1 ! 7
-0.6 -0.4 -0.2 0 0.2
a

Figure 3. Phase plane convergence of ST and FST to the sliding surface
when the measurement is noisy.

o = ¢ = 0, in spite of model uncertainty. However, with
v # 0, the performance of both algorithms is affected, as
shown in Figure 3. Notably, when compared with the case
with v = 0, the FST presents a similar reaching phase, while
the ST initial convergence is deteriorated. Around the origin,
FST exhibits a clear advantage in achieving convergence to
a smaller region of the phase plane compared to that of the
ST. Complementarily, o(t) is depicted in the time domain in
Figure 4. In Figure 4 (top), it is shown that, when v = 0, both
controllers exhibit a similar performance. However, when
v # 0 (see Figure 4 (bottom)), ST convergence is consider-
ably degraded, with o showing increased oscillations around
the convergence region. In contrast, FST robustly retains
the sliding variable around zero, considerably reducing the
impact of measurement noise.

Also, the initial convergence of the ST and FST algorithms
is depicted, in the time domain, in Figure 5. In Figure 5
(top), with v = 0, it is observed that FST exhibits a

osl T T T T T = ]
— — —FST
IS 0 e Lot § Ry 3 it B s ol o
-0.5 4
0 50 100 150 200 250 300

Time [s]

Figure 4. Sliding variable evolution for ST and FST when the measurement
is noiseless (top) and noisy (bottom). The dot-dashed lines delimit the
maximum values for ST and FST errors.

0.5 ' ' ' 5T 1 4
/—- N — — —FST
p \
b 0_'—/ ''''''' ‘;7"—_-—_—__—__
/
0507 ]
0 0.5 1 15 2
0.5} ' ' ' 5t 14
—_ — = — FST
N
b O:::/!::::::E:?:::—:m:ﬂ':ﬂ:=:ﬁ‘-‘;".—=—‘92
/
0517 l
0 0.5 1 15 2
Time [s]

Figure 5. Sliding variable evolution for ST and FST when the measurement
is noiseless (top) and noisy (bottom). The dot-dashed lines delimit the
maximum values for ST and FST errors.

longer convergence time, approximated by the dot-dashed
line. Complementary, Figure 5 (bottom), representing the
noisy case, reveals that the reaching phase for the FST algo-
rithm remains similar to the noise-free scenario. However,
the evolution of o in the ST algorithm begins to exhibit
noticeable deviations, consistently with the result in Figure 3.

Finally, Figure 6 illustrates the influence of measurement
noise on the control action. In Figure 6 (top), where the
measured signal is noiseless, ST and FST exhibit similar
control actions and hence, performance. However, in Fig-
ure 6 (bottom), where v # 0, a significant degradation
of the ST control action can be observed. This is due to
the higher sensitivity of the ST to noise. In contrast, the
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Figure 6. ST (solid line) and FST (dashed line) control action. Top: Control
action when the measured signal is noiseless. Bottom: Control action when
the measured signal is noisy.

FST demonstrates improved mitigation of the impact of
noise, resulting in a control signal with reduced amplitude
variations. Importantly, this latter feature proves essential for
real-time application of FST, especially to prevent control
action saturation and/or slew-rate effects.

V. CONCLUSIONS

The proposed filtering super-twisting (FST) controller
fulfils several key requirements for improving conventional
super-twisting (ST) control performance in noisy environ-
ments. First, FST effectively mitigates the impact of noise
in measured signals, enhancing overall performance without
compromising the inherent ST robustness to unmodelled
dynamics and perturbations. Second, FST reduces control
effort in noisy environments, addressing critical issues such
as wind-up and slew-rate saturation. Third, by integrating
a sliding-mode filtering structure directly within the control
design, FST eliminates phase delays in the tracked variable.
These enhancements collectively lead to a more efficient and
reliable control strategy when the noise power is significant.
Overall, FST represents an appealing solution for applica-
tions demanding both high robustness and strong noise re-
silience. Importantly, the preliminary results presented in this
paper can be extended to (i) an analysis of discretised FST,
(i1) address FST fixed-time convergence, and (iii) sensitivity
analysis on the FST gains, among other areas of interest.

APPENDIX

Definition 3 (0-limit homogeneous approximation [16]):
A vector field ® is said homogeneous in the O-limit with
associated tripe (ro, qo, ®o), where ro € R™ is the weight,
q € R is the HD, and ® is an approximating vector field,
if ®, ®(, are continuous and not identically zero, and, for
each compact set C' € R™\{0}, and each € > 0, there exists

a Ko > 0, such that for each ®¢ ;, ®;, is satisfied:

Qi (dyx)
max | —— —
zeC | Kdotro,i

071'(33) <e, Vke (O, Kjo]. (22)
In words, definition 3 states that there must exist a suffi-
ciently small kg, such that the 0O-limit approximation @,
approximates ¢ with a small error €.

Lemma 1 ( [17, Appendix B]): Consider the system:

(23a)
(23b)

z= q(z7y),
y=9(y).

Suppose (z,y) = (0,0) is an equilibrium of (23), the equilib-
rium z = 0 of 2 = q(z,0) is asymptotically stable, and the
equilibrium y = 0 of (23b) is asymptotically stable. Then the
equilibrium (z,y) = (0,0) of (23) is asymptotically stable.
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